JP4733890B2 - SiO2を主成分とする膜の成膜方法 - Google Patents

SiO2を主成分とする膜の成膜方法 Download PDF

Info

Publication number
JP4733890B2
JP4733890B2 JP2001529474A JP2001529474A JP4733890B2 JP 4733890 B2 JP4733890 B2 JP 4733890B2 JP 2001529474 A JP2001529474 A JP 2001529474A JP 2001529474 A JP2001529474 A JP 2001529474A JP 4733890 B2 JP4733890 B2 JP 4733890B2
Authority
JP
Japan
Prior art keywords
film
sputtering
sio
target
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001529474A
Other languages
English (en)
Inventor
彰 光井
宏 植田
幸一 神田
晋 中釜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Original Assignee
AGC Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Ceramics Co Ltd filed Critical AGC Ceramics Co Ltd
Priority to JP2001529474A priority Critical patent/JP4733890B2/ja
Application granted granted Critical
Publication of JP4733890B2 publication Critical patent/JP4733890B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/155Deposition methods from the vapour phase by sputtering by reactive sputtering

Description

【技術分野】
【0001】
本発明は、SiOを主成分とする膜の成膜方法に関する。
【背景技術】
【0002】
従来より、低屈折率膜(屈折率n<1.6)の材料として、SiO(n=1.46)、MgF(n=1.38)などが知られている。前記の膜材料は真空蒸着法や塗布法等でも成膜できるが、建築用ガラス、自動車用ガラス、陰極線管(CRT)、フラットディスプレイ等の大面積基板に成膜する場合にはスパッタ法が用いられることが多い。スパッタ法のうちでも特に直流放電を利用した直流(DC)スパッタ法が大面積の成膜に適している。
機械的耐久性、化学的耐久性が高いSiO膜を、Siターゲットを用い酸素を含む雰囲気でスパッタ法(いわゆる反応性スパッタ法)により成膜する場合、従来は、異常放電(アーキング)が発生し困難であった。近年、成膜装置改良等のアーキングの抑制技術が開発され、反応性スパッタ法によるSiO膜の成膜が実用化されているが、成膜速度は充分ではない。
【0003】
また、使用する多結晶Siターゲットや単結晶Siターゲットは、粒界や結晶面で割れやすい問題があった。割れにくくするためAlを添加したSiターゲットが提案されている(特表平5−501587)が、SiO膜中にAlが不純物として取り込まれるため、膜の屈折率が増加する問題があった。また、成膜速度が遅いという問題もあった。
また、Si膜を成膜するために、SiC焼結体ターゲットを用いることが提案されている(特開昭63−113507)が、SiC焼結体ターゲットを用いた場合、成膜速度が充分でなかった。
【0004】
本発明は、スパッタ法により低屈折率のSiOを主成分とする膜を高速で成膜でき、成膜時の割れに対する耐性が改善されたターゲットを用いたSiOを主成分とする膜の成膜方法の提供を目的とする。
【発明の開示】
【0005】
本発明は、スパッタ法によりSiO を主成分とする膜を基板面に成膜する方法において、SiCと金属Siとを含み、Siに対するCの原子比が0.5以上0.95以下であり、かつ密度が2.75×10 kg/m 以上3.1×10 kg/m 以下であるスパッタターゲットを用い、かつ酸化性ガスを含むスパッタ雰囲気中で基板面に成膜することを特徴とするSiO を主成分とする膜の成膜方法を提供する。
【発明を実施するための最良の形態】
【0006】
本発明の成膜方法において用いられるターゲット(以下、このターゲットを本発明用のターゲットと称する。)におけるSi(SiC中のSiと金属SiのSiとの総和)に対するCの原子比、すなわちC/Si(原子比)は0.5以上0.95以下である。本発明における金属Siとは、半導体の性質を有する一般的に知られたSiの意である。
本発明のターゲットにおけるC/Si(原子比)が0.5未満ではSi量が多くなり成膜速度が減少し、0.95超ではやはり成膜速度が減少する。例えば、C/Si(原子比)が1.0の場合、すなわちSiCの場合、本発明のSiCと金属Siを主成分とするターゲットの場合と比較して、成膜速度が低い。C/Si(原子比)は特に0.7以上0.9以下であることが好ましい。
C/Si(原子比)が0.5以上0.95以下の範囲にある場合、密度が2.75×10kg/m未満では放電が不安定になり、3.1×10kg/m超では成膜速度が減少する。
【0007】
本発明のターゲットはSiCと金属Siを主成分とするので、割れの原因となっていたSi粒子の粒界での割れや劈開での割れがSiCの相により抑制される。また、SiCにおけるSiとCとの化学結合力が強いため、ターゲットに大きい投入電力をかけても割れにくい。
本発明のターゲットにおいては、比抵抗、放電安定性および熱伝導率の観点から、金属Siは、SiC粒子の隙間を埋めるように存在し、連続体となっていることが好ましい。
本発明のターゲットの熱伝導率は100W/(m・K)以上であることが好ましい。熱伝導率が100W/(m・K)未満では、ターゲットが局所的に高温化し、ターゲットにクラックなどの損傷が生じやすくなる。また、ターゲットの局所的な高温化により、その部分が酸化されやくすくなり、成膜速度の低下の原因となる。熱伝導率は高いほど好ましいが、200W/(m・K)超でも局所的に高温化することを抑制する効果に差はない。
【0008】
本発明のターゲットは、低屈折率のSiO膜を主成分とする膜を得る観点から、ターゲット総量に対する不純物(SiとC以外の成分)の合計が1質量%以下であることが好ましい。
本発明のターゲットは、SiCと金属Siを主成分としているので、従来のSiターゲットに比べ、単位投入電力あたりの成膜速度を大きくできる。SiCはSiと比較して2次電子発生が少ないためスパッタ電流が小さくなり、相対的に電圧が高くなりスパッタ効率が向上する、と考えられる。
本発明のターゲットの相対密度は、成膜時の放電の安定性の観点から、60%以上であることが好ましい。
また、本発明のターゲットの比抵抗は、DCスパッタを行う観点からは、0.5Ω・m以下であることが好ましい。さらに、放電の安定性の観点から、0.03Ω・m以下であることが好ましい。
本発明のターゲットはRF(高周波)スパッタにも使用できる。
本発明のターゲットは、SiCを主成分とした他のターゲットに比べ、導電性に優れるため、放電加工が可能であり、また、スパッタ放電時のプラズマが安定する。また、本発明のターゲットは機械加工も容易である。
【0009】
本発明のターゲットは、例えば次のように作製される。
SiC粉末に、分散剤、結合剤(例えば有機質バインダ)、水を調合・添加し、撹拌し、SiCのスラリーを作製する。その後、このスラリーを石膏型に注いで鋳込み成形を行う。充分に乾燥後、型から外し成形体を得る。
鋳込み成形法は、安価で、生産性が高く、大面積品や平板以外の異形状品を成形することもできる、工業上有用な成形法である。
上述例においては鋳込み成形法により成形体を得ているが、プレス成形法や押出し成形法を用いてもよい。また、成形体の形状は板状や円筒状など所望の形状が適宜選択される。
成形体が得られた後、必要に応じて乾燥する。また、成形体から焼結体を得る場合には、成形体を、真空中または非酸化性雰囲気中で1450℃以上2300℃以下の温度で焼成して焼結体を得る。次工程の溶融Si含浸に好適な気孔が形成されることから、焼成温度は1500℃以上2200℃以下、特に1600℃以上1800℃以下であることが好ましい。
得られた成形体または焼結体に、溶融した金属Siを、真空中または減圧非酸化性雰囲気中、1450℃以上2200℃以下の温度で含浸させ、成形体または焼結体の気孔を金属Siで満たし、ターゲットを得る。Siの含浸を進める一方でSiの蒸発量を抑える観点からは、1500℃以上2200℃以下、特に1500℃以上1800℃以下であることが好ましい。
【0010】
従来のSiCターゲットを製造する方法としては、常圧焼結法、ホットプレス法、反応焼結法などが知られている。
しかし、常圧焼結法では、通常、焼結助剤という不純物を含み、また、焼結で収縮するため、焼結体に残留応力が残り、ターゲットの割れの原因となりやすい。
ホットプレス法では、大面積の焼結体を得ることが困難であり、また、前記常圧焼結法と同様に、焼結体に残留応力が残り、ターゲットの割れの原因となりやすい。また、ホットプレス後に削るなどの加工を要するため効率的ではない。さらに、ホットプレス法は、円筒形状や複雑形状の製造には適さない。
反応焼結法は、原料としてSiC粉末とカーボン粉末を用い成形体を得た後、成形体中のカーボンと含浸させる溶融Siとを反応させる方法であるが、該方法では、カーボンと溶融Siとの反応時に体積膨張を伴うので、結果として残留応力が残り、ターゲットの割れの原因となりやすい。また、原料として用いるSiC粉末とカーボン粉末を均一に混合したスラリーを得ることが困難であり、工業上有用な鋳込み成形法を用いることが困難である。前記理由から、溶融Siを含浸させる本発明においては、原料にカーボン粉末を用いないことが好ましい。
本発明のターゲットの製造方法において、成形体を焼結させずに、溶融Siを含浸する方法は、焼成工程を省いているため生産性に優れる。
また、成形体を焼成し焼結体を得た後に溶融Siを含浸する方法は、焼成工程で不純物が蒸発するので、より高純度のターゲットが得られる。
【0011】
本発明のターゲットは、通常、所定の寸法に加工され、1)金属製のバッキングプレートにボンディング材(インジウムなど)でボンディングされて、または、2)クランプ留めのようにジグなどで機械的にカソードに固定されて、用いられる。
本発明は、スパッタ法により酸化性ガスを含む雰囲気中でSiOを主成分とする膜を成膜する方法において、スパッタターゲットとして前記のスパッタターゲットを用いることを特徴とする成膜方法を提供する。
【0012】
本発明におけるスパッタ法としては、高速成膜が可能なスパッタ法が挙げられる。具体的には、DCスパッタ法、RFスパッタ法における周波数よりも低い周波数のスパッタ法、DCスパッタにおける印加電流・印加電圧の波形を変化(例えば矩形状に変化)させたスパッタ法が挙げられる。列記したスパッタ法はいずれも導電性ターゲットを必要とするスパッタ法である。
本発明におけるSiOを主成分とする膜(以下、単にSiO膜という)は、膜の総量に対するSiO成分が99質量%以上であることが好ましい。本発明におけるSiO膜の波長633nmにおける屈折率は1.50以下、特に1.48以下であることが好ましい。
本発明におけるSiO膜は、C成分をわずかに含むか、C成分を実質的に含まない膜であることが好ましい。膜の総量に対するCが0.2質量%以下であると、屈折率が低く、光の吸収がほとんどないSiO膜が得られる。
SiO膜を高速で成膜するには、1)ターゲットに大きい投入電力をかけられること、および、2)単位投入電力あたりの成膜速度を大きくできること、が重要である。
【0013】
投入電力としては、ターゲットに対する電力密度(最高電力をターゲットの放電面側の面積で割ったもの)が10W/cm以上であることが、高速でSiO膜を得る点で好ましい。
酸化性ガスを含む雰囲気での反応性スパッタにおいてはターゲット表面が酸化されるので、ターゲット内部と表面とで応力を生じ割れやすくなるが、SiCがターゲット表面の酸化を抑制し、かつ、前述したように割れに対する耐性が高いので、前記反応性スパッタにおいても割れにくい。
本発明の成膜方法においては、スパッタ成膜時のスパッタ雰囲気(スパッタガス)中に酸化性ガス(例えばOガスやCOガス)を含む。スパッタ成膜時の酸化性ガスの分圧を調整することにより、ターゲット中のSiCのC成分が膜中に取り込まれないようにすることができ、不純物を含まないSiO膜も得られる。
【0014】
本発明の成膜方法においては、ターゲット中のSiCのC成分は、成膜時に雰囲気中の酸化性ガス(特にOガスが好ましい)と反応して、COまたはCOとなり真空ポンプで排気される。
本発明においては、SiO膜は例えば次のように形成される。
本発明のターゲットをマグネトロンDCスパッタ装置に取り付ける。次いで、成膜室内を真空に排気後、スパッタガスとして、ArガスとOガスとが混合されたガスを導入する。スパッタガス中のOガスの含有割合は20体積%以上100体積%以下であることが好ましい。20体積%より低いと酸化が充分でなく吸収のないSiO膜が得られにくい。成膜速度の観点からは80体積%以下であることが好ましい。特にスパッタガス中のOガスの含有割合は30体積%以上80体積%以下であることが好ましい。
本発明においては、成膜時のアーキング抑制のため、ターゲットにパルス状の波形の電圧を印加することが好ましい。
SiO膜が成膜される基板は、特に限定されず、ガラス基板、プラスチック基板、プラスチックフィルムなどが挙げられる。
SiO膜の膜厚(幾何学的膜厚)は、反射防止膜として用いる観点からは、10nm以上1μm以下であることが好ましい。
【実施例】
【0015】
[例1](実施例)
SiC粉末に分散剤を加えて蒸留水を媒体としてボールミルで混合後、結合剤をさらに加え撹拌して、鋳込み用のスラリーを作製した。そのスラリーを石膏型に投入し、鋳込み成形を行った。乾燥後、成形体を型から外し、さらに、充分乾燥させた。その後、真空ポンプで排気しながら真空を保ちつつ、1600℃にて、2時間保持し、焼成を行った。得られた焼結体の密度は2.6×10kg/m(相対密度約81%)であった。この焼結体を、真空中で1600℃で溶融した金属Siに浸し、金属Siを含浸させてSiCと金属Siを主成分とするターゲットを得た。
得られたターゲットの密度は3.0×10kg/m(相対密度約100%)であった。ターゲットの比抵抗は、1.2×10−3Ω・mであった。このターゲットのC/Si(原子比)は0.8であった。レーザーフラッシュ法で測定したターゲットの熱伝導率は、150W/(m・K)であった。また、ターゲットをX線回折分析したところ、SiCとSiの結晶相のみが観測された。また、金属Siは、SiC粒子の隙間を埋めるように存在し、連続体となっていることが確認された。
また、ICP(誘導結合型プラズマ発光分光分析)法により、ターゲットの総量に対する金属不純物の量を測定した結果、Alが0.01質量%、Feが0.005質量%、Tiが0.002質量%、Caが0.001質量%、Mgが0.001質量%未満、Vが0.003質量%、Crが0.001質量%未満、Mnが0.002質量%、Niが0.001質量%未満であった。
【0016】
得られたターゲットを、直径150mm、厚さ15mmの寸法に放電加工および研削加工し、銅製のバッキングプレートにメタルボンドで接着し、これをマグネトロンDCスパッタ装置に取り付けて、成膜を行った。なお、このときの研削加工は容易であった。成膜時の条件は背圧を1.3×10-3Pa、スパッタ圧力を0.4Paとした。スパッタガスには、スパッタガス中のOガスの含有割合が50体積%であるArとOの混合ガスを用いた。
また、投入電力は3kWとし、電圧が矩形波になるよう電力を印加した。このときの電力密度は17W/cmであった。マイナスの電圧をかけている時間をON時とし、プラスの電圧をかけている時間をOFF時とすると、ON時は50×10−6sec、OFF時は50×10−6secとなるように設定した。このとき、ON時の電圧は−720Vであった。また、OFF時の電圧は+50Vとなるように設定した。
基板にはソーダライムガラス基板を用いた。基板には意図的な加熱は特に行わなかった。膜厚はおよそ500nmとなるように行った。スパッタ中の放電はきわめて安定しておりDCスパッタでも安定して成膜ができた。
成膜後、膜厚を触針式の膜厚測定装置を用いて測定した。単位投入電力あたりの成膜速度は120nm/(min・kW)であり、成膜速度は360nm/minであった。
エリプソメータで膜の屈折率を測定した。用いた光の波長は633nmである(他の例も同様に測定)。膜の屈折率は1.46であった。得られた膜を、XPS(X線光電子分光法)で分析し(他の例も同様に測定)、主成分は、SiとOからなることを確認した。膜中のCは膜の総量に対して、0.04質量%であった。
【0017】
[例2](比較例)
例1と同サイズの市販されている多結晶Siターゲットを用いて、例1と同様の条件で成膜した。投入電力3kW(電力密度:17W/cm)では、ターゲットに割れが生じて、放電が不安定であった。そこで、投入電力を1kW(電力密度:5.7W/cm)に下げ、ON時の電圧を−360Vとした以外は例1と同様の条件で成膜したところ、放電は安定しており、成膜が可能であった。このときの単位投入電力あたりの成膜速度は70nm/(min・kW)であり、成膜速度は70nm/minであった。得られた膜は、屈折率が1.46であり、SiとOからなる膜であった。
【0018】
[例3](比較例)
例1と同サイズのSiC焼結体ターゲット(旭硝子(株)製:商品名セラロイC)を用いて、例1と同様の条件で成膜した。成膜後、膜厚を触針式の膜厚測定装置を用いて測定した。単位投入電力あたりの成膜速度は100nm/(min・kW)であり、成膜速度は300nm/minであった。膜の屈折率は1.48であった。
【0019】
[例4](実施例)
例1のように鋳込み成形法で成形体を作製した後、例1における焼成は行わずに、例1と同様に溶融したSiに浸し、SiCと金属Siを主成分とするターゲットを得た。得られたターゲットの、C/Si(原子比)、密度、比抵抗および熱伝導率は、例1のものと同等であった。また、結晶相も、例1と同様にSiCとSiの結晶相のみが観測された。また、金属Siは、SiC粒子の隙間を埋めるように存在し、連続体となっていることが確認された。
また、例1と同様の方法で、ターゲットの総量に対する金属不純物の量を測定した結果、Alが0.07質量%、Feが0.02質量%、Tiが0.002質量%、Caが0.008質量%、Mgが0.001質量%未満、Vが0.003質量%、Crが0.001質量%未満、Mnが0.003質量%、Niが0.001質量%未満であった。
このターゲットを例1と同様に加工した後、例1と同様の条件で成膜した。成膜後、膜厚を触針式の膜厚測定装置を用いて測定した。単位投入電力あたりの成膜速度は120nm/(min・kW)であり、成膜速度は360nm/minであった。膜の屈折率は1.46、C量は0.04質量%であった。
【産業上の利用可能性】
【0020】
本発明のターゲットは、スパッタ成膜時の割れに対する耐性が改善され、大電力を投入できるところから、かかる本発明用のターゲットを用いる成膜方法によれば、低屈折率のSiO膜を高速で成膜できる。

Claims (8)

  1. スパッタ法によりSiO を主成分とする膜を基板面に成膜する方法において、SiCと金属Siとを含み、Siに対するCの原子比が0.5以上0.95以下であり、かつ密度が2.75×10 kg/m 以上3.1×10 kg/m 以下であるスパッタターゲットを用い、かつ酸化性ガスを含むスパッタ雰囲気中で基板面に成膜することを特徴とするSiO を主成分とする膜の成膜方法。
  2. 前記スパッタ法が、DCスパッタ法、RFスパッタ法、RFスパッタ法における周波数よりも低い周波数のスパッタ法、又はDCスパッタにおける印加電流・印加電圧の波形を変化させたスパッタ法である請求項1に記載のSiO を主成分とする膜の成膜方法。
  3. 酸化性ガスとしてO ガスを20体積%以上100体積%以下含むスパッタ雰囲気中で基板面に成膜する請求項1または2に記載のSiO を主成分とする膜の成膜方法。
  4. 波長633nmにおける屈折率が1.50以下のSiO を主成分とする膜を成膜する請求項1〜3のいずれか1項に記載のSiO を主成分とする膜の成膜方法。
  5. SiO を主成分とする膜として、当該膜の総量に対するSiO 成分が99質量%以上であり、Cが0.2質量%以下である膜を成膜する請求項1〜4のいずれか1項に記載のSiO を主成分とする膜の成膜方法。
  6. SiCと金属Siとを含み、Siに対するCの原子比が0.5以上0.95以下であり、密度が2.75×10 kg/m 以上3.1×10 kg/m 以下であり、かつ熱伝導率が100W/(m・K)以上であるスパッタターゲットを用いる請求項1〜5のいずれか1項に記載のSiO を主成分とする膜の成膜方法。
  7. SiCと金属Siとを含み、Siに対するCの原子比が0.7以上0.9以下であり、密度が2.75×10 kg/m 以上3.1×10 kg/m 以下であり、かつ熱伝導率が100W/(m・K)以上200W/(m・K)以下であるスパッタターゲットを用いる請求項1〜6のいずれか1項に記載のSiO を主成分とする膜の成膜方法。
  8. SiCと金属Siとを含み、Siに対するCの原子比が0.5以上0.95以下であり、密度が2.75×10 kg/m 以上3.1×10 kg/m 以下であり、熱伝導率が100W/(m・K)以上であり、かつ比抵抗が0.5Ω・m以下であるスパッタターゲットを用いる請求項1〜7のいずれか1項に記載のSiO を主成分とする膜の成膜方法。
JP2001529474A 1999-10-13 2000-10-12 SiO2を主成分とする膜の成膜方法 Expired - Lifetime JP4733890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001529474A JP4733890B2 (ja) 1999-10-13 2000-10-12 SiO2を主成分とする膜の成膜方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999291480 1999-10-13
JP29148099 1999-10-13
JP2001529474A JP4733890B2 (ja) 1999-10-13 2000-10-12 SiO2を主成分とする膜の成膜方法
PCT/JP2000/007088 WO2001027345A1 (fr) 1999-10-13 2000-10-12 Cible de pulverisation et son procede de preparation, et procede de formation de film

Publications (1)

Publication Number Publication Date
JP4733890B2 true JP4733890B2 (ja) 2011-07-27

Family

ID=17769434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001529474A Expired - Lifetime JP4733890B2 (ja) 1999-10-13 2000-10-12 SiO2を主成分とする膜の成膜方法

Country Status (6)

Country Link
US (1) US6800182B2 (ja)
EP (1) EP1251188B1 (ja)
JP (1) JP4733890B2 (ja)
AT (1) ATE383456T1 (ja)
DE (1) DE60037753T2 (ja)
WO (1) WO2001027345A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960933B2 (ja) * 2003-03-18 2007-08-15 日本碍子株式会社 高熱伝導性放熱材及びその製造方法
JP4486838B2 (ja) * 2003-04-25 2010-06-23 旭硝子株式会社 酸化ケイ素膜の製造方法および光学多層膜の製造方法
JP4763962B2 (ja) * 2003-08-18 2011-08-31 株式会社東芝 酸化膜形成用スパッタリングターゲットとそれを用いた酸化膜の製造方法
US7998324B2 (en) * 2003-09-26 2011-08-16 Kabushiki Kaisha Toshiba Sputtering target and process for producing si oxide film therewith
US7713632B2 (en) 2004-07-12 2010-05-11 Cardinal Cg Company Low-maintenance coatings
US7537677B2 (en) * 2005-01-19 2009-05-26 Guardian Industries Corp. Method of making low-E coating using ceramic zinc inclusive target, and target used in same
US7597962B2 (en) * 2005-06-07 2009-10-06 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Coated article with IR reflecting layer and method of making same
JP4533815B2 (ja) * 2005-07-08 2010-09-01 株式会社東芝 スパッタリングターゲットとそれを用いた光学薄膜の製造方法
US7894148B2 (en) 2006-01-20 2011-02-22 Sumitomo Metal Mining Co., Ltd. Absorption type multi-layer film ND filter and process for producing the same
US7862910B2 (en) 2006-04-11 2011-01-04 Cardinal Cg Company Photocatalytic coatings having improved low-maintenance properties
US20070251819A1 (en) * 2006-05-01 2007-11-01 Kardokus Janine K Hollow cathode magnetron sputtering targets and methods of forming hollow cathode magnetron sputtering targets
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
US8702919B2 (en) 2007-08-13 2014-04-22 Honeywell International Inc. Target designs and related methods for coupled target assemblies, methods of production and uses thereof
EP2066594B1 (en) * 2007-09-14 2016-12-07 Cardinal CG Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US8409717B2 (en) 2008-04-21 2013-04-02 Guardian Industries Corp. Coated article with IR reflecting layer and method of making same
JP2011129631A (ja) 2009-12-16 2011-06-30 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の製造方法
CN102181837A (zh) * 2011-04-20 2011-09-14 韶关市欧莱高新材料有限公司 一种Si-SiC靶材
EP3541762B1 (en) 2016-11-17 2022-03-02 Cardinal CG Company Static-dissipative coating technology
CN111320478B (zh) * 2020-03-27 2022-02-11 有研资源环境技术研究院(北京)有限公司 一种碳硅陶瓷靶材的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221562A (ja) * 1984-04-17 1985-11-06 Matsushita Electric Ind Co Ltd 耐摩耗膜
JPH03173763A (ja) * 1989-11-30 1991-07-29 Nippon Sheet Glass Co Ltd 透明物品
JPH06211574A (ja) * 1993-01-18 1994-08-02 Sumitomo Metal Ind Ltd 半導体製造用炭化珪素焼結体の製造方法
JPH07211700A (ja) * 1994-01-24 1995-08-11 Sumitomo Metal Ind Ltd プラズマ発生装置用電極及びその製造方法
JPH08208336A (ja) * 1995-02-03 1996-08-13 Ngk Insulators Ltd 耐酸化性及び耐クリープ性を備えたSi−SiC質焼結体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951587A (en) * 1974-12-06 1976-04-20 Norton Company Silicon carbide diffusion furnace components
JPS5658967A (en) * 1979-10-19 1981-05-22 Matsushita Electric Ind Co Ltd Manufacture of thermal head
EP0051940B1 (en) * 1980-11-06 1985-05-02 National Research Development Corporation Annealing process for a thin-film semiconductor device and obtained devices
JPS63113507A (ja) 1986-10-31 1988-05-18 Hitachi Ltd 光導波路およびその製造法
JPH064309B2 (ja) 1988-01-28 1994-01-19 日本板硝子株式会社 熱線反射透明板及びその製造方法
US5047131A (en) 1989-11-08 1991-09-10 The Boc Group, Inc. Method for coating substrates with silicon based compounds
JP3028576B2 (ja) 1990-09-21 2000-04-04 日本板硝子株式会社 熱線遮蔽ガラス
JPH04260637A (ja) 1991-02-12 1992-09-16 Central Glass Co Ltd SiCNO系薄膜被覆ガラスおよびその製法
US5364571A (en) * 1993-02-17 1994-11-15 Avco Corporation Method of making a composite material
SE502227C2 (sv) 1993-12-30 1995-09-18 Sintercast Ab Förfarande för kontinuerligt tillhandahållande av förbehandlat smält järn för gjutning av föremål av kompaktgrafitjärn
WO1996036746A1 (fr) * 1995-05-18 1996-11-21 Asahi Glass Company Ltd. Procede de production d'une cible de pulverisation
JP4012287B2 (ja) 1997-08-27 2007-11-21 株式会社ブリヂストン スパッタリングターゲット盤
JP4178339B2 (ja) 1998-09-28 2008-11-12 株式会社ブリヂストン スパッタ積層膜の作製方法
JP2000264762A (ja) * 1999-03-12 2000-09-26 Tokai Konetsu Kogyo Co Ltd 耐酸化性SiC−Si複合材の製造方法
US6129742A (en) * 1999-03-31 2000-10-10 Medtronic, Inc. Thin film resistor for use in medical devices and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221562A (ja) * 1984-04-17 1985-11-06 Matsushita Electric Ind Co Ltd 耐摩耗膜
JPH03173763A (ja) * 1989-11-30 1991-07-29 Nippon Sheet Glass Co Ltd 透明物品
JPH06211574A (ja) * 1993-01-18 1994-08-02 Sumitomo Metal Ind Ltd 半導体製造用炭化珪素焼結体の製造方法
JPH07211700A (ja) * 1994-01-24 1995-08-11 Sumitomo Metal Ind Ltd プラズマ発生装置用電極及びその製造方法
JPH08208336A (ja) * 1995-02-03 1996-08-13 Ngk Insulators Ltd 耐酸化性及び耐クリープ性を備えたSi−SiC質焼結体

Also Published As

Publication number Publication date
US20020117785A1 (en) 2002-08-29
ATE383456T1 (de) 2008-01-15
DE60037753T2 (de) 2009-01-15
DE60037753D1 (de) 2008-02-21
EP1251188B1 (en) 2008-01-09
US6800182B2 (en) 2004-10-05
EP1251188A1 (en) 2002-10-23
EP1251188A4 (en) 2005-05-04
WO2001027345A1 (fr) 2001-04-19

Similar Documents

Publication Publication Date Title
JP4733890B2 (ja) SiO2を主成分とする膜の成膜方法
US5418071A (en) Sputtering target and method of manufacturing the same
JP5733208B2 (ja) イオンプレーティング用タブレットとその製造方法、および透明導電膜
JP4885274B2 (ja) アモルファス複合酸化膜、結晶質複合酸化膜、アモルファス複合酸化膜の製造方法および結晶質複合酸化膜の製造方法
JPWO2020031410A1 (ja) 酸化物スパッタリングターゲット及びその製造方法、並びに当該酸化物スパッタリングターゲットを用いて成膜した酸化物薄膜
JPH09508178A (ja) 炭化ケイ素のスパッタリングターゲット
JP2000281431A (ja) SnO2系焼結体、薄膜形成用材料および導電膜
JP2009504556A (ja) SiOx:Si複合材料組成物およびその製造方法
JP2007290875A (ja) 酸化チタン系焼結体およびその製造方法
JP2001295035A (ja) スパッタリングターゲットおよびその製造方法
JP2009504557A (ja) SiOx:Si複合物体およびその製造方法
US6562418B2 (en) Microwave processing of pressed boron powders for use as cathodes in vacuum arc sources
TWI481725B (zh) Sb-Te alloy powder for sintering, production method of the powder, and sintered body target
JPH10158826A (ja) MgOターゲット及びその製造方法
JP6459830B2 (ja) 酸化物焼結体及びその製造方法、並びに酸化物膜の製造方法
JP2005113190A (ja) スパッタリングターゲット材料、その製造方法、及びそれを用いた透明導電膜の製造方法
JP7178707B2 (ja) MgO-TiO系スパッタリングターゲットの製造方法
JP2007277067A (ja) 導電性耐食部材及びその製造方法
EP2604587A1 (en) Electrically conductive SiNx ceramic composite, its sputtering targets and manufacturing methods thereof
JP2003226960A (ja) MgO蒸着材およびその製造方法
JP4363168B2 (ja) 酸化チタン焼結体およびその製造方法
JP2010513704A (ja) 混合された酸化クロム−金属クロムスパッタリングターゲット
JPH06220624A (ja) スパッタリング用ターゲットおよびその製造方法
JP4763962B2 (ja) 酸化膜形成用スパッタリングターゲットとそれを用いた酸化膜の製造方法
JP2001262326A (ja) 酸化インジウム−金属錫混合粉末及び同混合粉末を原料とするitoスパッタリングターゲット並びに同ターゲットの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4733890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250