JP4722921B2 - 液晶組成物の作成方法、液晶組成物を用いた液晶表示素子及びそれを備えた電子ペーパー - Google Patents

液晶組成物の作成方法、液晶組成物を用いた液晶表示素子及びそれを備えた電子ペーパー Download PDF

Info

Publication number
JP4722921B2
JP4722921B2 JP2007523302A JP2007523302A JP4722921B2 JP 4722921 B2 JP4722921 B2 JP 4722921B2 JP 2007523302 A JP2007523302 A JP 2007523302A JP 2007523302 A JP2007523302 A JP 2007523302A JP 4722921 B2 JP4722921 B2 JP 4722921B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal layer
display element
chiral material
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007523302A
Other languages
English (en)
Other versions
JPWO2007004280A1 (ja
Inventor
将樹 能勢
順二 富田
義久 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2007004280A1 publication Critical patent/JPWO2007004280A1/ja
Application granted granted Critical
Publication of JP4722921B2 publication Critical patent/JP4722921B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • G02F1/13473Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells for wavelength filtering or for colour display without the use of colour mosaic filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Description

本発明は、コレステリック相が形成される液晶組成物及び液晶組成物の作成方法並びに液晶組成物を用いた液晶表示素子及びそれを備えた電子ペーパーに関する。
近年、各企業及び各大学等において、電子ペーパーの開発が盛んに進められている。電子ペーパーが期待されている応用市場として、電子ブックを筆頭に、モバイル端末機器のサブディスプレイやICカードの表示部等、多用な応用携帯機器が提案されている。電子ペーパーの有力な表示方式の1つに、コレステリック相が形成される液晶組成物(コレステリック液晶)を用いた表示素子がある。コレステリック液晶は、半永久的な表示保持特性(メモリ性)、鮮やかなカラー表示特性、高コントラスト特性、及び高解像度特性等の優れた特徴を有している。
図10は、コレステリック液晶を用いたフルカラー表示が可能な液晶表示素子51の断面構成を模式的に示している。液晶表示素子51は、表示面から順に、青色(B)表示部46bと、緑色(G)表示部46gと、赤色(R)表示部46rとが積層された構造とを有している。図示において、上方の基板47b側が表示面であり、外光(実線矢印)は基板47b上方から表示面に向かって入射するようになっている。なお、基板47b上方に観測者の目及びその観察方向(破線矢印)を模式的に示している。
B表示部46bは、一対の上下基板47b、49b間に封止された青色(B)用液晶層43bと、B用液晶層43bに所定のパルス電圧を印加するパルス電圧源41bとを有している。G表示部46gは、一対の上下基板47g、49g間に封止された緑色(G)用液晶層43gと、G用液晶層43gに所定のパルス電圧を印加するパルス電圧源41gとを有している。R表示部46rは、一対の上下基板47r、49r間に封止された赤色(R)用液晶層43rと、R用液晶層43rに所定のパルス電圧を印加するパルス電圧源41rとを有している。R表示部46rの下基板49r裏面には光吸収層45が配置されている。
各B、G、R用液晶層43b、43g、43rに用いられているコレステリック液晶は、ネマティック液晶にキラル性の添加剤(カイラル材ともいう)を数十wt%の含有率で比較的大量に添加した液晶混合物である。ネマティック液晶にカイラル材を比較的大量に含有させると、ネマティック液晶分子層を強く螺旋状に捻ったコレステリック相を形成することができる。コレステリック液晶はカイラルネマティック液晶とも称される。
コレステリック液晶は双安定性(メモリ性)を備えており、液晶に印加する電界強度の調節によりプレーナ状態又はフォーカルコニック状態のいずれかの状態をとることができ、一旦プレーナ状態又はフォーカルコニック状態になると、その後は無電界下においても安定してその状態を保持する。プレーナ状態は、上下基板47、49間に所定の高電圧を印加して液晶層43に強電界を与えた後に急激に電界をゼロにすることにより得られる。フォーカルコニック状態は、例えば、上記高電圧より低い所定電圧を上下基板47、49間に印加して液晶層43に電界を与えた後に急激に電界をゼロにすることにより得られる。
このコレステリック液晶を用いた液晶表示素子の表示原理をB表示部46bを例にとって説明する。図11(a)は、B表示部46bのB用液晶層43bがプレーナ状態におけるコレステリック液晶の液晶分子33の配向状態を示している。図11(a)に示すように、プレーナ状態での液晶分子33は、基板厚方向に順次回転して螺旋構造を形成し、螺旋構造の螺旋軸は基板面にほぼ垂直になる。
プレーナ状態では、液晶分子の螺旋ピッチに応じた所定波長の光が選択的に液晶層で反射される。液晶層の平均屈折率をnとし、螺旋ピッチをpとすると、反射が最大となる波長λは、λ=n・pで示される。
従って、B表示部46bのB用液晶層43bでプレーナ状態時に青色の光を選択的に反射させるには、例えばλ=480nmとなるように平均屈折率n及び螺旋ピッチpを決める。平均屈折率nは液晶材料及びカイラル材を選択することで調整可能であり、螺旋ピッチpは、カイラル材の含有率を調整することにより調節することができる。
図11(b)は、B表示部46bのB用液晶層43bがフォーカルコニック状態におけるコレステリック液晶の液晶分子33の配向状態を示している。図11(b)に示すように、フォーカルコニック状態での液晶分子33は、基板面内方向に順次回転して螺旋構造を形成し、螺旋構造の螺旋軸は基板面にほぼ平行になる。フォーカルコニック状態では、B用液晶層43bに反射波長の選択性は失われ、入射光の殆どが透過する。透過光はR表示部46rの下基板49r裏面に配置された光吸収層45で吸収されるので暗(黒)表示が実現できる。
このように、コレステリック液晶では、螺旋状に捻られた液晶分子33の配向状態で光の反射透過を制御することができる。上記のB用液晶層43bと同様にして、G用液晶層43g及びR用液晶層43rに、プレーナ状態時に緑又は赤の光を選択的に反射させるコレステリック液晶をそれぞれ封止してフルカラー表示の液晶表示素子51が作製される。
図12は、各液晶層43b、43g、43rのプレーナ状態での反射スペクトルの一例を示している。横軸は、反射光の波長(nm)を表し、縦軸は、反射率(白色板比;%)を表している。B用液晶層43bでの反射スペクトルは図中▲印を結ぶ曲線で示されている。同様に、G用液晶層43gでの反射スペクトルは■印を結ぶ曲線で示し、R用液晶層43rでの反射スペクトルは◆印を結ぶ曲線で示している。
図12に示すように、各液晶層43b、43g、43rのプレーナ状態での反射スペクトルの中心波長は、B、G、Rの順に長くなるので、コレステリック液晶の螺旋ピッチは、液晶層43b、43g、43rの順に長くなる。このため、液晶層43b、43g、43rのコレステリック液晶のカイラル材の含有率は、液晶層43b、43g、43rの順に低くする必要がある。
一般に、反射波長が短くなるほど、液晶分子を強く捻って螺旋ピッチを短くする必要があるのでコレステリック液晶中のカイラル材の含有率は高くなる。また、一般に、カイラル材の含有率が高くなるほど駆動電圧が高くなる傾向がある。また、反射帯域幅Δλはコレステリック液晶の屈折率異方性Δnが大きくなるに従って大きくなる。
特開2003−147363号公報 特開2004−2765号公報
ところで、コレステリック液晶を用いたR、G、Bの積層構造のカラー液晶表示素子は、色再現範囲のバランスの悪化とコントラストの低下が生じ易いという課題を有している。色再現範囲のバランスやコントラストの善し悪しは、暗状態、つまりフォーカルコニック状態になっている層での光の散乱に大きく左右される。例えば、いずれか1色の液晶層がプレーナ状態で、残りの2色の液晶層がフォーカルコニック状態となっている場合、フォーカルコニック状態の液晶層での光の散乱が大きいと、プレーナ状態の液晶層の反射光にフォーカルコニック状態の液晶層での光の散乱分がノイズとして加わってしまう。この結果、表示色の色純度が低下してしまう。また、黒表示のときには、RGBの各液晶層が全てフォーカルコニック状態となるが、各液晶層での光の散乱が大きいと、黒濃度が著しく低下する。つまり、表示画像のコントラストが低下して、ぼやけた表示となってしまう。
フォーカルコニック状態での液晶層の光の散乱を支配する物性は液晶材料固有の屈折率異方性Δnであると考えられている。図13は、屈折率異方性Δnと液晶層での光の反射との関係を示している。図13(a)は、プレーナ状態における屈折率異方性Δnと反射光の明るさとの関係を示している。横軸は屈折率異方性Δnを表し、縦軸は明るさ(白色板比;%)を表している。図13(b)は、フォーカルコニック状態における屈折率異方性Δnと光の散乱との関係を示している。横軸は屈折率異方性Δnを表し、縦軸は散乱(白色板比;%)を表している
図13(a)及び図13(b)に示すように、Δn値を大きくすると、プレーナ状態での液晶層の反射率が高くなるため、液晶表示素子の表示画面の明るさは向上するが、フォーカルコニック状態での液晶層の光の散乱も同時に上昇してしまう。一方、Δn値を小さくすると、フォーカルコニック状態での液晶層の光の散乱は低減するが、プレーナ状態での液晶層の反射率も低下してしまうため、表示画面の明るさは低下してしまう。このように、反射光の明るさと散乱とはトレードオフの関係にあり、表示画面の良好な明るさと低い散乱の両立はΔn値の制御だけでは困難である。
特許文献1には、RGB用の各液晶層のコレステリック液晶について、カイラル材の旋光性が異なる2つの光学異性体であるR体とS体の混合比率を異ならせ、カイラル材添加量は各液晶層で等しくする技術が開示されている。しかし、RGB用の各液晶層のカイラル材添加量を等しくしてΔn等の物性値を等しくしても光の散乱特性は各液晶層で異なるため、表示画面のカラーバランスやコントラストを完全に改善することは困難である。
本発明の目的は、暗状態(フォーカルコニック状態)での光の散乱を十分に低減できる液晶組成物を提供することにある。
また、本発明の目的は、カラーバランスの改善及びコントラストの向上に優れる液晶表示素子及びそれを用いた電子ペーパーを提供することにある。
上記目的は、プレーナ状態で第1波長の光を反射するように、ネマティック液晶中に含有されてコレステリック相を形成させる第1のカイラル材を備えた第1の液晶層と、プレーナ状態で前記第1波長より長い第2波長の光を反射するように、前記第1のカイラル材の含有率より高い含有率でネマティック液晶中に含有されてコレステリック相を形成させる第2のカイラル材を備えた第2の液晶層とを有することを特徴とする液晶表示素子によって達成される。
上記本発明の液晶表示素子において、前記第2のカイラル材は、旋光性が異なる2種類の光学異性体を含むことを特徴とする。
また、上記目的は、所定の画像を表示する表示部を有する電子ペーパーにおいて、前記表示部は、上記本発明の液晶表示素子を備えていることを特徴とする電子ペーパーによって達成される。
さらに、上記目的は、ネマティック液晶と、前記ネマティック液晶中に含有されてコレステリック相を形成させるカイラル材とを備えた液晶組成物であって、前記カイラル材は、プレーナ状態で、第1波長より長い第2波長の光を反射するように、前記第1波長の光を反射させる含有率より高い含有率を有していることを特徴とする液晶組成物によって達成される。
またさらに、上記本発明の液晶組成物において、前記カイラル材は、前記ネマティック液晶より小さな屈折率異方性を有することを特徴とする液晶組成物によって達成される。
本発明によれば、暗状態での光の散乱を十分に低減できる液晶組成物が実現できる。
また、本発明によれば、カラーバランス及びコントラストに優れる液晶表示素子及びそれを用いた電子ペーパーが実現できる。
本発明の一実施の形態による液晶組成物及びそれを用いた液晶表示素子並びにそれを備えた電子ペーパーについて図1乃至図9を用いて説明する。まず、暗状態での光の散乱を低減させる基本原理とそれを用いた液晶組成物について図1乃至図3を用いて説明する。発明者らは、フォーカルコニック状態での光の散乱は一般に、プレーナ状態で青色光を反射する青色(B)用液晶層、緑色光を反射する緑色(G)用液晶層、赤色光を反射する赤色(R)用液晶層の順に強くなり、特に、R用液晶層での光の散乱が強いため、青や緑の色純度を大きく低下させてしまうことを見出し、その改良について鋭意検討を進めた。
まず、R用液晶層での光の散乱が相対的に強くなってしまう原因について図1を用いて説明する。図1(a)、(b)、(c)はそれぞれ、図10及び図11に示した従来のカラー液晶表示素子51のB、G、Rの各液晶層43b、43g、43rがフォーカルコニック状態におけるコレステリック液晶の液晶分子33の配向状態を示している。図1(a)はB用液晶層43bを示し、図1(b)はG用液晶層43gを示し、図1(c)はR用液晶層43rを示している。
従来のB用液晶層43bのコレステリック液晶(ネマティック液晶とカイラル材の混合物)のカイラル材の含有率(=100×(含有されているカイラル材の重量)/(コレステリック液晶の重量))は30重量(wt)%であり、G用液晶層43gのカイラル材の含有率は27wt%であり、R用液晶層43rの含有率は23wt%である。
図1(a)、(b)、(c)のいずれにおいても、上下基板4749基板面近傍の液晶分子33sは、基板面内方向に順次回転して螺旋構造を形成し、螺旋構造の螺旋軸は基板面にほぼ平行なフォーカルコニック状態を維持している。これは、基板と液晶との界面では液晶分子に対し基板からの配向規制力が強く働くためであると考えられる。
一方、セル厚方向の中央部(バルク領域)の液晶分子33bには、基板面の配向規制力が直接作用することはなく、液晶の連続性による配向の伝搬が支配的になる。このとき、カイラル材の含有率が相対的に高ければバルク領域まで配向規制力を伝搬できるが、含有率が低くなるとバルク領域に十分な配向力を伝搬できなくなる。
このため、カイラル材の含有率が高いB用液晶層43bでは、セル厚方向にほぼ均一に十分なフォーカルコニック状態が出現するが、相対的にカイラル材の含有率が低いG用液晶層43gとR用液晶層43rでは、バルク領域にフォーカルコニック状態と異なる配向状態が生じ得る。G用液晶層43gではバルク領域の液晶の螺旋軸の向きのバラツキが大きくなる程度であるが、R用液晶層43rでは、螺旋軸の向きだけでなく螺旋ピッチを含む螺旋構造のバラツキが大きくなると考えられる。このように、カイラル材の含有率が低くなるほど、フォーカルコニック状態でのバルク領域の配向不良が増大し、これにより光の散乱の程度が大きくなってしまうと考えられる。
以上がR用液晶層での光の散乱が相対的に強くなってしまうことの考え得る原因である。
一方、上記原因は見方を変えれば、ネマティック液晶中に含有されてコレステリック相を形成させるカイラル材が、液晶分子の螺旋構造のバラツキの抑制効果を有していることを示唆している。
そこで、本実施の形態では、プレーナ状態で、第1波長より長い第2波長の光を反射させる液晶組成物のカイラル材の含有率を、プレーナ状態で第1波長の光を反射させる液晶組成物のカイラル材の含有率より高くすると共に、カイラル材は旋光性が異なる2種類の光学異性体を含むことを基本原理とした。なお、本稿では以降、これらの光学異性体をそれぞれR体とL体と呼称して説明するが、これらはR/S表示法によるR体とS体と同じ意味である。
暗状態での光の散乱を低減させる上記基本原理を用いた液晶組成物(コレステリック液晶)は、R体又はその光学異性体であるL体のベース(基準)液晶を基本組成として作製される。
R体のベース液晶は、所定重量のネマティック液晶LCnに、R体のカイラル材CHr1とR体のカイラル材CHr2とを所定重量添加して作製する。カイラル材CHr1の含有率(ネマティック液晶LCnと2種のカイラル材CHr1、CHr2との合計重量に対する重量割合(wt%);以下同様)は27wt%である。カイラル材CHr2の含有率は3wt%である。以下、含有されたカイラル材CHr1とカイラル材CHr2とをまとめてカイラル材CHrという。
ネマティック液晶LCnは、例えば、屈折率異方性Δn=0.25、誘電率異方性Δε=20、室温での粘度μ=50(mPa・s)である。カイラル材CHr1は、例えば、Δn=0.22、Δε=22であり、螺旋を巻く力HTP=10である。カイラル材CHr2は、Δn値及びΔε値はカイラル材CHr1と同一でHTP=20である。作製されたR体のベース液晶の選択反射の主波長λbは約480nmであり、Δn=0.23である。
例えば、ネマティック液晶LCnの物性値は以下のようにして測定又は算出される。まず、ガラス製テスト用セルに、ネマティック液晶LCnを注入する。次いで、市販のLCRメータを用いて、ネマティック液晶LCnの比抵抗、比誘電率等を測定して算出する。また、粘度は市販の粘度計により測定する。
さらに、市販のアッベ屈折計等によりネマティック液晶LCnのΔnを測定する。また、水平配向及び垂直配向した液晶がそれぞれ注入されたテスト用セルのそれぞれの静電容量を測定し、ネマティック液晶LCnのΔεを算出する。Δεはダイレクタ(液晶分子の長軸の平均的方向)方向の誘電率とそれに垂直な成分の誘電率との差である。
L体のベース液晶は、所定重量のネマティック液晶LCnに、L体のカイラル材CHl1とL体のカイラル材Cl2とを所定重量添加して作製する。カイラル材CHl1の含有率(ネマティック液晶LCnと2種のカイラル材CHl1、CHl2との合計重量に対する重量割合(wt%);以下同様)は27wt%である。カイラル材CHl2の含有率は3wt%である。以下、含有されたカイラル材CHl1とカイラル材CHl2とをまとめてカイラル材CHlという。
L体のベース液晶のネマティック液晶LCnのΔn値、Δε値、粘度μは上記R体のベース液晶のそれらと同一である。カイラル材CHl1のΔn値、Δε値、HTP値は上記R体のカイラル材CHr1と同一である。カイラル材Cl2のΔn値、Δε値、HTP値は上記R体のカイラル材CHr2と同一である。また、作製されたL体のベース液晶のλb及びΔnは上記R体のベース液晶のそれと同一である。なお、ネマティック液晶LCn及びカイラル材CHr1、CHr2、CHl1、CHl2は通常の市販材料を用いている。
図2は、上記R体又はL体のベース液晶を基本組成に用いた液晶組成物の材料組成比率を示している。図2(a)は、プレーナ状態で青色の光(第1波長の光)を反射するB用液晶層(第1の液晶層)に用いられるコレステリック液晶の組成比率を示し、図2(b)は、緑色の光(第2波長の光)を反射するG用液晶層(第2の液晶層)に用いられるコレステリック液晶の組成比率を示し、図2(c)は、赤色の光(第3波長の光)を反射するR用液晶層(第3の液晶層)に用いられるコレステリック液晶の組成比率を示している。
図2(a)に示すように、B用液晶層にはR体のベース液晶(以下、B用コレステリック液晶LCbという)が用いられる。すなわち、B用コレステリック液晶LCbの選択反射の主波長λbは約480nmであり、Δn=0.23である。
図2(b)に示すように、G用液晶層にはL体のベース液晶にR体のカイラル材CHr1が含有率約3wt%で混合された液晶(以下、G用コレステリック液晶LCgという)が用いられる。G用コレステリック液晶LCgの選択反射の主波長λgは約560nmであり、Δn値はB用コレステリック液晶とほぼ同じである。
図2(c)に示すように、R用液晶層にはR体のベース液晶にL体のカイラル材CHl1が含有率約5wt%で混合された液晶(以下、R用コレステリック液晶LCrという)が用いられる。R用コレステリック液晶LCrの選択反射の主波長λrは約610nmであり、Δn値はB用コレステリック液晶とほぼ同じである。
このように、本実施の形態ではB用及びR用のコレステリック液晶LCb、LCrの旋光性(R)は同じで、G用コレステリック液晶LCgでの旋光性(L)と異なっている。また、カイラル材の含有率は、B用コレステリック液晶LCbよりG用コレステリック液晶LCgの方が高く、G用コレステリック液晶LCgよりR用コレステリック液晶LCrの方が高くなっている。なお、B、G、及びR用コレステリック液晶LCb、LCg、LCrは室温でコレステリック相が形成される。
次に、上記のB、G、及びR用コレステリック液晶LCb、LCg、LCrを用いた液晶表示素子及び電子ペーパーについて図3乃至図6を用いて説明する。図3は、本実施の形態による液晶表示素子1の概略構成を示している。図4は、液晶表示素子1の断面構成を模式的に示している。
図3及び図4に示すように、液晶表示素子1は、プレーナ状態で青色の光(第1波長の光)を反射するB用液晶層(第1の液晶層)3bを備えたB表示部6bと、プレーナ状態で緑色の光(第2波長の光)を反射するG用液晶層(第2の液晶層)3gを備えたG表示部6gと、プレーナ状態で赤色の光(第3波長の光)を反射するR用液晶層(第3の液晶層)3rを備えたR表示部6rとを有している。B、G、Rの各表示部6b、6g、6rは、この順に光入射面(表示面)側から積層されている。
B表示部6bは、対向配置された一対の上下基板7b、9bと、両基板7b、9b間に封止されたB用液晶層3bとを有している。B用液晶層3bは、図2(a)に示す組成のB用コレステリック液晶LCbを有している。
G表示部6gは、対向配置された一対の上下基板7g、9gと、両基板7g、9g間に封止されたG用液晶層3gとを有している。G用液晶層3gは、図2(b)に示す組成のG用コレステリック液晶LCgを有している。
R表示部6rは、対向配置された一対の上下基板7r、9rと、両基板7r、9r間に封止されたR用液晶層3rとを有している。R用液晶層3rは、図2(c)に示す組成のR用コレステリック液晶LCrを有している。
B、G、Rの各表示部6b、6g、6rの積層構造において、プレーナ状態におけるG用液晶層3gでの旋光性と、B用及びR用液晶層3b、3rでの旋光性とを異ならしているので、図12に示す青と緑、及び緑と赤の反射スペクトルが重なる領域では、B用液晶層3bで右円偏光の光を反射させ、G用液晶層3gで左円偏光の光を反射させるこができる。これにより、反射光の損失を低減させて、液晶表示素子1の表示画面の明るさを向上させることができる。
上基板7b、7g、7r、及び下基板9b、9g、9rは、透光性を有することが必要である。本実施の形態では、縦横の長さが10(cm)×8(cm)の大きさに切断した2枚のポリカーボネート(PC)フィルム基板を用いている。また、PC基板に代えてガラス基板やポリエチレンテレフタレート(PET)等のフィルム基板を使用することもできる。本実施の形態では、上基板7b、7g、7r、及び下基板9b、9g、9rはいずれも透光性を有しているが、最下層に配置されるR表示部6rの下基板9rは不透光性であってもよい。
B表示部6bの下基板9bのB用液晶層3b側には、図3の図中上下方向に延びる複数の帯状のデータ電極19bが並列して形成されている。また、上基板9bのB用液晶層3b側には、図3の図中左右方向に延びる複数の帯状の走査電極17bが並列して形成されている。本実施の形態では、320×240ドットのQVGA表示ができるよう、ITO透明電極をパターニングして0.24mmピッチのストライプ状の複数の走査電極17及び複数のデータ電極19を形成している。
図3に示すように、上下基板7b、9bの電極形成面を法線方向に見て、両電極17b、19bは、互いに交差して対向配置されている。両電極17b、19bの各交差領域がそれぞれピクセル(画素)となる。ピクセルがマトリクス状に配列されて表示画面を形成している。なお、図4に示す番号17b、19bは、両電極17b、19bの存在領域を示しているのであって、それらの形状は示唆していない。
両電極17b、19bの形成材料としては、例えばインジウム錫酸化物(Indium Tin Oxide;ITO)が代表的であるが、その他インジウム亜鉛酸化物(Indium Zic Oxide;IZO)等の透明導電膜、アルミニウムあるいはシリコン等の金属電極、又はアモルファスシリコンや珪酸ビスマス(Bismuth Silicon Oxide;BSO)等の光導電性膜等を用いることができる。
両電極17b、19b上には機能膜として、それぞれ絶縁性薄膜や液晶分子の配向安定化膜(いずれも不図示)がコーティングされていることが好ましい。絶縁性薄膜は、電極17b、19b間の短絡を防止したり、ガスバリア層として液晶表示素子1の信頼性を向上させたりする機能を有している。また、配向安定化膜には、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリビニルブチラール樹脂及びアクリル樹脂等の有機膜や、酸化シリコン、酸化アルミニウム等の無機材料を用いることができる。本実施の形態では、例えば電極17b、19b上の基板全面には、配向安定化膜が塗布(コーティング)されている。配向安定化膜は絶縁性薄膜と兼用されてもよい。
上下基板7b、9bの外周囲に塗布されたシール材21bにより、B用液晶層3bは両基板7b、9b間に封入されている。また、B用液晶層3bの厚さ(セルギャップ)は均一に保持する必要がある。所定のセルギャップを維持するには、樹脂製又は無機酸化物製の球状スペーサをB用液晶層3b内に散布したり、表面に熱可塑性の樹脂がコーティングされた柱状スペーサをB用液晶層3b内に複数形成したりする。本実施の形態の液晶表示素子1においても、B用液晶層3b内にスペーサ(不図示)が挿入されてセルギャップの均一性が保持されている。B用液晶層3bのセルギャップdは、3μm≦d≦6μmの範囲であることが好ましい。
G表示部6g及びR表示部6rはB表示部6bと同様の構造を有しているため、説明は省略する。R表示部6rの下基板9rの外面(裏面)には、可視光吸収層15が設けられている。このため、B、G、Rの各液晶層3b、3g、3rの全てがフォーカルコニック状態の際に、液晶表示装置1の表示画面には黒色が表示される。なお、可視光吸収層15は必要に応じて設ければよい。
上基板7b、7g、7rには、複数の走査電極17b、17g、17rを駆動する走査電極用ドライバICが実装された走査電極駆動回路25が接続されている。また、下基板9b、9g、9rには、複数のデータ電極19b、19g、19rを駆動するデータ電極用ドライバICが実装されたデータ電極駆動回路27が接続されている。これらの駆動回路25、27は、制御回路23から出力された所定の信号に基づいて、走査信号やデータ信号を所定の走査電極17b、17g、17rあるいはデータ電極19b、19g、19rに出力するようになっている。
本実施の形態では、B、G、R用の各液晶層3b、3g、3rの駆動電圧をほぼ同じにすることができるので、走査電極駆動回路25の所定の出力端子は走査電極17b、17g、17rの所定の各入力端子に共通接続されている。B、G、R用の各表示部6、6g、6毎に走査電極駆動回路25を設ける必要がなくなるので液晶表示素子1の駆動回路の構成を簡略化することができる。
次に、液晶表示素子1の駆動方法について図5及び図6を用いて説明する。図5は、液晶表示素子1の駆動波形の一例を示している。図5(a)は、コレステリック液晶をプレーナ状態にさせるための駆動波形であり、図5(b)は、コレステリック液晶をフォーカルコニック状態にさせるための駆動波形である。図5(a)及び図5(b)において、図上段は、データ電極駆動回路27から出力されるデータ信号電圧波形Vdを示し、図中段は、走査電極駆動回路25から出力される走査信号電圧波形Vsを示し、図下段は、B、G、R用の各液晶層3b、3g、3rのいずれかのピクセルに印加される印加電圧波形Vlcを示している。また、図5(a)及び図5(b)において、図の左から右に時間経過を表し、図の上下方向は電圧を表している。
図6は、コレステリック液晶の電圧−反射率特性の一例を示している。横軸はコレステリック液晶に印加される電圧値(V)を表し、縦軸はコレステリック液晶の反射率(%)を表している。図6に示す実線の曲線Pは、初期状態がプレーナ状態におけるコレステリック液晶の電圧−反射率特性を示し、破線の曲線FCは、初期状態がフォーカルコニック状態におけるコレステリック液晶の電圧−反射率特性を示している。
ここで、図3に示すB表示部6bの第1列目のデータ電極19bと第1行目の走査電極17bとの交差部の青(B)ピクセル(1,1)に所定の電圧を印加する場合を例にとって説明する。図5(a)に示すように、第1行目の走査電極17bが選択される選択期間T1の前半の約1/2の期間では、データ信号電圧Vdが+32Vとなるのに対し走査信号電圧Vsが0Vとなり、後半の約1/2の期間では、データ信号電圧Vdが0Vとなるのに対し走査信号電圧Vsが+32Vとなる。このため、Bピクセル(1,1)のB用液晶層3bには、選択期間T1の間に±32Vのパルス電圧が印加される。図6に示すように、コレステリック液晶に所定の高電圧VP100(例えば、32V)が印加されて強い電界が生じると、液晶分子の螺旋構造は完全にほどけ、全ての液晶分子が電界の向きに従うホメオトロピック状態になる。従って、Bピクセル(1,1)のB用液晶層3bの液晶分子は選択期間T1では、ホメオトロピック状態になる。
選択期間T1が終了して非選択期間T2になると、第1行目の走査電極17bには、例えば+28V及び+4Vの電圧が選択期間T1の1/2の周期で印加される。一方、1列目のデータ電極19bには、所定のデータ信号電圧Vdが印加される。図(a)では、例えば+32V及び0Vの電圧が選択期間T1の1/2の周期で第1列目のデータ電極17bに印加されている。このため、Bピクセル(1,1)のB用液晶層3bには、非選択期間T2の間に±4Vのパルス電圧が印加される。これにより、非選択期間T2の間では、Bピクセル(1,1)のB用液晶層3bに生じる電界はほぼゼロになる。
液晶分子がホメオトロピック状態のときに液晶印加電圧がVP100(±32V)からVF0(±4V)に変化して急激に電界がほぼゼロになると、液晶分子は螺旋軸が両電極17b、19bに対してほぼ垂直な方向に向く螺旋状態になり、螺旋ピッチに応じた光を選択的に反射するプレーナ状態になる。従って、Bピクセル(1,1)のB用液晶層3bはプレーナ状態になって光を反射するため、Bピクセル(1,1)には青が表示される。
一方、図5(b)に示すように、選択期間T1の前半の約1/2の期間及び後半の約1/2の期間で、データ信号電圧Vdが24V/8Vとなるのに対し、走査信号電圧Vsが0V/+32Vとなると、Bピクセル(1,1)のB用液晶層3bには、±24Vのパルス電圧が印加される。図6に示すように、コレステリック液晶に所定の低電圧VF100b(例えば、24V)が印加されて弱い電界が生じると、液晶分子の螺旋構造が完全には解けない状態になる。非選択期間T2になると、第1行目の走査電極17bには、例えば+28V/+4Vの電圧が選択期間T1の1/2の周期で印加され、データ電極19bには、所定のデータ信号電圧Vd(例えば+24V/8V)の電圧が選択期間T1の1/2の周期で印加される。このため、Bピクセル(1,1)のB用液晶層3bには、非選択期間T2の間に、−4V/+4Vのパルス電圧が印加される。これにより、非選択期間T2の間では、Bピクセル(1,1)のB用液晶層3bに生じる電界はほぼゼロになる。
液晶分子の螺旋構造が完全には解けない状態において、コレステリック液晶の印加電圧がVF100b(±24V)からVF0(±4V)に変化して急激に電界がほぼゼロになると、液晶分子は螺旋軸が両電極17b、19bに対してほぼ平行な方向に向く螺旋状態になり、入射光を透過するフォーカルコニック状態になる。従って、Bピクセル(1,1)のB用液晶層3bはフォーカルコニック状態になって光を透過する。なお、図6に示すように、VP100(V)の電圧を印加して、液晶層に強い電界を生じさせた後に、緩やかに電界を除去しても、コレステリック液晶はフォーカルコニック状態にすることができる。
上記駆動電圧は一例であり、室温で、両電極17b、19b間に30〜35Vのパルス状電圧を実効時間20msの間印加すると、B用液晶層3bのコレステリック液晶は選択反射状態(プレーナ状態)となり、15〜22Vのパルス上の電圧を実効時間20msの間印加すると、良好な透過状態(フォーカルコニック状態)となる。
上述のBピクセル(1,1)の駆動と同様にして緑(G)ピクセル(1,1)及び赤(R)ピクセル(1,1)を駆動することにより、3つのB、G、Rピクセル(1,1)を積層したピクセル(1,1)にカラー表示をすることができる。また、第1行から第n行までの走査電極17b、17g、17rをいわゆる線順次駆動させて1行毎に各データ電極19のデータ電圧を書き換えることにより、ピクセル(1,1)からピクセル(n,m)までの全てに表示データを出力して1フレーム(表示画面)分のカラー表示が実現できる。
なお、コレステリック液晶に中間的な強さの電界を与え、急激に当該電界を除去すると、プレーナ状態とフォーカルコニック状態とが混在した中間調となり、フルカラーの表示が可能となる。
次に、液晶表示素子1の製造方法の一例について簡単に説明する。
縦横の長さが10(cm)×8(cm)の大きさに切断した2枚のポリカーボネート(PC)フィルム基板上にITO透明電極を形成してエッチングによりパターニングし、0.24mmピッチのストライプ状の電極(走査電極17又はデータ電極19)をそれぞれ形成する。320×240ドットのQVGA表示ができるよう、2枚のPCフィルム基板上にそれぞれストライプ状の電極が形成される。次に、2枚のPCフィルム基板7、9上のそれぞれのストライプ状の透明電極17、19上にポリイミド系の配向膜材料をスピンコートにより約700Åの厚さに塗布する。次に、配向膜材料が塗布された2枚のPCフィルム基板7、9を90℃のオーブン中で1時間のベーク処理を行い、配向膜を形成する。次に、一方のPCフィルム基板7又は9上の周縁部にエポキシ系のシール材21をディスペンサを用いて塗布して所定の高さの壁を形成する。
次いで、他方のPCフィルム基板9又は7に4μm径のスペーサ(積水ファインケミカル社製)を散布する。次いで、2枚のPCフィルム基板7、9を貼り合わせて160℃で1時間加熱し、シール材21を硬化する。次に、真空注入法によりB用コレステリック液晶LCbを注入した後、エポキシ系の封止材で注入口を封止し、B表示部6bを作製する。同様の方法により、G、R表示部6g、6rを作製する。
次に、図4に示すように、表示面側からB、G、R表示部6b、6g、6rをこの順に積層する。次いで、R表示部6rの下基板9r裏面に可視光吸収層15を配置する。次に、積層したB、G、R表示部6b、6g、6rの走査電極17の端子部及びデータ電極19の端子部にTCP(テープキャリアパッケージ)構造の汎用のSTN用ドライバICを圧着し、さらに電源回路及び制御回路23を接続する。こうしてQVGA表示が可能な液晶表示素子1が完成する。なお図示は省略するが、完成された液晶表示素子1に入出力装置及び全体を統括制御する制御装置(いずれも不図示)を設けることにより電子ペーパーが完成する。
次に、上述の製造方法により作製され、上述のような構成及び動作を有する本実施の形態による液晶組成物及びそれを備えた液晶表示素子1の表示特性について、比較例との対比を含めて説明する。
まず、比較例として用いる従来の液晶組成物の材料組成比率について図7を用いて説明する。図7(a)は、B用液晶層に用いる従来のB用コレステリック液晶の組成比率を示し、図7(b)は、G用液晶層に用いる従来のG用コレステリック液晶の組成比率を示し、図7(c)は、R用液晶層に用いる従来のR用コレステリック液晶の組成比率を示している。
図7(a)に示す従来のB用コレステリック液晶は、所定重量のネマティック液晶LCn’に、R体のカイラル材CHr’を添加して作製する。カイラル材CHr’の含有率は30wt%である。ネマティック液晶LCn’は、Δn=0.20、Δε=20であり、室温での粘度μ=37(mPa・s)である。カイラル材CHr’は、Δn=0.29、Δε=22であり、室温で粉末状である。作製された従来のB用コレステリック液晶の選択反射の主波長λbは約480nmであり、Δn=0.23である。
図7(b)に示す従来のG用コレステリック液晶は、所定重量のネマティック液晶LCn’に、L体のカイラル材CHl’を添加して作製する。カイラル材CHl’の含有率は26wt%である。ネマティック液晶LCn’は従来のB用コレステリック液晶のものと同一である。カイラル材CHl’のΔn値、Δε値はカイラル材CHr’と同一であり、室温で粉末状である。作製された従来のG用コレステリック液晶の選択反射の主波長λgは約560nmであり、Δn=0.22である。
図7(c)に示す従来のR用コレステリック液晶は、所定重量のネマティック液晶LCn’に、R体のカイラル材CHr’’を添加して作製する。カイラル材CHr’’の含有率は24wt%である。ネマティック液晶LCn’は従来のB用コレステリック液晶のものと同一である。カイラル材CHr’’は、Δn=0.29、Δε=25であり、室温で粉末状である。作製された従来のR用コレステリック液晶の選択反射の主波長λrは約610nmであり、Δn=0.22である。なお、ネマティック液晶LCn’及びカイラル材CHr’、CHl’等は通常の市販材料を用いている。
このように、従来のB用及びR用のコレステリック液晶の旋光性(R)は同じで、従来のG用コレステリック液晶での旋光性(L)と異なっている。また、カイラル材の含有率は、従来のR用コレステリック液晶より従来のG用コレステリック液晶の方が高く、従来のG用コレステリック液晶より従来のB用コレステリック液晶の方が高くなっている。
調製された従来のB、G、R用の各コレステリック液晶は、本実施の形態の液晶表示素子1と同様の構成を有する比較用液晶表示素子(不図示)の各液晶層に封入される。
図8及び図9は、本実施の形態による液晶表示素子1の表示特性の改善効果を比較用液晶表示素子と対比しつつ示したものである。
図8は、フォーカルコニック状態でのR用液晶層3rの反射率(散乱)を示している。横軸は反射光の波長(nm)を表し、縦軸は散乱(%)を表している。図中の曲線Aは、本実施の形態の液晶表示素子1のR用液晶層3rの散乱特性を示し、図中の曲線Bは、従来の液晶表示素子のR用液晶層の散乱特性を示している。本実施の形態の液晶表示素子1のR用液晶層3rのΔn値は0.23であり、従来の液晶表示装置のR用液晶層のΔn値は0.29であり、ほぼ同等の値である。しかしながら、図8に示すように、本実施の形態の液晶表示素子1のR用液晶層3rのフォーカルコニック状態での反射率、いわゆる散乱は測定波長の全範囲において、従来のR用液晶層での散乱より30%から60%程度低くなっていることが分かる。
図9は、本実施の形態の液晶表示素子1及び従来の液晶表示素子のフォーカルコニック状態でのB、G、R用の各液晶層の散乱特性を比較して示している。横方向は本実施の形態の液晶表示素子1(新液晶)及び従来の液晶表示素子(従来液晶)を表し、縦軸は散乱(白色板比)(%)を表している。図中◆印はR用液晶層の散乱特性を示し、図中■印はG用液晶層の散乱特性を示し、図中▲印はG用液晶層の散乱特性を示している。図9に示すように、本実施の形態の液晶表示素子1は、B、G、R用の各液晶層の全てで従来の液晶表示素子よりフォーカルコニック状態での散乱が低減されていることが分かる。具体的には、R用液晶層3rでは従来に比して60%程度も散乱が低減している。G用及びB用液晶層3g、3bでも従来に比して10%程度散乱が低減している。なお、B用液晶層での散乱が低減しているのは、本実施の形態に液晶表示素子1では、カイラル材のΔn値がネマティック液晶のΔn値より小さいからであり、このΔnの関係があると散乱をより好適に低減できることを経験的に突き止めている。
なお、反射率の測定は反射型分光測器を用いて視感反射率(Y値)を測定することで行っている。消色時のY値が小さいほど透明で黒表示が良好であり、着色時のY値が大きいほど色表示が良好である。コントラストは(プレーナ状態でのY値/フォーカルコニックでのY値)で算出される。
本実施の形態によれば以下の作用効果を得ることができる。
まず、カイラル材の含有率が高いほど液晶分子が強く捻られて螺旋ピッチが短くなりプレーナ状態での反射光の波長は短くなる。このため、従来のコレステリック液晶のカイラル材の含有率は、B用よりG用が低く、G用よりR用が低くなっていた(図7参照)。
ところが、図1に示すように、カイラル材の含有率が相対的に低いコレステリック液晶を用いたR用液晶層では、バルク領域の液晶分子33bの螺旋軸の向き及び螺旋構造のバラツキが大きいという問題が生じている。
そこで、本実施の形態では、バルク領域まで配向規制力を伝搬できる用コレステリック液晶LC(図2(a)参照)のカイラル材含有率より高いカイラル材含有率を有するR用コレステリック液晶LCr(図2(c)参照)をR用液晶層43rに用いることにした。これにより、バルク領域まで配向規制力を伝搬できるようになり、セル厚方向にほぼ均一に十分なフォーカルコニック状態を作り出すことができる。R用液晶層43rの液晶分子33のダイレクタは、基板界面近傍だけでなくバルク領域でも上下基板7r、9rの基板面にほぼ垂直になると共に、基板面内方向に順次回転して螺旋構造を形成し、螺旋構造の螺旋軸は基板面にほぼ平行になる。
さらに、R用コレステリック液晶LCrに含有されるカイラル材は旋光性が異なる2種類の光学異性体を所定割合で含むので、赤を選択反射するのに必要な螺旋ピッチを得ることができる。
図2と図7とを比較すると明らかなように本実施の形態の液晶表示素子1では、従来の組成とは全く逆に、カイラル材の含有率がB用液晶層よりG用液晶層、G用液晶層よりR用液晶層の方が高くなるようにすると共に、最も長波長の光を反射するR用液晶層にはR体及びL体のカイラル材が含まれるようにしている。このように、フォーカルコニック状態での光の散乱が強かったR用液晶層のカイラル材の含有率を高くすることにより、R用液晶層での光の散乱を広い波長範囲で一様に低減できる。従って、B、G、R用の各液晶層のカラーバランスとコントラストを十分に向上することができる。さらに、ネマティック液晶の屈折率異方性のΔn値がカイラル材のΔn値より大きい材料で形成されたコレステリック液晶を用いることにより、より好適に表示色の色純度とコントラストを向上させることができる。また、B、G、R用の各液晶層の駆動電圧を良好に一致させることが可能になるので、液晶表示素子の駆動回路の構成を簡略化できる。
以上説明したように、本実施の形態のコレステリック液晶は、フォーカルコニック状態でのノイズ反射が良好に抑制されるので、色純度及びコントラストが十分に向上する。従って、当該コレステリック液晶を用いた液晶表示素子1及びそれを用いた電子ペーパーは、鮮明でコントラストが良好であり、色再現範囲の広いカラー画像表示を実現することができる。
なお、本発明に係る液晶組成物及び液晶表示素子並びに電子ペーパーは上記実施の形態に限定されるものではない。
例えば、液晶表示素子1に用いられるコレステリック液晶の組成比率は、R用コレステリック液晶のカイラル材の含有率が最も高く、R用コレステリック液晶は旋光性が異なる2種類の光学異性体(R体及びL体のカイラル材)を含んでいればよい。従って、G用コレステリック液晶にはR体又はL体のカイラル材の一方のみが含まれるようにしてもよい。
上記実施の形態で示したコレステリック液晶LCb、LCg、LCrの組成比率はこれに限られない。B、G、R用の各液晶層を構成するコレステリック液晶のネマティック液晶(0.18≦Δn≦0.24)に含有させるカイラル材の含有率xは、20wt%≦x≦60wt%であることが好ましい。従来公知の各種のネマティック液晶を用いることができるが、ネマティック液晶の屈折率異方性Δnの値は、0.18≦Δn≦0.24であり、誘電率異方性Δεは、20≦Δε≦50であることが好ましい。ネマティック液晶の誘電率異方性Δεが20以上であれば、使用可能なカイラル材の選択範囲は広くなる。
コレステリック液晶としての誘電率異方性Δεは、20≦Δε≦50であることが好ましい。コレステリック液晶の誘電率異方性Δεが上記範囲より低すぎると駆動電圧が高くなってしまい、逆に上記範囲より高すぎると液晶表示素子としての安定性や信頼性が悪くなる。この結果、液晶表示素子に画像欠陥や画像ノイズが発生し易くなる。また、コレステリック液晶としての比抵抗値Rは、1010≦R≦1013(Ω・cm)の範囲が望ましく、比誘電率εはプレーナ状態で5≦ε≦15、フォーカルコニック状態で10≦ε≦25であることが望ましい。また、粘性の低い方が低温時の電圧上昇やコントラスト低下を抑制できるため、室温での粘度μは20≦μ≦1200(mPa・s)の範囲であることが望ましい。
従来のB、G、R用の各液晶層のフォーカルコニック状態における液晶分子の状態を模式的に示す図である。 本発明の一実施の形態による液晶組成物に含まれる材料の組成比率を示す図である。 本発明の一実施の形態による液晶表示素子1の概略構成を示す図である。 本発明の一実施の形態による液晶表示素子1の断面構成を模式的に示す図である。 本発明の一実施の形態による液晶表示素子1の駆動波形の一例を示す図である。 本発明の一実施の形態による液晶組成物の電圧−反射率特性の一例を示す図である。 従来の液晶組成物に含まれる材料の組成比率を示す図である。 本発明の一実施の形態による液晶表示素子1のフォーカルコニック状態でのR用液晶層の反射率(散乱)を示す図である。 本発明の一実施の形態による液晶表示素子1及び従来の液晶表示素子のB、G、R用の各液晶層の散乱の比較例を示す図である。 従来のフルカラー表示可能な液晶表示素子の断面構成を模式的に示す図である。 従来の液晶表示素子の一液晶層の断面構成を模式的に示す図である。 従来の液晶表示素子のプレーナ状態での反射スペクトルの一例を示す図である。 従来の液晶表示素子の屈折率異方性Δnと液晶層での光の反射との関係を示す図である。
符号の説明
1 液晶表示素子
3b、43b B用液晶層
3g、43g G用液晶層
3r、43r R用液晶層
6b、46b B表示部
6g、46g G表示部
6r、46r R表示部
7b、7g、7r 上基板
9b、9g、9r 下基板
47、49 基板
15 可視光吸収層
17r、17g、17b 走査電極
19r、19g、19b データ電極
21b、21b、21r シール材
23 制御回路
25 走査電極駆動回路
27 データ電極駆動回路
31 液晶層
33、33b、33s 液晶分子
41 パルス電圧源

Claims (9)

  1. プレーナ状態で第1波長の光を反射するように、
    ネマティック液晶に、
    コレステリック相を形成させる第一の旋光性のカイラル材が重量比で30wt%添加された液晶に、
    第二の旋光性のカイラル材を全体重量比でさらに3wt%混合して作製され、
    第一の旋光性を示す第1の液晶層と、
    プレーナ状態で前記第1波長より長い第2波長の光を反射するように、
    ネマティック液晶に、
    コレステリック相を形成させる第二の旋光性のカイラル材が重量比で30wt%添加された液晶に、
    第一の旋光性のカイラル材を全体重量比でさらに5wt%混合して作製され、
    第二の旋光性を示す第2の液晶層と
    を有し、ネマティック液晶の屈折率異方性のΔn値が、前記各カイラル材のΔn値より大きいこと
    を特徴とする液晶表示素子。
  2. 請求項1に記載の液晶表示素子において、
    前記第2の液晶層は赤色用液晶層である
    ことを特徴とする液晶表示素子。
  3. 請求項1又は2に記載の液晶表示素子において、
    前記第1及び第2の液晶層は、
    それぞれ異なる一対の基板間に封止されている
    ことを特徴とする液晶表示素子。
  4. 請求項1乃至3のいずれか1項に記載の液晶表示素子において、
    前記第1の液晶層と、
    前記第2の液晶層とは、表示面側からこの順に積層されている
    ことを特徴とする液晶表示素子。
  5. プレーナ状態で第1波長の光を反射するように、
    ネマティック液晶に、
    コレステリック相を形成させる第一の旋光性のカイラル材が重量比で30wt%添加された液晶に、
    第二の旋光性のカイラル材を全体重量比でさらに3wt%混合して作製され、
    第一の旋光性を示す第1の液晶層と、
    プレーナ状態で前記第1波長より長い第2波長の光を反射するように、
    ネマティック液晶に、
    コレステリック相を形成させる第二の旋光性のカイラル材が重量比で30wt%添加された液晶に、
    第一の旋光性のカイラル材を全体重量比でさらに5wt%混合して作製され、
    第二の旋光性を示す第2の液晶層と、
    プレーナ状態で前記第1波長より短い第3波長の光を反射するように、
    ネマティック液晶に、
    コレステリック相を形成させる第二の旋光性のカイラル材が重量比で30wt%添加され、第二の旋光性を示す第3の液晶層と
    を有し、ネマティック液晶の屈折率異方性のΔn値が、前記各カイラル材のΔn値より大きいこと
    を特徴とする液晶表示素子。
  6. 請求項5に記載の液晶表示素子において、
    前記第1の液晶層は緑色用液晶層であり、
    前記第2の液晶層は赤色用液晶層であり、
    前記第3の液晶層は青色用液晶層である
    ことを特徴とする液晶表示素子。
  7. 請求項5又は6に記載の液晶表示素子において、
    前記第1乃至第3の液晶層は、
    それぞれ異なる一対の基板間に封止されている
    ことを特徴とする液晶表示素子。
  8. 請求項5乃至7のいずれか1項に記載の液晶表示素子において、
    前記第3の液晶層と、
    前記第1の液晶層と、
    前記第2の液晶層とは、表示面側からこの順に積層されている
    ことを特徴とする液晶表示素子。
  9. 所定の画像を表示する表示部を有する電子ペーパーにおいて、
    前記表示部は、
    請求項1乃至8のいずれか1項に記載の液晶表示素子を備えている
    ことを特徴とする電子ペーパー。
JP2007523302A 2005-07-01 2005-07-01 液晶組成物の作成方法、液晶組成物を用いた液晶表示素子及びそれを備えた電子ペーパー Expired - Fee Related JP4722921B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/012237 WO2007004280A1 (ja) 2005-07-01 2005-07-01 液晶組成物及びそれを用いた液晶表示素子並びにそれを備えた電子ペーパー

Publications (2)

Publication Number Publication Date
JPWO2007004280A1 JPWO2007004280A1 (ja) 2009-01-22
JP4722921B2 true JP4722921B2 (ja) 2011-07-13

Family

ID=37604160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007523302A Expired - Fee Related JP4722921B2 (ja) 2005-07-01 2005-07-01 液晶組成物の作成方法、液晶組成物を用いた液晶表示素子及びそれを備えた電子ペーパー

Country Status (5)

Country Link
US (2) US7575787B2 (ja)
EP (1) EP1901113B1 (ja)
JP (1) JP4722921B2 (ja)
CN (1) CN101213485B (ja)
WO (1) WO2007004280A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636220B2 (en) 2006-12-29 2014-01-28 Vanguard Identification Systems, Inc. Printed planar RFID element wristbands and like personal identification devices
US8052061B2 (en) * 2002-08-07 2011-11-08 Vanguard Identification Systems, Inc. Permanent RFID luggage tag with security features
US7845569B1 (en) 1999-06-16 2010-12-07 Vanguard Identification Systems, Inc. Permanent RFID luggage tag with security features
KR20080014317A (ko) * 2006-08-10 2008-02-14 삼성전자주식회사 표시 장치
JP4941549B2 (ja) * 2007-03-02 2012-05-30 富士通株式会社 液晶表示装置及びそれを用いた電子ペーパー
US7855705B2 (en) * 2007-07-03 2010-12-21 3M Innovative Properties Company Color liquid crystal display panel design
JP5082702B2 (ja) 2007-09-11 2012-11-28 富士通株式会社 液晶表示素子及びその駆動方法、及びそれを用いた電子ペーパー
TW201021000A (en) * 2008-11-26 2010-06-01 Ind Tech Res Inst Driving method and display utilizing the same
US9918537B2 (en) 2009-04-01 2018-03-20 Vanguard Identification Systems Smart device programmable electronic luggage tag and bag mountings therefore
US9224084B2 (en) 2009-04-01 2015-12-29 Vanguard Identification Systems, Inc. Smart device programmable electronic luggage tag
JP2011133639A (ja) * 2009-12-24 2011-07-07 Fujitsu Ltd 液晶表示素子
CN102193224B (zh) * 2010-03-15 2015-03-18 上海天马微电子有限公司 显示面板及其显示驱动方法
JP2012008258A (ja) * 2010-06-23 2012-01-12 Fujitsu Ltd 表示素子の駆動方法および表示装置
JP2012063528A (ja) * 2010-09-15 2012-03-29 Fujitsu Ltd 反射型カラー表示素子およびカラー表示装置
TWI486940B (zh) * 2012-10-01 2015-06-01 Chunghwa Picture Tubes Ltd 雙穩態液晶顯示器
CN110147019A (zh) * 2018-11-30 2019-08-20 山东蓝贝思特教装集团股份有限公司 一种多色液晶书写板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178557A (ja) * 1998-12-14 2000-06-27 Minolta Co Ltd 液晶組成物及び液晶光変調素子
JP2003147363A (ja) * 2001-11-19 2003-05-21 Minolta Co Ltd カイラルネマチック液晶組成物の調製方法及び液晶表示素子
JP2004002765A (ja) * 2002-03-27 2004-01-08 Minolta Co Ltd カイラルネマチック液晶組成物の調製方法、カイラルネマチック液晶組成物、液晶表示素子、および積層型液晶表示素子
JP2004170868A (ja) * 2002-11-22 2004-06-17 Minolta Co Ltd 積層型液晶表示素子
JP2005004179A (ja) * 2003-06-10 2005-01-06 Chunghwa Picture Tubes Ltd 広帯域反射のコレステリック液晶の形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100250848B1 (ko) * 1995-12-27 2000-04-01 니시무로 타이죠 반사형 액정표시소자
US6765644B1 (en) * 2000-03-01 2004-07-20 Raytheon Company Broadband optical beam steering system and method
TW535024B (en) * 2000-06-30 2003-06-01 Minolta Co Ltd Liquid display element and method of producing the same
JP2002363564A (ja) * 2001-06-01 2002-12-18 Minolta Co Ltd 液晶組成物及び反射型液晶表示素子
US6852375B2 (en) * 2002-03-27 2005-02-08 Minolta Co., Ltd. Preparation method of chiral nematic liquid crystal composition and liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178557A (ja) * 1998-12-14 2000-06-27 Minolta Co Ltd 液晶組成物及び液晶光変調素子
JP2003147363A (ja) * 2001-11-19 2003-05-21 Minolta Co Ltd カイラルネマチック液晶組成物の調製方法及び液晶表示素子
JP2004002765A (ja) * 2002-03-27 2004-01-08 Minolta Co Ltd カイラルネマチック液晶組成物の調製方法、カイラルネマチック液晶組成物、液晶表示素子、および積層型液晶表示素子
JP2004170868A (ja) * 2002-11-22 2004-06-17 Minolta Co Ltd 積層型液晶表示素子
JP2005004179A (ja) * 2003-06-10 2005-01-06 Chunghwa Picture Tubes Ltd 広帯域反射のコレステリック液晶の形成方法

Also Published As

Publication number Publication date
JPWO2007004280A1 (ja) 2009-01-22
US20090272942A1 (en) 2009-11-05
EP1901113A1 (en) 2008-03-19
CN101213485A (zh) 2008-07-02
EP1901113A4 (en) 2009-05-27
EP1901113B1 (en) 2013-05-01
US7771615B2 (en) 2010-08-10
US7575787B2 (en) 2009-08-18
US20080099723A1 (en) 2008-05-01
WO2007004280A1 (ja) 2007-01-11
CN101213485B (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4722921B2 (ja) 液晶組成物の作成方法、液晶組成物を用いた液晶表示素子及びそれを備えた電子ペーパー
US6697131B2 (en) Stacked type reflection liquid crystal display and method for producing the same
JP4850902B2 (ja) 表示素子及びその駆動方法並びにそれを備えた電子ペーパー
JPWO2007116438A1 (ja) 液晶表示素子及びその駆動方法並びにそれを備えた電子ペーパー
US20130050622A1 (en) Liquid crystal display apparatus and method of fabricating the same
JP4968262B2 (ja) 液晶表示素子及びそれを用いた電子ペーパー
JP5126062B2 (ja) 液晶表示素子およびその製造方法並びにそれを備えた電子ペーパー
JP5056843B2 (ja) 液晶表示素子及びその駆動方法、及びそれを用いた電子ペーパー
KR101429096B1 (ko) 3 전극 콜레스테릭 액정표시장치
KR100919541B1 (ko) 액정 조성물 및 그것을 이용한 액정 표시 소자 및 그것을구비한 전자 페이퍼
TWI317032B (en) Liquid crystal composite, liquid crystal display element using the composite, and electronic parper having the element
JP5333585B2 (ja) 液晶表示装置
JP4900384B2 (ja) 液晶表示素子及びそれを備えた電子ペーパー
JP3758634B2 (ja) 液晶表示素子
JPH11160725A (ja) 液晶表示素子
JP2011095634A (ja) 液晶表示装置
JP5141556B2 (ja) 液晶表示素子及びそれを用いた電子ペーパー
JP2011133639A (ja) 液晶表示素子
JP2009288547A (ja) 液晶表示素子
TW200827837A (en) Liquid crystal display element and electronic paper using the same
TW200837427A (en) Liquid crystal display device and electronic paper using the same
JP2013076826A (ja) 液晶表示素子及びこれを備える情報端末
TW200815841A (en) Liquid crystal display element, process for producing the same and electronic paper having the element
JP2010060940A (ja) 液晶表示素子

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees