TW200837427A - Liquid crystal display device and electronic paper using the same - Google Patents

Liquid crystal display device and electronic paper using the same Download PDF

Info

Publication number
TW200837427A
TW200837427A TW96108931A TW96108931A TW200837427A TW 200837427 A TW200837427 A TW 200837427A TW 96108931 A TW96108931 A TW 96108931A TW 96108931 A TW96108931 A TW 96108931A TW 200837427 A TW200837427 A TW 200837427A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
display device
light
blue
Prior art date
Application number
TW96108931A
Other languages
Chinese (zh)
Inventor
Toshiaki Yoshihara
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW96108931A priority Critical patent/TW200837427A/en
Publication of TW200837427A publication Critical patent/TW200837427A/en

Links

Abstract

The present invention relates to a liquid crystal display device which drives liquid crystal compositions showing a cholesteric phase to display an image, and an electronic paper using the same. It is an object of the invention to provide a liquid crystal display device which can realize the ease of fabrication and the reduction in fabrication costs, and an electronic paper using the same. A liquid crystal display device is configured to have a blue liquid crystal display element in which blue liquid crystals selectively reflecting blue light are sealed between counter substrates, a green liquid crystal display element in which green liquid crystals selectively reflecting green light are sealed between counter substrates, and a red liquid crystal display element in which red liquid crystals selectively reflecting red light are sealed between counter substrates, being laminated in this order from the display surface side, whereby a relation Δ ε B > ΔεG > ΔεR is satisfied where the magnitude of dielectric anisotropy of the blue liquid crystal is ΔεB, the magnitude of dielectric anisotropy of the green liquid crystal is ΔεG, and the magnitude of dielectric anisotropy of the red liquid crystal is ΔεR.

Description

200837427 九、發明說明: 【發明所屬之技術領域】 技術領域 本發明關於驅動液晶材料,特別是關於驅動可顯示膽 5 固醇相之液晶組成物而顯示影像之液晶顯示裝置及使用該 液晶顯示裝置之電子紙。 【先前技術3 背景技術 近年來,於各企業及各大學中,電子紙的開發正興盛 10 進行著。期待著利用電子紙之適用領域乃以電子書籍為 首,而且有行動終端機器之副顯示器及1C卡之顯示部等行 動式機器領域。使用於電子紙之顯示裝置之一者,乃有使 用可形成膽固醇相之液晶組成物(稱為膽固醇液晶或手徵 扭轉液晶。以下稱膽固醇液晶)的液晶顯示裝置。膽固醇液 15 晶,具有半永久性的顯示保持特性(在無供給電力情形下的 影像顯示;記憶性)、鮮明的色彩顯示特性、高對比特性及 高解析度特性等優異的特點。 【發明内容3 發明揭示 20 發明所欲解決的課題 使用膽固醇液晶之液晶顯示裝置為了彩色顯示而具有 積層複數片各色用之液晶顯示元件的構造。此情形下,—— 般使用同樣組成之膽固醇液晶,因此必須使液晶顯示元件 之面板間距及液晶之驅動電壓於每一色不同。 5 200837427 例如,為了簡略化製造工程,而使用已將各色用之液 晶顯不元件之面板間距設成約相同之一種類的液晶顯示面 板的情形下,則必須使施加於液晶之驅動電壓在每一色不 同。例如紅色用液晶顯示元件約19V,綠色用液晶顯示元件 5 約25V,藍色用液晶顯示元件約3IV的驅動電壓。因此,會 造成於必須每一色個別設置驅動電路,而構成妨礙液晶顯 示裝置之低成本化的要因。 另一方面,為了使各色用之液晶的驅動電路共通化, 而將各色用之液晶顯示元件之液晶的驅動電壓設成約相同 10 的情形下,必須使液晶顯示元件之面板間距於每一色改 變。例如在紅、綠、藍之液晶顯示元件,面板間距分別為 約6.5//m、约5//m、約4/zm。因此必須製作每一色專用的 液晶顯示面板,而會產生不得不進行繁雜的製造工程的問 15 如上所述’使用膽固醇液晶之積層型之習知液晶顯示 裝置不得不進行繁雜的製造工程,而難以達到製造之容易 性及降低製造成本。 本發明之目的在於提供可實現製造的容易性,且能達 到降低製造成本之液晶顯示裝置及使用該液晶顯示裝置的 20 電子紙。 解決課題的+段 上述目的依據具有以下特點之液晶顯示裝置而達成, 該液晶顯示裝置積層有複數液晶顯示元件,而該複數液晶 顯示元件於其對向基板間填封有可選擇性地反射不同波長 6 200837427 - 5 之光的複數液晶,且選擇性地反射波長相對較短之光之液 晶的電介質異向性大小,比選擇性地反射波長相對較長之 光之液晶的電介質異向性大小還大。 又’上述本發明之液晶顯示裝置,其特點更在於前述 複數液晶包含形成膽固醇相之液晶。又,上述本發明之液 晶顯示裝置之特點更在於積層有業已將選擇性地反射藍色 光之藍色用液晶填封於對向基板間之藍色用液晶顯示元 • 件、業已將選擇性地反射綠色光之綠色用液晶填封於對向 基板間之綠色用液晶顯示元件、業已將選擇性地反射紅色 10 光之紅色用液晶填封於對向基板間之紅色用液晶顯示元 件,且將前述藍色用液晶之電介質異向性之大小設為么ε Β、將前述綠色用液晶之電介質異向性之大小設為△ ε〇、 將前述紅色用液晶之電介質異向性之大小設為△ ε r時,滿 足△ εΒ>Δ a eR> 的關係。 15 • 又’上述本發明之液晶顯示裝置,其特點更在於從顯 不面側依序積層有前述藍色用液晶顯示元件、前述綠色用 液晶顯示元件及前述紅色用液晶顯示元件。又,上述本發 明之液晶顯示裝置,其特點更在於前述綠色用液晶之旋光 性與前述藍色用液晶及前述紅色用液晶之旋光性不同。 20 上述目的依據具有以下特點之電子紙而達成,該電子 紙用以顯示影像,且包含有上述液晶顯示元件。 發明效果 依據本發明,可實現液晶顯示裝置之製造的容易性, 且可達成降低製造成本。 7 200837427 圖式簡單說明 第1圖係模式化表示依據本發明之第1實施樣態所構成 之液晶顯示裝置的剖面構造。 第2圖(a)、(b)係模式化表示依據本發明之第1實施樣態 所構成之液晶顯示裝置之一液晶顯示元件的剖面構造。 第3圖表示依據本發明之第1實施樣態所構成之液晶顯 不裝置之膽固醇液晶之△ ε與HT電壓的關係。 第4圖表示依據本發明之第2實施樣態所構成之液晶顯 示裝置的概略構造。 1〇 第5圖係模式化表示依據本發明之第2實施樣態所構成 之液晶顯示裝置的剖面構造。 第6圖表示依據本發明之第2實施樣態所構成之液晶顯 不裝置之平行螺旋狀態之反射光譜的一例。 第7圖(a)、(b)表示依據本發明之第2實施樣態所構成之 15液晶顯示裝置之驅動方法。 第8圖表示膽固醇液晶之電壓一反射率特性的一例。 第9圖(a)〜(c)表示具有以本發明之第2實施樣態所構 成之液晶顯示裝置1之電子紙£1>的具體例。 C實施方式】 20 較佳實施例之詳細說明 〔第1實施樣態〕 使用第1圖至第3圖來說明依據本發明之第丨實施樣態 所構成之液晶顯示裝置及使用該液晶顯示裝置之電子紙。 第1圖係模式化表示使用膽固醇液晶之可全彩顯示之液晶 8 200837427 顯示裝置51的剖面構造。液晶顯示裝置51具有從顯示面順 序地積層藍色(β)用液晶顯示元件46b、綠色(G)用液晶顯示 元件46g、紅色(R)用液晶顯示元件46r的構造。於圖式中, 建構成上方之基板47b側為顯示面,而外來光源(實線箭頭) 5從基板47b上方朝向顯示面射入。又’於基板47b上方模式 化表示觀測者的眼及其觀察方向(虚線箭頭)。 B用液晶顯示元件46b具有業已填封在一對上下基板 47b、49b間之藍色(b)用液晶43b,及可對B用液晶43b施加 預定脈波電壓之脈波電壓源4lb。G用液晶顯示元件46g具有 1〇業已填封在一對上下基板47g、49g間之綠色(G)用液晶 43g,及可對g用液晶43g施加預定脈波電壓之脈波電壓源 41g。R用液晶顯示元件46r具有業已填封在一對上下基板 47r、49r間之綠色用液晶43γ,及可對R用液晶43r施加預 定脈波電壓之脈波電壓源4lr。雖然於圖式上省略,但是在 15與各個上下基板47、49之液晶43接觸之界面侧,形成有可 將來自各脈波電壓源41之脈波電壓施加於液晶43之複數電 極。且因應需要可於與各個上下基板47、49之液晶43接觸 之界面側,除了電極以外可形成配向膜或絕緣膜。 R用液晶顯示元件46r之下基板49τ内面配置有光吸收 20 層45 。 使用於各Β、G、R用液晶層43b、43g、43r之膽固醇液 晶係以數十wt%之手徵性(掌性)之添加物(亦稱手徵材)含 有率較大ϊ地添加於扭轉性液晶的液晶混合物。 一旦扭轉 性液晶以較大量地含有手徵性材,則能形成將扭轉性液晶 9 200837427 分子強力地扭轉成螺旋狀的膽固醇相。因此,膽固醇液晶 亦稱為手徵扭轉性液晶。 膽固醇液晶具有雙安定性(記憶性),依據調節施加於液 晶的電場強度而可呈平行螺旋(planar)狀態、垂直螺旋 5 (focal-conic)狀態或平行螺旋狀態與垂直螺旋狀態混合存 在之中間性狀態之其中任何狀態,一旦形成平行螺旋狀 態、垂直螺旋狀態或此等狀態混合存在的中間性狀態,則 之後即使是在無電場情形下亦呈穩定而可保持其狀態。 平行螺旋狀態係將預定的高電壓施加於上下基板47、 10 49間,並對液晶層43施予強電場之後,急劇地使電場設成 零而獲付。垂直螺旋狀態係例如將比前述高電壓低的預定 電壓施加於上下基板47、49間,並且對液晶層43施予電場 之後,再急劇地使電場設成零的狀態而獲得。 平行螺旋狀態與垂直螺旋狀態混合存在之中間性狀 15 態,係例如將比可獲得垂直螺旋狀態之電壓低的電壓施加 於上下基板47、49間,並且對液晶層43施予電場之後,再 急劇地使電場設成零而獲得。 以B顯示部4 6 b為例來說明使用了此膽固醇液晶的液晶 顯示裝置51的顯示原理。第2圖(a)表示B顯示部46b之B用液 20 晶層43b於平行螺旋狀態中之液晶分子33的配向狀態。如第 2圖(a)所示,在平行螺旋狀態中之液晶分子33朝向基板厚度 方向順序地旋轉而形成螺旋構造,螺旋構造之螺旋軸約垂 直於基板面。 平行螺旋狀態下,因應液晶分子33之螺旋間距之預定 200837427 波長區域之光被選擇性地在液晶層反射。此時,反光之光 因應螺旋間距之手徵性而為左右其中一方的圓偏光,此外 的光透過液晶層。由於自然光為左右圓偏光混入的狀態, 可得知一旦自然光射入平行螺旋狀態中的液晶層,則於預 5 定波長區域中,入射光之50%會反射,50%會透過。 將液晶層之平均折射率設為η,將螺旋間距設為p,則 反射呈最大的波長λ能以λ =η· ρ表示。 如此一來,在Β顯示部46b之Β用液晶層43b於平行螺旋 狀態時要選擇性地反射藍色光,乃要決定平均折射率11及螺 10旋間距P以達到例如;I =480nm。以選擇液晶材料及手徵材 而能調整平均折射率n,以調整手徵材之含有率而能調整螺 旋間距ρ。 第2圖(b)表示B顯示部46b之B用液晶層43b於垂直螺旋 狀悲中之液晶分子33的配向狀態。如第2圖(b)所示,在垂直 15螺旋狀悲下的液晶分子33朝向基板内面方向順次地轉旋後 形成螺旋構造,螺旋構造的螺旋軸約平行於基板面。垂直 螺方疋狀態的話,對B用液晶層43b失去反射波長的選擇性, 入射光幾乎全透過。透過光被配置在R顯示部4&之下基板 49r内面的光吸收層45吸收,因此可實現暗(黑)顯示。 2〇 平行螺旋狀態與垂直螺旋狀態混合存在之中間性狀態 的話’係對應平行螺旋狀態與垂直螺旋狀態的存在比例而 調整反射光與透過光的比例,以改變反射光的強度。因此 可實現對應反射光強度之中間多灰階顯示。 如上所述’膽固醇液晶以扭轉成螺旋狀之液晶分子33 11 200837427 的配向狀態而能控制光的反射量。與上述B用液晶層43b同 樣地,將平行螺旋狀態時可選擇性地反射綠或紅的光的膽 固醇液晶,分別封入G用液晶層43g及R用液晶層43r而製作 全彩顯示之液晶顯示元件51。液晶顯示元件51具有記憶 5 性’於改寫晝面時之外不會消耗電力而能全彩顯示。 依據本實施樣態所構成之液晶顯示裝置51可實現其製 造之容易性’且能達成降低製造成本,因此具有以下的特 徵性的構造。 (1) 首先’積層著包含形成膽固醇相之液晶,且選擇性 10地反射不同波長的光之至少二種液晶43(以下對於選擇波 長相對較短的加上附加字「s」,對於選擇波長相對較長的 加上附加字「1」)分別封入個別的對各基板47、49間之至少 二個液晶顯示元件46s、461。且選擇性地反射波長相對較短 之光之液晶43s之電介質異向性△ ε s的大小(絕對值),比選 15擇性地反射波長相對較長之光之液晶431之電介質異向性 △ £s的大小還大。亦即,△ £s>a (2) 以△ ε s> △ ε 1的條件調整△ ε 8及么ε 1之值,使液 晶顯示元件46s、461之面板間距(亦稱晶胞間距、液晶層厚) 約相同。 20 (3)又,以△ ε s> △ ε 1的條件調整△ ε △ ε 1之值, 使液晶43s及431之驅動電壓範圍約相同。 (4)更具體而言,液晶顯示裝置51係從顯示面側以業已 將選擇性地反射藍色光之藍色用液晶4313填封於對向美板 4 7 b、4 9 b間之藍色用液晶顯示元件4 6 b、業已將選擇性地反 12 200837427 射綠色光之綠色用液晶43g填封於對向基板47g、49g間之綠 色用液晶顯示元件46g、業已將選擇性地反射紅色光之紅色 用液晶43r填封於對向基板47r、4%間之紅色用液晶顯示元 件46r的順序積層,且將前述藍色用液晶43b之電介質異向 5 性之大小没為△ ε b、將如述綠色用液晶43g之電介質異向 性之大小ά又為△ £ g、將别述紅色用液晶43γ之電介質異向 性之大小没為△ ε义时’滿足△ εΒ>Α ε r的關係。 (5) 以△ ε β> △ £ g> △ ε R的條件調整△ ε β、△ ε G及 △ ε R之值’使液晶顯示元件46b、46g、46r之面板間距約 10 相同。 (6) 以△ εΒ>Δ eR的條件調整△ 及 △ eR之值,使藍色用液晶43b、綠色用液晶43g及紅色用液 晶43r之驅動電壓範圍約相同。 以下依據上述(1)〜(6)之特徵性構造來說明實現容易 I5衣t性與達成降低製造成本的理由。本發明之發明人詳細 調查了在平行螺旋狀態下選擇性地反射預定波長之光之液 晶的電介質異向性△ ε(絕對值)與驅動該液晶之驅動電壓 中特另J疋改寫影像之際之復置(reset)所必須之復置電壓 的關係。復置電壓係在將液晶設成垂直螺旋狀態時所必須 20的電壓,以下簡稱為「HT電壓」。 第3圖表不液晶之電介質異向性△ e與町電壓之關係 的曲線圖。於第3圖中,橫軸係以對數表示電介質異向性△ 縱軸係以線性^Ητ電壓。Ητ電壓係將脈波幅版s 之脈波電壓施紀脈波時之每一面板間距的㈣值。 13 200837427 又’本實施樣態使用具有正電介質異向性之液晶材料。於 第3圖中’四角()記號表示紅⑻色用液晶,菱形(♦)記號 表示綠(G)色用液晶,三角記號表示藍(B)色用液晶。 由第3圖可得知,任何色用之液晶,其電介質異向性△ 5 ε之大小愈大,則HT電壓以橫軸對數之顯示而形成直線性 地降低。又,選擇性地反射之光的波長相對性地愈長則ΗΤ 電壓愈低。 例如要將面板間距設為4#m,而將ΗΤ驅動電壓設為 28V ’則將△ ε r、△ ε 〇、△ ε b設成第3圖之HT電壓= 10 7V(=28/4)即可。即,建構成以將使用於選擇性地反射之 光之波長相對較短之液晶顯示元件46s之液晶43s的電介質 異向性△ es,設成比使用於選擇性地反射之光之波長相對 較長之液晶顯示元件461之液晶431的電介質異向性△ ε i大 的狀態,而能將驅動電壓及面板間距弄齊至液晶顯示元件 15 46s、461約相同。 以預定的反射波長滿足△£(}>△ εΒ>Δ ε R之關係 的狀態下,可將分別反射紅色、綠色、藍色之光的液晶顯 示元件46b、46g、46r之驅動電壓及面板間距弄齊至約相同。 如此來,依據本實施樣悲,首先,由於可將選擇性 20地反射之不同波長之光之複數液晶顯示元件之面板間距弄 齊至約相同,因此至填封液晶工程之液晶顯示元件的製造 工程可不須依賴用於填封之各色的液晶材料而能使用相同 工程。例如在以真空注入法所進行之液晶填封方面,由於 能以全工程相同來製造注入液晶前的空面板,因此比較於 14 200837427 必須準備三種空面板之習知繁雜的製造工程,本發明之製 造性優異且可達到低成本化。 又’依據本實施樣態,由於可將選擇性地反射之不同 波長之光之複數液晶顯示元件之驅動電壓弄齊至約相同, 5因此能將習知技術在每一液晶顯示元件有必要設置的掃描 電極驅動電路總合於一個,能實現液晶顯示裝置的低成本 化0 〔第2實施樣態〕 使用第4圖至第9圖來說明依據本發明之第2實施樣態 1〇所構成之液晶顯示裝置及使用該液晶顯示裝置之電子紙。 本實施樣態以使用藍(B)、綠(G)及紅(R)用膽固醇液晶之液 晶顯示裝置1為例來說明。第4圖表示依據本實施樣態所構 成之液晶顯示裝置1的概略構造。第5圖係模式化表示以第4 圖中平行於圖左右方向之直線來切斷液晶顯示裝置1的剖 0 面構造。 如第4圖及第5圖所示,液晶顯示裝置!包含有在平行螺 旋狀態下以反射藍(B)色光作為選擇波長區域而選擇性地 反射藍色光之B用液晶顯示元件6b、在平行螺旋狀態下以反 射綠(G)色光作為選擇波長區域而選擇性地反射綠色光之g 2〇用液晶顯示元件6§、在平行螺旋狀態下以反射紅(R)色光作 為選擇波長區域而選擇性地反射紅色光之R用液晶顯示元 件6r。B、G、R用之各液晶顯示元件6b、6g、6r以此順序由 光射入面(顯示面)積層著。 B用液晶顯示元件6b包含有對向配置之一對上下基板 15 200837427 7b、9b、及業已填封在兩基板7b、9b間的B用液晶3b,B用 液晶3b具備可調整平均折射率n或螺旋間距p而呈右旋光性 (手徵性向右)以選擇性地反射藍色的光,且以在平行螺旋狀 悲下反射藍色的右圓偏光的光而使以外的光透過,且在垂 ^ 5直螺旋狀態下使約全部光透過的膽固醇液晶構成。本膽固 • 醇液晶之電介質異向性△ ε b如第3圖所示之在HT電壓= 7V下為△ ε Β=21。 φ 〇用液晶顯示元件6g包含有對向配置之一對上下基板 7g、9g、及業已填封在兩基板7g、9§間的〇用液晶3g,〇用 10液晶3§具備可調整平均折射率η或螺旋間距p而呈左旋光性 (手徵性向左)以選擇性地反射綠色的光,且以在平行螺旋狀 悲下反射綠色的左圓偏光的光而使以外的光透過,且在垂 直螺旋狀態下使約全部光透過的膽固醇液晶構成。本膽固 醇液晶之電介質異向性△ ε g如第3圖所示之在ΗΤ電壓= 15 7V下為△ ε β=13.5。 φ R用液晶顯示元件6r包含有對向配置之一對上下基板 7r、9r、及業已填封在兩基板7r、知間的R用液晶化,R用液 ^ 晶七具備可調整平均折射率η或螺旋間距p而呈右旋光性(手 • 徵性向右)以選擇性地反射紅色的光,且以在平行螺旋狀態 2〇下反射藍色的右圓偏光的光而使以外的光透過,且在垂直 螺旋狀態下使約全部光透過的膽固醇液晶構成。本膽固醇 液曰曰之電介質異向性△ eR如第3圖所示之在ΗΤ電壓=7ν 下為△ £ b=9.5。 因此,依據本實施樣態所構成之液晶顯示裝置丨,各色 16 200837427 用液晶3b、3g、3r之電介質異向性之大小滿足△ ε b> △ e g > △ ε r的關係。 又,在△εΒ>Δε(}>Δε R的條件下,於第3圖所示 之HT電壓=7V上可調整^ ε B、△ ε ^及么ε r之值,因此 5可將液晶顯示元件6b、、6]:之面板間距設成約相同,且 能將B用液晶3b、G用液晶3g及R用液晶43r的驅動電壓範圍 設成約相同。 構成B、G、R用之各液晶3b、3g、3r之膽固醇液晶係 以10〜40wt%之手徵材添加於扭轉性液晶的液晶混合物。 10對手徵性材之添加率係扭轉性液晶成分與手徵性材之合計 量設為100wt%時之值。可使用習知眾所周知之各種材料作 為扭轉性液晶。膽固醇液晶之折射率異向性^11最好是〇18 ‘ ^11-0.24。若是折射率異向性An比此範圍小,則在平 行螺旋狀態之各液晶3b、3g、3r的反射率會變低,若是比 15此範圍大,則液晶3b、3g、3r在垂直螺旋狀態下的散射反 射會變大’且黏度亦會變高而會降低反應速度。 又,添加於B用及R用膽固醇液晶之手徵性材,與添加 於G用膽固醇液晶之手徵性材為旋光性相互不同的光學異 性體。因此,B用及R用膽固醇液晶之旋光性相同,而與G 20用膽固醇液晶之旋光性不同。 第6圖表示各液晶3b、3g、3r在平行螺旋狀態之反射光 譜的一例。橫軸表示反射光之波長(nnl),縱軸表示反射率 (白色板比;%)。在B用液晶層3b之反射光譜在圖中以連結 三角形(▲)記號之曲線表示。同樣地,在G用液晶層3g之反 17 200837427 論 5 射光譜在圖中以連結四角形()記號之曲線表示,而在R用 液晶層3r之反射光譜在圖中以連結菱形(♦)記號之曲線表 示。 如第6圖所示,各液晶3b、3g、3r之平行螺旋狀態之反 射光譜的中心波長以液晶3b、3g、义順序變長。於B、G ' R之各液晶顯示元件6b、6g、6r之積層構造中’平行螺旋狀 態中的G用液晶層3g的旋光性與B用及R用液晶層3b、3r之 旋光性不同,因此,在第6圖所示之藍與綠、以及綠與紅之 • 反射光譜重畳的區域,例如B用液晶層3b與R用液晶層3r可 10 反射右圓偏光之光,G用液晶層3g可反射左圓偏光之光。藉 此,可降低反射光的損失而能提昇液晶顯示裝置1之顯示晝 面的明亮度。 15 上基板7b、7g、7r及下基板9b、9g、9r必須為具有透光 性。本實施樣態使用切斷成縱橫長度為l〇(cm) X 8(cm)大 小之二片聚碳酸酯(PC)薄膜基板。又,亦可取代pc基板而 使用玻璃基板或聚對苯二曱酸乙二酸酯(PET)等薄膜基 板。此等薄膜基板具有充分的可撓性。本實施樣態之上基 板7b、7g、7r及下基板9b、9g、9r均須具有透光性。惟,配 置於最下層之R顯示部6r之下基板9r可為不透光性。 20 如第4圖及第5圖所示,於B顯示部6b之下基板9b之B用 液晶層3b侧並列形成有朝向第4圖中之上下方向延伸之複 數帶狀的資料電極19b。又,第5圖之符號19b表示複數帶狀 的貪料電極19b的存在區域。又,於上基板71)之8用液晶層 3b侧並列形成有朝向第4圖中之左右方向延伸之複數帶狀 18 200837427 的掃描電極17b。 如第4圖所不,於電極形成面之法線方向觀看上下基板 7b、9b ’魏的掃描電極m與資料電極〗帅互交叉對向 配置著本只^樣態將透明電極圖案化而形成Ο·%腿間距 5之帶狀的240條掃描電極17b及32〇條的資料電極跳,以達 到能240x320點之qVGA顯示。兩電極m與跳之各交叉的 領域分別構成B像素i2b。複數的B像素Ub配置成24〇行乂 320列的陣列狀。 G用液晶顯示元件6g亦與B用液晶顯示元件讣同樣形 10成有240條掃描電極17g、320條的資料電極19g及配置成24〇 行X320列之陣列狀的G像素12g(未以圖式顯示^尺用液晶顯 示元件6r亦與同樣掃描電極i7r、資料電極19r及r像素 12r(未以圖式顯不)。以1組的B、G、R像素!2b、12g、12r 構成液晶顯示裝置1之1個像素12。像素12配置成陣列狀而 15 形成顯示畫面。 掃描電極17b、17g、17r及資料電極19b、19g、19r之形 成材料代表性的例如為銦錫氧化物(indium Tin Oxide ; ITO),此外可使用錮鋅氧化物(indium Zinc Oxide ; IZO)等 透明導電膜、鋁或矽等金屬電極 '或非晶質矽等透明導電 20性膜等。 安裝有用以驅動複數知描電極17b、17g、17r之掃描電 極用驅動器1C之掃描電極驅動電路25連接於上基板7b、 7g、7r。又,安裝有用以驅動複數資料電極19b、19g、19r 之資料電極用驅1C之資料電極驅動電路27連接於下基板 19 200837427 9b 9g 9r°包含著掃描電極驅動電路25及資料電極驅動 電路27而構成驅動部24。 掃4田电極驅動电路25建構成依據從控帝』電路部23輸出 之預定信號而選擇預定之3條掃描電極17b、17g、17r,並 5對此等3條#描電極17b、17g、17r同時輸出掃描信號。相 對於此’資料電極驅動電路27建構成依據從控制電路部23 輸出之預定信號,而將相對於經選擇之掃描電極H 17g、 17r上的B、G、R像素12b、l2g、12]«的影像資料信號,分別 輸出至資料電極19b、19g、I9r。掃描電極用及f料電極用 10驅動為IC可使用例如1^?(捲帶式封裝)構造之泛用的STN 用驅動器1C。 由於本實施樣態可將B、G、R用之各液晶扑、3g、3r 之驅動電壓設成約相同,因此掃描電極驅動電路25之預定 的輸出端子共通連接於掃描電極17b、I7g、nr之預定的各 15輸入端子。如此一來,不必於每一B ' G、R用之各液晶顯 示元件6b、6g、6r設置掃描電極驅動電路25,因此可使液 晶顯示裝置1之驅動電路的構造簡略化。又,由於可刪減婦 描電極用驅動器1C的數量,因此能實現液晶顯示裝置丨之低 成本化。 2〇 兩電極Pb、19b上分別塗上絕緣膜及用以控制液晶分 子之配列的配向膜(均未以圖式顯示)作為功能膜為宜。絕緣 膜具有防止電極17b、19b間之短路或作為氣體屏蔽層而提 昇液晶顯示装置1之可靠度的功能。又,可使用聚醯乙胺樹 脂、聚醯亞胺樹脂、聚謎亞胺樹脂、聚乙烯醇縮丁駿樹月匕 200837427 及丙烯酸酯樹脂等之有機膜、或氧化矽、氧化鋁等I 料作為配向膜。本實施樣態例如於電極上的基板八面、 配向膜。配向膜亦可兼用絕緣性薄膜。 如第5圖所示,藉著塗在上下基板7b、%之外周圍的密 5封材21b而使B用液晶3b被封住在兩基板几、外間。又b 用液晶3b之厚度(=面板間距)d必須保持成均一。為了維持 預定的面板間距d,將樹脂製或無機氧化物製之球狀間隔件 (spacer)散置於B用液晶3b内,或將柱狀間隔件多數形成在6 用液晶3b内。於本實施樣態之液晶顯示裝置丨,在B用液晶 10 3b内插入間隔件(圖式未顯示)而保持面板間距4的均一性。 又,將具有接著性之壁面構造體形成於像素之周圍的情形 亦適用。面板間距d最好是在3 μ 6//m的範圍。若是 面板間距d比此範圍小,則在平行螺旋狀態的液晶3b的反射 率會變低,若是比此範圍大,則驅動電壓會變得過高。本 15 實施樣態設成面板間距=4#πι。 G用液晶顯示元件6g及R用液晶顯示元件6r具有與B用 液晶顯示元件6b相同之面板間距=4 // m的相同構造,因此 省略說明。於R用液晶顯示元件6r之下基板9r的外面(背面) 配置於可見光吸收層15。由於設置著可見光吸收層15,因 20 此未在B、G、R用之各液晶3b、3g、3r反射之光可有效地 被吸收。爰此’液晶顯示裝置1可實現咼對比的顯示。又’ 可見光吸收層15因應必要而設置即可。 以下使用第7圖來說明液晶顯示裝置1的驅動方法。第7 圖表示液晶顯示裝置1之驅動方法的一例。第7圖(a)係用以 21 200837427 使膽固醇m鮮行螺波形,第7導)係用 以使膽固醇液晶設成垂直螺旋狀態的__。_7_ 及第7_),圖之上段表示從資料電極驅動電路27輸出之資 料信號《波職I’圖之中段表轉掃料極轉電路25 輸出之掃描信號電壓波形VS,圖之下於主_ 又表不施加於B用液晶 中,從圖左至圖右表示經過時間, 扑之像素的施加電壓波形Vle。又,於第7圖⑻及第7圖⑻ 壓BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device for driving a liquid crystal material, particularly for driving a liquid crystal composition capable of displaying a cholesteric phase, and using the liquid crystal display device Electronic paper. [Prior Art 3] In recent years, in various enterprises and universities, the development of electronic paper is prospering 10 . It is expected that the field of application of electronic paper is based on electronic books, and there are mobile devices such as sub-displays for mobile terminal devices and display units for 1C cards. One of the display devices used in electronic papers is a liquid crystal display device using a liquid crystal composition (referred to as cholesteric liquid crystal or chiral twisted liquid crystal, hereinafter referred to as cholesteric liquid crystal) which can form a cholesterol phase. Cholesterol liquid 15 crystal, with semi-permanent display retention characteristics (image display without power supply; memory), vivid color display characteristics, high contrast characteristics and high resolution characteristics. According to the invention, the liquid crystal display device using the cholesteric liquid crystal has a structure in which a liquid crystal display element for each color of a plurality of layers is laminated for color display. In this case, the same composition of the cholesteric liquid crystal is generally used, and therefore the panel pitch of the liquid crystal display element and the driving voltage of the liquid crystal must be different for each color. 5 200837427 For example, in order to simplify the manufacturing process and use a liquid crystal display panel in which the panel pitch of the liquid crystal display elements for each color is set to be about the same type, the driving voltage applied to the liquid crystal must be made every One color is different. For example, the red liquid crystal display element is about 19V, the green liquid crystal display element 5 is about 25V, and the blue liquid crystal display element is about 3IV. Therefore, it is necessary to separately provide a driving circuit for each color, which constitutes a factor that hinders the cost reduction of the liquid crystal display device. On the other hand, in order to make the driving circuits of the liquid crystals for the respective colors common, and to set the driving voltages of the liquid crystals of the liquid crystal display elements for the respective colors to be about the same, it is necessary to change the panel pitch of the liquid crystal display elements for each color. . For example, in red, green, and blue liquid crystal display elements, the panel pitch is about 6.5/m, about 5//m, and about 4/zm, respectively. Therefore, it is necessary to produce a liquid crystal display panel for each color, and there is a problem that a complicated manufacturing process has to be performed. 15 As described above, the conventional liquid crystal display device using a layered type of cholesteric liquid crystal has to perform complicated manufacturing processes, and it is difficult to perform complicated manufacturing processes. Achieve manufacturing ease and reduce manufacturing costs. SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display device which can achieve ease of manufacture and which can attain a reduction in manufacturing cost, and 20 electronic paper using the liquid crystal display device. The above-mentioned object is achieved by a liquid crystal display device in which a plurality of liquid crystal display elements are laminated, and the plurality of liquid crystal display elements are selectively reflected between the opposite substrates. a dielectric liquid having a wavelength of 6 200837427 - 5 and selectively reflecting a dielectric anisotropy of a liquid crystal having a relatively short wavelength of light, and a dielectric anisotropy of a liquid crystal selectively reflecting light having a relatively long wavelength Still big. Further, the liquid crystal display device of the present invention described above is characterized in that the plural liquid crystal contains a liquid crystal which forms a cholesterol phase. Further, the liquid crystal display device of the present invention is characterized in that a blue liquid crystal display element which is filled with a blue liquid crystal selectively reflecting blue light and which is selectively interposed between the opposite substrates is selectively provided. a green liquid crystal display element in which a green light-reflecting green light is filled with a liquid crystal between a counter substrate, and a red liquid crystal display element in which a red liquid crystal selectively reflects red light is filled between the opposite substrates, and The magnitude of the dielectric anisotropy of the blue liquid crystal is ε Β , the dielectric anisotropy of the green liquid crystal is Δ ε 〇 , and the dielectric anisotropy of the red liquid crystal is set to When Δ ε r , the relationship of Δ ε Β > Δ a eR > is satisfied. Further, the liquid crystal display device of the present invention is characterized in that the blue liquid crystal display element, the green liquid crystal display element, and the red liquid crystal display element are sequentially laminated from the display side. Further, the liquid crystal display device of the present invention is characterized in that the optical rotatory property of the green liquid crystal is different from the optical rotatory properties of the blue liquid crystal and the red liquid crystal. 20 The above object is achieved by an electronic paper having the following features for displaying an image and including the above liquid crystal display element. Advantageous Effects of Invention According to the present invention, it is possible to achieve ease of manufacture of a liquid crystal display device, and it is possible to achieve a reduction in manufacturing cost. 7 200837427 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a liquid crystal display device according to a first embodiment of the present invention. Fig. 2(a) and Fig. 2(b) are schematic diagrams showing the cross-sectional structure of a liquid crystal display element of a liquid crystal display device constructed in accordance with a first embodiment of the present invention. Fig. 3 is a view showing the relationship between Δ ε and HT voltage of the cholesteric liquid crystal of the liquid crystal display device constructed in the first embodiment of the present invention. Fig. 4 is a view showing the schematic configuration of a liquid crystal display device constructed in accordance with a second embodiment of the present invention. Fig. 5 is a schematic cross-sectional view showing a liquid crystal display device constructed in accordance with a second embodiment of the present invention. Fig. 6 is a view showing an example of a reflection spectrum of a parallel spiral state of a liquid crystal display device constructed in accordance with a second embodiment of the present invention. Fig. 7 (a) and (b) show a driving method of a liquid crystal display device constructed in accordance with a second embodiment of the present invention. Fig. 8 shows an example of the voltage-reflectance characteristics of the cholesteric liquid crystal. Fig. 9 (a) to (c) show specific examples of the electronic paper £1 having the liquid crystal display device 1 constructed in the second embodiment of the present invention. C embodiment] 20 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT [First Embodiment] A liquid crystal display device constructed according to a third embodiment of the present invention and a liquid crystal display device using the same will be described with reference to FIGS. 1 to 3 . Electronic paper. Fig. 1 is a schematic diagram showing a liquid crystal display using a cholesteric liquid crystal for full color display. 8 200837427 A cross-sectional structure of the display device 51. The liquid crystal display device 51 has a structure in which a liquid crystal display element 46b for blue (β), a liquid crystal display element 46g for green (G), and a liquid crystal display element 46r for red (R) are laminated in this order from the display surface. In the drawing, the side of the substrate 47b on the upper side is a display surface, and the external light source (solid arrow) 5 is incident from the upper side of the substrate 47b toward the display surface. Further, the observer's eye and its observation direction (dashed arrow) are patterned above the substrate 47b. The B liquid crystal display element 46b has a blue (b) liquid crystal 43b which has been sealed between the pair of upper and lower substrates 47b and 49b, and a pulse wave voltage source 41b which can apply a predetermined pulse wave voltage to the B liquid crystal 43b. The liquid crystal display element 46g for G has a green (G) liquid crystal 43g which is filled between a pair of upper and lower substrates 47g and 49g, and a pulse wave voltage source 41g which can apply a predetermined pulse wave voltage to the g liquid crystal 43g. The liquid crystal display element 46r for R has a green liquid crystal 43γ which has been filled between the pair of upper and lower substrates 47r and 49r, and a pulse wave voltage source 41r which can apply a predetermined pulse wave voltage to the R liquid crystal 43r. Although omitted from the drawings, at the interface side where the liquid crystals 43 of the respective upper and lower substrates 47 and 49 are in contact with each other, a plurality of electrodes for applying pulse wave voltages from the respective pulse wave voltage sources 41 to the liquid crystals 43 are formed. Further, an alignment film or an insulating film may be formed on the interface side in contact with the liquid crystals 43 of the respective upper and lower substrates 47, 49 as needed. A light absorbing layer 20 is disposed on the inner surface of the substrate 49τ under the liquid crystal display element 46r for R. The cholesteric liquid crystal system used in the liquid crystal layers 43b, 43g, and 43r for each of the yttrium, G, and R is added in a tens of weight percent chiral (palm) additive (also referred to as a hand material). A liquid crystal mixture of a torsional liquid crystal. When the torsional liquid crystal contains a chiral material in a large amount, a cholesterol phase in which the twisted liquid crystal 9 200837427 molecule is strongly twisted into a spiral shape can be formed. Therefore, cholesteric liquid crystal is also called chiral twisting liquid crystal. Cholesterol liquid crystal has double stability (memory), which can be in the form of a parallel planar state, a vertical spiral 5 (focal-conic state) or a parallel spiral state and a vertical spiral state depending on the electric field intensity applied to the liquid crystal. Any of the states of the sexual state, once formed in a parallel spiral state, a vertical spiral state, or an intermediate state in which such states are mixed, is then stable even in the absence of an electric field to maintain its state. In the parallel spiral state, a predetermined high voltage is applied between the upper and lower substrates 47, 1049, and after a strong electric field is applied to the liquid crystal layer 43, the electric field is sharply set to zero and is paid. The vertical spiral state is obtained, for example, by applying a predetermined voltage lower than the above-described high voltage between the upper and lower substrates 47 and 49, and applying an electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. In the intermediate state of the parallel spiral state and the vertical spiral state, for example, a voltage lower than a voltage at which a vertical spiral state can be obtained is applied between the upper and lower substrates 47 and 49, and an electric field is applied to the liquid crystal layer 43 and then sharply The ground is obtained by setting the electric field to zero. The display principle of the liquid crystal display device 51 using this cholesteric liquid crystal will be described by taking the B display portion 4 6 b as an example. Fig. 2(a) shows the alignment state of the liquid crystal molecules 33 in the parallel spiral state of the B liquid crystal layer 43b of the B display portion 46b. As shown in Fig. 2(a), the liquid crystal molecules 33 in the parallel spiral state are sequentially rotated toward the substrate thickness direction to form a spiral structure, and the spiral axis of the spiral structure is about perpendicular to the substrate surface. In the parallel spiral state, the light in the wavelength region is selectively reflected in the liquid crystal layer in response to the predetermined pitch of the liquid crystal molecules 33. At this time, the reflected light is a circularly polarized light of one of the left and right sides in response to the chirality of the spiral pitch, and the other light passes through the liquid crystal layer. Since the natural light is in a state in which the left and right circularly polarized light is mixed, it is understood that once the natural light is incident on the liquid crystal layer in the parallel spiral state, 50% of the incident light is reflected in the predetermined wavelength region, and 50% is transmitted. When the average refractive index of the liquid crystal layer is η and the pitch of the spiral is p, the wavelength λ at which the reflection is maximum can be expressed by λ = η·ρ. As a result, the blue light is selectively reflected when the liquid crystal layer 43b is in the parallel spiral state between the display portion 46b, and the average refractive index 11 and the pitch 10 are determined to be, for example, I = 480 nm. The average refractive index n can be adjusted by selecting the liquid crystal material and the hand material, and the screw pitch ρ can be adjusted by adjusting the content of the hand material. Fig. 2(b) shows the alignment state of the liquid crystal molecules 33 in the vertical spiral shape of the B liquid crystal layer 43b of the B display portion 46b. As shown in Fig. 2(b), the liquid crystal molecules 33 which are spirally inclined in the vertical direction 15 are sequentially rotated toward the inner surface direction of the substrate to form a spiral structure, and the spiral axis of the spiral structure is approximately parallel to the substrate surface. In the case of the vertical spiral state, the liquid crystal layer 43b for B loses the selectivity of the reflection wavelength, and the incident light is almost completely transmitted. The transmitted light is absorbed by the light absorbing layer 45 disposed on the inner surface of the substrate 49r under the R display portion 4&, so that dark (black) display can be realized. 2〇 If the parallel spiral state is mixed with the vertical spiral state, the ratio of the reflected light to the transmitted light is adjusted to change the intensity of the reflected light. Therefore, an intermediate multi-gray scale display corresponding to the intensity of the reflected light can be realized. As described above, the cholesteric liquid crystal can control the amount of reflection of light by the alignment state of the liquid crystal molecules 33 11 200837427 which are twisted into a spiral shape. Similarly to the above-described liquid crystal layer 43b for B, a liquid crystal display in which a green or red light can be selectively reflected in a parallel spiral state is sealed in a liquid crystal layer 43g for G and a liquid crystal layer 43r for R to produce a liquid crystal display of a full color display. Element 51. The liquid crystal display element 51 has a memory level and can display full color without consuming power even when the surface is rewritten. According to the liquid crystal display device 51 of the present embodiment, the ease of manufacture can be achieved, and the manufacturing cost can be reduced. Therefore, the liquid crystal display device 51 has the following characteristic structure. (1) First, at least two liquid crystals 43 containing a liquid crystal forming a cholesterol phase and selectively reflecting light of different wavelengths are selectively laminated (hereinafter, an additional word "s" is added for a relatively short selection wavelength, for selecting a wavelength The relatively long addition of the additional word "1") encloses at least two of the liquid crystal display elements 46s, 461 between the individual substrates 47, 49, respectively. And selectively reflecting the magnitude (absolute value) of the dielectric anisotropy Δ ε s of the liquid crystal 43s of the relatively short wavelength light, and selectively controlling the dielectric anisotropy of the liquid crystal 431 of the light having a relatively long wavelength. △ The size of £s is still large. That is, Δ £s > a (2) adjusts the values of Δ ε 8 and ε ε by Δ ε s > Δ ε 1 to make the panel pitch of the liquid crystal display elements 46s and 461 (also called cell pitch, liquid crystal) Layer thickness) is about the same. 20 (3) Further, the value of Δ ε Δ ε 1 is adjusted under the condition of Δ ε s > Δ ε 1 so that the driving voltage ranges of the liquid crystals 43s and 431 are approximately the same. (4) More specifically, the liquid crystal display device 51 is filled with blue liquid crystals 4313 that selectively reflect blue light from the display surface side in the blue between the opposite panels 4 7 b and 4 9 b. The liquid crystal display element 46 6b has been used to selectively reflect the green liquid crystal display element 46g between the counter substrates 47g and 49g, which is selectively inverted 12200837427, and has been selectively reflected red light. The red liquid crystal 43r is filled in the order of the red liquid crystal display element 46r between the counter substrate 47r and 4%, and the dielectric anisotropy of the blue liquid crystal 43b is not Δε b. When the size of the dielectric anisotropy of the green liquid crystal 43g is Δ £ g and the dielectric anisotropy of the red liquid crystal 43γ is not Δ ε, the relationship of ' satisfying Δ ε Β Α ε ε r is satisfied. . (5) The values of Δ ε β, Δ ε G and Δ ε R are adjusted by the condition of Δ ε β > Δ £ g > Δ ε R. The panel pitches of the liquid crystal display elements 46b, 46g, and 46r are approximately the same. (6) The values of Δ and Δ eR are adjusted under the condition of Δ ε Β > Δ eR so that the driving voltage ranges of the blue liquid crystal 43b, the green liquid crystal 43g, and the red liquid crystal 43r are approximately the same. In the following, based on the characteristic structures of the above (1) to (6), the reason why the easy-to-use I5 is achieved and the manufacturing cost is reduced can be explained. The inventors of the present invention investigated in detail the dielectric anisotropy Δ ε (absolute value) of the liquid crystal selectively reflecting light of a predetermined wavelength in a parallel spiral state and the case where the driving voltage of the liquid crystal is driven to rewrite the image The relationship between the reset voltages necessary for resetting. The reset voltage is a voltage which is 20 when the liquid crystal is set to the vertical spiral state, and is simply referred to as "HT voltage" hereinafter. The third graph is a graph showing the relationship between the dielectric anisotropy Δ e of the liquid crystal and the voltage of the town. In Fig. 3, the horizontal axis indicates the dielectric anisotropy Δ in the logarithm to the linear Ητ voltage. The Ητ voltage is a (four) value of each panel pitch when the pulse wave voltage of the pulse wave plate s is applied to the pulse wave. 13 200837427 Also in this embodiment, a liquid crystal material having a positive dielectric anisotropy is used. In Fig. 3, the 'four-corner () mark indicates liquid crystal for red (8) color, the diamond (♦) mark indicates liquid crystal for green (G) color, and the triangular mark indicates liquid crystal for blue (B) color. As can be seen from Fig. 3, the larger the dielectric anisotropy Δ 5 ε of the liquid crystal for any color, the more linearly the HT voltage is linearly displayed by the logarithm of the horizontal axis. Further, the longer the wavelength of the selectively reflected light is, the lower the ΗΤ voltage is. For example, if the panel pitch is set to 4#m and the ΗΤ drive voltage is set to 28V', △ ε r, Δ ε 〇, Δ ε b are set to the HT voltage of Fig. 3 = 10 7V (= 28/4) Just fine. That is, the dielectric anisotropy Δ es of the liquid crystal 43s of the liquid crystal display element 46s having a relatively short wavelength for the selectively reflected light is set to be relatively higher than the wavelength of the light for selective reflection. In the liquid crystal 431 of the long liquid crystal display element 461, the dielectric anisotropy Δ ε i is large, and the driving voltage and the panel pitch can be aligned to the liquid crystal display elements 15 46 s and 461 . When the predetermined reflection wavelength satisfies the relationship of Δ£(}> Δ ε Β > Δ ε R , the driving voltages and panels of the liquid crystal display elements 46b, 46g, and 46r that respectively reflect red, green, and blue light can be used. The pitch is as close as the same. Thus, according to the present embodiment, firstly, since the panel pitch of the plurality of liquid crystal display elements of the light of different wavelengths selectively reflected by 20 can be aligned to be about the same, the liquid crystal is filled. The manufacturing process of the liquid crystal display element of the project can use the same engineering without relying on the liquid crystal materials for the various colors of the seal. For example, in the liquid crystal filling by the vacuum injection method, the liquid crystal can be manufactured by the same engineering. The former empty panel, therefore, compared to 14 200837427, it is necessary to prepare three kinds of empty panels of conventional manufacturing engineering, and the invention is excellent in manufacturability and can be reduced in cost. Further, according to this embodiment, since it can be selectively The driving voltages of the plurality of liquid crystal display elements reflecting different wavelengths of light are aligned to be about the same, so that the conventional technique can be applied to each liquid crystal display element. The scanning electrode driving circuit to be provided is integrated in one, and the cost of the liquid crystal display device can be reduced. [Second embodiment] The second embodiment according to the present invention will be described using Figs. 4 to 9; The liquid crystal display device and the electronic paper using the liquid crystal display device. In the present embodiment, a liquid crystal display device 1 using cholesteric liquid crystals of blue (B), green (G), and red (R) will be described as an example. 4 is a view showing a schematic structure of a liquid crystal display device 1 constructed in accordance with the present embodiment. Fig. 5 is a schematic view showing a cross-sectional structure of the liquid crystal display device 1 cut in a line parallel to the horizontal direction of the figure in Fig. 4; As shown in FIGS. 4 and 5, the liquid crystal display device includes a liquid crystal display element Bb for B which selectively reflects blue light by reflecting blue (B) color light as a selected wavelength region in a parallel spiral state. In the parallel spiral state, the green (G) color light is used as the selective wavelength region to selectively reflect the green light, and the liquid crystal display element 6 § is used to reflect the red (R) color light in the parallel spiral state as the selected wavelength region. Selectively The liquid crystal display element 6r for R which emits red light. The liquid crystal display elements 6b, 6g, and 6r for B, G, and R are laminated in this order from the light incident surface (display surface). The liquid crystal display element 6b for B includes The pair of upper and lower substrates 15 200837427 7b, 9b and the B liquid crystal 3b which has been sealed between the two substrates 7b and 9b, and the B liquid crystal 3b have an adjustable average refractive index n or a spiral pitch p and are right-handed Light (chirality to the right) to selectively reflect blue light, and to reflect light of a right circularly polarized light that reflects blue in a parallel spiral, and transmits light outside, and is in a straight spiral state The dielectric liquid crystal of the present cholesteric liquid crystal has a dielectric anisotropy Δ ε b as shown in Fig. 3 as Δ ε 21 = 21 at HT voltage = 7V. The φ 液晶 liquid crystal display element 6g includes one of the upper and lower substrates 7g and 9g disposed in the opposite direction, and the liquid crystal 3g which has been filled between the two substrates 7g and 9 §, and the liquid crystal 3 § has an adjustable average refraction. The ratio η or the spiral pitch p is left-handed (chiral to the left) to selectively reflect green light, and the light of the left circularly polarized light is reflected by the parallel spiral, and the other light is transmitted, and It is composed of a cholesteric liquid crystal that transmits about all of the light in a vertical spiral state. The dielectric anisotropy Δ ε g of the present cholesteric liquid crystal is Δ ε β = 13.5 at ΗΤ voltage = 15 7V as shown in Fig. 3 . The liquid crystal display element 6r for φ R includes one of the upper and lower substrates 7r and 9r disposed opposite to each other, and the liquid crystal which has been filled in the both substrates 7r and R, and the liquid crystal for R has an adjustable average refractive index. η or a spiral pitch p and a right-handed optical property (hand to the right) to selectively reflect red light, and to reflect light of a right circularly polarized light of blue under a parallel spiral state 2〇 It is transmitted through a cholesteric liquid crystal that transmits about all of the light in a vertical spiral state. The dielectric anisotropy Δ eR of this cholesterol liquid 如 is Δ £ b = 9.5 at ΗΤ voltage = 7 ν as shown in Fig. 3 . Therefore, according to the liquid crystal display device of the present embodiment, the dielectric anisotropy of the liquid crystals 3b, 3g, and 3r of the respective colors 16 200837427 satisfies the relationship of Δ ε b > Δ e g > Δ ε r . Further, under the condition of ΔεΒ>Δε(}> Δε R , the values of ε B, Δ ε ^ and ε ε can be adjusted at HT voltage=7 V shown in Fig. 3, so that liquid crystal can be 5 The display elements 6b, 6] have a panel pitch of about the same, and the drive voltage ranges of the B liquid crystal 3b, the G liquid crystal 3g, and the R liquid crystal 43r can be set to be about the same. The components B, G, and R are used. Each of the liquid crystals 3b, 3g, and 3r of the cholesteric liquid crystal is added to the liquid crystal mixture of the torsional liquid crystal in a amount of 10 to 40% by weight of the chiral material. The addition ratio of the target material is the total of the torsional liquid crystal component and the chiral material. The value is set to 100% by weight. Various materials well known in the art can be used as the torsional liquid crystal. The refractive index anisotropy of the cholesteric liquid crystal is preferably 〇18 '^11-0.24. If it is an anisotropic refractive index An ratio When the range is small, the reflectance of each of the liquid crystals 3b, 3g, and 3r in the parallel spiral state becomes low, and if it is larger than the range of 15, the scattering reflection of the liquid crystals 3b, 3g, and 3r in the vertical spiral state becomes large. And the viscosity will also become higher and the reaction rate will be lowered. Also, the chiral material added to the liquid crystal of B and R for cholesteric liquid crystal The chiral material added to the cholesteric liquid crystal for G is an optical anisotropy which is different in optical rotation from each other. Therefore, the optical activity of the cholesteric liquid crystal for B and R is the same, and the optical rotation of the cholesteric liquid crystal for G 20 is different. The graph shows an example of the reflection spectrum of each of the liquid crystals 3b, 3g, and 3r in a parallel spiral state. The horizontal axis represents the wavelength of the reflected light (nnl), and the vertical axis represents the reflectance (white plate ratio; %). In the liquid crystal layer 3b for B The reflection spectrum is represented by a curve connecting the triangles (▲) in the figure. Similarly, the inverse spectrum of the liquid crystal layer 3g for G is reported in the figure by a curve connecting the square () marks, and for the R. The reflection spectrum of the liquid crystal layer 3r is indicated by a curve connecting the diamond (♦) marks in the figure. As shown in Fig. 6, the center wavelength of the reflection spectrum of the parallel spiral state of each of the liquid crystals 3b, 3g, and 3r is liquid crystals 3b and 3g. In the laminated structure of the liquid crystal display elements 6b, 6g, and 6r of B and G' R, the optical rotation of the liquid crystal layer 3g for G in the parallel spiral state and the liquid crystal layers 3b and 3r for the B and R are used. The optical rotation is different, so it is shown in Figure 6. In the region where the reflection spectrum is overlapped with green, green, and red, for example, the liquid crystal layer 3b for B and the liquid crystal layer 3r for R can reflect the light of the right circular polarization, and the liquid crystal layer 3g for G can reflect the light of the left circular polarization. Therefore, the loss of reflected light can be reduced, and the brightness of the display surface of the liquid crystal display device 1 can be improved. 15 The upper substrates 7b, 7g, 7r and the lower substrates 9b, 9g, and 9r must have light transmissivity. A two-piece polycarbonate (PC) film substrate cut into a length and length of 1 〇 (cm) X 8 (cm) was used. Further, a film substrate such as a glass substrate or polyethylene terephthalate (PET) may be used instead of the pc substrate. These film substrates have sufficient flexibility. In this embodiment, the substrates 7b, 7g, and 7r and the lower substrates 9b, 9g, and 9r are required to have light transmissivity. However, the substrate 9r under the R display portion 6r disposed at the lowermost layer may be opaque. As shown in Fig. 4 and Fig. 5, a plurality of strip-shaped data electrodes 19b extending in the upper and lower directions in Fig. 4 are formed side by side on the liquid crystal layer 3b side of the substrate Bb under the B display portion 6b. Further, reference numeral 19b in Fig. 5 indicates the existence region of the plurality of strip-shaped paste electrodes 19b. Further, on the liquid crystal layer 3b side of the upper substrate 71), scanning electrodes 17b of a plurality of strips 18200837427 extending in the left-right direction in Fig. 4 are formed in parallel. As shown in Fig. 4, the upper and lower substrates 7b and 9b are viewed in the normal direction of the electrode forming surface. The scanning electrode m and the data electrode are arranged in a direction opposite to each other. Ο·% leg spacing 5 strips of 240 scanning electrodes 17b and 32 strips of data electrodes jump to achieve a 240x320 point qVGA display. The fields in which the two electrodes m and the jumps intersect each constitute a B pixel i2b. The plurality of B pixels Ub are arranged in an array of 24 lines and 320 columns. The liquid crystal display element 6g for G is also formed in the same manner as the liquid crystal display element B for B. The data electrode 19g having 240 scanning electrodes 17g and 320 and the G pixel 12g arranged in an array of 24 rows and 320 rows (not shown) The display liquid crystal display element 6r is also similar to the scan electrode i7r, the data electrode 19r, and the r pixel 12r (not shown). The liquid crystal is composed of one set of B, G, and R pixels! 2b, 12g, and 12r. One pixel 12 of the display device 1. The pixels 12 are arranged in an array to form a display screen. The scanning electrodes 17b, 17g, 17r and the data electrodes 19b, 19g, and 19r are typically formed of indium tin oxide (indium). Tin Oxide; ITO), a transparent conductive film such as indium Zinc Oxide (IZO), a metal electrode such as aluminum or tantalum or a transparent conductive 20 film such as amorphous germanium can be used. The scan electrode drive circuit 25 of the scan electrode driver 1C for the wiper electrodes 17b, 17g, and 17r is connected to the upper substrates 7b, 7g, and 7r. Further, the data electrode driver 1C for driving the plurality of data electrodes 19b, 19g, and 19r is mounted. Data electrode driving circuit 27 is connected The lower substrate 19 200837427 9b 9g 9r° includes the scan electrode driving circuit 25 and the data electrode driving circuit 27 to constitute the driving portion 24. The sweep electrode driving circuit 25 is constructed in accordance with a predetermined signal output from the control circuit portion 23. The predetermined three scanning electrodes 17b, 17g, and 17r are selected, and the three scanning electrodes 17b, 17g, and 17r simultaneously output scanning signals. The data electrode driving circuit 27 is constructed in accordance with the control circuit portion 23. The predetermined signal is output, and the image data signals of the B, G, and R pixels 12b, l2g, and 12]« on the selected scanning electrodes H 17g, 17r are output to the data electrodes 19b, 19g, and I9r, respectively. For the electrode and the f-electrode 10, the IC can be used as an IC, for example, a conventional STN driver 1C having a structure of a tape-and-reel package. Since this embodiment can use various liquid crystals for B, G, and R. The driving voltages of 3g and 3r are set to be the same. Therefore, the predetermined output terminals of the scan electrode driving circuit 25 are commonly connected to the predetermined 15-input terminals of the scanning electrodes 17b, I7g, and nr. Thus, it is not necessary for each B. 'G, R for each liquid crystal Since the display elements 6b, 6g, and 6r are provided with the scan electrode driving circuit 25, the structure of the driving circuit of the liquid crystal display device 1 can be simplified. Further, since the number of the driving electrodes 1C for the female electrode can be eliminated, the liquid crystal display device can be realized. The cost of the crucible is 2. The two electrodes Pb and 19b are respectively coated with an insulating film and an alignment film for controlling the arrangement of the liquid crystal molecules (all of which are not shown) as a functional film. The insulating film has a function of preventing short-circuiting between the electrodes 17b, 19b or as a gas barrier layer to improve the reliability of the liquid crystal display device 1. Further, an organic film such as a polyethylideneamine resin, a polyamidene resin, a polymyimide resin, a polyvinyl chloroprene ruthenium 200837427 or an acrylate resin, or an iridium oxide or an aluminum oxide can be used. As an alignment film. This embodiment is, for example, an eight-sided substrate on the electrode and an alignment film. The alignment film may also use an insulating film. As shown in Fig. 5, the B liquid crystal 3b is sealed between the two substrates and the outside by the dense sealing material 21b applied around the upper and lower substrates 7b and %. Further, the thickness (= panel pitch) d of the liquid crystal 3b must be kept uniform. In order to maintain the predetermined panel pitch d, a spherical spacer made of resin or inorganic oxide is dispersed in the liquid crystal 3b for B, or a columnar spacer is formed in the liquid crystal 3b for 6 in most cases. In the liquid crystal display device of the present embodiment, a spacer (not shown) is inserted into the liquid crystal 10 3b for B to maintain the uniformity of the panel pitch 4. Further, a case where a wall structure having an adhesive property is formed around the pixel is also applicable. The panel spacing d is preferably in the range of 3 μ 6 //m. If the panel pitch d is smaller than this range, the reflectance of the liquid crystal 3b in the parallel spiral state becomes low, and if it is larger than this range, the driving voltage becomes too high. The embodiment of this embodiment is set to panel spacing = 4 #πι. The liquid crystal display element 6g for G and the liquid crystal display element 6r for R have the same structure as the panel pitch = 4 // m which is the same as the B liquid crystal display element 6b, and therefore the description thereof will be omitted. The outer surface (back surface) of the substrate 9r under the liquid crystal display element 6r for R is disposed on the visible light absorbing layer 15. Since the visible light absorbing layer 15 is provided, light reflected by the respective liquid crystals 3b, 3g, and 3r for B, G, and R can be efficiently absorbed. Here, the liquid crystal display device 1 can realize a contrast display. Further, the visible light absorbing layer 15 may be provided as necessary. The driving method of the liquid crystal display device 1 will be described below using Fig. 7 . Fig. 7 shows an example of a driving method of the liquid crystal display device 1. Fig. 7(a) is used for 21 200837427 to make the cholesterol m fresh spiral waveform, and the seventh guide is used to make the cholesteric liquid crystal into a vertical spiral state __. _7_ and 7_), the upper part of the figure shows the scanning signal voltage waveform VS outputted from the data signal output circuit 27 of the data electrode driving circuit 27, which is output from the sweeping electrode circuit 25, which is shown in the main _ Further, it is not applied to the liquid crystal for B, and the applied voltage waveform Vle of the pixel is shown from the left to the right of the figure. Also, in Figure 7 (8) and Figure 7 (8)

而圖之上下方向表示電 第8圖表示膽固醇液晶之電壓—反射率特性的一例。橫 轴表示施加於膽固醇液晶之電壓值(v),縱轴表示膽固醇液 晶的反射率(%)。第8圖所示之實線的曲線p表示初始狀態為 平行螺旋狀態之膽固醇液晶的電壓—反射率特性,虛線之 曲線FC表示初錄態為垂直螺旋狀態之翻醇液晶的電壓 —反射率特性。On the other hand, the upper and lower directions of the figure indicate electricity. Fig. 8 shows an example of the voltage-reflectance characteristics of the cholesteric liquid crystal. The horizontal axis represents the voltage value (v) applied to the cholesteric liquid crystal, and the vertical axis represents the reflectance (%) of the cholesterol liquid crystal. The curve p of the solid line shown in Fig. 8 indicates the voltage-reflectance characteristic of the cholesteric liquid crystal whose initial state is a parallel spiral state, and the curve FC of the broken line indicates the voltage-reflectance characteristic of the liquid crystal of the liquid crystal in the initial state of the vertical state. .

以例說明將預定電壓施加於第4圖料之B用液晶顯示 元件6b之第1狀資料電極19b與第靖之掃#電極⑺之交 又部的藍(B)像素12b(l、1)的情形。如第7圖(^所示,於選 擇第1行之掃描電極17b之選擇期間T1之前側的約1/2期 間,相對於資料信號電壓Vd為+32V,掃描信號電壓%為 0V,而在後側的約1/2期間,相對於資料信號電壓〜為 0V,掃描信號電壓Vs為+32V。因此,B像素I2b(l、1)之B 用液晶3b於選擇期間丁 1之間被施加±32v的脈波電壓。如第 8圖所示,一旦超過HT電壓的高電壓VP1〇〇(例如32v)施加 於膽固醇液晶而產生強的電場的情形下,則液晶分子之螺 22 200837427 旋構造完全解開,所有的液晶分子隨著電場的方向而形成 垂直配向狀態。爰此,B像素12bU、1)之B用液晶3b的液晶 分子於選擇期間T1呈垂直配向狀態。 一旦選擇期間T1結束而呈非選擇期間T2,則以選擇期 5間11之1/2周期對第1行的掃描電極17b施加例如+28V或 + 4V的電壓。相對於此,狀的資料信號電壓別施加於第 1列之資料電極19b。於第7圖⑻中,在選擇期間以結束後之 非選擇期間T2,以選擇期間Tk1/2周期對第1列的資料電 極19b施加例如+ 32V及0V的電壓。因此,在非選擇期間丁2 10之間可對8像素12b(l、l)iB用液晶3b施加土4¥的脈波電 壓。如此一來,在非選擇期間T2之間,於B像素U 之B用液晶3b產生的電場約為零。 液晶分子垂直配向狀態時施加液晶電壓從超過HT電 壓的VP 100(±32V)改變至VF0(±4 v)後急劇地將電場設成約 15令k ’則液日日分子之螺旋軸相對於兩電極17b、19b呈現朝 向約垂直方向的螺旋狀態,而形成選擇性反射其對應螺旋 間距之光的平行螺旋狀態。爰此,為了使B像素12b(1、i) 之B用液晶3b形成平行螺旋狀態之後會反射光線,乃於B像 素12b(l、1)顯示藍。 20 相對於此,如第7圖(b)所示,在選擇期間ΤΊ之前側約1 /2期間及後側約1/2期間,相對於資料信號電壓24V /8V的情形,一旦掃描信號電壓vs為0V/ + 32V,則±24V 之脈波電壓會施加於B像素12b(l、1)之B用液晶3b。如第8 圖所示,一旦預定的低電壓VF1〇〇b〈例如24V)施加於膽固醇 23 200837427 液晶後產生弱的電場,則液晶分子之螺旋構造形成未完全 解開的狀態。一旦達到非選擇期間12,則以選擇期間11之1 /2周期對第1行的掃描電極nb施加例如+ 28乂/ + 4v的 電壓,預定的貢料信號電壓¥(1(例如+24V/8V)的電壓以 5延擇期間T1之1/2周期施加於資料電極1%。因此,在非選 擇期間T2之間可董作像素12b(1、用液晶%施加—4v / + 4V的脈波電壓。如此一來,在非選擇期間丁2之間,於 B像素12b(卜1)之3用液晶3b產生的 電場約為零。 液晶分子之螺旋構造不完全解開的狀態下,若是將施 10加於膽固醇液晶之電壓從VF100b(±24V)改變至VF0(±4V) 後急劇地使電場變成約零,則液晶分子之螺旋轴相對於兩 電極17b、19b朝向約平行的方向呈螺旋狀態,而成為透過 入射光的垂直螺旋狀態。因此,B像素12b(1、1}之B用液晶 3b呈垂直螺旋狀態而透過光。又,如第8圖所示,施加 15 νρι〇〇(ν)的電壓後而使液晶層產生強的電場之後,即使漸 漸地除去電場,膽固醇液晶也能形成垂直螺旋狀態。 上述驅動電壓、驅動方法為一例,在室溫下將30〜35V 的脈波狀電壓對兩電極之間施加實際效用時間2 〇〜丨〇 〇 m s 之間,則B用液晶之膽固醇液晶呈選擇反射狀態(平行螺旋 20狀態),將15〜22V的脈波狀電壓間施加實際效用時間2〇〜 100ms之間,則呈良好的透過狀態(垂直螺旋狀態)。 藉著與上述B像素12b(l、1)之驅動同樣進行而驅動綠 (G)像素(1、1)及(R)像素(!、!),以能於已積層三個b、g、 R像素(1、1)進行彩色顯示。又,使從第1行至第磁行之掃描 24 200837427 電極進行所謂線順序驅動而於每一行改寫各資料電極^身 料包壓(資料掃描電極),藉此,可將顯示資料輸出到像素 (卜1)至像素(m、η)之全部,而能實現〗訊框(顯示畫面)份 量的彩色顯示。 5 又,將第8圖之兩個框A、Β内的電壓施加於膽固醇液 晶以賦與中間強度的電場並急劇地除去該電場時,則呈平 行螺旋狀態與垂直螺旋狀態混合存在的中間性狀態,而能 形成全彩顯示。 以下具體說明本實施樣態之液晶顯示裝置丨之製造方 10 法。 (實施例) 於切斷成縱橫的長度為例如l〇(cm)xg(cin)大小之二片 聚碳酸酯(PC)薄膜基板上,使用濺鍍法形成IT〇透明電極。 接著藉光蝕刻工程而將ΙΤ0電極圖案化,而分別形成 15 0·24ιηπι間距之帶狀的電極(掃描電極π或資料電極19)。於 二片PC薄膜基板上分別形成帶狀的電極以達到能顯示&如 240點的QVGA顯示。 其次,使用塗布器而於二片PC薄膜基板上分別的帶狀 透明電極上塗布7〇nm厚度之聚醯乙胺系的配向膜材料。其 20次,接著將業已塗布配向膜材料之二片PC薄膜置於9〇°c之 烤爐中進行一小時的烘烤而形成配向膜。 其次,於一側的PC薄膜基板上之周緣部以供料器塗布 環氧系之密封材。其次,於另一侧的PC薄膜基板9或7分布 粒徑之間隔件(spacer)(積水精密化學會社製造)後將面板門 25 200837427 距(液晶層厚)調整成約4//m。接著,貼合二片PC薄膜基板 7、9後並以i6(rc加熱〗小時而使密封材21硬化。再者,以 真空注入法注入B用膽固醇液晶LCb之後,以環氧樹脂系的 填封材料來填封注入口而製作B用液晶顯示元件沾。以同樣 5的方法製作G、R用液晶顯示元件以、6r。 要注入的液晶在使用於選擇性地反射預定光之波長較 短之頒示元件之液晶材料之電介質異向性,比選擇性地反 射預定波長較長之顯示元件之液晶材料之電介質異向性的 大小還大。例如設成 Δειι=9.5、、ΔεΒ=21 1〇的狀態下,可弄齊複數面板之驅動電壓及面板間距,可達 到提昇製造性與低成本化。 其次,如第5圖所示,從顯示面側以B、G、R用液晶顯 示元件6b、6g、6r的順序積層。接著純驗晶顯示元件& Μ之下基板%背面配置可見光吸收層…接著將Tcp(捲帶式 封衣)構造之泛用的STN用驅動器Ic壓押固著於已積層之 =、G、R用液晶顯示元件6b、6g、&之掃描電極17的端子 部及資料電極19的端子部,並連接電源電路及控制電路部 。如此-來龜成可進行QVG麵示·晶赫裝置】。 加〜依據本實施樣態,可將選擇性地反射之不同波長之光 之複數液晶顯示it件之面板間距弄齊至約相同。因此,至 填封液晶工程之液晶顯示元件的製造工程可不須依賴用於 填封之各色的液晶材料而能使用相同工程。例如在以真命 注入法所進行之液晶填封方面,由於能以全工程相同僅^ 種來製造注入液晶前的空面板即可,因此比較於必須準備 26 200837427 可實現製 不同間距之三種空面板之習知繁雜的製造工 造容易性且可達到製造低成本化。By way of example, a predetermined voltage is applied to the blue (B) pixel 12b (1, 1) at the intersection of the first data electrode 19b of the B liquid crystal display element 6b of the fourth picture and the Sweeping electrode #7. situation. As shown in FIG. 7 (^), during about 1/2 of the front side of the selection period T1 of the scanning electrode 17b of the first row, the scanning signal voltage % is 0 V with respect to the data signal voltage Vd of +32 V, and The scanning signal voltage Vs is +32 V with respect to the data signal voltage ~0 V for about 1/2 of the rear side. Therefore, B of the B pixel I2b (1, 1) is applied between the selection period D1. Pulse wave voltage of ±32v. As shown in Fig. 8, when a high voltage VP1〇〇 (for example, 32v) exceeding the HT voltage is applied to the cholesteric liquid crystal to generate a strong electric field, the liquid crystal molecule snail 22 200837427 When the liquid crystal molecules of the B pixels 12bU and 1) are vertically aligned with each other in the selection period T1, the liquid crystal molecules of the B liquid crystals 3b of the B pixels 12bU and 1) are completely aligned. When the selection period T1 ends and the non-selection period T2 is present, a voltage of, for example, +28 V or +4 V is applied to the scan electrode 17b of the first row with a period of 1/2 of 11 periods of the selection period. On the other hand, the data signal voltage of the shape is applied to the data electrode 19b of the first column. In Fig. 7 (8), voltages of, for example, +32 V and 0 V are applied to the data electrodes 19b of the first column in the non-selection period T2 after the completion of the selection period in the selection period Tk1/2. Therefore, the pulse voltage of the soil 4 ¥ can be applied to the liquid crystal 3b for the 8 pixels 12b (l, l) iB between the non-selection periods. As a result, between the non-selection period T2, the electric field generated by the B liquid crystal 3b of the B pixel U is approximately zero. When the liquid crystal molecules are vertically aligned, the applied liquid crystal voltage is changed from VP 100 (±32V) exceeding HT voltage to VF0 (±4 v), and the electric field is sharply set to about 15 k'. The two electrodes 17b, 19b assume a spiral state toward the approximately vertical direction, and form a parallel spiral state of light selectively reflecting the corresponding helical pitch. Thus, in order to cause the B liquid crystal 3b of the B pixel 12b (1, i) to form a parallel spiral state, the light is reflected, and the B pixel 12b (1, 1) displays blue. 20 In contrast, as shown in Fig. 7(b), during the selection period, the front side is about 1 /2 and the back side is about 1/2, and the signal voltage is once scanned with respect to the data signal voltage of 24V / 8V. When the vs is 0 V / + 32 V, the pulse voltage of ±24 V is applied to the liquid crystal 3b for B of the B pixel 12b (1, 1). As shown in Fig. 8, once a predetermined low voltage VF1 〇〇 b (e.g., 24 V) is applied to the liquid crystal of the cholesterol 23 200837427 to generate a weak electric field, the spiral structure of the liquid crystal molecules forms an incompletely unwrapped state. Once the non-selection period 12 is reached, a voltage of, for example, + 28 乂 / + 4v is applied to the scan electrode nb of the first row with a period of 1 1/2 of the selection period, and a predetermined tributary signal voltage of ¥ (1 (for example, +24 V/) The voltage of 8V) is applied to the data electrode 1% in a period of 5 1/2 of the extension period T1. Therefore, the pixel 12b can be used between the non-selection period T2 (1, the liquid crystal% is applied - 4v / + 4V pulse) In this case, the electric field generated by the liquid crystal 3b in the B pixel 12b (b1) is about zero between the non-selection periods 2, and the spiral structure of the liquid crystal molecules is not completely unwrapped. When the voltage applied to the cholesteric liquid crystal is changed from VF100b (±24V) to VF0 (±4V), the electric field is sharply changed to about zero, and the spiral axis of the liquid crystal molecules is oriented in a direction parallel to the two electrodes 17b and 19b. In the spiral state, the vertical spiral state of the incident light is transmitted. Therefore, the liquid crystal 3b of the B pixel 12b (1, 1} is vertically spirally transmitted to transmit light. Further, as shown in Fig. 8, 15 ν ρ 〇〇 is applied. After the voltage of (ν) causes a strong electric field to be generated in the liquid crystal layer, even if the electric field is gradually removed, the cholesterol is cooled. The liquid crystal can also form a vertical spiral state. The above-mentioned driving voltage and driving method are an example. When a pulse-like voltage of 30 to 35 V is applied between the electrodes at room temperature for an actual utility time of 2 〇 to 丨〇〇 ms, The liquid crystal liquid crystal of B is in a selectively reflective state (parallel spiral 20 state), and a practical transmission time between 2 〇 and 100 ms is applied between the pulse voltages of 15 to 22 V, and a good transmission state (vertical spiral state) is obtained. The green (G) pixels (1, 1) and (R) pixels (!, !) are driven in the same manner as the driving of the B pixels 12b (1, 1), so that three b, g, and three layers can be stacked. The R pixel (1, 1) performs color display. Further, the electrode from the 1st line to the magnetic line scan 24 200837427 is driven by so-called line sequential driving to rewrite each data electrode in each line (data scanning electrode) Thereby, the display data can be output to all of the pixels (Bu 1) to the pixels (m, η), and the color display of the frame (display screen) size can be realized. 5 Also, the two of the eighth figure The voltage in box A and Β is applied to the cholesteric liquid crystal to impart intermediate strength. When the electric field is sharply removed and the electric field is sharply removed, an intermediate state in which the parallel spiral state and the vertical spiral state are mixed is formed, and a full-color display can be formed. The following describes the manufacturing method of the liquid crystal display device of the present embodiment. (Example) An IT 〇 transparent electrode was formed by sputtering on a two-piece polycarbonate (PC) film substrate having a length of, for example, 1 〇 (cm) x g (cin). The etched electrode is patterned to form a strip-shaped electrode (scan electrode π or data electrode 19) at a pitch of 15 0. 24 ηηπι. A strip-shaped electrode is formed on each of the two PC film substrates to achieve a QVGA display capable of displaying & 240 points. Next, a polyimide film having a thickness of 7 Å was coated on the strip-shaped transparent electrode on each of the two PC film substrates by using an applicator. Twenty times, the two PC films which had been coated with the alignment film material were placed in an oven at 9 ° C for one hour to form an alignment film. Next, an epoxy-based sealing material was applied to the peripheral portion of the PC film substrate on one side by a feeder. Next, the panel door 25 200837427 (liquid crystal layer thickness) was adjusted to about 4 / / m on the other side of the PC film substrate 9 or 7 spacer spacer (manufactured by Sekisui Precision Chemicals Co., Ltd.). Next, the two PC film substrates 7 and 9 were bonded together, and the sealing material 21 was cured by i6 (rc heating) for an hour. Further, the B liquid crystal LCb for B was injected by a vacuum injection method, and then filled with an epoxy resin. The sealing material is filled to fill the injection port to form a liquid crystal display element for B. The liquid crystal display elements for G and R are formed by the same method, and 6r is used. The liquid crystal to be implanted is used for selectively reflecting a predetermined wavelength of light. The dielectric anisotropy of the liquid crystal material of the indexing element is larger than the dielectric anisotropy of the liquid crystal material of the display element which selectively reflects a predetermined wavelength. For example, Δειι=9.5, ΔεΒ=21 1 In the state of the crucible, the driving voltage and the panel pitch of the plurality of panels can be improved, and the manufacturability and cost can be improved. Next, as shown in FIG. 5, the liquid crystal display elements for B, G, and R are displayed from the display surface side. The layers of 6b, 6g, and 6r are laminated in sequence. Then, the pure crystal display element & Μ 基板 基板 % % % % % % % 配置 配置 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光 可见光On the accumulated layer =, G The liquid crystal display elements 6b, 6g, & the terminal portion of the scan electrode 17 and the terminal portion of the data electrode 19 are connected to the power supply circuit and the control circuit portion. Thus, the turtle can be used to perform the QVG surface display and the crystal device. According to the embodiment, the panel pitch of the plurality of liquid crystal display elements of the different wavelengths of light selectively reflected can be aligned to be about the same. Therefore, the manufacturing process of the liquid crystal display element to fill the liquid crystal project can be The same work can be used depending on the liquid crystal material used for the color of the seal. For example, in the liquid crystal filling by the true injection method, the empty panel before the liquid crystal injection can be manufactured by the same engineering. However, it is therefore more convenient to manufacture the three kinds of empty panels of different pitches than the need to prepare 26 200837427, and the manufacturing cost can be reduced.

不同 同, 因此對於複數液晶顯示元件可總合掃描電極 個。因此比對於複數液晶顯示元件在每一液Different, so the scanning electrodes can be combined for a plurality of liquid crystal display elements. Therefore than for a plurality of liquid crystal display elements in each liquid

必要設置掃描電極驅動電路之習知繁雜的製造工程 現製造容易性且可達到製造低成本化。 、 於業已元成之液晶顯示裝置1設置輸入輪出裝置及了 10總括控制整體之控制裝置(均未以圖式顯示)而完成電 紙。第9圖表示具有以本實施樣態所構成之液晶顯示震 之電子紙EP的具體例。第9圖(a)表示於依據本實施樣熊所 構成之液晶顯示裝置1内,包含有將已預先儲存影像資料之 非依電性記憶體lm予以插入拔出使用之構造的電子紙 15 EP。例如將已儲存在個人電腦等之影像資料儲存於非依電 性記憶體lm,並裝設於電子紙Ep以能顯示影像。 第9圖(b)表示於依據本實施樣態所構成之液晶顯示裝 置1内,具有内建了非依電性記憶體lm之構造的電子紙 EP。例如以有線從儲存有影像資料之終端lt(lt可構成電子 2〇 紙EP之一部分)能使非依電性記憶體lm儲存影像資料後進 行影像顯示。 第9圖(c)表示終端It及液晶顯示裝置1具有無線發送接 收系統(例如無線LAN或藍芽)的例子。以無線通信lwl從儲 存有影像資料之終端It能使非依電性記憶體lm儲存影像資 27 200837427 料後進行影像顯示。 以下為了具體地說明依據本實施樣態所構成之液晶顯 示裝置的優越性而使用比較例來說明。 (比較例1) 5 與上述實施例同樣製作了面板間距約呈4 μ m之3片空 面板。並準備了電介質異向性△ ε約相等之紅、綠、藍用 之3種類的液晶。更具體的為△ eR=15.9、△ eG=15.3、 △ εΒ= 14.7。各色用之液晶分別注入3片空面板後製作了液 晶顯不元件。當测定分別之液晶的驅動電壓(ΗΤ電壓)時’ 10 紅色用液晶顯示元件約19V、綠色用液晶顯示元件約25V、 藍色用液晶顯示元件約31。本比較例1之構造必須於每一色 個別設置驅動電路,因此無法實現如本實施樣態之降低製 造成本。 (比較例2) 15 與上述比較例同樣準備了電介質異向性△ ε R= 15.9、 △ £(}=15.3、么£8=14.7之紅、綠、藍用之3種類的液晶。 而要分別將液晶的驅動電壓相同地設成例如約31V,則必須 分別將紅、綠、藍之空面板的面板間距變更成約6.5 μ m、 約5 # m、約4 // m。本比較例2之構造必須以習知繁雜的製 20 造工程來製造空面板,因此無法實現如如本實施樣態製造 的容易性及降低製造成本。 產業上的利用性 本發明不限於上述實施樣態,而能作更種的樣態變化。 上述本實施樣態以點陣方式之液晶顯示裝置為例來說 28 200837427 明,惟,本發明不限於此,以段方式之液晶顯示裝置當然 亦可適用。 上述實施樣態以積層有B、G、尺用液晶顯示元件6b、 6g、6r之三層構造的液晶顯示襄置為例來說明,惟,本發 5明不限於此,二層或四層以上之積層構造的液晶顯示裝置 亦可適用。It is necessary to provide a conventional manufacturing process of the scanning electrode driving circuit, which is easy to manufacture and can be manufactured at a low cost. The liquid crystal display device 1 of the company has completed the input of the input wheel-out device and the control device of the overall control unit (all not shown in the figure) to complete the paper. Fig. 9 shows a specific example of the electronic paper EP having the liquid crystal display having the present embodiment. Fig. 9(a) shows an electronic paper 15 EP having a structure in which a non-electric memory lm having pre-stored image data is inserted and removed in the liquid crystal display device 1 constructed by the bear according to the present embodiment. . For example, image data stored in a personal computer or the like is stored in the non-electric memory lm, and is mounted on the electronic paper Ep to display an image. Fig. 9(b) shows an electronic paper EP having a structure in which a non-electrical memory lm is built in the liquid crystal display device 1 constructed in accordance with the present embodiment. For example, the non-electrical memory lm can store image data and display the image by wire from the terminal lt (which can constitute one part of the electronic paper EP) in which the image data is stored. Fig. 9(c) shows an example in which the terminal It and the liquid crystal display device 1 have a wireless transmission receiving system (e.g., wireless LAN or Bluetooth). The wireless communication lwl can store the image data from the terminal which stores the image data, and the image display can be performed after the non-electric memory lm is stored. Hereinafter, the advantages of the liquid crystal display device constructed in accordance with the present embodiment will be specifically described using a comparative example. (Comparative Example 1) 5 Three empty panels having a panel pitch of about 4 μm were produced in the same manner as in the above embodiment. Three types of liquid crystals for red, green, and blue in which the dielectric anisotropy Δ ε is approximately equal are prepared. More specifically, Δ eR = 15.9, Δ eG = 15.3, and Δ ε Β = 14.7. A liquid crystal display element was produced by injecting three empty panels into each of the liquid crystals for each color. When the driving voltage (ΗΤ voltage) of the liquid crystal is measured, the liquid crystal display element of the red color is about 19 V, the green liquid crystal display element is about 25 V, and the blue liquid crystal display element is about 31. The configuration of the first comparative example requires that the driving circuit be separately provided for each color, and thus the reduction of the present embodiment cannot be achieved. (Comparative Example 2) 15 Three types of liquid crystals of red, green, and blue for dielectric anisotropy Δ ε R = 15.9, Δ £ (} = 15.3, and £8 = 14.7 were prepared in the same manner as in the above comparative example. When the driving voltage of the liquid crystal is set to be, for example, about 31 V, the panel pitch of the red, green, and blue empty panels must be changed to about 6.5 μm, about 5 #m, and about 4 // m, respectively. The structure must be manufactured by a conventionally complicated manufacturing process, and thus the ease of manufacture as in the present embodiment and the manufacturing cost can be reduced. Industrial Applicability The present invention is not limited to the above embodiment, and In the above embodiment, the liquid crystal display device of the dot matrix type is exemplified by 28 200837427. However, the present invention is not limited thereto, and the liquid crystal display device of the segment type may of course be applicable. The above embodiment is described by taking a liquid crystal display device having a three-layer structure of B, G, and ruler liquid crystal display elements 6b, 6g, and 6r as an example. However, the present invention is not limited thereto, and the second or fourth layer is not limited thereto. The above liquid crystal display device having a laminated structure can also be applied.

又,上述實施樣悲雖然將掃描電極驅動電路予以共通 化,惟,因應必要而進行驅動電路之共通化即可,當然也 可複數面板分別具有掃描電極驅動電路。 又,上述實施樣悲以例說明了具有液晶顯示元件6b、 6g、6g之液晶顯示裝置,而該液晶顯示元件讣、6g、“具 有在平行螺旋狀態下反射藍、綠或紅色光之液晶顯示元件 3b、3g、3r為例來說明,惟,本發明不限於此,將分別填 封了在平行螺疑狀態下反射氰青、洋紅、黃色光之液晶的 複數液晶顯示元件予以積層之液晶顯示裝置亦可適用。 【圖式簡單說明】 第1圖係模式化表示依據本發明之第丨實施樣態所構成 之液日日顯不裳置的剖面構造。 第2圖(a)、(b)係模式化表示依據本發明之第丨實施樣態 20所構成之液晶顯示裝置之一液晶顯示元件的剖面構造。 第3圖表示依據本發明之第1實施樣態所構成之液晶顯 示裝置之膽固醇液晶之△ £與11丁電壓的關係。 第4圖表示依據本發明之第2實施樣態所構成之液晶顯 示裝置的概略構造。 29 200837427 弟5圖係模式化表示依據本發明之第2實施樣所構成 之液晶顯示裝置的剖面構造。 第6圖表示依據本發明之第2實施樣態所構成之液晶顯 示裝置之平行螺旋狀態之反射光譜的一例。 5 第7圖(a)、(b)表示依據本發明之第2實施樣態所構成之 液晶顯示裝置之驅動方法。 第8圖表示膽固醇液晶之電壓一反射率特性的一例。 第9圖(a)〜(c)表示具有以本發明之第2實施樣態所構 成之液晶顯示裝置1之電子紙EP的具體例。 10 【主要元件符號說明】 1、5l···液晶顯示裝置 U·.·像素 3b、43b…藍色(B)用液晶 12b…藍(B)像素 3g、43g···綠色(G)用液晶 12&"綠(〇)像素 31-431—紅色(11)用液晶 …紅(R)像素 6b、46b…藍色(B)用液晶顯示元 b、45···可見光吸收層 件 17r、17g、17b···掃描電極 6g、46g…綠色(G)用液晶顯示元 19r、19g、19b…資料電極 件 21、21b、21g."密封材 6r、46r· · ·紅色(R)用液晶顯示元件 23···控制電路 7b、7g、7r、47b、47g、47r···上 24…驅動部 25…掃描電極驅動電路 9b、9g、9r、49b、49g、49r··下 27…資料電極驅動電路 絲 33…液晶分子 30 200837427 41b、41g、41r···脈波電壓源 EP…電子紙Further, although the scanning electrode driving circuit is common to the above-described embodiment, the driving circuit may be commonly used as necessary. Of course, the plurality of panels may each have a scanning electrode driving circuit. Moreover, the above-described embodiment exemplifies a liquid crystal display device having liquid crystal display elements 6b, 6g, and 6g, and the liquid crystal display element 讣, 6g, "having a liquid crystal display that reflects blue, green, or red light in a parallel spiral state. The elements 3b, 3g, and 3r are described as an example. However, the present invention is not limited thereto, and a liquid crystal display in which a plurality of liquid crystal display elements which reflect liquid crystals of cyanine, magenta, and yellow light in a parallel spiral state is laminated is laminated. The apparatus can also be applied. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a cross-sectional structure of a liquid which is formed according to a third embodiment of the present invention. Fig. 2(a), (b) A schematic diagram showing a cross-sectional structure of a liquid crystal display device which is one of liquid crystal display devices according to a second embodiment of the present invention. Fig. 3 is a view showing a liquid crystal display device constructed in accordance with a first embodiment of the present invention. Fig. 4 is a view showing a schematic configuration of a liquid crystal display device according to a second embodiment of the present invention. A cross-sectional structure of a liquid crystal display device comprising a second embodiment of the present invention. Fig. 6 is a view showing an example of a reflection spectrum of a parallel spiral state of a liquid crystal display device constructed in accordance with a second embodiment of the present invention. (a) and (b) show a method of driving a liquid crystal display device according to a second embodiment of the present invention. Fig. 8 is a view showing an example of voltage-reflectance characteristics of a cholesteric liquid crystal. Fig. 9(a)~( c) shows a specific example of the electronic paper EP having the liquid crystal display device 1 constructed in the second embodiment of the present invention. 10 [Description of main component symbols] 1. 5l···Liquid crystal display device U·.·Pixel 3b , 43b... blue (B) liquid crystal 12b... blue (B) pixel 3g, 43g··· green (G) liquid crystal 12&" green (〇) pixel 31-431-red (11) liquid crystal...red (R) pixels 6b, 46b... blue (B) liquid crystal display elements b, 45··· visible light absorbing layer members 17r, 17g, 17b···scan electrodes 6g, 46g... green (G) liquid crystal display element 19r , 19g, 19b... data electrode parts 21, 21b, 21g. " sealing material 6r, 46r · · · red (R) with liquid crystal display Display elements 23···control circuits 7b, 7g, 7r, 47b, 47g, 47r···Upper 24...Drive unit 25...Scan electrode drive circuits 9b, 9g, 9r, 49b, 49g, 49r··27... Electrode driving circuit wire 33...liquid crystal molecule 30 200837427 41b, 41g, 41r···pulse wave voltage source EP...electronic paper

3131

Claims (1)

200837427200837427 10 1510 15 20 十、申請專利範圍: •、種液晶顯示裝置,係積層有複數液晶顯示元件,而該 複數液晶顯示元件於其對向基㈣填封村選擇性地^ 射不同波長之光的複數液晶者, 又’選擇性地反射波長相對較短之光之液晶的電介 質異向性大小,比選擇性地反射波長相對較長之光之液 晶的電介質異向性大小還大。 2·如申請專利範圍第1項之液晶顯示裝置,其中前述複數液 晶顯示元件之面板間距約相同。 3·如申請專利範圍第1項之液晶顯示裝置,其中前述複數液 晶之驅動電壓範圍約相同。 4.如申請專利範圍第1至3項中任一項之液晶顯示裝置,其 中前述複數液晶包含形成膽固醇相之液晶。 5·如申請專利範圍第4項之液晶顯示裝置,更積層有: 業已將選擇性地反射藍色光之藍色用液晶填封於對 向基板間之藍色用液晶顯示元件; 業已將選擇性地反射綠色光之綠色用液晶填封於對 向基板間之綠色用液晶顯不元件;及 業已將選擇性地反射紅色光之紅色用液晶填封於對 向基板間之紅色用液晶顯示元件, 且將前述藍色用液晶之電介質異向性之大小設為△ ε b、將前述綠色用液晶之電介質異向性之大小設為△ ε g、將前述紅色用液晶之電介質異向性之大小設為△ eR 時,滿足Α εΒ>Δ £r>的關係。 32 200837427 6. 如申請專利範圍第5項之液晶顯示裝置,其中從顯示面側 依序積層有前述藍色用液晶顯示元件、前述綠色用液晶 顯示元件及前述紅色用液晶顯示元件。 7. 如申請專利範圍第6項之液晶顯示裝置,其中前述綠色用 5 液晶之旋光性與前述藍色用液晶及前述紅色用液晶之旋 光性不同。 8. —種電子紙,係用以顯示影像者,其特徵在於: 包含有申請專利範圍第1至7項中任一項之液晶顯示 裝置。 1020 X. Patent application scope: • A liquid crystal display device having a plurality of liquid crystal display elements stacked thereon, and the plurality of liquid crystal display elements selectively multiplying light of different wavelengths in the opposite base (four) filling village Further, 'the dielectric anisotropy of the liquid crystal selectively reflecting light having a relatively short wavelength is larger than the dielectric anisotropy of the liquid crystal selectively reflecting light having a relatively long wavelength. 2. The liquid crystal display device of claim 1, wherein the plurality of liquid crystal display elements have a panel pitch of about the same. 3. The liquid crystal display device of claim 1, wherein the driving voltage range of the plurality of liquid crystals is about the same. 4. The liquid crystal display device according to any one of claims 1 to 3, wherein the plurality of liquid crystals comprise liquid crystals forming a cholesterol phase. 5. The liquid crystal display device of claim 4, further comprising: a blue liquid crystal display element which is filled with blue liquid selectively reflecting blue light between the opposite substrates; a green liquid crystal display element in which a green light is reflected by green liquid crystal and sealed between the opposite substrates; and a red liquid crystal display element in which red liquid is selectively reflected by the liquid crystal is sealed between the opposite substrates. Further, the dielectric anisotropy of the blue liquid crystal is Δ ε b , the dielectric anisotropy of the green liquid crystal is Δ ε g , and the dielectric anisotropy of the red liquid crystal is used. When Δ eR is set, the relationship of Α ε Β > Δ £r > is satisfied. The liquid crystal display device of claim 5, wherein the blue liquid crystal display element, the green liquid crystal display element, and the red liquid crystal display element are laminated in this order from the display surface side. 7. The liquid crystal display device of claim 6, wherein the optical property of the green liquid crystal 5 is different from the optical power of the blue liquid crystal and the red liquid crystal. 8. A type of electronic paper for displaying an image, comprising: a liquid crystal display device according to any one of claims 1 to 7. 10 3333
TW96108931A 2007-03-15 2007-03-15 Liquid crystal display device and electronic paper using the same TW200837427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96108931A TW200837427A (en) 2007-03-15 2007-03-15 Liquid crystal display device and electronic paper using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96108931A TW200837427A (en) 2007-03-15 2007-03-15 Liquid crystal display device and electronic paper using the same

Publications (1)

Publication Number Publication Date
TW200837427A true TW200837427A (en) 2008-09-16

Family

ID=44820205

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96108931A TW200837427A (en) 2007-03-15 2007-03-15 Liquid crystal display device and electronic paper using the same

Country Status (1)

Country Link
TW (1) TW200837427A (en)

Similar Documents

Publication Publication Date Title
JP4722921B2 (en) Method for producing liquid crystal composition, liquid crystal display element using liquid crystal composition, and electronic paper including the same
JP5034646B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
JP5245821B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
US20090027326A1 (en) Display element, method of driving the same, and electronic paper including the same
JP5071388B2 (en) Liquid crystal display element, driving method thereof, and electronic paper including the same
JP4968262B2 (en) Liquid crystal display element and electronic paper using the same
US7830479B2 (en) Liquid crystal display and electronic paper utilizing the display
JP4985765B2 (en) Display device
US7944425B2 (en) Liquid crystal display element and method of driving the element
US8872860B2 (en) Display device and driving method thereof
JP5056843B2 (en) Liquid crystal display element, driving method thereof, and electronic paper using the same
KR100919541B1 (en) Liquid Crystal Composition, Liquid Crystal Display Element Using the Same, and Electronic Paper Comprising Said Liquid Crystal Display Element
US8217930B2 (en) Fast transitions of large area cholesteric displays
TWI317032B (en) Liquid crystal composite, liquid crystal display element using the composite, and electronic parper having the element
TW200837427A (en) Liquid crystal display device and electronic paper using the same
JP2013097296A (en) Liquid crystal display device and driving method of liquid crystal display element
TW200827837A (en) Liquid crystal display element and electronic paper using the same
JP2011133639A (en) Liquid crystal display element
JP2001147445A (en) Laminated liquid crystal device
TW200815841A (en) Liquid crystal display element, process for producing the same and electronic paper having the element
TW200811799A (en) Liquid crystals display, and drive method thereof and electronic paper having the same
TW200815873A (en) Liquid crystal display element and electronic paper using the same