TW200815841A - Liquid crystal display element, process for producing the same and electronic paper having the element - Google Patents

Liquid crystal display element, process for producing the same and electronic paper having the element Download PDF

Info

Publication number
TW200815841A
TW200815841A TW95136364A TW95136364A TW200815841A TW 200815841 A TW200815841 A TW 200815841A TW 95136364 A TW95136364 A TW 95136364A TW 95136364 A TW95136364 A TW 95136364A TW 200815841 A TW200815841 A TW 200815841A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
display element
wall structure
substrates
Prior art date
Application number
TW95136364A
Other languages
Chinese (zh)
Inventor
Toshiaki Yoshihara
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW95136364A priority Critical patent/TW200815841A/en
Publication of TW200815841A publication Critical patent/TW200815841A/en

Links

Abstract

The present invention relates to a liquid crystal display element, a method of manufacturing the same, and an electronic paper provided with the same. The invention has an object of achieving a liquid crystal display element capable of suppressing the change in display quality caused by an external force, a method of manufacturing the same, and an electronic paper provided with the same. A blue pixel region 12b is surrounded by four wall-plane structural bodies 31 and four polymer layers 35 without break. The wall plane structural bodies 31 are formed on a lower substrate 9b and in contact with an upper substrate 7b (not shown in Fig. 5). The polymer layers 35 is fabricated by injecting a polymerizable substance (monomer or oligomer), which is different from either of a cholesteric liquid crystal and the wall plane structure bodies 31, together with a cholesteric liquid crystal between the upper and lower substrates 7b and 9b, and polymerizing the polymerizable substance.

Description

200815841 九、發明說明: 【發明所屬之技術領域】 發明領域 本發明關於液晶顯示元件及其製造方法以及使用該液 5 晶顯示元件之電子紙。 【先前技術:! 發明背景 近年來,於各企業及各大學中,電子紙的開發正興盛 進行著。期待著利用電子紙之適用領域乃以電子書籍為 10首,而且有行動終端機器之副顯示器及IC卡之顯示部等行 動式機器領域。使用於電子紙之顯示元件之一者,乃有使 用可形成膽固醇相之液晶組成物(稱為膽固醇液晶或掌狀 性液晶。以下稱膽固醇液晶)的液晶顯示元件。使用膽固醇 液晶之液晶顯示元件,具有半永久性的顯示保持特性(記憶 15性)、鮮明的色彩顯示特性、高對比特性及高解析度特性等 優異的特點。 第13圖係模式化地表示使用膽固醇液晶之可全彩顯示 之液晶顯示元件51的剖面構造。液晶顯示元件51具有從顯 不面順序地積層藍色⑼顯示部杨、綠色(G)顯示部吻、紅 2〇色(R)顯示部的構造。於圖式中,建構成上側的基板杨 側為顯7F面’絲光爾實線箭頭)從基板桃上方朝向顯示 面射入。又,在基板4几上方係模式化表示觀測者的目艮睛及 其觀察方向(虛線箭頭)。 B顯示部46b具有已封入於—對上下基板⑽、桃間的 5 200815841 胃()用液曰曰43b、可對B用液晶層43b施加預定之脈波電 壓的脈波電壓源41b。個示部46g具有已封入於-對上下基 板47g 49g間的綠色⑹用液晶啤、可對G用液晶層化施 加預疋之脈波電壓的脈波電壓源叫。R顯示部输具有已封 5入於對上下基板47r、49r間的紅色(R)用液晶43r、可對R 用液晶層43r施加預定之脈波電壓的脈波電壓源41p r顯示 部46r之下基板49r背面配置著光吸收層45。 使用於各B、G、R用液晶層43b、43g、43r之膽固醇液 晶係以數十Wt%之掌狀性(掌徵性)之添加物(亦稱掌狀性材) 1〇含有率較大量地添加於扭轉性液晶的液晶混合物。一旦扭 轉性液晶以較大量地含有掌狀性材,則能形成將扭轉性液 晶分子強力地扭轉成螺旋狀的膽固醇相。 膽固醇液晶具有雙安定性(記憶性),依據調節施加於液 晶的電場強度而可呈平行螺旋狀態、垂直螺旋狀態或平行 15螺旋狀態與垂直螺旋狀態混合存在之中間性狀態之其中任 何狀態,一旦形成平行螺旋狀態、垂直螺旋狀態或平行螺 旋狀態與垂直螺旋狀態混合存在之中間性狀態,則之後即 使是在無電場情形下亦呈穩定而保持其狀態。 平行螺旋狀態係將預定的高電壓施加於上下基板47、 20 49間,並對液晶層43施予強電場之後,急劇地使電場設成 零而獲得。垂直螺旋狀態係例如將比前述高電壓低的預定 電壓施加於上下基板47、49間,並對液晶層43施予電場之 後,急劇地使電場設成零而獲得。 平行螺旋狀態與垂直螺旋狀態混合存在之中間性狀 6 200815841 態,係例如將比可獲得垂直螺旋狀態之電壓低的電壓施加 於上下基板47、49間,並對液晶層43施予電場之後,急劇 地使電場設成零而獲得。 以B顯示部46b為例來說明使用了此膽固醇液晶的液晶 5 顯示元件51的顯示原理。第14圖(a)表示B顯示部46b之B用 液晶層43b於平行螺旋狀態之膽固醇液晶之液晶分子33的 配向狀態。如第14圖(a)所示,在平行螺旋狀態下的液晶分 子33朝向基板厚度方向順次地轉旋後形成螺旋構造,螺旋 構造的螺旋軸約垂直於基板面。 10 平行螺旋狀態的話’對應液晶分子33之螺旋間距之預 定波長領域的光會選擇性地在液晶層反射。將液晶層之平 均折射率設為η,將螺旋間距設為p,則反射呈最大的波長 λ能以λ = η · p表示。 如上所述,在B顯示部46b之B用液晶層43b於平行螺旋 15狀恶時要選擇性地反射藍色光,乃要決定平均折射率n及螺 旋間距ρ以達到例如λ =48〇nm。以選擇液晶材料及掌狀性 材而能調整平均折射率η,以調整掌狀性材之含有率而能調 整螺旋間距ρ。[Technical Field] The present invention relates to a liquid crystal display element, a method of manufacturing the same, and an electronic paper using the liquid crystal display element. [Prior technology:! BACKGROUND OF THE INVENTION In recent years, the development of electronic paper has been flourishing in various enterprises and universities. It is expected that the field of application of electronic paper will be 10 electronic books, and there will be mobile devices such as sub-displays for mobile terminal devices and display units for IC cards. One of the display elements used in electronic paper is a liquid crystal display element using a liquid crystal composition (referred to as a cholesteric liquid crystal or a palm-shaped liquid crystal, hereinafter referred to as cholesteric liquid crystal) which can form a cholesterol phase. The use of cholesterol liquid crystal liquid crystal display elements has semi-permanent display retention characteristics (memory 15), vivid color display characteristics, high contrast characteristics and high resolution characteristics. Fig. 13 is a view schematically showing a cross-sectional structure of a liquid crystal display element 51 which can display in full color using a cholesteric liquid crystal. The liquid crystal display element 51 has a structure in which a blue (9) display portion yang, a green (G) display portion kiss, and a red 2 〇 (R) display portion are sequentially laminated from the display surface. In the drawing, the upper side of the substrate on which the upper side is formed is a 7F surface 'silver solid arrow') which is incident from the upper side of the substrate peach toward the display surface. Further, the upper surface of the substrate 4 is patterned to indicate the eye of the observer and the direction of observation (dashed arrow). The B display portion 46b has a pulse wave voltage source 41b that is sealed in the upper and lower substrates (10) and between the peaches, and the liquid blood pressure 43b, which can apply a predetermined pulse wave voltage to the liquid crystal layer 43b for B. The individual portion 46g has a pulse wave voltage source that is sealed in the green (6) liquid crystal beer between the upper and lower substrates 47g and 49g, and can be applied to the G liquid crystal layer. The R display unit transmits a pulse voltage source 41p r display portion 46r having a red (R) liquid crystal 43r sealed between the upper and lower substrates 47r and 49r and a predetermined pulse wave voltage applied to the R liquid crystal layer 43r. A light absorbing layer 45 is disposed on the back surface of the lower substrate 49r. The cholesteric liquid crystal system used for each of the B, G, and R liquid crystal layers 43b, 43g, and 43r has a palm-like property (also referred to as a palm-shaped material) of tens of Wt%. A liquid crystal mixture added in a large amount to a torsional liquid crystal. When the twisted liquid crystal contains a palm-shaped material in a large amount, a cholesterol phase in which the torsional liquid crystal molecules are strongly twisted into a spiral shape can be formed. The cholesteric liquid crystal has double stability (memory), and may be in any state of a parallel spiral state, a vertical spiral state, or an intermediate state in which a parallel 15 spiral state and a vertical spiral state are mixed, depending on the electric field intensity applied to the liquid crystal. An intermediate state in which a parallel spiral state, a vertical spiral state, or a parallel spiral state and a vertical spiral state are mixed is formed, and then the state is maintained even in the absence of an electric field. The parallel spiral state is obtained by applying a predetermined high voltage between the upper and lower substrates 47, 2049, and applying a strong electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. The vertical spiral state is obtained, for example, by applying a predetermined voltage lower than the above-described high voltage between the upper and lower substrates 47 and 49, and applying an electric field to the liquid crystal layer 43, and then rapidly setting the electric field to zero. In the state in which the parallel spiral state is mixed with the vertical spiral state, the voltage is lower than the voltage at which the vertical spiral state can be obtained, for example, between the upper and lower substrates 47 and 49, and the electric field is applied to the liquid crystal layer 43. The ground is obtained by setting the electric field to zero. The display principle of the liquid crystal display element 51 using this cholesteric liquid crystal will be described by taking the B display portion 46b as an example. Fig. 14(a) shows the alignment state of the liquid crystal molecules 33 of the cholesteric liquid crystal in the parallel spiral state of the liquid crystal layer 43b of the B display portion 46b. As shown in Fig. 14(a), the liquid crystal molecules 33 in the parallel spiral state are sequentially rotated toward the substrate thickness direction to form a spiral structure, and the spiral axis of the spiral structure is approximately perpendicular to the substrate surface. In the case of the parallel spiral state, light of a predetermined wavelength region corresponding to the helical pitch of the liquid crystal molecules 33 is selectively reflected in the liquid crystal layer. When the average refractive index of the liquid crystal layer is η and the pitch of the spiral is p, the maximum wavelength of reflection λ can be expressed by λ = η · p. As described above, when the liquid crystal layer 43b of the B display portion 46b is selectively reflected by the parallel liquid helix 15b, the average refractive index n and the spiral pitch ρ are determined so as to be, for example, λ = 48 〇 nm. The average refractive index η can be adjusted by selecting the liquid crystal material and the palm-shaped material to adjust the content of the palm-shaped material to adjust the spiral pitch ρ.

第14圖(b)表示Β顯示部46b之Β用液晶層斗扑於垂直螺 2〇旋狀態中的膽固醇液晶之液晶分子33的配向狀態。如第14 囷(七)所示,在垂直螺旋狀態下的液晶分子33朝向基板内面 方向順次地轉旋後形成螺旋構造,螺旋構造的螺旋轴約平 行於基板面。垂直螺旋狀態的話,對B用液晶層43b失去反 射波長的選擇性,入射光幾乎全透過。透過光被配置在R 7 200815841 顯示部46r之下基板49r背面的光吸收層45吸收,因此可實現 暗(黑)顯示。 平行螺旋狀態與垂直螺旋狀態混合存在之中間性狀態 的話,係對應平行螺旋狀態與垂直螺旋狀態的存在比例而 5調整反射光與透過光的比例,以改變反射光的強度。因此 可實現對應反射光強度之中間多灰階顯示。 如上所迷Fig. 14(b) shows the alignment state of the liquid crystal molecules 33 of the cholesteric liquid crystal in the state in which the liquid crystal layer is swept in the vertical spiral state by the liquid crystal layer in the Β display portion 46b. As shown in Fig. 14 (7), the liquid crystal molecules 33 in the vertical spiral state are sequentially rotated toward the inner surface of the substrate to form a spiral structure, and the spiral axis of the spiral structure is approximately parallel to the substrate surface. In the case of the vertical spiral state, the liquid crystal layer 43b for B loses the selectivity of the reflection wavelength, and the incident light is almost completely transmitted. The transmitted light is absorbed by the light absorbing layer 45 disposed on the back surface of the substrate 49r under the display portion 46r of R 7 200815841, so that dark (black) display can be realized. When the parallel spiral state and the vertical spiral state are mixed, the ratio of the reflected light to the transmitted light is adjusted to change the intensity of the reflected light. Therefore, an intermediate multi-gray scale display corresponding to the intensity of the reflected light can be realized. As above

10 1510 15

20 丨磨固醇液晶以扭轉成螺旋狀之液晶分子3 3 的配向狀態而能控制光的反射量。與上述B用液晶層43b同 樣地,將平行螺旋狀態時可選擇性地反射綠或紅的光的膽 固醇液晶,分別封入G用液晶層43g及R用液晶層43r而製作 彩色顯示之液晶顯示元件51。液晶顯示元件51具有記憶 性,改寫畫面時之外不會消耗電力而能彩色顯示。 但是,一旦對使用了膽固醇液晶之液晶顯示元件施加 對其表面按壓或灣曲等外力時,财已記憶之顯示狀態會 改變的問題。TN(Twisted Nematie ;扭轉)型或⑽啊沉 Twisted Nematic;超扭轉)型之液晶顯示元件的話,其液晶 處於電性㈣軸驗態。但是,使關固岐晶之液晶 顯不7L件的話,其膽固醇液晶於改寫晝面時之 動。因此’使用膽固醇液晶之液晶顯示元件—旦顯示改變, 則至再驅動為止顯示不會回復到原本狀態。使用膽固醇液 晶之液晶顯示it件,其顯示之記憶性為最大的特點。妥此, 要將使用了顧_晶魏晶顯料件予^聽的情形 為一大課題。 專利文獻1 :特開平10—307288號公報 8 200815841 專利文獻2:實開昭58 — 13515號公報 專利文獻3 :特開平8 — 76131號公報 專利文獻4 :特開2000 — 147527號公報 專利文獻5 :特開2002—82340號公報 5 專利文獻6 :特開2004 —219948號公報 【發明内容】 發明概要 本發明之目的在於實現可抑制因外力所造成顯示變化 之液晶顯示元件及其製造方法以及具有該液晶顯示元件的 10 電子紙。 用以解決課題的手段 上述目的依據一種液晶顯示元件而達成,該液晶顯示 元件的特點在於具有:對向配置之一對基板、已密封在前 述一對基板間之液晶、接觸前述一對基板雙方而形成之壁 15 面構造體、連結以前述壁面構造體包圍之領域的開口部、 聚合與前述液晶及前述壁面構造體均不同之材料的聚合性 物質並形成於前述開口部的聚合物層。 又,上述目的依據一種電子紙而達成,該電子紙係顯 示影像的電子紙,且具有上述本發明之液晶顯示元件。 20 又,上述目的依據一種液晶顯示元件之製造方法而達 成,該液晶顯示元件之製造方法的特點在於包含:於一對 基板之一側的基板上形成壁面構造體、及連結以前述壁面 構造體包圍之領域的開口部,貼合前述一對基板貼合以使 前述壁面構造體接觸前述一對基板之雙方,將液晶和與前 9 200815841 述液晶及前述壁面構造體均不同之持料且係具有光硬化性 之聚合性物質注入前述-對基板間,將前述開口部曝光而 聚合前述聚合性物質’且於前述‘部形絲合物層。 發明效果 5 依據本發明’能實現可抑制因外力所造成顯示變化之 液晶顯示元件及其製造方法以及具有該液晶顯示元件的電 子紙。 圖式簡單說明 弟1圖表不於基板面法線方向觀看國際申請宰pct / 10 JP2005/004925所提出之液晶顯示元件806之一部分之構 造的平面圖。 第2圖表示依據本發明之一實施樣態所構成之液晶顯 示元件1之概略構造。 第3圖係模式化表示依據本發明之一實施樣態所構成 15之液晶顯示元件1之剖面構造。 第4圖表示液晶顯示元之平行螺旋狀態下之反射光譜 的一例。 第5圖表示於基板面法線方向觀看顯示部汕之一部分 的構造。 20 第6圖(a)、(b)表示依據本發明之一實施樣態所構成之 液晶顯示元件1之驅動波形的一例。 第7圖表示膽固醇液晶之電壓一反射率特性的一例。 第8圖表示依據本發明之一實施樣態所構成之液晶顯 示元件1之製造工糕(其一)。 200815841 第9圖(a)、(b)表示混合於膽固醇液晶之單官能丙烯酸 醋早體之構造式。 第10圖(a)、(b)表示依據本發明之一本實施樣態所構成 之液晶顯示元件1之製造工程(其二)。 5 第11圖(a)、(b)表示依據本發明之一本實施樣態所構成 之液晶顯示元件1之製造工程(其三)。 第12圖(a)、(b)表示依據本發明之一本實施樣態所構成 之液晶顯示元件1之製造工程(其四)。 第13圖係模式化表示習知之可彩色顯示之液晶顯示元 10 件之剖面圖構造。 第14圖(a)、(b)係模式化表示習知之液晶顯示元件之 一液晶層的剖面圖構造。 【實施方式】 較佳實施例之詳細說明 15 使用第1圖至第12圖來說明依據本發明之一實施樣態 所構成之液晶顯示元件及其製造方法以及具有該液晶顯示 元件之電子紙。本發明之發明人依據實驗而究明於使用膽 固醇液晶之液晶顯示元件中,藉由顯示面被按壓或被彎、折 而改變了顯示的機制。本發明之發明人以先前申請之國際 20 申請案「PCT/JP2004/013380(國際公開號碼:W02006 /030495)」說明此機制。 藉由顯示面被按壓或被彎折而造成顯示面的改變’係 起因於膽固醇液晶從垂直螺旋狀態改變成平行螵旋狀態之 故。此乃可得知係像素領域内部的液晶流動’液晶分子被 11 200815841 基板的界面拖拉而使液晶分子呈平行於基板的狀態,而呈 平打螺旋狀態之故。又,液晶顯示元件之晶胞間距愈薄則 择頁不狀恶變化愈顯著。此乃可得知係晶胞間距愈薄則相對 地基板的界面附近液晶愈多,因此愈易受到基板之界面的 5 影響之故。 依據以上的考察,本發明之發明人發覺以形成壁面構 造體而能抑制像素領域内部之液晶的流動性,藉此,能防 止因對於液晶顯示元件之顯示面按壓或液晶顯示元件之彎 折等因素所造成顯示狀態的改變情形。 1〇 說明構成本實施樣態之前提的液晶顯示元件。本發明 之發明人於國際申請案PCT/JP2005/004925中,提出了可 控制顯示之改變的液晶顯示元件。於國際申請案PCT/ JP2005/004925所提出之液晶顯示元件,與顯示部4价、 46g、46r同樣地具有液晶層,該液晶層具備有對向配置的工 15上下基板、及密封在上下基板間的膽固醇液晶。於下基板 上的對向面侧形成有相互平行延伸之複數的資料電極。於 上基板上的對向面侧,於基板面法線方向觀看的情形下, 形成有與複數的資料電極垂直地交叉之複數的掃描電極。 複數的掃描電極相互平行地延伸。 20 第1圖表示於基板面法線方向觀看國際申請案PCT/ JP2005/004925所提出之液晶顯示元件806之—部分之構 造的平面圖。掃描電極及資料電極交叉的各個領域(向基板 面於法線方向觀看的情形下,係掃描電極及資料電極重疊 的領域)構成像素領域12。如第1圖所示,複數的像素領域 12 200815841 12配置成矩陣狀。第1圖表示了 9個像素領域12及其周圍。 壁面構造體31形成於下基板9上,且接觸著上基板(第i 圖中未顯示)。壁面構造體31係具有接著性的構件而接著於 上基板及下基板9雙方。於基板法線方向觀看的情形下,壁 5 面構造體31具有兩邊長度約相等之約十字形狀。壁面構造 體31形成於所要鄰接之像素領域12間。1個像素領域12為4 個壁面構造體31所包圍。壁面構造體31之中心係位於像素 領域12的角部。 鄰接之2個壁面構造體31間形成有開口部133。壁面構 10 造體31的端部隔著開口部133而與鄰接之壁面構造體31的 端部相對向。開口部133形成於像素領域12之4個側面之各 側面的中央近處。1個像素領域12接著4個開口部133。鄰接 之像素領域12的液晶層透過開口部133而連接。開口部133 係用以將液晶注入像素領域12而形成者。例如一旦以直空 15 注入法將膽固醇液晶注入液晶顯示元件806内部,則透過開 口部13 3可使液晶填充於全部的像素領域12内部。 液晶顯示元件806之像素領域12的側面除了開口部133 乃以壁面構造體31包圍,由於壁面構造體31接著於上基板 及下基板9之雙方,因此可限制像素領域12内部之液晶的流 2〇動。如此一來,即使液晶顯示元件806之顯示面被按壓時或 是被彎折的情形下,亦能抑制液晶顯示元件8〇6之顯示的改 變。即,可提昇對於記憶顯示狀態(消耗電力=〇之影像顯 示狀態)下之按壓、彎折的耐度。 但是,於液晶顯示元件8〇6亦會有殘留若干液晶的流 13 200815841 動,因此會有因強的按壓或彎折等外力而造成顯示改變的 情形。利用第1圖來說明其原因。液晶顯示元件8〇6的話, 由於要將液晶注入像素領域12内部,因此於像素領域12之4 個側面分別形成有開口 。爰此如第1圖中以箭頭來模式 5 化顯示的情形,透過複數的開口部133而形成複數的像素領 域12從行方向及列方向橫切之液晶的流路。該流路通過像 素領域12内部。因此,液晶顯示元件806被施加按壓或彎折 等外力時,殘留著像素領域12内部之液晶流動的餘地。 專利文獻1揭示了一種液晶元件’其具備有至少一侧且 10 有一對電極之透明的基板、及被保持在該基板間且包含樹 脂壁及表示膽固醇液晶相的複合膜,且該電極形成像素。 於複合膜存在有,於1像素内樹脂壁之密度、配列間距及形 狀等條件之其中一或二個條件為相互不同的複數領域。 樹脂壁依據以下的製造工程而形成。首先,於基板間 15充滿以預定比率混合了以在室溫時顯示膽固醇液晶相的液 晶、光硬化性樹脂之前驅體(例如紫外線硬化性樹脂之前驅 體)之單體或低聚物、聚合開始劑所混合的混合液。接著, 於透明基板外側放置具有預定圖案的光罩,藉由該光罩以 顯不該膽固醇液晶相之液晶的清亮點㈣麵 point)以上 20的/皿度(液曰曰壬等方向相的溫度)照射預定照度之光⑽如紫 外線)藉Jt,在被照射光的部位,單體或低聚物會硬化, 液曰曰”树月曰θ相分離而形成對應遮罩形狀的樹脂壁。 j利文獻1所揭不之液晶元件中,形成樹脂壁的目的, 乃藉著I成於1像素_脂壁之密度、配列間距及形狀等條 14 200815841 件之其中一或二個條件為相互不同的複數領域,而實現多 灰階顯示。但是,專利文獻1所揭示之液晶元件中,為了形 成樹脂壁乃有必要將多的光硬化性樹脂混加至液晶,因此 液晶之驅動電壓變高。爰此,專利文獻丨所揭示之液晶元件 5存在著無法適用泛用之驅動器1C的問題。又,且有樹脂辟 之強度弱而對於按壓的耐度不足問題。 可得知於液晶顯示元件806中,在開口部133的部八 亦形成壁面構造體31,且係將像素領域丨2之側面四方包圍 成無縫隙那般地形成壁面構造體31,而同時進行注入液晶 10與貼合基板的方法。此方法因以壁面構造體31將像素領域 12之側面四方完全地包圍,故無法形成橫切複數像素領域 12之液晶的流路。爰此,可更抑制因按壓或彎折所造成液 晶的流動,因此可進一步抑制顯示的改變。 然而,此方法為了要注入液晶,乃必須使用注射方式 15等特殊的方法。又,以此方法要控制注入液晶量亦非常困 難。如此一來,此方法存在著非常難以將液晶封入液晶顯 示元件806内部的問題。又,於貼合基板工程中,由於上 基板(對向基板)與壁面構造體31之間存在有液晶,故使上 基板與壁面構造體31接著方面也困難。而且,因壁面構造 20 體在未硬化的狀態下與液晶接觸,故也有污染的問題。 依據本實施樣態所構成之液晶顯示元件,與液晶顯示 元件806比較,乃能進一步抑制因外力所造成的顯示改變, 且對於彎折的耐度高。 使用第2圖至第5圖來說明依據本實施樣態所構成之液 15 200815841 晶顯示元件。本實施樣態之液晶顯示元件乃以使用了藍 (B)、綠(G)及紅(R)用膽固醇液晶的液晶顯示元件丨為例來 說明。第2圖表示依據本實施樣態所構成之液晶顯示元件1 之概略構造的一例。第3圖係模式化表示以平行於第2圖之 5 左右方向的直線來切斷液晶顯示元件1之剖面構造。 如第2圖及第3圖所示,液晶顯示元件1包含有:具有在 平行螺旋狀態反射藍色光之B用液晶層3b的B顯示部(第1顯 示部)6b、具有在平行螺旋狀態反射綠色光之G用液晶層3g 的G顯示部(第2顯示部)6g、具有在平行螺旋狀態反射紅色 1〇光之R用液晶層3r的R顯示部(第3顯示部)6r。以B、G、R之 各顯示部6b、6g、6r的順序從光入射面(顯示面)側積層。 B顯示部6b具有對向配置之一對上下基板7b、9b及已密 封於兩基板7b、%間的B用液晶層3b。B用液晶層3b係以具 有可被調整平均折射率η及螺旋間距p之B用膽固醇液晶而 15選擇性地反射藍色光。 G顯示部6g具有對向配置之一對上下基板7g、9g及已密 封於兩基板7g、9g間的G用液晶層3g。G用液晶層3g係以具 有可被調整平均折射率η及螺旋間距p之G用膽固醇液晶而 選擇性地反射綠色光。 20 R顯示部6r具有對向配置之一對上下基板7r、9r及已密 封於兩基板7r、9r間的R用液晶層3r。R用液晶層3r係以具有 可被調整平均折射率η及螺旋間距p之R用膽固醇液晶而選 擇性地反射紅色光。 構成B、G、R用之各液晶層3b、3g、3r的液晶組成物, 16 200815841 係將掌狀性材添加10〜40wt%於扭轉液晶混合物而形成。 掌狀性材之添加率為扭轉液晶成分與掌狀性材之合計量設 為10 0 wt %時的值。雖然可使用習知之各種材料作為扭轉液 晶,但是,為了要將液晶層3b、3g、3r之驅動電壓設得較 5低,介電率異方向性△ ε最好為20$ △ ε $50。又,膽固 醇液晶之折射率異方向性△ η之值最好為〇.18 $ △ η ^ 0·24。一旦折射率異方向性Δη比此範圍小,則平行螺旋狀 悲之各液晶層3b、3g、3r的反射率會變低,若是比此範圍 大,則液晶層3b、3g、3r在垂直螺旋狀態的散射反射會變 10 大,且黏度也會變高而會降低反應速度。 又,添加於B及R用膽固醇液晶的掌狀性材與添加於〇 用膽固醇液晶的掌狀性材,為相互不同旋光性的光學異性 體。因此,B用及R用之膽固醇液晶的旋光性相同,而〇用 膽固醇液晶之旋光性不同。 15 第4圖表示液晶層3b、3g、3r於平行螺旋狀態之反射光 譜的一例。橫轴表示反射光之波長(nm),縱軸表示反射率 (白色板比;%)。在B用液晶層3b之反射光譜在圖中以連結 ▲記號之曲線表示。同樣地,在G用液晶層3g之反射光譜在 圖中以連結_記號之曲線表示,在R用液晶層3r之反射光譜 20 在圖中以連結♦記號之曲線表示。 如第4圖所示,各液晶層3b、3g、3r之平行螺旋狀態之 反射光譜的中心波長以液晶層3b、3g、3r順序變長。於B、 G、R之各顯示部仍、6g、6r之積層構造中,平行螺旋狀態 中的G用液晶層3S的旋光性與B用及R用液晶層3b、3r之旋 17 200815841 5 • 光性不同,因此,在第4圖所示之藍與綠、以及綠與紅之反 射光譜重畳的領域,例如B用液晶層3b與R用液晶層3r可反 射右圓偏光之光,G用液晶層3g可反射左圓偏光之光。藉 此,可有效地反射已入射之光,而能提昇液晶顯示元件1之 顯示晝面的明亮度。 本實施樣態中,上基板7b、7g、7r及下基板9b、9g、 9r使用切斷成縱橫長度為l〇(cm) x 8(cm)大小之二片聚碳 酸酯(PC)薄膜基板。又,亦可取代PC基板而使用玻璃基板 或聚對苯二甲酸乙二酸酯(PET)等薄膜基板。此等薄膜基板 10 具有充分的可撓性。上基板7b、7g、7r及下基板9b、9g、 9r均須具有透光性。本實施樣態中,上基板7b、7g、7r及下 基板9b、9g、9r均具有透光性,惟,配置於最下層之r顯示 部6ι·之下基板9r可為不透光性。 15 • 如第2圖及第3圖所示,於B顯示部6b之下基板9b之B用 液晶層3b側並列形成有朝向第2圖中之上下方向延伸之複 數帶狀的資料電極19b。又,於上基板7b之B用液晶層3b側 並列形成有朝向第2圖中之左右方向延伸之複數帶狀的資 料電極17b。如第2圖所示,於電極形成面之法線方向觀看 上下基板7b、9b,複數的掃描電極17b與資料電極19b相互 . 20 父叉對向配置。本實施樣態將透明電極圖案化而形成 〇.24mm間距之條帶狀之32〇條掃描電極17b及24〇條的資料 電極19b,以達到能320x240點之QVGA顯示。又,第3圖中 的符號19b縣錢數資料電極1%的存在領域,而此等形 狀未提示。掃描電極17b及f料電極携所各蚊的領域(於 18 200815841 基板面法㈣向觀看為掃描電極及資料電極重畳的領域) 分別為B像素12b。複數的B像素12b配置成咖行侧列的 陣列狀。像素領域配列成矩陣狀而形成顯示書面。 掃描電極Hb及資料電極19b之形成材料代表性的例如 5為銦錫氧化物(indium Tin 〇xide ;IT〇),此外可使用銦辞氧 化物(indirnn Zic Oxide ; ΙΖΟ)等透明導電膜、紹或石夕等金屬 電極、或非晶質矽等光導電性膜等。20 The tamping liquid crystal can control the amount of reflection of light by twisting the alignment state of the liquid crystal molecules 3 3 in a spiral shape. Similarly to the liquid crystal layer 43b for B, a liquid crystal display element in which a liquid crystal display element which can selectively reflect green or red light in a parallel spiral state is sealed in the liquid crystal layer 43g for G and the liquid crystal layer 43r for R, respectively. 51. The liquid crystal display element 51 has a memory property and can display color without consuming power even when the screen is rewritten. However, when an external force such as a surface pressing or a bayer's curvature is applied to a liquid crystal display element using a cholesteric liquid crystal, the display state that has been memorized is changed. TN (Twisted Nematie; torsion) type or (10) Twisted Nematic; super-torque type liquid crystal display element, the liquid crystal is in electrical (four) axis verification state. However, if the liquid crystal of the solid crystal is not 7L, the cholesteric liquid crystal will move when the surface is rewritten. Therefore, when the liquid crystal display element using the cholesteric liquid crystal is changed in display, the display does not return to the original state until the drive is re-driven. The liquid crystal display of the liquid crystal is used to display the piece, and the memory of the display is the largest. In this case, it is a major issue to use the Gu Jingwei Jingxian material to listen to it. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal display device capable of suppressing display changes due to an external force, a method for manufacturing the same, and a method for manufacturing the same. 10 electronic paper of the liquid crystal display element. Means for Solving the Problems The above object is achieved by a liquid crystal display device characterized in that: a pair of substrates disposed oppositely, a liquid crystal sealed between the pair of substrates, and both of the pair of substrates are contacted The formed wall surface structure is connected to the opening of the field surrounded by the wall structure, and the polymerizable material which is different from the liquid crystal and the wall structure, and is formed in the polymer layer of the opening. Further, the above object is achieved in accordance with an electronic paper which displays electronic paper of an image and which has the above liquid crystal display element of the present invention. Further, the above object is achieved by a method of manufacturing a liquid crystal display device, characterized in that the method for manufacturing a liquid crystal display device includes forming a wall surface structure on a substrate on one side of a pair of substrates, and connecting the wall surface structure The opening portion of the surrounding area is bonded to the pair of substrates so that the wall surface member contacts both of the pair of substrates, and the liquid crystal and the liquid crystal and the wall structure are different from the above-mentioned 9 200815841 The photocurable polymerizable substance is injected between the substrates, and the opening is exposed to polymerize the polymerizable substance 'in the above-mentioned 'partial-shaped linear layer'. Advantageous Effects of Invention According to the present invention, a liquid crystal display element capable of suppressing display change due to an external force, a method of manufacturing the same, and an electronic paper having the liquid crystal display element can be realized. BRIEF DESCRIPTION OF THE DRAWINGS The diagram of the structure of a portion of the liquid crystal display element 806 proposed by the international application slaughter pct/10 JP2005/004925 is not shown in the normal direction of the substrate surface. Fig. 2 is a view showing the schematic configuration of a liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. Fig. 3 is a schematic view showing a cross-sectional structure of a liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. Fig. 4 is a view showing an example of a reflection spectrum in a state of parallel spiral of a liquid crystal display element. Fig. 5 shows a structure in which a part of the display portion 观看 is viewed in the normal direction of the substrate surface. 20(a) and 6(b) are diagrams showing an example of driving waveforms of the liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. Fig. 7 shows an example of the voltage-reflectance characteristics of the cholesteric liquid crystal. Fig. 8 is a view showing a manufacturing cake (the first) of the liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. 200815841 Fig. 9 (a) and (b) show the structural formula of a monofunctional acrylic vinegar precursor mixed with cholesteric liquid crystal. Fig. 10 (a) and (b) show the manufacturing process (the second) of the liquid crystal display element 1 constructed in accordance with one embodiment of the present invention. Fig. 11 (a) and (b) show the manufacturing process (the third) of the liquid crystal display element 1 constructed in accordance with one embodiment of the present invention. Fig. 12 (a) and (b) show the manufacturing process (fourth) of the liquid crystal display element 1 constructed in accordance with one embodiment of the present invention. Fig. 13 is a cross-sectional view showing the structure of a conventional liquid crystal display element of a color display. Fig. 14 (a) and (b) are schematic cross-sectional views showing a liquid crystal layer of a conventional liquid crystal display element. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal display element constructed by an embodiment of the present invention, a method of manufacturing the same, and an electronic paper having the liquid crystal display element will be described with reference to Figs. The inventors of the present invention have clarified the mechanism by which the display surface is pressed or bent or folded in the liquid crystal display element using the cholesteric liquid crystal. The inventors of the present invention have described this mechanism in the International Application No. 20, PCT/JP2004/013380 (International Publication No. WO2006/030495). The change in the display surface caused by the pressing or being bent of the display surface is caused by the change of the cholesteric liquid crystal from the vertical spiral state to the parallel spiral state. Therefore, it can be known that the liquid crystal molecules inside the pixel region are dragged by the interface of the substrate of 200815841 to make the liquid crystal molecules parallel to the substrate, and are in a flat spiral state. Further, the thinner the cell pitch of the liquid crystal display element, the more remarkable the change in the page selection. It can be seen that the thinner the cell spacing is, the more liquid crystals are in the vicinity of the interface of the substrate, and thus the more susceptible to the interface 5 of the substrate. According to the above investigation, the inventors of the present invention have been able to suppress the fluidity of the liquid crystal in the pixel region by forming the wall structure, thereby preventing the display surface of the liquid crystal display element from being pressed or the liquid crystal display element from being bent. The change in the display state caused by the factor. 1〇 A liquid crystal display element which is provided before the present embodiment will be described. The liquid crystal display element which can control the change of display is proposed by the inventors of the present invention in the international application PCT/JP2005/004925. The liquid crystal display element proposed in the international application PCT/JP2005/004925 has a liquid crystal layer similar to the display unit 4, 46g, 46r, and the liquid crystal layer includes the upper and lower substrates disposed oppositely and sealed on the upper and lower substrates. Cholesterol liquid crystal. A plurality of data electrodes extending in parallel with each other are formed on the opposite surface side of the lower substrate. On the opposite surface side of the upper substrate, in the case of viewing in the normal direction of the substrate surface, a plurality of scanning electrodes perpendicularly intersecting the plurality of data electrodes are formed. The plurality of scanning electrodes extend parallel to each other. 20 Fig. 1 is a plan view showing the construction of a portion of the liquid crystal display element 806 proposed in the international application PCT/JP2005/004925 in the normal direction of the substrate. Each of the fields in which the scanning electrode and the data electrode intersect (in the case where the substrate surface is viewed in the normal direction, the region in which the scanning electrode and the data electrode overlap) constitutes the pixel region 12. As shown in Fig. 1, a plurality of pixel areas 12 200815841 12 are arranged in a matrix. Figure 1 shows the nine pixel areas 12 and their surroundings. The wall structure 31 is formed on the lower substrate 9 and is in contact with the upper substrate (not shown in Fig. i). The wall structure 31 has an adhesive member and is attached to both the upper substrate and the lower substrate 9. In the case of viewing in the normal direction of the substrate, the wall 5 surface structure 31 has an approximately cross shape having approximately equal lengths on both sides. The wall structure 31 is formed between the pixel areas 12 to be adjacent. One pixel area 12 is surrounded by four wall structures 31. The center of the wall structure 31 is located at the corner of the pixel area 12. An opening 133 is formed between the adjacent two wall structures 31. The end portion of the wall structure 10 is opposed to the end portion of the adjacent wall structure 31 via the opening 133. The opening portion 133 is formed in the vicinity of the center of each of the four side faces of the pixel region 12. One pixel area 12 follows four openings 133. The liquid crystal layer adjacent to the pixel region 12 is connected through the opening 133. The opening portion 133 is formed by injecting liquid crystal into the pixel region 12. For example, once the cholesteric liquid crystal is injected into the liquid crystal display element 806 by the direct space 15 injection method, the liquid crystal can be filled in the entire pixel region 12 through the opening portion 13 3 . The side surface of the pixel region 12 of the liquid crystal display element 806 is surrounded by the wall structure 31 except for the opening portion 133. Since the wall surface structure 31 is adjacent to both the upper substrate and the lower substrate 9, the flow of the liquid crystal inside the pixel region 12 can be restricted. Inciting. As a result, even when the display surface of the liquid crystal display element 806 is pressed or bent, the display of the liquid crystal display element 8〇6 can be suppressed from being changed. In other words, it is possible to improve the resistance to pressing and bending in the memory display state (the power consumption state of the power consumption = 〇). However, in the liquid crystal display element 8〇6, a flow of a plurality of liquid crystals 13 200815841 remains, so that the display may be changed due to an external force such as strong pressing or bending. Use Fig. 1 to explain the reason. In the case of the liquid crystal display element 8〇6, since liquid crystal is to be injected into the inside of the pixel region 12, openings are formed in each of the four side faces of the pixel region 12. As shown in Fig. 1, in the case of the arrow pattern 5, a plurality of pixel regions 12 are formed through a plurality of openings 133 to form a liquid crystal channel which is transversely cut from the row direction and the column direction. This flow path passes through the interior of the pixel field 12. Therefore, when an external force such as pressing or bending is applied to the liquid crystal display element 806, there is room for the liquid crystal inside the pixel region 12 to flow. Patent Document 1 discloses a liquid crystal element that includes a substrate having at least one side and having a pair of electrodes transparent, and a composite film that is held between the substrates and includes a resin wall and a cholesteric liquid crystal phase, and the electrode forms a pixel. . In the composite film, one or two of the conditions of the density, the arrangement pitch, and the shape of the resin wall in one pixel are mutually different plural fields. The resin wall is formed in accordance with the following manufacturing work. First, the substrate 15 is filled with a monomer or oligomer which polymerizes a liquid crystal, a photocurable resin precursor (for example, an ultraviolet curable resin precursor) which exhibits a cholesteric liquid crystal phase at room temperature, and polymerization. The mixture of the starting agents is mixed. Next, a photomask having a predetermined pattern is placed on the outer side of the transparent substrate, and the photomask is used to display a clearing point (four) of the liquid crystal phase of the cholesteric liquid crystal phase. The light (10), such as ultraviolet light, irradiated with a predetermined illuminance, by means of Jt, the monomer or the oligomer is hardened at the portion where the light is irradiated, and the liquid helium "tree 曰 θ phase separates to form a resin wall corresponding to the shape of the mask. In the liquid crystal element disclosed in the document 1, the purpose of forming the resin wall is to use one or two of the conditions of the density, the arrangement pitch, and the shape of the 1 pixel_fat wall. In the liquid crystal element disclosed in Patent Document 1, in order to form a resin wall, it is necessary to mix a plurality of photocurable resins into the liquid crystal, so that the driving voltage of the liquid crystal becomes high. As described above, the liquid crystal element 5 disclosed in the patent document has a problem that the driver 1C for general use cannot be applied. Further, there is a problem that the strength of the resin is weak and the resistance to pressing is insufficient. In the member 806, the wall surface structure 31 is also formed in the portion VIII of the opening portion 133, and the wall surface structure 31 is formed by surrounding the side surface of the pixel area 四2 in a seamless manner, and the liquid crystal 10 is injected and bonded at the same time. In this method, since the side surface of the pixel area 12 is completely surrounded by the wall structure 31, the flow path of the liquid crystal across the complex pixel area 12 cannot be formed. Thus, the pressing or bending can be further suppressed. The flow of the liquid crystal is caused, so that the change of the display can be further suppressed. However, in order to inject the liquid crystal, it is necessary to use a special method such as the injection method 15. Further, it is very difficult to control the amount of liquid crystal injected in this way. This method has a problem that it is very difficult to encapsulate the liquid crystal inside the liquid crystal display element 806. Further, in the bonded substrate process, since the liquid crystal exists between the upper substrate (opposing substrate) and the wall surface structure 31, the upper substrate is used. It is also difficult to follow the wall structure 31. Moreover, since the wall structure 20 is in contact with the liquid crystal in an uncured state, there is also a problem of contamination. According to the liquid crystal display element of the present embodiment, compared with the liquid crystal display element 806, the display change due to the external force can be further suppressed, and the resistance to bending is high. The second to fifth figures are used for explanation. According to the embodiment, the liquid crystal display element of the liquid crystal display element of the present embodiment is a liquid crystal display element using blue (B), green (G), and red (R) liquid crystal display elements. 2 is a view showing an example of a schematic structure of a liquid crystal display element 1 constructed in accordance with the present embodiment. Fig. 3 is a schematic view showing a liquid crystal display cut in a line parallel to the left-right direction of FIG. The liquid crystal display element 1 includes a B display portion (first display portion) 6b having a liquid crystal layer 3b for b reflecting blue light in a parallel spiral state, as shown in Figs. 2 and 3, A G display portion (second display portion) 6g having a G liquid crystal layer 3g for reflecting green light in a parallel spiral state, and an R display portion having a liquid crystal layer 3r for R reflecting red 1 在 in a parallel spiral state (third display) Department) 6r. The display portions 6b, 6g, and 6r of B, G, and R are stacked in this order from the light incident surface (display surface) side. The B display portion 6b has a pair of upper and lower substrates 7b and 9b disposed opposite to each other, and a B liquid crystal layer 3b sealed between the substrates 7b and 5%. The B liquid crystal layer 3b selectively reflects blue light with a cholesteric liquid crystal having B which can be adjusted to have an average refractive index η and a pitch p of 15 . The G display portion 6g has a pair of upper and lower substrates 7g and 9g disposed opposite to each other and a G liquid crystal layer 3g sealed between the substrates 7g and 9g. The G liquid crystal layer 3g selectively reflects green light with a cholesteric liquid crystal having G which can be adjusted with an average refractive index η and a helical pitch p. The 20 R display portion 6r has a pair of upper and lower substrates 7r and 9r disposed opposite to each other, and a liquid crystal layer 3r for R which is sealed between the substrates 7r and 9r. The R liquid crystal layer 3r selectively reflects red light with a cholesteric liquid crystal having an average refractive index η and a pitch p of R. A liquid crystal composition constituting each of the liquid crystal layers 3b, 3g, and 3r for B, G, and R, 16 200815841 is formed by adding 10 to 40% by weight of a palm-shaped material to a twisted liquid crystal mixture. The addition ratio of the palm-shaped material is a value when the total amount of the twisted liquid crystal component and the palm-shaped material is set to 100% by weight. Although various materials can be used as the torsion liquid crystal, in order to set the driving voltages of the liquid crystal layers 3b, 3g, and 3r to be lower than 5, the dielectric anisotropy Δ ε is preferably 20$ Δ ε $50. Further, the value of the refractive index anisotropy Δ η of the cholesteric liquid crystal is preferably 〇.18 $ Δ η ^ 0·24. When the refractive index anisotropy Δη is smaller than this range, the reflectance of each of the parallel liquid crystal layers 3b, 3g, and 3r becomes low, and if it is larger than this range, the liquid crystal layers 3b, 3g, and 3r are vertically spiraled. The scattering reflection of the state becomes 10 large, and the viscosity also becomes high, which lowers the reaction speed. Further, the palm-shaped material added to the cholesteric liquid crystal for B and R and the palm-shaped material added to the cholesteric liquid crystal for enthalpy are mutually different optically active optical foreign bodies. Therefore, the fluorochromic liquid crystals for B and R have the same optical rotation properties, and the fluorochromic liquid crystals have different optical rotatory properties. Fig. 4 shows an example of the reflected spectrum of the liquid crystal layers 3b, 3g, and 3r in a parallel spiral state. The horizontal axis represents the wavelength (nm) of the reflected light, and the vertical axis represents the reflectance (white plate ratio; %). The reflection spectrum of the liquid crystal layer 3b for B is indicated by a curve connecting ▲ marks in the figure. Similarly, the reflection spectrum of the liquid crystal layer 3g for G is shown by a curve of a concatenated mark in the figure, and the reflection spectrum 20 of the liquid crystal layer 3r for R is shown by a curve connecting ♦ marks in the figure. As shown in Fig. 4, the center wavelength of the reflection spectrum of the parallel spiral state of each of the liquid crystal layers 3b, 3g, and 3r is sequentially increased by the liquid crystal layers 3b, 3g, and 3r. In the laminated structure of B, G, and R, and in the laminated structure of 6g and 6r, the optical rotation of the liquid crystal layer 3S for G in the parallel spiral state and the rotation of the liquid crystal layers 3b and 3r for B and R are 200815841 5 • The light is different. Therefore, in the fields of blue and green and the reflection spectrum of green and red shown in Fig. 4, for example, the liquid crystal layer 3b for B and the liquid crystal layer 3r for R can reflect the light of the right circular polarization, for G. The liquid crystal layer 3g can reflect the light of the left circularly polarized light. Thereby, the incident light can be effectively reflected, and the brightness of the display surface of the liquid crystal display element 1 can be improved. In this embodiment, the upper substrate 7b, 7g, 7r and the lower substrates 9b, 9g, and 9r are cut into two sheets of polycarbonate (PC) film substrates having a length and length of 1 〇 (cm) x 8 (cm). . Further, a film substrate such as a glass substrate or polyethylene terephthalate (PET) may be used instead of the PC substrate. These film substrates 10 have sufficient flexibility. The upper substrates 7b, 7g, and 7r and the lower substrates 9b, 9g, and 9r are required to have light transmissivity. In the present embodiment, the upper substrates 7b, 7g, and 7r and the lower substrates 9b, 9g, and 9r each have translucency, but the r-display portion 6i and the lower substrate 9r disposed on the lowermost layer can be opaque. 15: As shown in Fig. 2 and Fig. 3, a plurality of strip-shaped data electrodes 19b extending in the upper and lower directions in Fig. 2 are formed side by side on the liquid crystal layer 3b side of the substrate 9b under the B display portion 6b. Further, a plurality of strip-shaped material electrodes 17b extending in the left-right direction in Fig. 2 are formed side by side on the B liquid crystal layer 3b side of the upper substrate 7b. As shown in Fig. 2, the upper and lower substrates 7b and 9b are viewed in the normal direction of the electrode forming surface, and the plurality of scanning electrodes 17b and the data electrodes 19b are mutually opposed to each other. In this embodiment, the transparent electrodes are patterned to form 32-inch scanning electrodes 17b and 24 data electrodes 19b in a strip shape of 24 mm pitch to achieve a QVGA display of 320 x 240 dots. Further, the symbol 19b in Fig. 3 has a field of existence of 1% of the data electrode, and these shapes are not presented. The field in which the scanning electrode 17b and the f-electrode carry each mosquito (the area in which the substrate surface method (4) is viewed as the scanning electrode and the data electrode is repeated) is the B pixel 12b. The plurality of B pixels 12b are arranged in an array shape of the side row of the coffee row. The pixel fields are arranged in a matrix to form a display. Representative materials of the scanning electrode Hb and the data electrode 19b are, for example, 5 indium tin oxide (IT〇), and a transparent conductive film such as indirnn Zic Oxide (ΙΖΟ) can be used. Or a metal electrode such as Shi Xi or a photoconductive film such as amorphous germanium.

兩電極17b、19b上塗布用以分別控制絕緣膜或液晶分 子之配列的配向膜(均不以圖式顯示)作為功能膜為佳。絕緣 1〇膜具有防止電極17b、19b間的短路,且作為氣體屏障層以 提幵液晶顯TF7L件1之可靠度的功能。又,可使用聚酿亞胺 樹脂、聚醯胺亞胺樹脂、聚醚亞胺樹脂、聚乙烯醇縮丁醛 樹脂及丙烯酸酯樹脂、或是氧化矽、氧化鋁等無機材料作 為配向膜。本實施樣態例如於電極17b、19b上的基板入面 15塗上(coading)配向膜。配向膜亦可兼用絕緣性薄膜。 如第3圖所示,藉著塗在上下基板7b、%之外周圍的密 封材21b而使B用液晶層3b被密封在兩基板7b、9b間。又, B用液晶層3b之厚度(晶胞間距)d必須保持成均一。為了維 持預定的晶胞間距d,將樹脂製或無機氧化物製之球狀間隔 20件(sPacer)散置於B用液晶層3b内,或將柱狀間隔件多數形 成在B用液晶層3b内。於本實施樣態之液晶顯示元件丨,在 B用液晶層3b内亦插入球狀間隔件(圖式未顯示)而保持曰 胞間距d的均一性。B用液晶層3b之晶胞間距d最好是在3 a 的範圍。若是晶胞間距d比此範圍小,則在平 19 200815841 行螺叙狀悲的液晶層3b的反射率會變低,若是比此範圍 大,則驅動電壓會變得過高。 第5圖表示於基板面法線方向觀看B顯示部6b之一部分 的構造。如第5圖所示,B顯示部6b之對於液晶顯示元件J 5之特點在於具有已形成開口部133之聚合物層35。第5圖中 表示9個像素領域12b及其周圍。 壁面構造體31形成在下基板9b上,且接觸著上基板 7b(第5圖中未顯示)。壁面構造體3!係具有接著性的構件, 接著於上基板7b及下基板9b雙方。壁面構造體31為球狀間 10隔件且具有維持晶胞間距d的功能。於基板面法線方向觀 看’壁面構造體31具有兩邊長度約相等之十字形狀。壁面 構造體31形成在鄰接之B像素領域12b間。一個B像素領域 12b藉4個壁面構造體31包圍。壁面構造體31之中心位於b 像素領域12b的角部。 15 壁面構造體31例如以光罩形成。壁面構造體31例如以 光刻法形成。壁面構造體31例如依據以下的工程來形成。 在上下基板7b、9b之貼合工程及液晶注入工程之前,於下 基板9b上塗布光阻。接著將光阻曝光、顯像而形成壁面構 造體31。 20 壁面構造體31之接著性例如能依以下的方式而顯現。 在進行壁面構造體31之後烘烤之前,將已形成壁面構造體 31之下基板%與上基板7b貼合,而於貼合上基板7b及下基 板9b之後,進行壁面構造體31的後烘烤。藉此,因壁面構 以體31之形成材料而於壁面構造體31顯現接著性。 20 200815841 使用薄膜基板作為上下基板几、9b之液晶顯示元件, 一般難以提高強度及晶胞間距的均一性。但是,依據本實 施樣態的話,由於壁面構造體31接著於上基板7b及下基板 9b雙方,因此可提高B顯示部6b的強度,又可提高晶胞間距 5 的均一性。 液晶的熱膨服率一般比壁面構造體之熱膨脹;率大。因 此,假設壁面構造體31無接著性,一旦因溫度變化而使液 晶膨脹,則壁面構造體31與上基板7b之間會形成空間。此 情形下,B像素領域12b内部之液晶藉由該空間而能移動至 10 B像素領域12b,因此,液晶會自由地流動於上基板7b及下 基板9b,其結果顯示之變化明顯。另一方面,B像素領域12b 之壁面構造體31具有接著性,而接著於上基板几及下基板 %雙方。因此,可防止因熱膨脹等原因所產生液晶的流動。 因此,可防止B顯示部6b因急劇的溫度改變而造成顯示的改 15 變。 於鄰接之二個壁面構造體31間之開口部133形成有聚 合物層35 °聚合物層35係聚合膽固醇液晶及壁面構造體31 之其中任何之一均為不同材料之聚合性物質(單體或低聚 物)而形成。該聚合性物質混合膽固醇液晶而與膽固醇液晶 20 一同注入8用液晶層3b。壁面構造體31端部與隔著聚合物層 35而鄰接之壁面構造體31的端部對向。聚合物層35形成在B 像素領域12b之4個側面之各個中央近處。丨個b像素領域12b 與4個聚合物層35相接。像素領域12b以4個壁面構造體 缝隙地被包圍。B像素領域12b内部 21 200815841 的液晶層3b與聚合物35同樣地具有聚合聚合物性質而形成 的聚合物(第5圖中不顯示)。該聚合物以與聚合物35相同的 材料來形成。 β顯示部6b係B像素領域12b之側面以4個壁面構造體 5 31及4個聚合物層35無缝隙地被包圍,而壁面構造體31接著 於上基板7b及下基板7b雙方,因此,與液晶顯示元件8〇6比 較’乃更限制B像素領域12b内部之液晶的流動。因此,與 液晶顯示元件806比較,乃能進一步抑制因按壓或彎折β顯 示部6b之顯示面等外力所造成B顯示部6b的顯示改變。即, 10與液晶顯示元件806比較,乃更提昇對於記憶顯示狀態之按 壓、彎折的耐性。 G顯示部6g及R顯示部6r具有與B顯示部6b相同的構 造,因此省略說明。如第2圖及第3圖所示,於R顯示部& 之下基板9r的外面(背面),即在與顯示面側相反側之最下部 15 配置於可見光吸收層15。由於設置著可見光吸收層15,因 此未在B、G、R之各液晶層3b、3g、3r反射之光可有效地 被吸收。因此,液晶顯示元件1可實現高對比的顯示。又, 可見光吸收層15因應必要而設置即可。 安裝了用以驅動複數掃描電極17b、17g、17r之掃描電 20 極用驅動器1C之掃描電極驅動電路25連接於上基板7b、 7g、7r。又,安裝了用以驅動複數掃描電極19b、19g、19ι· 之貢料電極用驅動^§ 1C之貨料電極驅動電路27連接於下基 板%、9g、9r。包含掃描電極驅動電路25及資料電極驅動 電路27而構成驅動部24。 22 200815841It is preferable that the two electrodes 17b and 19b are coated with an alignment film for controlling the arrangement of the insulating film or the liquid crystal molecules (all of which are not shown in the drawings) as the functional film. The insulating film 1 has a function of preventing short-circuiting between the electrodes 17b and 19b, and serves as a gas barrier layer for improving the reliability of the liquid crystal display TF7L member 1. Further, a polyimide resin, a polyimide resin, a polyether imine resin, a polyvinyl butyral resin, an acrylate resin, or an inorganic material such as cerium oxide or aluminum oxide can be used as the alignment film. In this embodiment, for example, the alignment film is coated on the substrate entry surface 15 on the electrodes 17b, 19b. The alignment film may also use an insulating film. As shown in Fig. 3, the B liquid crystal layer 3b is sealed between the substrates 7b and 9b by the sealing material 21b applied around the upper and lower substrates 7b and %. Further, the thickness (cell pitch) d of the liquid crystal layer 3b for B must be kept uniform. In order to maintain a predetermined cell pitch d, 20 pieces of spherical spacers (sPacer) made of resin or inorganic oxide are dispersed in the liquid crystal layer 3b for B, or a columnar spacer is mostly formed in the liquid crystal layer 3b for B. Inside. In the liquid crystal display element of the present embodiment, a spherical spacer (not shown) is also inserted into the liquid crystal layer 3b for B to maintain the uniformity of the cell pitch d. The cell pitch d of the liquid crystal layer 3b for B is preferably in the range of 3 a. If the cell pitch d is smaller than this range, the reflectance of the liquid crystal layer 3b which is spirally smeared in the flat 19 200815841 becomes low, and if it is larger than this range, the driving voltage becomes too high. Fig. 5 shows a structure in which a part of the B display portion 6b is viewed in the normal direction of the substrate surface. As shown in Fig. 5, the liquid crystal display element J 5 of the B display portion 6b is characterized by having the polymer layer 35 in which the opening portion 133 has been formed. In Fig. 5, nine pixel areas 12b and their surroundings are shown. The wall structure 31 is formed on the lower substrate 9b and is in contact with the upper substrate 7b (not shown in Fig. 5). The wall structure 3! is a member having an adhesive property, and is then applied to both the upper substrate 7b and the lower substrate 9b. The wall structure 31 has a spherical partition 10 and has a function of maintaining the cell pitch d. Looking at the normal direction of the substrate surface, the wall structure 31 has a cross shape in which the lengths of both sides are approximately equal. The wall structure 31 is formed between the adjacent B pixel areas 12b. A B pixel area 12b is surrounded by four wall structures 31. The center of the wall structure 31 is located at the corner of the b pixel area 12b. The wall structure 31 is formed, for example, by a photomask. The wall structure 31 is formed, for example, by photolithography. The wall structure 31 is formed, for example, according to the following work. The photoresist is applied to the lower substrate 9b before the bonding of the upper and lower substrates 7b and 9b and the liquid crystal injection process. Then, the photoresist is exposed and developed to form the wall structure 31. The adhesion of the wall structure 31 can be expressed, for example, in the following manner. The substrate % under the formed wall structure 31 is bonded to the upper substrate 7b before the wall structure 31 is baked, and after the upper substrate 7b and the lower substrate 9b are bonded, post-baking of the wall structure 31 is performed. grilled. Thereby, the adhesion is exhibited in the wall structure 31 due to the material forming the wall structure body 31. 20 200815841 It is generally difficult to improve the uniformity of strength and cell pitch by using a film substrate as a liquid crystal display element of the upper and lower substrates and 9b. However, according to this embodiment, since the wall structure 31 is followed by both the upper substrate 7b and the lower substrate 9b, the strength of the B display portion 6b can be improved, and the uniformity of the cell pitch 5 can be improved. The thermal expansion rate of the liquid crystal is generally higher than that of the wall structure; the rate is large. Therefore, it is assumed that the wall structure 31 has no adhesion, and when the liquid crystal expands due to a temperature change, a space is formed between the wall surface structure 31 and the upper substrate 7b. In this case, the liquid crystal inside the B pixel area 12b can be moved to the 10 B pixel area 12b by the space, and therefore, the liquid crystal flows freely on the upper substrate 7b and the lower substrate 9b, and the change in the result is remarkable. On the other hand, the wall structure 31 of the B pixel area 12b has an adhesive property, and is followed by both the upper substrate and the lower substrate. Therefore, the flow of the liquid crystal due to thermal expansion or the like can be prevented. Therefore, it is possible to prevent the B display portion 6b from being changed in display due to a sudden temperature change. A polymer layer 35 is formed in the opening 133 between the adjacent two wall structures 31. The polymer layer 35 is a polymerizable substance in which any one of the polymerized cholesteric liquid crystal and the wall structure 31 is a different material. Or oligomers) formed. This polymerizable substance is mixed with the cholesteric liquid crystal and injected into the liquid crystal layer 3b for 8 together with the cholesteric liquid crystal 20. The end of the wall structure 31 faces the end of the wall structure 31 adjacent to the polymer layer 35. The polymer layer 35 is formed in the vicinity of each of the four sides of the B pixel area 12b. One b pixel area 12b is connected to the four polymer layers 35. The pixel area 12b is surrounded by four wall structures. B pixel area 12b inside 21 The liquid crystal layer 3b of 200815841 has a polymer polymer property similar to the polymer 35 (not shown in Fig. 5). The polymer is formed of the same material as the polymer 35. The side surface of the B pixel region 12b is surrounded by the four wall structures 5 31 and the four polymer layers 35 without gaps, and the wall structure 31 is next to both the upper substrate 7b and the lower substrate 7b. Compared with the liquid crystal display element 8〇6, the flow of the liquid crystal inside the B pixel field 12b is more restricted. Therefore, compared with the liquid crystal display element 806, it is possible to further suppress the display change of the B display portion 6b caused by an external force such as pressing or bending the display surface of the ? display portion 6b. That is, 10 is more resistant to pressing and bending in the memory display state than the liquid crystal display element 806. Since the G display portion 6g and the R display portion 6r have the same configuration as the B display portion 6b, the description thereof will be omitted. As shown in Fig. 2 and Fig. 3, the outer surface (back surface) of the substrate 9r under the R display portion & that is, the lowermost portion 15 on the side opposite to the display surface side is disposed on the visible light absorbing layer 15. Since the visible light absorbing layer 15 is provided, light that is not reflected by the respective liquid crystal layers 3b, 3g, and 3r of B, G, and R can be efficiently absorbed. Therefore, the liquid crystal display element 1 can achieve a high contrast display. Further, the visible light absorbing layer 15 may be provided as necessary. The scan electrode drive circuit 25 to which the scan driver 20C for driving the plurality of scan electrodes 17b, 17g, and 17r is mounted is connected to the upper substrates 7b, 7g, and 7r. Further, a stock electrode driving circuit 27 to which the driving electrodes for driving the plurality of scanning electrodes 19b, 19g, and 19i are mounted is connected to the lower substrates %, 9g, and 9r. The drive unit 24 is configured by including a scan electrode drive circuit 25 and a data electrode drive circuit 27. 22 200815841

掃描電極驅動電路25建構成⑽㈣㈣路 預定信號,定之三條掃描電極m、17g、17 對:等3條掃描電極17b、17g,同時輸出掃描信二’: 一方面’貝 14電極驅動電路27建構成依據從控㈣路 出之預定驗號,將相對於輯擇之掃描電極m】 17Γ上之B、G、R像素領域12卜%、】狄影像資料信】, 分別輸出至貧料電極19b、19g、19r。掃描電極用及資料命 極用驅動HIC可使㈣如TCP(捲帶式封裝^泛^ STN用驅動器1C。 10 #描電極驅動電路25之預定的輸出端子共通連接於掃 描電極17b、17g、17r之預定的各輸入端子。依據如此構成, 由於不必於每-B、G、郎之各、6g、&設置掃 描電極驅動電路2 5,因此可簡略化液晶顯示元件ι之驅動電 路的構成。又,可刪減掃描電極用驅動器扣之數量,故能 15實現浪晶顯示元件1之低成本化。又,B、G、R用之掃描電 極驅動電路25之輸出端子之共用化係因應必要而進行即 可。 依據本實施樣悲所構成之液晶顯示元件1使用膽固醇 液晶作為液晶。因此,能容易實現彩色顯示及記憶顯示(在 20 消耗電力=〇的影像顯示)。 其-人,使用第6及7圖來說明液晶顯示元件丨之驅動方 法。第6圖表示液晶顯示元件〗之驅動波形的一例。第6圖(这) 係使膽固醇液晶成為平行螺旋狀態之驅動波形,第6圖(匕) 係使膽固醇液晶成為垂直螺旋狀態的驅動波形。於第6圖(a) 23 200815841 及第6圖(b)’圖上段表示從資料電極驅動電路π輸出之資料 信號電壓波形vd,圖中段表示從掃描電極驅動電路25輪出 之掃描信號電壓波形Vs,圖下段表示施加任何像素121、 12g、12r之液晶層3b、3g、3r之施加電壓波形Vlc。又,於 5第6圖(a)及第6圖(b),從圖左至圖右表示經過時間,而圖之 上下方向表示電壓。 第7圖表示膽固醇液晶之電壓一反射率特性的一例。橋 軸表示施加於膽固醇液晶之電壓值(v),縱軸表示膽固醇液 晶的反射率(%)。第7圖所示之實線的曲線p表示初始狀態為 10平行螺旋狀態之膽固醇液晶的電壓一反射率特性,虛線之 曲線FC表示初始狀態為垂直螺旋狀態之膽固醇液晶的電壓 —反射率特性。 以下說明將預定電壓施加於第2圖所示之B顯示部讣之 第1列之資料電極19b與第1行之掃描電極i7b⑴之交又部的 15藍(B)像素12b(l、1)的情形。如第6圖(a)所示,於選擇第1 行之掃描電極17b(l)之選擇期間T1之前侧的約1/2期間, 相對於資料信號電壓Vd為+ 32V,掃描信號電壓vs為〇v, 而在後側的約1/2期間,相對於資料信號電壓¥(1為〇从,掃 描信號電壓Vs為+ 32V。因此,B像素12b(l、1)之B用液晶 20層3b於選擇期間T1之間被施加±32V的脈波電壓。如第7圖 所示’一旦預定的高電壓VP1 〇〇(例如32V)施加於贍固醇液 晶而產生強的電場,則液晶分子之螺旋構造完全解開,所 有的液晶分子隨著電場的方向而形成垂直配向狀態。麦 此’ B像素12b(l、1)之B用液晶層3b的液晶分子於選擇期間 24 200815841 τι呈垂直配向狀態。 一旦選擇期間Τ1結束而呈非選擇期間Τ2,則以選擇期 間Τ1之1/2周期對第1行的掃描電極施加例如+ 或+ 4vm包壓。相對於此,預定的資料信號電壓vd施加於 5第1列之資料電極丨9“1)。於第6圖(a)中,以選擇期間T1之1 /2周期對第1列的資料電極19¥1)施加例如+ 32V及〇乂的 電壓。因此,在非選擇期間丁2之間可對6像素12b(卜1}之6 用液晶層3b施加±4V的脈波電壓。如此一來,在非選擇期間 T2之間,於B像素12b(l、1)之B用液晶層补產生的電場約為 10 零。 液晶分子垂直配向狀態時施加液晶電壓從νρ1〇〇(土 32V)改變至VF〇(±4V)後急劇地將電場設成約零時,則液晶 刀子之螺旋軸相對於兩電極17b(l)、19b(l)呈現朝向约垂直 的螺旋狀態,而形成選擇性反射其對應螺旋間距之光的平 15行螺旋狀態。爰此,為了使B像素12b(l、1)之B用液晶層3b 形成平行螺旋狀態後會反射光線,乃於B像素12b(i、丨)顯 不藍。The scan electrode driving circuit 25 is constructed to form (10) (4) (four) way predetermined signals, and the three scanning electrodes m, 17g, 17 pairs: three scanning electrodes 17b, 17g, and the output scanning signal two ': on the one hand, the 'before 14 electrode driving circuit 27 is constructed according to The predetermined test number from the control (4) road will be output to the poor electrode 19b, 19g respectively with respect to the selected scanning electrode m] B, G, R pixel field 12%%,] Di image information letter] , 19r. For the scanning electrode and the data driving driver HIC, (4) such as TCP (tape-wrap type package), the STN driver 1C. The predetermined output terminals of the ## electrode driving circuit 25 are commonly connected to the scanning electrodes 17b, 17g, 17r. According to this configuration, since it is not necessary to provide the scan electrode driving circuit 25 for each of -B, G, and lang, 6g, &, the configuration of the driving circuit of the liquid crystal display element ι can be simplified. Further, since the number of driver buttons for the scan electrodes can be reduced, the cost of the wave crystal display element 1 can be reduced by 15. The sharing of the output terminals of the scan electrode driving circuit 25 for B, G, and R is necessary. The liquid crystal display element 1 constructed according to the present embodiment uses cholesteric liquid crystal as the liquid crystal. Therefore, color display and memory display can be easily realized (image display with 20 power consumption = 〇). 6 and 7 are diagrams for explaining a method of driving the liquid crystal display element 。. Fig. 6 is a view showing an example of a driving waveform of the liquid crystal display element. Fig. 6 (this) is a state in which the cholesteric liquid crystal is in a parallel spiral state. Driving waveform, Fig. 6 (匕) is a driving waveform for causing the cholesteric liquid crystal to be in a vertical spiral state. The data output from the data electrode driving circuit π is shown in the upper part of Fig. 6(a) 23 200815841 and Fig. 6(b)' The signal voltage waveform vd, the middle of the figure shows the scanning signal voltage waveform Vs which is rotated from the scanning electrode driving circuit 25, and the lower stage shows the applied voltage waveform Vlc of the liquid crystal layers 3b, 3g, 3r to which any of the pixels 121, 12g, 12r is applied. In Fig. 6 (a) and Fig. 6 (b), the elapsed time is shown from the left to the right, and the voltage is shown in the upper and lower directions. Fig. 7 shows an example of the voltage-reflectance characteristic of the cholesteric liquid crystal. The axis represents the voltage value (v) applied to the cholesteric liquid crystal, and the vertical axis represents the reflectance (%) of the cholesteric liquid crystal. The solid line curve p shown in Fig. 7 represents the voltage of the cholesteric liquid crystal in the initial state of 10 parallel helix. The reflectance characteristic, the curve FC of the broken line indicates the voltage-reflectance characteristic of the cholesteric liquid crystal whose initial state is the vertical spiral state. The following describes the application of the predetermined voltage to the first column of the B display portion shown in Fig. 2 In the case of the 15 blue (B) pixels 12b (1, 1) at the intersection of the data electrode 19b and the scan electrode i7b (1) of the first row, as shown in Fig. 6(a), the scan electrode of the first row is selected. During the selection period of 17b(l), about 1/2 of the front side of T1 is +32V with respect to the material signal voltage Vd, σv for the scanning signal voltage, and about 1/2 of the rear side with respect to the data signal. The voltage ¥ (1 is 〇, the scanning signal voltage Vs is +32 V. Therefore, the B liquid crystal 20 layer 3b of the B pixel 12b (1, 1) is applied with a pulse wave voltage of ±32 V between the selection periods T1. 7 shows that once a predetermined high voltage VP1 〇〇 (for example, 32V) is applied to the sterol liquid crystal to generate a strong electric field, the spiral structure of the liquid crystal molecules is completely unfolded, and all liquid crystal molecules are formed along the direction of the electric field. Vertical alignment state. The liquid crystal molecules of the liquid crystal layer 3b for B of the B pixel 12b (1, 1) are in a vertical alignment state during the selection period 24 200815841 τι. Once the selection period Τ1 ends and the non-selection period Τ2 is present, a voltage of, for example, + or +4 vm is applied to the scan electrodes of the first row with a period of 1/2 of the selection period Τ1. On the other hand, the predetermined data signal voltage vd is applied to the data electrode 丨9 "1" of the 5th column. In Fig. 6(a), the data electrode of the first column is selected for the period of 1 /2 of the selection period T1. 19 ¥1) A voltage of, for example, +32 V and 〇乂 is applied. Therefore, a pulse voltage of ±4 V can be applied to the liquid crystal layer 3b for 6 pixels 12b (b1) between the two during the non-selection period. Between the non-selection period T2, the electric field generated by the liquid crystal layer complementation of B of the B pixel 12b (1, 1) is about 10 zero. The liquid crystal voltage applied in the vertical alignment state of the liquid crystal molecules is changed from νρ1 〇〇 (soil 32V). When the electric field is sharply set to about zero after VF 〇 (±4V), the spiral axis of the liquid crystal knife exhibits a spiral state toward the vertical direction with respect to the two electrodes 17b(1), 19b(l), and forms a selective reflection. Corresponding to the flat 15-line spiral state of the light of the spiral pitch, in order to make the B pixel 12b (1, 1) B reflect the light after forming the parallel spiral state with the liquid crystal layer 3b, the B pixel 12b (i, 丨) is not blue.

相對於此,如第6圖(b)所示,在選擇期間τι之前侧約1 /2期間及後側約1/2期間,相對於資料信號電壓vd為24V 20 /8V的情形,一旦掃描信號電壓Vs為0V/ + 32V,則±24V 之脈波電壓施加於B像素12b(l、1)之B用液晶層3b。如第7 圖所示,一旦預定的低電壓VF1 〇 〇b(例如24 v)施加於膽固醇 液晶後產生弱的電場,則液晶分子之螺旋構造形成未完全 解開的狀態。一旦達到非選擇期間T2,則以選擇期間丁丨之1 25 200815841 /2周期對第1行的掃描電極〗7b(丨)施加例如+ 28v/ + 4v 的電壓,預定的資料信號電壓Vd(例如+24V/8V)的電壓 以選擇期間T1之1/2周期施加於資料電極I9b(l)。因此, 在非選擇期間T2之間可對b像素12b(l、1)之B用液晶層儿 — 5施加—4V/ + 4V的脈波電壓。如此一來,在非選擇期間丁2 之間,於B像素12b(l、1)之B用液晶層3b產生的電場約為零。 液晶分子之螺旋構造不完全解開的狀態下,若是將施 • 加於膽固醇液晶之電壓從VF100b(±24V)改變至VF〇(±4v)On the other hand, as shown in FIG. 6(b), during the selection period τι on the side of about 1 /2 and the back side of about 1/2, the data signal voltage vd is 24V 20 /8V, and once scanned, When the signal voltage Vs is 0 V / + 32 V, a pulse wave voltage of ±24 V is applied to the liquid crystal layer 3b for B of the B pixel 12b (1, 1). As shown in Fig. 7, once a predetermined low voltage VF1 〇 〇b (e.g., 24 v) is applied to the cholesteric liquid crystal to generate a weak electric field, the helical structure of the liquid crystal molecules forms an incompletely unwrapped state. Once the non-selection period T2 is reached, a voltage of, for example, + 28v/ + 4v is applied to the scan electrode 7b (丨) of the first row with a period of 1 25 200815841 /2 of the selected period, the predetermined data signal voltage Vd (for example) The voltage of +24 V / 8 V) is applied to the data electrode I9b (1) at a period of 1/2 of the selection period T1. Therefore, a pulse wave voltage of -4 V / + 4 V can be applied to the B of the b pixel 12b (1, 1) with the liquid crystal layer 1-5 between the non-selection periods T2. As a result, the electric field generated by the liquid crystal layer 3b of the B pixel 12b (1, 1) between the non-selection periods is about zero. In the state where the spiral structure of the liquid crystal molecules is not completely unwound, if the voltage applied to the cholesteric liquid crystal is changed from VF100b (±24V) to VF〇(±4v)

後急劇地使電場變成約零,則液晶分子之螺旋軸相對於兩 1〇電極丨71^1)、19b(i)朝向約平行的方向而呈螺旋狀態,而成 為透過入射光的垂直螺旋狀態。因此,B像素、丨)之B 用液晶層3b呈垂直螺旋狀態而透過光。又,如第7圖所示, 施加VF100(±32V)的電壓而使液晶層產生強的電場之後,即 使漸漸地除去電場,膽固醇液晶亦能形成垂直螺旋狀態。 15 上述驅動電壓為驅動方法的一例,在室溫下將30〜35V • 的脈波狀電壓對兩電極Pb(l)、19b(l)之間施加實際效用時 間2〇ms,則B用液晶層讣之膽固醇液晶呈選擇反射狀態(平 行螺旋狀態),將15〜22V的脈波狀電壓間施加實際效用時 間20ms,則呈良好的透過狀態(垂直螺旋狀態)。 - 20 又,將中間強度的電場施予膽固醇液晶並急劇地除去 、 該電場,則呈平行螺旋狀態與垂直螺旋狀態混合存在的中 間灰階’而能形成多灰階顯示。 藉著與上述B像素12b(l、〗)之驅動同樣進行而驅動綠 (G)像素領域I2g(卜1)及⑻像素領域12r(卜1},能於已積 26 200815841 層三個B、G、R像素領域 12b(l、1)、12g(l、1)、ΐ2Γ(ι、u 的像素領域12(1、1),進行彩色顯示。又,使從第丨行至第 320行之掃描電極 17b(l)〜17b(320)、17g(l)〜l7g(32〇)、 17r(l)〜17r(320),進行所謂線順序驅動(線順序掃描)而於 5 每一行改寫各資料電極19b、19g、19τ之資料電壓,藉此, 可將顯示資料輸出到從像素領域12( 1、1)至像素領域 12(320、240)之全部領域,而能實現1訊框(顯示晝面)的彩 色顯示。 其次,使用第3圖、第8圖至12圖來說明液晶顯示元件! 10 之製造方法的一例。首先,說明Β顯示部6b之製造方法。首 先,於切斷成縱橫的長度為10(cm)x8(cm)大小之二片聚石炭 酸酯(PC)薄膜基板(上下基板)7b、9b上,形成ITO透明電拖 並藉著餘刻而圖案化,而分別形成〇.24mm間距之條帶狀的 電極(掃描電極17b或資料電極19b)。於二片pc薄膜基板 15 7b、9b上分別形成條帶狀的電極17b、19b以達到能顯示32〇 χ240點的QVGA顯示。 接著如第8圖所示,使用光刻法於一側的pc薄膜基板 (下基板)9b上之鄰接像素領域12b間,形成壁面構造體31及 開口部133。更具體而言,於一側的pc薄膜基板(下基板 20上塗布丙烯酸酯系感光性樹脂(光阻)。其次將丙稀酸酯系感 光性樹脂予以曝光、顯像,而如第8圖所示,於像素領域12b 間形成壁面構造體31及開口部133。在此階段不進行壁面構 造體31 (丙細酸S旨糸感光性樹脂)的後烘烤。又,壁面構造體 31之形成材料最好是在貼合二片pc薄膜基板(上下基 27 200815841 板)7b、%時,顯現接著性者為佳。 開口部133形成在B像素12b之4個側面之分別的中央近 處。1個B像素領域12b接著4個開口部133。開口部133連結 鄰接之B像素領域12b間的液晶層。開口部133之形成係用以 5 將液晶注入B像素領域12b内部。 另一方面,以旋轉塗敷而將聚醯乙胺系之配向膜材料 塗布於另一側的PC薄膜基板(上基板)7b上約7〇〇a厚度。接 著將已塗布配向膜材料之PC薄膜基板(上基板)7b置於9〇〇c 的烤爐中進行1小時烘烤處理而形成配向膜。又,將配向膜 10形成在兩基板7b、9b。接著使用供料器於一側之PC薄膜基 板(下基板)9b上的周緣部塗布環氧樹脂系之密封材21b。密 封材21b具有用以注入液晶的注入口。 其-人’於另侧的PC薄膜基板(上基板)几分布4#糾查 度之間隔件(spacer)(積水精密化學會社製造)。接著,使壁 15面構造體31接觸二片PC薄膜基板(上下基板)7b、9b雙方那 般地貼合二片PC薄膜基板(上下基板)7b、9b。其次,將已 貼合之兩基板7b、9b以160°C加熱1小時而使密封材2lb及壁 面構造體31硬化。因壁面構造體31之形成材料,而依據貼 合之兩基板7h、9b後進行壁面構造體31的後烘烤,而能使 20壁面構造體31顯現接著性。藉此,密封材21b及壁面構造體 31可接著於兩基板7b、9b。 其次,將第9圖(a)及(b)所示之兩種單官能丙烯酸酯單 體(例如紫外光硬化型液晶,大曰本INK化學株式會社製, UCL — 001)混合於B用膽固醇液晶。第9圖(a)及第9圖(b)分 28 200815841 別表示混合於膽固醇液晶之單官能丙烯酸酯單體(以下稱 僅稱單體)之構造式。第9圖⑻及第9圖(b)所示之兩種單體與 液晶分子同樣具有剛直的棒狀構造,在室溫(°C)下顯示液晶 性,對於膽固醇液晶具有高的相溶性。因此,兩種單體對 5 於膽固醇液晶以分子排序性混合。如此一來,能獲得均質 的混合液。又,混合液在室溫下(25°C)也顯示液晶性。兩種 單體係與液晶及壁面構造體31均不同的材料。如第9圖(a) 及第9圖(b)所示,兩種單體均具有二層結合。兩種單體均具 有光硬化性。單體之混加率以3〜20wt%為佳。 10 第10圖(a)至第12圖(a)表示液晶顯示元件1之製造工 程,且表示於基板法線方向觀看B顯示部6b之一部分的構 造。第10圖(b)至第12圖(b)表示以第10圖⑻至第12圖⑻之A —A線切斷之剖面圖。藉由真空注入法而從注入口將液晶及 兩種單體的混合物注入一對上下基板7b、%間。如第10圖 15 (a)所示,已注入之液晶33及兩種單體61藉由開口部133而充 填於全部的B像素領域12b内部。如此一來,開口部133成為 用以將液晶及單體61充填於全部的B像素領域12b内部之液 晶33及單體61的流路。又,如第10圖(b)所示,液晶33及單 體61亦可充填於開口部133。第10圖(a)及第10圖(b)中,以 20 橢圓模式地表示液晶33及單體61。接著以環氧樹脂系之密 封材來密封注入口。 依據本實施樣態所構成之液晶顯示元件1的製造方 法,由於要注入液晶33及單體61之際,已形成有用以連結 鄰接之B像素領域12間之液晶層的開口部133,因此在注入 29 200815841 液晶33及單體61的方法上可使用真空注入法。又,液晶33 及單體61之混合液亦與液晶同樣在室溫下(25。〇顯示液晶 性。因此’可谷易地將液晶33及單體61注入基板7b、9b間。 其次如第11圖(b)所示,例如使用可將]3像素領域12b及 5壁面構造體31遮光的光罩71,而以紫外光(中心波長365nm) 將開口部133曝光。紫外光之曝光量例如照射亮度為中心波 長365nm且2mV/cm2,照射時間為4分鐘。又,亦可使用將 B像素領域12b遮光之光罩而將壁面構造體31及開口部133 曝光。 1〇 液晶33及兩種單體61藉著液晶33之熱搖動而流動於上 下基板7b、9b間。將紫外光照射於開口部133而在開口部聚 合具有二層結合之兩種單體61,而使聚合物化學合成。如 第11圖(a)及第11圖(b)所示,分子量增加之聚合物作為纖維 狀的網路析出於開口部133,並於開口部133形成聚合物層 15 35。藉著形成聚合物層35而能以壁面構造體31及聚合物層 35以無缝隙地包圍B像素領域12b。又,如第11圖(a)所示, 也有一部分的單體51不聚合而使單體61殘留於B像素領域 12b内部。 接著如第12圖(b)所示’將B顯示部6b(包含B像素領域 2〇 12b)全面地曝光。藉此,如第12圖(a)所示,殘留於未曝光 部分之B像素領域12b内部之兩種單體61會聚合而使單體61 形成於B像素領域12b内部。又,該全面曝光工程可因應須 要而進行即可。藉著以上的工程而結束B顯示部6b的製作。 而且以同樣的方法製作G、R顯示部6g、6r。 30 200815841 其次如第3圖所示,從顯示面側以b、G、R顯示部6b、 6g、6r的順序積層。接著於R顯示部6r之下基板9r背面配置 可見光吸收層15。其次將TCP(捲帶式封裝)構造之泛用的 STN用驅動器1C壓著於已積層之B、G、R顯示部6b、6g、 5 6r之掃描電極17的端子部及資料電極19的端子部,並連接 電源電路及控制電路23。如此一來則完成可進行QVGA顯 示的液晶顯示元件1。又,雖然省略了圖式,惟’藉著將輸 入輸出裝置及總括整體之控制裝置(均未以圖式顯示)設置 於已完成之液晶顯示元件1而完成電子紙。 10 依據本實施樣態所構成之液晶顯示元件1的製造方 法,於注入液晶之前,形成用以包圍像素領域12之大部分 的壁面構造體31與用以將液晶注入液晶顯示元件内部的開 口部133。因此,依據本實施樣態所構成之液晶顯示元件1 的衣造方法,使用直空注入法能容易地注入液日日。又’液 15晶顯示元件1藉由壁面構造體31而提昇液晶顯示元件1的強 度’且能抑制液晶的流動。又,依據本實施樣您所構成之 液晶顯示元件〗的製造方法,於注入液晶之後,將聚合物層 35形成於開口部133。因此,液晶顯示元件1更能抑制像素 領域12b、i2g、i2r内部之液晶的流動。因此,液晶顯示元 20件1藉由壁面構造體31而提高對於因朝顯示面按壓或彎折 等外力所造成顯示改變(消失記憶性)的耐度,以將聚合物層 35形成於開口部133而更能提高該耐度。液晶顯示元件1可 兩王/主入液晶的容易性與朝顯示面按壓或彎折4外力所造 成顯示改變的耐度。 31 200815841 又’依據本實施樣悲所構成之液晶顯示元件1的製造方 法,聚合物係具有光硬化性的物質。因此,能將單體與液 晶一起注入液晶顯示元件内部,而於注入液晶及單體之 ^ 後,以遮罩曝光並在開口部B3使單體硬化。 5 又,液晶顯示元件1亦可不形成壁面構造體31,而將聚 合物35形成於整體像素領域12b、12g、12ι·間。聚合物35形 成於整體像素領域12b、12g、12r間,像素領域12b、12g、 12r被聚合物層35無縫隙地包圍,因此該液晶顯示元件亦能 馨 抑制顯示的改變。但是’為了將聚合物層35無縫隙地包圍 10 像素領域12b、12g、12r,比較於形成壁面構造體31的情形, 乃必須將大量的單體混合於液晶。爰此,單體之混加率變 高。因此,該液晶顯示元件會產生液晶之驅動電壓變高的 問題。又,由於未形成壁面構造體31,因此該液晶顯示元 件’其液晶頒不元件之強度降低’且會產生難以維持晶胞 I5 間距之均一性的問題。 (實施例) 查察瞭解液晶顯示元件1對於按壓及彎折的耐度。液晶 顯示元件1對於曲率半徑R= 30mm之彎折看不出已記憶之 顯示上的改變。又,液晶顯示元件1對於6kg/cm2亦看不出 • 20 已記憶之顯示上的改變。 • 如上所述,液晶顯示元件1顯示出對於按壓、彎折等外 力的鬲耐度。液晶顯示元件1對於外力的耐度,係依據以聚 a物層35塞住開口部133所構成抑制液晶流動、壁面構造體 31對於壓縮的耐度、及壁面構造體31連接於上下基板雙方 32 200815841 而抑制晶胞間距改變而定。 (比較例) 除了不將光硬化性物質之單官能丙烯酸酯單體混合於 膽固醇液晶,而省略使光硬化性物質硬化的工程(第n圖及 5第12圖所示之工程)以外,乃依據與液晶顯示元件1同樣的 衣造方法來製作液晶顯示元件。查察瞭解液晶顯示元件對 於按壓及彎折的耐度。該液晶顯示元件對於曲率半徑 30mm之彎折看不出已記憶之顯示上的改變,惟,對於此等 程度以上的彎折則可確認會有顯示的混乱。又,該液晶顯 1〇不tl件之耐按壓為2kg/cm2。耐按壓乃指以人指按壓液晶 …員示元件之頒示面時,該液晶顯示元件可耐至顯示改變之 最大的手指按壓力。 如以上說明,依據本實施樣態,可獲得液晶顯示元件 1,該液晶顯示元件1係於使用了膽固醇液晶之液晶顯示元 15件中,能容易注入液晶,且能抑制因按壓或彎折等外力所 造成顯示的改變。又,具有依據本實施樣態所構成之液晶 顯不7L件1的電子紙,能抑制因按壓或彎折等外力所造成顯 示的改變,可明亮地顯示色彩。 產業上的利用性 2〇 本發明不限於上述實施樣態而能作各種的變形。 例如,上述實施樣態中,舉出了被動矩陣型(單純矩陣 型)之液晶顯示裝置元件為例來說明,惟,本發明並不限於 此,亦可適用每一像素具有薄膜電晶體(TFT)或薄膜二極體 等開關元件之主動矩陣型之液晶顯示裝置元件。 33 200815841 又’上述實施樣態中,舉出使用膽固醇液晶之液晶顯 示元件的例子,惟,本發明並不限於此,亦可適用具有顯 不.1¾性之其他液晶的液晶顯不兀件。 又,上述實施樣態中,舉出了以積層B、g、R之各顯 5 示部6b、6g、6r之三層構造的液晶顯示元件為例子,惟, 本發明並不限於此,亦可適用二層或四層以上構造的液晶 顯示元件。 又,上述實施樣態舉例說明了具有顯示部6b、6g、& 之液晶顯示元件,而該顯示部6b、6g、6r具有在平行螺旋 10 狀態反射藍、綠或紅色光的液晶層3b、3g、3r,惟,本發 明並不限於此,亦可適用具有三層顯示部之液晶顯示元 件,而該顯示部在平行螺旋狀態具有可反射氰青、洋紅、 黃色光的液晶層。 又,上述實施樣態中,壁面構造體31未形成於像素領 15域12b、12§、121*内,惟,本發明並不限於此,亦可於像素 領域内,例如於像素領域之中央部或像素領域内形成複數 個壁面構造體。壁面構造體Μ不須完全形成在像素領域 12b、12g、12r之外側,而可重畳於像素領域之周邊部。'〔 了提高壁面構造體31強度而使接著性穩定,可於像素颔= 2〇 12b、12g、12r内之外周部形成壁面構造體31。 '域 又,聚合物㈣之形靖料不限於第9w(a)及第 所示之兩種聚合物,而可為具有光硬化性之其他聚合 低聚物。 Q 或 又,壁面構造體31之接著性的顯現方法,不限於在、 3^ 34 200815841 灯壁面構造體31之後烘烤之冑,將形成壁面構造體31之下 基板與上基板貼合並於貼合上基板及下基板之後,進行進 行壁面構造體31之後烘烤的方法。亦有依據壁面構造體31 之形成材料,於進行壁面構造體31之後烘烤之後,貼合下 5 基板與上基板而能顯現接著性的方法。 又,壁面構造體31之形狀不限為兩邊長度約相等之約 十字形狀。藉由壁面構造體31及聚合物層35而能無缝隙地 包圍像素領域12b、12g、I2r即可。壁面構造體31之形狀例 如可為二邊長度不同之約十字形狀。 10 又,開口部133(聚合物層35)之數量就一個像素領域 12b、12g、12r不限於4個位置。以能將液晶注入所有的像 素領域12b、12g、12τ那般地形成開口部133(聚合物層35) 即可’且可於每一個像素領域1213、12g、12r形成二處、三 處或五處開口部133(聚合物層35)。又,開口部133(聚合物 15層35)之形成位置不限於開口部丨33(聚合物層35)之四個側 面之各個中央近處。 【圖式簡單說明】 第1圖表示於基板面法線方向觀看國際申請案PCT// JP2005 /004925所提出之液晶顯示元件806之一部分之構 20 造的平面圖。 第2圖表示依據本發明之一實施樣態所構成之液晶顯 示元件1之概略構造。 第3圖係模式化表示依據本發明之一實施樣態所構成 之液晶顯示元件1之剖面構造。 35 200815841 第4圖表示液晶顯示元之平行螺旋狀態下之反射光譜 的一例。 第5圖表示於基板面法線方向觀看顯示部6b之一部分 的構造。 5 第6圖(a)、(b)表示依據本發明之一實施樣態所構成之 液晶顯示元件1之驅動波形的一例。 第7圖表示膽固醇液晶之電壓一反射率特性的一例。 第8圖表示依據本發明之一實施樣態所構成之液晶顯 示元件1之製造工程(其一)。 10 第9圖(a)、(b)表示混合於膽固醇液晶之單官能丙烯酸 酯單體之構造式。 第10圖(a)、(b)表示依據本發明之一本實施樣態所構成 之液晶顯示元件1之製造工程(其二)。 第11圖(a )、( b)表示依據本發明之一本實施樣態所構成 15 之液晶顯示元件1之製造工程(其三)。 第12圖(a)、(b)表示依據本發明之一本實施樣態所構成 之液晶顯示元件1之製造工程(其四)。 第13圖係模式化表示習知之可彩色顯示之液晶顯示元 件之剖面圖構造。 20 第14圖(a)、(b)係模式化表示習知之液晶顯示元件之 一液晶層的剖面圖構造。 【主要元件符號說明】 1、5卜806…液晶顯示元件 3g、43g".G用液晶層 3b、431)···Β用液晶層 3r、43r."R用液晶層 36 200815841 6b、46b."B顯示部 6g、46g".G顯示部 6r、46r…R顯示部 7b、7g、7r、47b、47g、47r···上 勒反 9、9b、9g、9r、49b、49g、49r··· 下鉍 12…像素領域 12b…藍(B)像素領域 12g…綠(G)像素領域 12r…釭(R)像素領域 15…可見光吸收層 17r、17g、17b…掃描電極 19r、19g、19b…資料電極 21b、21g、21r·"密封材 23··•控制電路 24…驅動部 25…掃描電極驅動電路 27…資料電極驅動電路 31…壁面構造體 33…液晶(液晶分子) 35…聚合物層 41b、41g、41r···脈波電壓源 61…單體 63…聚合物 Ή…光罩 133···開口部 806…液晶顯示元件 37After the electric field is sharply changed to about zero, the helical axis of the liquid crystal molecules is spiraled with respect to the two parallel electrodes 丨71^1) and 19b(i) in a direction parallel to the parallel direction, and becomes a vertical spiral state of transmitted incident light. . Therefore, the liquid crystal layer 3b of the B pixel and the B layer is in a vertical spiral state and transmits light. Further, as shown in Fig. 7, after applying a voltage of VF100 (±32 V) to generate a strong electric field in the liquid crystal layer, even if the electric field is gradually removed, the cholesteric liquid crystal can form a vertical spiral state. 15 The driving voltage is an example of a driving method. When a pulse-like voltage of 30 to 35 V • is applied to the electrodes Pb(l) and 19b(l) at room temperature for 2 〇ms, the liquid crystal for B is used. The layered cholesteric liquid crystal is in a selectively reflective state (parallel spiral state), and when the actual utility time is applied between the pulse voltages of 15 to 22 V for 20 ms, it is in a good transmission state (vertical spiral state). Further, an electric field of intermediate strength is applied to the cholesteric liquid crystal and is rapidly removed. This electric field exhibits a multi-gray scale display in which an intermediate gray scale ' is present in a parallel spiral state and a vertical spiral state. By driving in the same manner as the driving of the B pixel 12b (1, 〖), the green (G) pixel field I2g (b1) and the (8) pixel field 12r (b1) can be driven, and 26 B, 200815841 layers can be accumulated. G, R pixel area 12b (l, 1), 12g (l, 1), ΐ 2 Γ (i, pixel area 12 (1, 1) of u, color display. Also, from the third line to the 320th line Scan electrodes 17b(1) to 17b(320), 17g(l) to l7g(32〇), 17r(l) to 17r(320), perform so-called line sequential driving (line sequential scanning), and rewrite each row at 5 The data voltages of the data electrodes 19b, 19g, and 19τ, whereby the display data can be output to all fields from the pixel area 12 (1, 1) to the pixel area 12 (320, 240), and the 1-frame (display) can be realized. Next, an example of a method of manufacturing the liquid crystal display element 10 will be described with reference to Fig. 3 and Fig. 8 to Fig. 12. First, a method of manufacturing the Β display unit 6b will be described. ITO transparent electric drag is formed on the two pieces of polycarbonate (PC) film substrate (upper and lower substrates) 7b and 9b having a length of 10 (cm) x 8 (cm) and patterned by the remainder. A strip-shaped electrode (scanning electrode 17b or data electrode 19b) having a pitch of 24 mm is formed, and strip-shaped electrodes 17b and 19b are formed on the two pc film substrates 15 7 and 9b, respectively, so as to be able to display 32 〇χ 240 Next, as shown in Fig. 8, the wall surface structure 31 and the opening portion 133 are formed between the adjacent pixel regions 12b on the pc film substrate (lower substrate) 9b on one side by photolithography. More specifically, An acrylic film-based photosensitive resin (photoresist) is applied to the pc film substrate on one side (the lower substrate 20 is coated with an acrylate-based photosensitive resin), and the acrylate-based photosensitive resin is exposed and developed, as shown in FIG. The wall structure 31 and the opening 133 are formed between the pixel regions 12b. At this stage, the post-baking of the wall structure 31 (acrylic acid S) is not performed. Further, the wall structure 31 is formed the most. It is preferable that when two pc thin film substrates (upper and lower base 27 200815841 plates) 7b and % are bonded, it is preferable that the adhesion is formed. The opening portion 133 is formed in the vicinity of the center of each of the four side faces of the B pixel 12b. The B pixel area 12b follows four openings 133. The opening 133 is connected. The liquid crystal layer is connected between the B pixel regions 12b. The opening portion 133 is formed to inject liquid crystal into the B pixel region 12b. On the other hand, the polyethylamine-based alignment film material is applied by spin coating. The thickness of the PC film substrate (upper substrate) 7b on the other side is about 7 〇〇a. Then, the PC film substrate (upper substrate) 7b coated with the alignment film material is placed in a 9 〇〇 oven for 1 hour. Bake treatment to form an alignment film. Further, the alignment film 10 is formed on the both substrates 7b and 9b. Next, an epoxy resin sealing material 21b was applied to the peripheral portion of the PC film substrate (lower substrate) 9b on one side using a feeder. The sealing material 21b has an injection port for injecting liquid crystal. The "man" was distributed on the other side of the PC film substrate (upper substrate) with a spacer of 4# degree of error (manufactured by Sekisui Precision Chemical Co., Ltd.). Then, the wall 15-face structure 31 is bonded to the two PC film substrates (upper and lower substrates) 7b and 9b so as to contact the two PC film substrates (upper and lower substrates) 7b and 9b. Then, the bonded substrates 2b and 9b were heated at 160 °C for 1 hour to cure the sealing member 11b and the wall structure 31. Due to the material forming of the wall structure 31, the post-baking of the wall structure 31 is performed in accordance with the bonding of the two substrates 7h and 9b, whereby the wall structure 31 can be made to exhibit adhesiveness. Thereby, the sealing material 21b and the wall structure 31 can be attached to the both substrates 7b and 9b. Next, two kinds of monofunctional acrylate monomers (for example, ultraviolet curable liquid crystal, manufactured by Otsuka Ink Chemical Co., Ltd., UCL-001) shown in Fig. 9 (a) and (b) are mixed with cholesterol for B. liquid crystal. Fig. 9 (a) and Fig. 9 (b) 28 200815841 The structural formula of a monofunctional acrylate monomer (hereinafter referred to as a monomer) mixed with a cholesteric liquid crystal is not indicated. The two monomers shown in Fig. 9 (8) and Fig. 9 (b) have a rigid rod-like structure similarly to liquid crystal molecules, exhibit liquid crystallinity at room temperature (°C), and have high compatibility with cholesteric liquid crystal. Therefore, the two monomers are mixed in a molecular order by the cholesteric liquid crystal. In this way, a homogeneous mixture can be obtained. Further, the mixed solution also showed liquid crystallinity at room temperature (25 ° C). The two single systems are different from the liquid crystal and wall structure 31. As shown in Figures 9(a) and 9(b), both monomers have a two-layer bond. Both monomers are photocurable. The mixing ratio of the monomers is preferably from 3 to 20% by weight. 10(a) to 12(a) show the manufacturing process of the liquid crystal display element 1, and shows a configuration in which a part of the B display portion 6b is viewed in the normal direction of the substrate. Figs. 10(b) to 12(b) are cross-sectional views taken along line A-A of Figs. 10(8) to 12(8). A liquid crystal and a mixture of the two monomers are injected from the injection port into the pair of upper and lower substrates 7b and % by a vacuum injection method. As shown in Fig. 10 (a), the injected liquid crystal 33 and the two types of cells 61 are filled in the entire B pixel region 12b by the opening portion 133. As a result, the opening 133 serves as a flow path for filling the liquid crystal 33 and the cell 61 in the entire B pixel region 12b with the liquid crystal and the cell 61. Further, as shown in Fig. 10(b), the liquid crystal 33 and the single body 61 may be filled in the opening portion 133. In Figs. 10(a) and 10(b), the liquid crystal 33 and the cell 61 are shown in an elliptical pattern. Next, the injection port is sealed with an epoxy resin sealing material. According to the method of manufacturing the liquid crystal display element 1 of the present embodiment, when the liquid crystal 33 and the single cell 61 are to be injected, the opening portion 133 for connecting the liquid crystal layer between the adjacent B pixel regions 12 is formed. A vacuum injection method can be used for the method of injecting 29 200815841 liquid crystal 33 and monomer 61. Further, the liquid crystal 33 and the monomer 61 are mixed at the same temperature as the liquid crystal at room temperature (25. 〇 shows liquid crystallinity. Therefore, the liquid crystal 33 and the monomer 61 are easily injected between the substrates 7b and 9b. As shown in Fig. 4(b), for example, the mask 71 that shields the three-pixel area 12b and the five-wall structure 31 can be used to expose the opening 133 with ultraviolet light (center wavelength: 365 nm). The irradiation luminance is 365 nm and 2 mV/cm 2 at the center wavelength, and the irradiation time is 4 minutes. Alternatively, the wall structure 31 and the opening 133 may be exposed by using a mask that shields the B pixel region 12b. The monomer 61 flows between the upper and lower substrates 7b and 9b by the thermal shaking of the liquid crystal 33. The ultraviolet light is irradiated onto the opening 133 to polymerize two kinds of monomers 61 having a combination of two layers in the opening portion, thereby chemically synthesizing the polymer. As shown in Fig. 11 (a) and Fig. 11 (b), the polymer having an increased molecular weight is deposited as a fibrous network in the opening portion 133, and a polymer layer 15 35 is formed in the opening portion 133. The polymer layer 35 can be formed by the wall structure 31 and the polymer layer 35 without gaps The B pixel area 12b is surrounded. Further, as shown in Fig. 11(a), a part of the cells 51 are not polymerized, and the monomer 61 remains inside the B pixel field 12b. Next, as shown in Fig. 12(b)' The B display portion 6b (including the B pixel region 2〇12b) is entirely exposed. Thereby, as shown in Fig. 12(a), the two monomers 61 remaining inside the B pixel region 12b of the unexposed portion are aggregated. Further, the single body 61 is formed inside the B pixel field 12b. Further, the full exposure process can be performed as needed. By the above work, the production of the B display portion 6b is completed. Further, G and R are produced in the same manner. Display unit 6g, 6r. 30 200815841 Next, as shown in Fig. 3, layers b, G, and R display portions 6b, 6g, and 6r are stacked in this order from the display surface side. Then, visible light is disposed on the back surface of the substrate 9r under the R display portion 6r. The absorbing layer 15. Next, the STN driver 1C for the TCP (tape-and-reel package) structure is pressed against the terminal portions and the data of the scanning electrodes 17 of the stacked B, G, and R display portions 6b, 6g, and 65r. The terminal portion of the electrode 19 is connected to the power supply circuit and the control circuit 23. Thus, the QVG can be completed. A. The liquid crystal display element 1 is displayed. Further, although the drawings are omitted, the electronic device is completed by providing the input/output device and the overall control device (all not shown in the drawings) on the completed liquid crystal display element 1. According to the manufacturing method of the liquid crystal display element 1 of the present embodiment, before the liquid crystal is injected, the wall structure 31 for enclosing the majority of the pixel region 12 and the liquid crystal for injecting the liquid crystal into the liquid crystal display element are formed. The opening portion 133. Therefore, according to the method of fabricating the liquid crystal display element 1 constructed in the present embodiment, the liquid daily can be easily injected using the direct space injection method. Further, the liquid crystal display element 1 enhances the strength of the liquid crystal display element 1 by the wall structure 31 and suppresses the flow of the liquid crystal. Further, according to the method of manufacturing a liquid crystal display device of the present embodiment, after the liquid crystal is injected, the polymer layer 35 is formed in the opening portion 133. Therefore, the liquid crystal display element 1 can suppress the flow of the liquid crystal inside the pixel regions 12b, i2g, and i2r. Therefore, the liquid crystal display element 20 is improved in resistance to display change (loss of memory) due to an external force such as pressing or bending on the display surface by the wall structure 31, so that the polymer layer 35 is formed in the opening. 133 can improve the tolerance. The liquid crystal display element 1 can be made to change the tolerance of the two kings/mainly entering the liquid crystal and pressing or bending the external force toward the display surface. 31 200815841 Further, according to the method for producing the liquid crystal display element 1 constructed by the present embodiment, the polymer is photocurable. Therefore, the monomer and the liquid crystal can be injected into the inside of the liquid crystal display element, and after the liquid crystal and the monomer are injected, the mask is exposed and the monomer is hardened in the opening B3. Further, the liquid crystal display element 1 may be formed between the entire pixel regions 12b, 12g, and 12i without forming the wall structure 31. The polymer 35 is formed between the entire pixel regions 12b, 12g, and 12r, and the pixel regions 12b, 12g, and 12r are surrounded by the polymer layer 35 without gaps, so that the liquid crystal display element can suppress the change of display. However, in order to surround the 10 pixel regions 12b, 12g, and 12r without gaps in the polymer layer 35, it is necessary to mix a large amount of monomers in the liquid crystal in comparison with the case of forming the wall surface structure 31. As a result, the mixing rate of the monomers becomes high. Therefore, this liquid crystal display element causes a problem that the driving voltage of the liquid crystal becomes high. Further, since the wall structure 31 is not formed, the liquid crystal display element 'the strength of the liquid crystal element is lowered' and there is a problem that it is difficult to maintain the uniformity of the cell I5 pitch. (Example) The resistance of the liquid crystal display element 1 to pressing and bending was examined. The liquid crystal display element 1 does not see a change in the memory display for the bending of the radius of curvature R = 30 mm. Further, the liquid crystal display element 1 does not see a change in the display that has been memorized for 6 kg/cm2. • As described above, the liquid crystal display element 1 exhibits a resistance to an external force such as pressing or bending. The tolerance of the liquid crystal display element 1 to the external force is based on the formation of the opening portion 133 by the poly-a material layer 35 to suppress the liquid crystal flow, the resistance of the wall structure 31 to compression, and the wall structure 31 to the upper and lower substrates. 200815841 and depending on the change in cell spacing. (Comparative Example) Except that the monofunctional acrylate monomer of the photocurable material is not mixed with the cholesteric liquid crystal, and the process of curing the photocurable material is omitted (the works shown in Fig. 11 and Fig. 12) A liquid crystal display element was produced in the same manner as the liquid crystal display element 1. Check to understand the tolerance of the LCD panel for pressing and bending. The liquid crystal display element does not show a change in the memory display for a bend having a radius of curvature of 30 mm, but it is confirmed that there is confusion in display for the above-described bending. Further, the liquid crystal display showed that the pressing resistance was 2 kg/cm2. Compression resistance refers to the fact that when the human finger presses the presentation surface of the liquid crystal display member, the liquid crystal display element can withstand the maximum finger pressing force of the display change. As described above, according to the present embodiment, the liquid crystal display element 1 can be obtained in the liquid crystal display element 15 using the cholesteric liquid crystal, and the liquid crystal can be easily injected, and the pressing or bending can be suppressed. The change in display caused by external forces. Further, the electronic paper having the liquid crystal display 7L according to the present embodiment can suppress the display change due to an external force such as pressing or bending, and can display the color brightly. Industrial Applicability 2〇 The present invention is not limited to the above embodiment and can be variously modified. For example, in the above embodiment, a passive matrix type (simple matrix type) liquid crystal display device element is described as an example. However, the present invention is not limited thereto, and it is also applicable to each pixel having a thin film transistor (TFT). An active matrix type liquid crystal display device element of a switching element such as a thin film diode. 33 200815841 In the above embodiment, an example of a liquid crystal display element using cholesteric liquid crystal is exemplified, but the present invention is not limited thereto, and a liquid crystal display having other liquid crystals having a remarkable property may be applied. Further, in the above-described embodiment, a liquid crystal display element having a three-layer structure in which the display portions 6b, 6g, and 6r of the layers B, g, and R are laminated is exemplified, but the present invention is not limited thereto. A liquid crystal display element of two or more layers can be applied. Further, the above embodiment exemplifies the liquid crystal display element having the display portions 6b, 6g, & the display portion 6b, 6g, 6r having the liquid crystal layer 3b reflecting blue, green or red light in the state of the parallel spiral 10, 3g and 3r, however, the present invention is not limited thereto, and a liquid crystal display element having a three-layer display portion having a liquid crystal layer which can reflect cyan blue, magenta, and yellow light in a parallel spiral state can also be applied. Moreover, in the above embodiment, the wall structure 31 is not formed in the pixel collar 15 domains 12b, 12§, 121*, but the present invention is not limited thereto, and may be in the pixel field, for example, in the center of the pixel field. A plurality of wall structures are formed in the portion or the pixel region. The wall structure body does not need to be completely formed on the outer sides of the pixel areas 12b, 12g, and 12r, and can be placed on the peripheral portion of the pixel field. [The strength of the wall structure 31 is increased to stabilize the adhesion, and the wall structure 31 can be formed in the outer periphery of the pixels 颔 = 2 〇 12b, 12g, and 12r. The "domain", polymer (4) shape is not limited to the two polymers of the 9w (a) and the first shown, but may be other photopolymerizable oligomers. Q or the method of expressing the adhesion of the wall structure 31 is not limited to being baked after the lamp wall surface structure 31 of 3, 34 200815841, and the substrate and the upper substrate of the wall structure 31 are formed and attached to the sticker. After the substrate and the lower substrate are closed, a method of baking the wall structure 31 is performed. Further, depending on the material for forming the wall structure 31, after the wall structure 31 is baked, the lower substrate and the upper substrate are bonded to each other to exhibit adhesiveness. Further, the shape of the wall structure 31 is not limited to an approximately cross shape in which the lengths of both sides are approximately equal. The pixel structures 12b, 12g, and I2r can be surrounded by the wall structure 31 and the polymer layer 35 without gaps. The shape of the wall structure 31 may be, for example, a cross shape having a different length on both sides. Further, the number of the openings 133 (polymer layers 35) is not limited to four positions in one pixel region 12b, 12g, and 12r. The opening portion 133 (polymer layer 35) can be formed by injecting liquid crystal into all of the pixel regions 12b, 12g, and 12τ, and two, three, or five can be formed in each of the pixel regions 1213, 12g, and 12r. The opening portion 133 (polymer layer 35). Further, the position at which the opening portion 133 (the polymer 15 layer 35) is formed is not limited to the vicinity of each of the four side faces of the opening portion ( 33 (polymer layer 35). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a structure of a portion of a liquid crystal display element 806 proposed by the international application PCT// JP2005/004925 in the normal direction of the substrate. Fig. 2 is a view showing the schematic configuration of a liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. Fig. 3 is a schematic view showing a cross-sectional structure of a liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. 35 200815841 Figure 4 shows an example of the reflection spectrum of the liquid crystal display element in the parallel spiral state. Fig. 5 shows the structure in which one portion of the display portion 6b is viewed in the normal direction of the substrate surface. (Fig. 6(a) and (b) are diagrams showing an example of driving waveforms of the liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. Fig. 7 shows an example of the voltage-reflectance characteristics of the cholesteric liquid crystal. Fig. 8 is a view showing the manufacturing process (the first) of the liquid crystal display element 1 constructed in accordance with an embodiment of the present invention. 10 Fig. 9 (a) and (b) show the structural formula of a monofunctional acrylate monomer mixed with a cholesteric liquid crystal. Fig. 10 (a) and (b) show the manufacturing process (the second) of the liquid crystal display element 1 constructed in accordance with one embodiment of the present invention. Fig. 11 (a) and (b) show the manufacturing process (the third) of the liquid crystal display element 1 of the embodiment 15 according to the present invention. Fig. 12 (a) and (b) show the manufacturing process (fourth) of the liquid crystal display element 1 constructed in accordance with one embodiment of the present invention. Fig. 13 is a schematic cross-sectional view showing a liquid crystal display element of a conventional color display. 20 (a) and (b) are schematic cross-sectional views showing a liquid crystal layer of a conventional liquid crystal display element. [Explanation of main component symbols] 1, 5, 806, liquid crystal display elements 3g, 43g ".G liquid crystal layer 3b, 431) · Liquid crystal layer 3r, 43r. "R liquid crystal layer 36 200815841 6b, 46b .B"B display unit 6g, 46g".G display unit 6r, 46r...R display units 7b, 7g, 7r, 47b, 47g, 47r·························· 49r··· 铋 12... pixel area 12b... blue (B) pixel area 12g... green (G) pixel area 12r... 釭 (R) pixel area 15... visible light absorbing layer 17r, 17g, 17b... scan electrodes 19r, 19g 19b...data electrode 21b, 21g, 21r·"sealing material 23···control circuit 24...drive unit 25...scan electrode drive circuit 27...data electrode drive circuit 31...wall structure 33...liquid crystal (liquid crystal molecule) 35 Polymer layer 41b, 41g, 41r·· pulse wave voltage source 61...cell 63...polymer Ή...mask 133···opening 806...liquid crystal display element 37

Claims (1)

200815841 十、申請專利範圍: 1. 一種液晶顯不元件’具有· 一對基板,係對向配置者; 液晶’係密封在前述一對基板間者, 5 壁面構造體,係接觸前述一對基板雙方而形成者; 開口部,係連結以前述壁面構造體所包圍之領域 者;及 聚合物層,係聚合與前述液晶及前述壁面構造體均 不同之材料的聚合性物質,並形成於前述開口部者。 10 2.如申請專利範圍第1項之液晶顯示元件,其中前述聚合性 物質具有光硬化性。 3. 如申請專利範圍第1或2項之液晶顯示元件,其中前述聚 合性物質在室溫(25°C)時顯示液晶性。 4. 如申請專利範圍第1或2項之液晶顯示元件,其中前述壁 15 面構造體接著於前述一對基板雙方。 5. 如申請專利範圍第1或2項之液晶顯示元件,其中前述壁 面構造體及前述聚合物層形成無縫隙的構造體。 6. 如申請專利範圍第1或2項之液晶顯示元件,其中前述液 晶為膽固醇液晶。 20 7.如申請專利範圍第1或2項之液晶顯示元件,其中前述液 晶積層三層並分別作為第1至第3顯示部,且前述第1至第 3顯示部之前述液晶顯示反射光的狀態、透過光的狀態或 反射光與透過光之中間狀態,並且前述第1至第3顯示部 之前述液晶分別反射藍色、綠色或紅色之其中一色的光。 38 200815841 8. 如申請專利範圍第7項之液晶顯示元件,其中前述第1顯 示部之前述液晶反射前述藍色光,前述第2顯示部之前述 液晶反射前述綠色光,前述第3顯示部之前述液晶反射前 述紅色光,且從顯示面側以前述第1、第2及第3顯示部的 5 順序形成積層。 9. 如申請專利範圍第8項之液晶顯示元件,其中前述第2顯 示部之前述液晶的旋光性與前述第2及第3顯示部之前述 液晶的旋光性不同。 ’ 10. 如申請專利範圍第1或2項之液晶顯示元件,其更具有配 10 置在與前述顯示面側呈相反面之最下部處的光吸收層。 11. 一種電子紙,係用以顯示影像者,其特徵在於: 包含申請專利範圍第1或2項之液晶顯示元件。 12. —種液晶顯示元件之製造方法,包含有以下步驟: 於一對基板之一側的基板上形成壁面構造體及開口 15 部,而前述開口部係用以連結以前述壁面構造體所包圍 的領域者; 貼合前述一對基板,使前述壁面構造體接觸前述一 對基板之雙方; 將液晶和與前述液晶及前述壁面構造體均不同之材 20 料且具有光硬化性之聚合性物質注入前述一對基板間; 將前述開口部曝光而聚合前述聚合性物質;及 於前述開口部形成聚合物層。 13. 如申請專利範圍第12項之液晶顯示元件之製造方法,其 中前述聚合性物在室溫(25°C)時顯示液晶性。 39 200815841 14.如申請專利範圍第12或13項之液晶顯示元件之製造方 法,係形成前述壁面構造體及前述聚合物層,使前述壁 面構造體及前述聚合物層形成無缝隙的構造體。 ‘ 15.如申請專利範圍第12或13項之液晶顯示元件之製造方 t 5 法,係將前述聚合物層形成在前述開口部後,將像素領 域曝光,且將殘留於前述像素領域内部的前述聚合性物 質聚合。 40200815841 X. Patent application scope: 1. A liquid crystal display element 'has a pair of substrates, which are opposite to each other; a liquid crystal ' is sealed between the pair of substrates, and a 5 wall structure contacts the pair of substrates The opening portion is connected to a region surrounded by the wall structure; and the polymer layer is a polymerizable substance that polymerizes a material different from the liquid crystal and the wall structure, and is formed in the opening. Part. The liquid crystal display element of claim 1, wherein the polymerizable substance has photocurability. 3. The liquid crystal display element of claim 1 or 2, wherein the polymerizable substance exhibits liquid crystallinity at room temperature (25 ° C). 4. The liquid crystal display device of claim 1 or 2, wherein the wall 15 surface structure is followed by both of the pair of substrates. 5. The liquid crystal display element of claim 1 or 2, wherein the wall structure and the polymer layer form a seamless structure. 6. The liquid crystal display element of claim 1 or 2, wherein the liquid crystal is a cholesteric liquid crystal. The liquid crystal display element according to claim 1 or 2, wherein the liquid crystal laminate has three layers as the first to third display portions, respectively, and the liquid crystal display of the first to third display portions reflects light. The state, the state of transmitted light, or the intermediate state of the reflected light and the transmitted light, and the liquid crystals of the first to third display portions respectively reflect light of one of blue, green, or red. The liquid crystal display device of claim 7, wherein the liquid crystal of the first display portion reflects the blue light, the liquid crystal of the second display portion reflects the green light, and the third display portion The liquid crystal reflects the red light, and a layer is formed in the order of the first, second, and third display portions from the display surface side. 9. The liquid crystal display device of claim 8, wherein the optical activity of the liquid crystal of the second display portion is different from the optical rotation of the liquid crystal of the second and third display portions. 10. The liquid crystal display element of claim 1 or 2, further comprising a light absorbing layer disposed at a lowermost portion opposite to the display surface side. 11. An electronic paper for displaying an image, comprising: a liquid crystal display element of claim 1 or 2. 12. A method of manufacturing a liquid crystal display device, comprising the steps of: forming a wall structure and an opening 15 on a substrate on one side of a pair of substrates, wherein the opening is connected to be surrounded by the wall structure; In the field, the pair of substrates are bonded to each other, and the wall structure is brought into contact with both of the pair of substrates; and the liquid crystal and the polymer material having the photocurable property are different from the liquid crystal and the wall structure. Injecting between the pair of substrates; exposing the opening to polymerize the polymerizable material; and forming a polymer layer in the opening. 13. The method of producing a liquid crystal display device according to claim 12, wherein the polymerizable substance exhibits liquid crystallinity at room temperature (25 ° C). The method for producing a liquid crystal display device according to claim 12, wherein the wall structure and the polymer layer are formed, and the wall structure and the polymer layer form a seamless structure. 15. The method of manufacturing the liquid crystal display device of claim 12 or 13, wherein the polymer layer is formed in the opening portion, the pixel region is exposed, and remains in the pixel field. The aforementioned polymerizable substance is polymerized. 40
TW95136364A 2006-09-29 2006-09-29 Liquid crystal display element, process for producing the same and electronic paper having the element TW200815841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95136364A TW200815841A (en) 2006-09-29 2006-09-29 Liquid crystal display element, process for producing the same and electronic paper having the element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95136364A TW200815841A (en) 2006-09-29 2006-09-29 Liquid crystal display element, process for producing the same and electronic paper having the element

Publications (1)

Publication Number Publication Date
TW200815841A true TW200815841A (en) 2008-04-01

Family

ID=44768929

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95136364A TW200815841A (en) 2006-09-29 2006-09-29 Liquid crystal display element, process for producing the same and electronic paper having the element

Country Status (1)

Country Link
TW (1) TW200815841A (en)

Similar Documents

Publication Publication Date Title
JP6240612B2 (en) Liquid crystal display
JP4722921B2 (en) Method for producing liquid crystal composition, liquid crystal display element using liquid crystal composition, and electronic paper including the same
US6697131B2 (en) Stacked type reflection liquid crystal display and method for producing the same
JP2000305099A (en) Liquid crystal display device
US8232952B2 (en) Display element, method of driving the same, and electronic paper including the same
JP5126062B2 (en) LIQUID CRYSTAL DISPLAY ELEMENT, ITS MANUFACTURING METHOD, AND ELECTRONIC PAPER WITH THE SAME
US20130050622A1 (en) Liquid crystal display apparatus and method of fabricating the same
KR102618753B1 (en) Liquid Crystal Display Device And Method Of Fabricating The Same
JP4968262B2 (en) Liquid crystal display element and electronic paper using the same
JP5056843B2 (en) Liquid crystal display element, driving method thereof, and electronic paper using the same
WO2009122630A1 (en) Liquid crystal display device and method for driving the same
TW200931126A (en) Liquid crystal display device
JP3952219B2 (en) Reflective liquid crystal display element
TW200815841A (en) Liquid crystal display element, process for producing the same and electronic paper having the element
JP2023007762A (en) Liquid crystal display device
TWI317032B (en) Liquid crystal composite, liquid crystal display element using the composite, and electronic parper having the element
US8059251B2 (en) Multilayered cell, electronic terminal, and method of filling multilayered cell with media
JP5333585B2 (en) Liquid crystal display
JP2001033807A (en) Liquid crystal optical modulation element
JP2001033805A (en) Liquid crystal optical modulation element
JP4122969B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JP4032830B2 (en) Liquid crystal display elements and electronic textbooks
JP2001188219A (en) Liquid crystal display device and electronic equipment provided therewith
TW200827837A (en) Liquid crystal display element and electronic paper using the same
JP2011133639A (en) Liquid crystal display element