1317032 九、發明說明: 【發明所屬之技術臂域】 技術領域 本發明係有關於-種形成膽固醇相之液晶組成物、使 5用該液晶組成物之液晶顯示元件、以及具有該顯示元件之 電子紙。[Technical Field] The present invention relates to a liquid crystal composition for forming a cholesterol phase, a liquid crystal display element for using the liquid crystal composition, and an electron having the display element. paper.
C先前技名奸J 背景技術 近年來’在各企業、大學,對電子紙進行之開發甚為 H)=盛。,電子紙受職待之應用市場,已錢驗以電子書 籍為首,甚至於行動終端機之副顯示裝置、及ic卡之顯: 部等,多種揭帶機器之方案。作為電子紙張之有效之方式 的其中之-’疋使用形成膽固醇相之液晶組成物(膽固醇液 晶)之顯示元件。膽固醇液晶具有半永久性地維持顯示(記憶 15性)及鮮明之彩色顯示、高對比、高解析度等優異之特徵。 第10圖係模式化顯示習知之可全彩顯示液晶顯示元件 51截面構造之圖。液晶顯示元件51具有從顯示面開始依序 積層有監色(B)顯不部46b、綠色(G)顯示部46g、紅色(R)顯 示部46r之構造。在圖中,上方之基板47b側為顯示面,外 20部光(實線箭頭)從基板47b之上方往顯示面射入。另外,在 基板4 7 b之上方模式化顯示有觀測者之眼睛及其觀察方向 (虛線箭頭)。 監色顯示部46b具有封裝於一對之上下基板47b、49b 間之藍色(B)用液晶層43b,及對藍色用液晶層施加預定之 5 1317032 脈衝電壓之脈衝電壓源41b。綠色顯示部46g具有封裝於一 對之上下基板47g、49§間之綠色(G)用液晶層43g,及對綠 色用液晶層施加預定之脈衝電壓之脈衝電壓源4ig。红色顯 不部46r具有封裝於一對之上下基板47卜伙間之紅色⑻用 、曰曰層43r ’及對紅色用液晶層施加預定之脈衝電壓之脈衝 屯壓源41r。紅色顯示部46r之下基板49r之背面配置有光吸 收層45。 使用於各藍、綠、紅色用液晶層43b、43g、43r之膽固 知液日曰,疋在向列液晶中添加含有率為數十wt%之相對多 *之旋光添加劑(亦稱為旋紐材料)之液晶混合物。使向 歹J液曰曰合有相對多量之旋光性材料,可使向列液晶分子層 形成強烈扭曲成螺旋狀之膽固醇相。膽固醇液晶亦稱為旋 光性向列液晶。 膽固醇液晶具有雙安定性(記憶性),可藉由調節對液晶 15施加之電%強度,使其成為水平螺旋狀態或垂直螺旋狀態 中之任一狀態,一旦成為水平螺旋狀態或垂直螺旋狀態, 之後即使在無電場下仍可穩定地維持該狀態。水平螺旋狀 …藉由在上下基板47、49間施加高電壓,給予液晶層43 強大電場後急遽地使電場成為〇以得到。垂直螺旋狀態則例 20如疋在上下基板47、49間施加比前述電壓低之預定電壓, 給予液晶層43電場後急遽地使電場成為〇以得到。 以下以監色顯示部43b為例,說明使用該膽固醇液晶之 液曰日頒不兀件之顯示原理。第11(a)圖係顯示藍色顯示部43b 之監色用液晶層4313在水平螺旋狀態時膽固醇液晶之液晶 6 1317032 分子33之配向狀態。如第n⑻圖所示,水平螺旋狀態之液 晶分子33,在基板厚度方向上依序旋轉形成螺旋構造,螺 旋構造之螺旋軸會變得與基板面大致垂直。 水平螺旋狀時,液晶層依液晶分子之螺旋間距選擇 5性反设預定波長之光。當液晶之平均折射率為η、螺旋間距 為Ρ時’反射為最大時之波長λ表示為λ=η · ρ。 因此,為使藍色顯示部43b之藍色用液晶層43b在水平 螺方疋狀時選擇性反射藍色光,例如,決定平均折射率n及 螺旋間距ρ ’使λ=480ηιη。平均折射率η可藉由選擇液晶材 10料及旋光性材料來調整,螺旋間距ρ則可藉由調整旋光性材 料之含有率來調節。 第11 (b)圖係顯示藍色顯示部43b之藍色用液晶層43b在 垂直螺旋狀態時膽固酵液晶之液晶分子33之配向狀態。如 第11(b)圖所示,垂直螺旋狀態之液晶分子33,在基板面内 15 方向上依序旋轉形成螺旋構造,螺旋構造之螺旋軸會變得 與基板面大致平行。垂直螺旋狀態時,藍色用液晶層431)失 去反射波長之選擇性,使入射光幾乎穿透。透過光會被配 置於紅色顯示部461*之下基板4%背面之光吸收層45吸收,因 此可實現暗(黑)色顯示 2〇 如此’膽固醇液晶可以扭曲成螺旋狀之液晶分子33之 配向狀態控制光之反射或穿透。與前述藍色用液晶層43b同 樣地,綠色用液晶層43g及紅色用液晶層43r中亦分別封裝 有選擇性反射綠色或紅色光之膽固醇液晶,以製成全彩顯 示之液晶顯示元件51。 1317032 第12圖係顯示各液晶層43b、43g、你在水平螺旋狀態 t之反射光^例之圖。橫軸顯示反射光之波長(nm),縱 軸顯不反射率(白色板比%) 固中▲連成之曲線顯示藍色用液晶層43b之反射光 5邊’ 連成之曲線顯示綠色用液晶層43g之反射光譜,♦連 成之曲線歸纟x色職晶層4狄反射光譜。 如第12圖戶斤;, 〜不,由於各液晶層43b、43g、43ι在水平螺 方疋狀態^之反射光譜之中心波長,依藍、綠'紅色之順序 增長’因此膽固醇液晶之螺旋間距,也是依液晶層43b、 10 43g、43r之順序增長。也因此液晶層43b、43g 、43r之膽固 醇液晶之旋光性材料含有率,須要依液晶層43b、43g、43r 之順序減少。 一般而言,反射波長越短,則須使液晶分子強烈扭曲 之螺旋間距須越短,而膽固醇液晶中之旋光性材料之含有 15率即越高。另外,一般而言旋光性材料之含有率越高,則 有驅動電壓越高之傾向。另外,反射頻帶寬Δη會隨著膽固醇 液晶之折射率異向性An之增大而增大。 專利文獻1 ·特開2003 —147363號公報 專利文獻2 ·特開2004—2765號公報 20 【明内容】 發明之揭示 本發明所欲解決之問題 然而,使用膽固醇液晶之紅、綠、藍色積層構造之彩 色液晶顯示元件,有容易產生色彩重現範圍平衡之惡化及 8 1317032 對比降低之問題。色彩重現範圍平衡及對比之良窳,會受 到暗狀態之層,即成為垂直螺旋狀態之層之紐射甚大的 影響。例如,任丨色之液晶層為水平螺旋狀態,其餘2色之 液晶層為垂直螺旋狀態時,垂直螺旋狀態之液晶層之光散 射若大,則垂直螺旋狀態之液晶層產生之光散射會成為雜 訊,加入水平螺旋狀態之液晶層之反射光之中。結果,顯 不顏色之色彩純度會降低。另外,顯示黑色時,紅、綠、 π色之各液晶層會全部成為垂直螺旋狀態,但若是各液晶 層之光散射大,則黑色濃度會顯著降低。換言之,顯示圖 10像之對比降低,而顯示會變得模糊。 對垂直螺旋狀態之液晶層之光散射具決定性影響之物 生’推測m材料固有之折射率異向性Δη。第13圖顯示 折射率異向性Δη與液晶層光反射之關係m⑻圖顯示水 平累旋狀癌%折射率異向性Δη與反射光亮度之關係。橫轴 顯丁折射率異向性Δη,縱轴顯示亮度(白色板比;%)。第1灿) .肩7F垂直螺旋狀態時折射率異向性△績光散射之關係。 橫轴顯示折射率異向性△ η,縱軸顯示散射(白 色板比;%)。 第i3(a) (b)圖所示’若使如值增大’則水平螺旋狀態 %之液ΒΒ層之反射率會增大’因此雖然液晶顯示元件的顯 2〇不晝面允度會提高,但同時垂直螺旋狀態時液晶層之光散 射也合上昇。另—卡 曰 万面,若使如值減少,雖然垂直螺旋狀態 時液晶層之光散射也減少,但由於水平螺旋狀態時液晶層 之反射率也會降低,因此顯示畫面之亮度會降低。如此, 反射光之党度與散射為相互取捨之關係,因此只藉由控制 1317032 △η值,難以兼顧顯示晝面良好之亮度與較低之散射。 在專利文獻1中,揭露有對於紅綠藍用之各液晶層之膽 固醇液晶’令旋光性材料之2種旋紐相異之光學異構細 體及S體之混合關相異’使液晶層巾旋紐材料之添加量 .5彳目等之技術。但是’使紅綠“之各液晶層之旋光性材料 添加量相等,各液晶層之光散射特性仍相異,因此難以完 ' 全改善顯示畫面之色彩平衡或對比等。 _ 本發明之目的,係提供—種在改善色彩平衡及提高對 比方面上優異之顯示元件及使用該顯示元件之電子紙。 10 解決問題之手段 前述目的可藉由-種顯示元件來達成。該顯示元件包 含有11液晶I,係具有旋光性材料包含於向列液晶 中,使其形成膽固醇相並以水平螺旋狀態反射第以長之光 者;第2液晶層,係具有比前述第m光性材料之含有率更 15高之第2旋光性材料,包含於向列液晶中,使其形成膽固醇 城以水平螺旋狀態反射波長比前述第丨波長更長之第2波 長之光者。 前述本發明之液晶顯示元件之特徵,為前述第2旋光性 材料含有2種旋光性相異之光學異構物。 2〇 $外’前述目的可藉由—種電子紙來達成。該電子紙 係具有顯示預定晝面之顯示部者,其特徵在於:前述顯示 部係具有申請專利範圍第i項之液晶顯示元件。 另外,前述目的可藉由—種液晶組成物來達成。該液 晶組成物包含有:向列液晶及含有於前述向列液晶中並使 1317032 其形成膽固醇相之旋光性材料,為於水平螺旋狀態時反射 波長比第1波長更長之第2波長之光,前述旋光性材料之含 有率大於反射前述第1波長光之含有率。 又,前述目的可藉由一種液晶組成物來達成。該液晶 5 組成物,包含有向列液晶及旋光性材料,前述旋光性材料 係具有比前述向列液晶小之折射率異向性,且添加於前述 向列液晶中以使其形成膽固醇相。 發明之效果 依據本發明,可實現一種於暗色狀態時亦可充分減低 10 光散射之液晶組成物。 另外依據本發明,可實現一種色彩平衡及對比皆優異之 顯示元件及使用該顯示元件之電子纸。 圖式簡單說明 第1(a)〜(c)圖係模式化顯示習知之藍、綠、紅色用之 15 各液晶層在垂直螺旋狀態時液晶分子之狀態。 第2(a)〜(c)圖係顯示本發明一實施形態中液晶組成物 所含有材料之組成比例之圖。 第3圖係顯示本發明一實施形態之液晶顯示元件1之概 略構造之圖。 20 第4圖係模式晝化顯示本發明一實施形態之液晶顯示 元件1之截面構造之圖。 第5(a)、(b)圖係顯示本發明一實施形態之液晶顯示元 件1驅動波形之一例之圖。 第6圖係顯示本發明一實施形態之液晶組成物之電 11 1317032 壓—辦特性之一例之圖。 … )苎係顯示習知之液晶組成物所含有材料之 組成比例之圖。 二、員示本發明一實施形態之液晶顯示元件1在垂 直螺旋狀悲時紅色用液晶層之反射率(散射)之圖。 第9圖係顯示★η 本發明一實施形態之液晶顯示元件丨與習 知之液晶顯示元件 干之藍、綠、紅色用之各液晶層之散射之 比較例之圖。C. Previous technical name J. Background technology In recent years, the development of electronic paper in various companies and universities is very H). The application market for e-papers has been accepted by e-books, and even the sub-display devices of mobile terminals and the ic card display: Department, etc., a variety of uncovering machines. One of the effective ways of electronic paper is to use a display element which forms a liquid crystal composition (cholesterol liquid crystal) which forms a cholesterol phase. Cholesterol liquid crystals are characterized by semi-permanently maintaining display (memory 15) and vivid color display, high contrast, high resolution and the like. Fig. 10 is a view schematically showing a cross-sectional structure of a conventional full-color display liquid crystal display element 51. The liquid crystal display element 51 has a structure in which a color (B) display portion 46b, a green (G) display portion 46g, and a red (R) display portion 46r are sequentially laminated from the display surface. In the figure, the upper substrate 47b side is a display surface, and the outer 20 pieces of light (solid arrow) are incident from the upper side of the substrate 47b toward the display surface. Further, the observer's eyes and their viewing directions (dashed arrows) are schematically displayed above the substrate 47b. The color monitor display portion 46b has a blue (B) liquid crystal layer 43b enclosed between the pair of upper and lower substrates 47b and 49b, and a pulse voltage source 41b for applying a predetermined pulse voltage of 5 1317032 to the blue liquid crystal layer. The green display portion 46g has a green (G) liquid crystal layer 43g packaged between a pair of upper and lower substrates 47g, 49, and a pulse voltage source 4ig for applying a predetermined pulse voltage to the green liquid crystal layer. The red display portion 46r has a red (8) for use between the pair of upper and lower substrates 47, a germanium layer 43r', and a pulse voltage source 41r for applying a predetermined pulse voltage to the red liquid crystal layer. The light absorbing layer 45 is disposed on the back surface of the substrate 49r below the red display portion 46r. It is used in the blue, green, and red liquid crystal layers 43b, 43g, and 43r, and an optically active additive (also referred to as a spin) having a relative content of tens of wt% is added to the nematic liquid crystal. New material) liquid crystal mixture. By aligning the 歹J liquid with a relatively large amount of the optically active material, the nematic liquid crystal molecular layer can be formed into a cholesterol phase which is strongly twisted into a spiral shape. Cholesteric liquid crystals are also known as optically active nematic liquid crystals. The cholesteric liquid crystal has double stability (memory), and can be made into any one of a horizontal spiral state or a vertical spiral state by adjusting the electric power intensity applied to the liquid crystal 15, and once it becomes a horizontal spiral state or a vertical spiral state, This state can then be stably maintained even in the absence of an electric field. The horizontal spiral is obtained by applying a high voltage between the upper and lower substrates 47 and 49 to give a strong electric field to the liquid crystal layer 43 and then rapidly making the electric field become 〇. In the case of the vertical spiral state, for example, a predetermined voltage lower than the aforementioned voltage is applied between the upper and lower substrates 47 and 49, and the electric field is applied to the liquid crystal layer 43, and the electric field is suddenly made 〇. Hereinafter, the display principle of the use of the liquid crystal display unit 43b will be described as an example. Fig. 11(a) shows the alignment state of the liquid crystal 6 1317032 molecules 33 of the cholesteric liquid crystal when the liquid crystal layer 4313 for color monitoring of the blue display portion 43b is in the horizontal spiral state. As shown in the nth (8) diagram, the liquid crystal molecules 33 in the horizontal spiral state are sequentially rotated in the thickness direction of the substrate to form a spiral structure, and the spiral axis of the spiral structure becomes substantially perpendicular to the substrate surface. In the case of a horizontal spiral, the liquid crystal layer selects light of a predetermined wavelength in accordance with the helical pitch of the liquid crystal molecules. When the average refractive index of the liquid crystal is η and the helical pitch is Ρ, the wavelength λ when the reflection is maximum is expressed as λ = η · ρ. Therefore, in order to selectively reflect the blue light when the blue liquid crystal layer 43b of the blue display portion 43b is horizontally meandered, for example, the average refractive index n and the spiral pitch ρ' are determined so that λ = 480 ηη. The average refractive index η can be adjusted by selecting the liquid crystal material and the optically active material, and the spiral pitch ρ can be adjusted by adjusting the content of the optically active material. Fig. 11(b) shows the alignment state of the liquid crystal molecules 33 of the cholesteric liquid crystal when the blue liquid crystal layer 43b of the blue display portion 43b is in the vertical spiral state. As shown in Fig. 11(b), the liquid crystal molecules 33 in the vertical spiral state are sequentially rotated in the direction of the substrate 15 to form a spiral structure, and the spiral axis of the spiral structure is substantially parallel to the substrate surface. In the vertical spiral state, the blue liquid crystal layer 431) loses the selectivity of the reflection wavelength, so that the incident light is almost penetrated. The transmitted light is absorbed by the light absorbing layer 45 disposed on the back surface of the substrate 4% under the red display portion 461*, so that a dark (black) color display can be realized. Thus, the alignment of the liquid crystal molecules 33 which the cholesterol liquid crystal can be twisted into a spiral shape can be realized. The state controls the reflection or penetration of light. Similarly to the blue liquid crystal layer 43b, the green liquid crystal layer 43g and the red liquid crystal layer 43r are respectively packaged with a liquid crystal display element 51 which selectively reflects green or red light to form a full-color display liquid crystal display element 51. 1317032 Fig. 12 is a view showing the liquid crystal layers 43b and 43g and the reflected light in the horizontal spiral state t. The horizontal axis shows the wavelength of the reflected light (nm), and the vertical axis shows the non-reflectivity (white plate ratio %). The solid-state ▲ connected curve shows the blue liquid crystal layer 43b reflected light 5 sides'. The reflection spectrum of the liquid crystal layer 43g, ♦ the curve of the connection is attributed to the X-ray reflection spectrum of the x-color layer. As shown in Figure 12, ~ No, because the liquid crystal layers 43b, 43g, 43ι in the horizontal spiral square state of the reflection spectrum of the central wavelength, in the order of blue, green 'red growth', so the spiral spacing of cholesterol liquid crystal It also grows in the order of the liquid crystal layers 43b, 10 43g, 43r. Therefore, the content of the optically active material of the cholesteric liquid crystal of the liquid crystal layers 43b, 43g, and 43r is required to be decreased in the order of the liquid crystal layers 43b, 43g, and 43r. In general, the shorter the reflection wavelength, the shorter the helical pitch of the liquid crystal molecules to be strongly distorted, and the higher the content of the optically active material in the cholesteric liquid crystal. Further, in general, the higher the content of the optically active material, the higher the driving voltage tends to be. Further, the reflection frequency bandwidth Δη increases as the refractive index anisotropy An of the cholesterol liquid crystal increases. Patent Document 1 JP-A-2003-147363, JP-A-2004- 2765, JP-A No. 2004-2765, the disclosure of the present invention, the problem to be solved by the present invention, however, the use of red, green, and blue layers of cholesteric liquid crystal The color liquid crystal display element constructed has a problem that the balance of the color reproduction range is easily deteriorated and the contrast of 8 1317032 is lowered. The balance of the color reproduction range and the contrast of the good, will be affected by the dark layer, that is, the layer of the vertical spiral state is very large. For example, if the liquid crystal layer of any color is in a horizontal spiral state, and the liquid crystal layers of the other two colors are in a vertical spiral state, if the light scattering of the liquid crystal layer in the vertical spiral state is large, the light scattering generated by the liquid crystal layer in the vertical spiral state becomes The noise is added to the reflected light of the liquid crystal layer in the horizontal spiral state. As a result, the color purity of the displayed color is lowered. Further, when black is displayed, all of the liquid crystal layers of red, green, and π colors are in a vertical spiral state. However, if the light scattering of each liquid crystal layer is large, the black density is remarkably lowered. In other words, the contrast of the image shown in Fig. 10 is lowered, and the display becomes blurred. The object which has a decisive influence on the light scattering of the liquid crystal layer in the vertical spiral state is estimated to be the refractive index anisotropy Δη inherent to the m material. Fig. 13 shows the relationship between the refractive index anisotropy Δη and the light reflection of the liquid crystal layer. m (8) shows the relationship between the horizontal refractive index anisotropy Δη and the brightness of the reflected light. The horizontal axis shows the refractive index anisotropy Δη, and the vertical axis shows the brightness (white plate ratio; %). The first can). The relationship between the refractive index anisotropy and the light scattering of the shoulder 7F in the vertical spiral state. The horizontal axis shows the refractive index anisotropy Δ η and the vertical axis shows the scattering (white plate ratio; %). In the figure i3(a) (b), if the value is increased, the reflectivity of the liquid helium layer in the horizontal spiral state % will increase 'so that although the liquid crystal display element is not visible, The light scattering of the liquid crystal layer increases as the vertical spiral state increases. On the other hand, if the value is reduced, the light scattering of the liquid crystal layer is reduced in the vertical spiral state, but the reflectance of the liquid crystal layer is also lowered in the horizontal spiral state, so that the brightness of the display screen is lowered. In this way, the degree of reflection and the scattering of the reflected light are in a mutual trade-off relationship. Therefore, by controlling the value of Δη of 1317032, it is difficult to balance the brightness of the surface and the low scattering. Patent Document 1 discloses a liquid crystal layer in which a mixture of optically isomers and S bodies of two kinds of knobs of a liquid crystal layer of a liquid crystal layer for red, green and blue is made different. The amount of the material added to the towel. However, the amount of optically active material added to each of the liquid crystal layers of 'Red and Green' is equal, and the light scattering characteristics of the respective liquid crystal layers are still different, so that it is difficult to completely improve the color balance or contrast of the display screen. A display element excellent in improving color balance and improving contrast and an electronic paper using the display element are provided. 10 Solution to Problem The foregoing object can be achieved by a display element comprising 11 liquid crystal. I, wherein the optically active material is contained in the nematic liquid crystal to form a cholesterol phase and reflects the first long light in a horizontal spiral state; and the second liquid crystal layer has a higher content ratio than the mth optical material. The second optically active material of 15 is contained in the nematic liquid crystal to form a crystal of a second wavelength having a wavelength longer than the second wavelength in a horizontal spiral state. The liquid crystal display element of the present invention. The second optically active material is characterized in that it contains two optically active isomers which are optically different. The above objective can be achieved by an electronic paper. A display unit having a display surface for displaying a predetermined surface is characterized in that the display unit has a liquid crystal display element of claim i. The above object can be achieved by a liquid crystal composition. a nematic liquid crystal and an optically active material which is contained in the nematic liquid crystal and which forms a cholesterol phase in 1317032, and is a second wavelength light which reflects a wavelength longer than the first wavelength in a horizontal spiral state, and the optically active material The content rate is greater than the reflectance of the first wavelength light. The above object can be achieved by a liquid crystal composition comprising a nematic liquid crystal and an optically active material, wherein the optically active material has The refractive index anisotropy is smaller than the nematic liquid crystal, and is added to the nematic liquid crystal to form a cholesterol phase. According to the present invention, it is possible to sufficiently reduce the light scattering in a dark state. Further, according to the present invention, a display element excellent in color balance and contrast and an electric power using the same can be realized. The paper briefly illustrates that the first (a) to (c) patterns are used to graphically display the state of the liquid crystal molecules in the vertical spiral state of the conventional blue, green, and red colors. 2(a)~ (c) A diagram showing a composition ratio of a material contained in a liquid crystal composition according to an embodiment of the present invention. Fig. 3 is a view showing a schematic configuration of a liquid crystal display element 1 according to an embodiment of the present invention. A diagram showing a cross-sectional structure of a liquid crystal display element 1 according to an embodiment of the present invention is shown in Fig. 5(a) and (b) are views showing an example of a driving waveform of a liquid crystal display element 1 according to an embodiment of the present invention. Fig. 6 is a view showing an example of the characteristics of the electric 11 1317032 of the liquid crystal composition according to the embodiment of the present invention. The ruthenium system shows a composition ratio of a material contained in a conventional liquid crystal composition. 2. A graph showing the reflectance (scattering) of the liquid crystal layer for red in the vertical spiral shape of the liquid crystal display element 1 according to the embodiment of the present invention. Fig. 9 is a view showing a comparative example of the scattering of the liquid crystal display elements of the embodiment of the present invention and the liquid crystal layers for the blue, green and red of the conventional liquid crystal display elements.
第圖係模式化顯示習知之可全彩顯示液晶顯示元件 10 之截面構造之圖。 第11⑻、(b)圖係帛式化顯示習知之液晶顯示元件之截 面構造之圖。 第12圖係顯示習知之液晶顯示元件在水平螺旋狀態時 之反射光譜一例之圖。 第13(a) (b)圖係顯示習知之液晶顯示元件之折射率異 向性Δη與液晶層光反射關係之圖。 I[實方方式2 實施本發明之最佳形態 以下以第1圖至第9圖說明本發明一實施形態之液晶組 20成物及使用該液晶組成物之液晶顯示元件,以及具有該液 晶顯示元件之電子紙。首先,以第1圖至第3圖說明減少暗 色狀態時光散射之基本原理及利用該基本原理之液晶組成 物。本發明人等人發現,垂直螺旋狀態時之光散射一般而 言’會依於水平螺旋狀態時反射藍色光之藍色(B)用液晶 12 1317032 域,然而若含有率低,則無法將充分之配向力傳導至體區 域。 因此’旋光性材料含有率高之藍色用液晶層43b,在曰 Θ 曰 胞厚度方向上會大致均一地出現充分之垂直螺旋狀態,然 5而旋光性材料含有率相對較低之綠色用液晶層43g與紅色 用液晶層43r ’則可能會在體區域出現與垂直螺旋狀態相異 之配向狀態。綠色用液晶層43g只是在體區域螺旋軸之方向 有大幅偏差之程度,而紅色用液晶層43r則不單是螺旋軸之 方向’包含螺旋間距之螺旋構造都可能會有大幅的偏差。 10如此,可推測旋光性材料之含有率越低,則垂直螺旋狀態 時體區域之配向不良會增大,光之散射程度也會因此而増 大0 至此為紅色用液晶層之光散射相對地增強可推測之原 因。 15 另一方面,若改變觀點,則前述之原因亦指出了含有 於向列液晶中使其形成膽固醇相之旋光性材料’亦具有對 液晶分子螺旋構造偏差之抑制效果。 於疋’本貝把形恕之基本原理,係使在水平螺旋狀態 時反射比第1波長更長之第2波長之液晶組成物之旋光性材 20料之含有率提高之同時’旋光性材料含有2種旋光性相異之 光學異構物。另外,本說明書中此後將該等光學異構物分 別稱為R體及L體以進行說明,但這與R/s表示法之罐及5 體具相同之意義。 利用前述基本原理,在暗色狀態時減低光之散射之液 14 1317032 晶組物(膽固醇液晶),以^掷斗,# ,樹 , )UR體或其光學異構體L體之基礎 (base)液晶為基本組成來製作。 R體之基礎液晶,是在預定重量之向列液晶[a中,添 加預定重量之R體旋光性材料咖酿體旋光性材料⑽ 來製作。旋光性材料咖之含有率(相對於向列液晶心及 _旋光性材料CHrl、⑽之合計重量之重量比例(祕); 以下皆同)為27wt%。旋光性材料CHr2之含有率為3奶%。以 下將所含有之旋光性材料〇^及旋光性材料Cft2通稱為 旋光性材料CHr。 向列液晶LCn,例如是折射率異向性^#0 25,介電率 異向性Δε=20’室溫下之黏度K=5〇(mPa·s)。旋光性材料CHrl 及例如是折射率異向性Δη=〇·22 ,介電率異向性Δε=22,螺 方疋扭曲力ΗΤΡ=1〇。旋光性材料CHr2之Δη值及Δε值與旋光 性柯料CHrl相同,但螺旋扭曲力ητΡ=20。製成之R體基礎 15液晶之選擇性反射之主波長Xb約為480nm,Αη=〇·23。 例如’向列液晶LCn之物性值可以如下之方式測定或 异出。首先,在破璃製之測試用晶胞中,注入向列液晶LCn。 接著’使用市售之LCR計來測定並算出向列液晶LCn之相對 Ρ且抗、相對介電率等。另外,黏度以市售之黏度計測定。 20 s 更以市售之阿貝折射計等測定向列液晶LCn之Δη。另 外’分別測定分別注入有水平配向及垂直配向液晶之測試 用晶胞之靜電容量,算出向列液晶LCn之Δε。Αε係導軸(液 曰曰分子長軸之平均方向)方向之介電率與其垂直成非之介 電率之差。 15 1317032 L體之基礎液晶,是在預定重量之向列液晶匕^^中,添 加預定重量之L體旋光性材料CHU及L體旋光性材料cm2 來製作。旋光性材料CH11之含有率(相對於向列液晶LCil^2 種旋光性材料CH11、〇^2之合計重量之重量比例(糾%); 5以下皆同)為27wt%。旋光性材料(:《^2之含有率為3认1%。以 下將所含有之旋光性材料CHI 1及旋光性材料CH12通稱為 旋光性材料CH1。 L體之基礎液晶之向列液晶LCn之Δη值、Δε值及黏度^ 皆與前述R體基礎液晶之該等相同。旋光性材料cmiiAn 10值、Δε值及HTP值皆與前述r體之旋光性材料cHrl相同。 旋光性材料CH12之Δη值、Δε值及HTP值皆與前述R體之旋 光性材料CHr2相同。另外,製成之l體之基礎液晶之a及Δη 與前述R體之該等相同。又,向列液晶LCn及旋光性材料 CHrl、CHr2、CH11、CH12皆使用通常之市售材料。 15 第2圖顯示使用前述R體或L體之基礎液晶為基本組成 之液晶組成務之材料組成比例。第2 (a)圖顯示水平垂直狀態 時反射藍色光(第1波長之光)之藍色用液晶層(第1液晶層) 所使用之膽固醇液晶之組成比例,第2(b)圖顯示水平垂直狀 態時反射綠色光(第2波長之光)之綠色用液晶層(第2液晶層) 20 所使用之膽固酵液晶之組成比例,第2(c)圖顯示水平垂直狀 態時反射紅色光(第3波長之光)之紅色用液晶層(第3液晶層) 所使用之膽固醇液晶之組成比例。 如第2(a)圖所示,藍色用液晶層中使用R體之基礎液晶 (以下稱藍色用膽固醇液晶LCb)。換言之’藍色用膽固醇液 16 1317032 晶LCb選擇性反射之主波長λΐ3約為480nm,An=0.23。 如第2(b)圖所示,綠色用液晶層中使用在L體之基礎液 晶中混合含有率約為3wt之R體旋光性材料CHrl之液晶(以 下稱綠色用膽固醇液晶LCg)。綠色用膽固醇液晶LCg選擇 5 性反射之主波長λΐ)約為560nm ’ An值與藍色用膽固醇液晶 大致相同。 如第2(c)圖所示,紅色用液晶層中使用在R體之基礎液 晶中混合含有率約為5wt之L體旋光性材料CH11之液晶(以 下稱紅色用膽固醇液晶LCr)。紅色用膽固醇液晶LCr選擇性 10 反射之主波長λΐ)約為610nm,An值與藍色用膽固醇液晶大 致相同。 如此,本實施形態中藍色用及紅色用膽固醇液晶 LCb、LCr之旋光性(R)相同,而與綠色用膽固醇液晶LCg之 旋光性(L)相異。另外,旋光性材料之含有率,為綠色用膽 15 固醇液晶LCg高於藍色用膽固醇液晶LCb,紅色用膽固醇液 晶LCr更高於綠色用膽固醇液晶LCg。另外,藍、綠、及紅 色用膽固醇液晶LCb、LCg、LCr在室溫中形膽固醇相。 接著,以第3圖至第6圖說明使用前述藍、綠、及紅色 用膽固醇液晶LCb、LCg、LCr之液晶顯示元件及電子紙。 20 第3圖顯示本實施形態之液晶顯示元件1之概略構造。第4圖 模式化顯示液晶顯示元件1之截面構造。 如第3圖與第4圖所示,液晶顯示元件1具有藍色顯示部 6藍、綠顯示部6g、紅色顯示部6r。其中藍色顯示部6b具有 水平螺旋狀態時反射藍色光(第1波長之光)之藍色用液晶層 17 1317032 3b,綠色顯示部6g具有水平螺旋狀態時反射綠色光(第2波 長之光)之綠色用液晶層3g,紅色顯示部&具有水平螺旋狀 態時反射紅色光(第3波長之光)之紅色用液晶層七。藍、綠、 紅之各顯示部6b、6g、6r從光入射面(顯示面)開始依此順序 5 積層。 藍色顯示部6b具有對向配置之一對上下基板7b、%, 及封裝於兩基板7b、9b間之藍色用液晶層3b。藍色用液晶 層3b具有組成如第2圖所示之藍色用膽固醇液晶LCb。 綠色顯示部6g具有對向配置之一對上下基板%、9g, 10及封裝於兩基板7§、9§間之綠色用液晶層3g。綠色用液晶 層3g具有組成如第2圖所示之綠色用膽固醇液晶LCg。 紅色顯示部6r具有對向配置之一對上下基板7r、9r,及 封裝於兩基板7r、9r間之紅色用液晶層3r。紅色用液晶層3r 具有組成如第2圖所示之紅色用膽固醇液晶LCr。 15 關於藍、綠、紅之各顯示部6b、6g、6r之積層構造, 由於水平螺旋狀態時綠色用液晶層3 g之旋光性與藍色用及 紅色用液晶層3b、3r相異,因此在如第12圖所示之藍與綠、 及綠與紅之反射光譜重疊之區域,可以藍色用液晶層3b反 射右圓偏光之光,並以綠色用液晶層3g反射左圓偏光之 20 光。藉此,可減低反射光之損失,提高液晶顯示元件1顯示 晝面之亮度。 上基板7b、7g、7r及下基板9b、9g、9r必須具有透光性。 本實施形態中,使用裁切後尺寸為縱橫長度10(cm)x8(cm) 之2張聚碳酸酯(PC)膜基板。另外,亦可使用玻璃基板、聚 18 1317032 乙烯或聚對苯二甲酸乙二酯(PET)等膜基板。本實施形態中 雖然上基板7b、7g、7r及下基板9b、9g、9r具有透光性,但 配置於最下層之紅色顯示部6r之下基板9r亦可為不透光性。 藍色顯示部6b之下基板9b,在藍色用液晶層3b側並列 5地形成有第3圖圖中於上下方向上延伸之帶狀資料電極 19b。另外,下基板卯在藍色用液晶層孙側並列地形成有第3 圖圖中於左右方向上延伸之帶狀掃描電極17b。本實施形態 中對ITO(氧化銦錫)透明電極進行圖案成形(patterning), 形成間距0.44mm之帶狀複數掃描電極17及複數資料電極 10 19 0 如第3圖所示,從上下基板7b、%之電極形成面之法線 方向來看,兩電極l7b、19b為相互交差地對向配置。兩電 極17b、19b之各交差區域分別成為像素。而像素呈陣列狀 排列’形成顯示晝面。另外’如第4圖所示,編號17b、1% 15只顯示兩電極17b、19b之存在區域,而不代表該等之形狀。 兩電極17b、19b之形成材料,例如以氧化銦錫(Indiuin Tin Oxide ’ ITO)為代表,其他可使用氧化銦鋅(Indiuin Zic Oxide ; IZO)等透明導電膜、鋁或矽等金屬電極、或者非晶 形矽、氧化鉍矽(Bismuth Silicon Oxide ; BSO)等光導電性 20 祺等。 兩電極17b、19b上宜分別塗布絕緣性薄膜或液晶分子 <配向穩定化膜(皆未圖示)作為機能膜。絕緣性薄膜可防止 電極17b、19b間之短路並作為氣體阻隔層阻隔氣體成分, 戽有提高液晶顯示元件1可靠性之機能。另外定向穩定化膜 19 1317032 可使用聚酿亞胺、聚酿胺醯亞胺、聚喊酿亞胺、聚乙稀丁 醛樹脂、及丙烯酸酯樹脂等有機膜,或氧化石夕、氧化銘等 無機材料。本實施形態中,例如電極17b、i9b上之基板全 面,塗布(coating)有定向穩定化膜。定向穩定化膜亦可與絕 5 緣性薄膜併用。 上下基板7b、9b藉由在外周圍塗布封裝材^ib,將藍色 用液晶層3b封裝於兩基板7b、9b之間。另外,藍色用液曰 層3b之厚度(晶胞間隙)必須保持均一。為維持預定之晶胞間 隙,可在藍色用液晶層3b内散布樹脂製或無機氧化物製之 10球狀間隔體、在藍色用液晶層3b内形成複數表面塗布有熱 可塑性樹脂之柱狀間隔體等。本實施形態之液晶顯示元: 1,在藍色用液晶層3b内插入有間隔體(未圖示)以保持晶胞 間隙之均一性。藍色用液晶層孔之晶胞間隙d,宜於邛 ά$6μπι之範圍内。 15The figure is a diagram showing the cross-sectional structure of a conventional full-color display liquid crystal display element 10 in a pattern. Figs. 11(8) and (b) are diagrams showing the cross-sectional structure of a conventional liquid crystal display element. Fig. 12 is a view showing an example of a reflection spectrum of a conventional liquid crystal display element in a horizontal spiral state. Fig. 13 (a) and (b) are views showing the relationship between the refractive index anisotropy Δη of the conventional liquid crystal display element and the light reflection of the liquid crystal layer. I [SOLVED MODE 2] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a liquid crystal display 20 according to an embodiment of the present invention and a liquid crystal display element using the same will be described with reference to FIGS. 1 to 9 and a liquid crystal display device having the liquid crystal display. Electronic paper for components. First, the basic principle of light scattering when the dark state is reduced and the liquid crystal composition using the basic principle will be described with reference to Figs. 1 to 3 . The present inventors have found that light scattering in a vertical spiral state generally reflects the blue light (B) in the horizontal spiral state, and the liquid crystal 12 1317032 domain is used. However, if the content rate is low, it is not sufficient. The alignment force is transmitted to the body region. Therefore, the blue liquid crystal layer 43b having a high content of the optically active material has a substantially vertical spiral state in a substantially uniform thickness direction of the cell, and a green liquid crystal having a relatively low content of the optically active material. The layer 43g and the red liquid crystal layer 43r' may have an alignment state different from the vertical spiral state in the body region. The green liquid crystal layer 43g has a large deviation from the direction of the spiral axis of the body region, and the red liquid crystal layer 43r is not limited to the spiral axis. The spiral structure including the spiral pitch may vary greatly. 10, it can be inferred that the lower the content of the optically active material, the poor alignment of the body region in the vertical spiral state, and the degree of light scattering is also increased by 0. Thus, the light scattering of the red liquid crystal layer is relatively enhanced. The reason can be speculated. On the other hand, if the viewpoint is changed, the above-mentioned reason also indicates that the optically active material ′ which is formed in the nematic liquid crystal to form a cholesterol phase also has an effect of suppressing the variation in the helical structure of the liquid crystal molecules.疋 疋 'Benbei's basic principle is to make the content of the optically active material 20 of the liquid crystal composition having a second wavelength longer than the first wavelength in the horizontal spiral state while improving the content of the optically active material. Contains two optically active isomers with different optical properties. Further, in the present specification, the optical isomers are hereinafter referred to as the R body and the L body, respectively, but this is the same as the R/s representation of the can and the 5 body. By using the above basic principle, in the dark state, the light scattering liquid 14 1317032 crystal group (cholesterol liquid crystal) is reduced, and the base of the ER body or its optical isomer L body (base) is reduced. Liquid crystal is produced as a basic component. The base liquid crystal of the R body is produced by adding a predetermined weight of the R-body optically active material to the optically active material (10) in a predetermined weight of the nematic liquid crystal [a]. The content ratio of the optically active material coffee (the weight ratio (secret) to the total weight of the nematic liquid crystal core and the optically active material CHrl, (10); the following is 27 wt%). The content of the optically active material CHr2 was 3% by weight. Hereinafter, the optically active material 及^ and the optically active material Cft2 contained are collectively referred to as an optically active material CHr. The nematic liquid crystal LCn is, for example, a refractive index anisotropy ^#0 25 , a dielectric anisotropy Δ ε = 20', and a viscosity K = 5 〇 (mPa · s) at room temperature. The optically active material CHrl is, for example, an index anisotropy Δη = 〇 · 22 , a dielectric anisotropy Δ ε = 22, and a square twisting force ΗΤΡ = 1 〇. The Δη value and Δε value of the optically active material CHr2 are the same as those of the optically active material CHrl, but the helical twisting force ητ Ρ = 20. The R-based basis of the fabricated R-substrate 15 has a dominant wavelength Xb of about 480 nm, Αη=〇·23. For example, the physical property value of the nematic liquid crystal LCn can be measured or differentiated as follows. First, a nematic liquid crystal LCn was implanted into the test cell for the glass. Next, the relative enthalpy, the relative dielectric constant, and the like of the nematic liquid crystal LCn were measured and calculated using a commercially available LCR meter. In addition, the viscosity was measured using a commercially available viscometer. 20 s The Δη of the nematic liquid crystal LCn was measured by a commercially available Abbe refractometer or the like. Further, the electrostatic capacitance of the test cell in which the horizontal alignment and the vertical alignment liquid crystal were respectively injected was measured, and Δε of the nematic liquid crystal LCn was calculated. The difference between the dielectric constant of the Αε-guide axis (the average direction of the long axis of the liquid helium molecule) and its perpendicular dielectric constant. 15 1317032 The base liquid crystal of the L body is produced by adding a predetermined weight of the L-body optically active material CHU and the L-body optically active material cm2 to a predetermined weight of the nematic liquid crystal. The content ratio of the optically active material CH11 (weight ratio (corrected %) to the total weight of the two kinds of optically active materials CH11 and 〇^2 of the nematic liquid crystal LCil; 5 or less) is 27% by weight. Optically active material (: The content of ^2 is 3% and 1%. The optically active material CHI 1 and the optically active material CH12 contained in the following are collectively referred to as optically active material CH1. The liquid crystal nematic liquid crystal LCn of L-form The Δη value, the Δε value, and the viscosity are the same as those of the above-mentioned R-based liquid crystal. The optically active material cmiiAn 10 value, Δε value, and HTP value are the same as the above-mentioned r-body optically active material cHrl. Δη of the optically active material CH12 The value, the Δε value, and the HTP value are the same as those of the above-mentioned R-type optically active material CHr2. Further, the base liquid crystal a and Δη of the formed one body are the same as the above-mentioned R body. Further, the nematic liquid crystal LCn and the optical rotation The materials CHr, CHr2, CH11, and CH12 are all commercially available materials. 15 Fig. 2 shows the composition ratio of the liquid crystal composition using the basic liquid crystal of the above R body or L body as the basic composition. Fig. 2 (a) The composition ratio of the cholesteric liquid crystal used for the blue liquid crystal layer (first liquid crystal layer) reflecting blue light (light of the first wavelength) in the horizontally vertical state is displayed, and the green light is reflected in the horizontal vertical state in the second (b) Green light liquid crystal layer (light of the second wavelength) The second liquid crystal layer) 20 is a composition ratio of the gallbladder liquid crystal used, and the second (c) shows a red liquid crystal layer (third liquid crystal layer) that reflects red light (light of the third wavelength) in a horizontally vertical state. The composition ratio of the cholesteric liquid crystal to be used. As shown in Fig. 2(a), the liquid crystal layer for blue is used as the base liquid crystal of R body (hereinafter referred to as cholesteric liquid crystal LCb for blue). In other words, 'blue cholesterol liquid 16 1317032 The dominant wavelength λ ΐ 3 of the selective reflection of the crystal LCb is about 480 nm, An = 0.23. As shown in Fig. 2(b), the liquid crystal layer for green uses an R-body optical rotation having a mixed content of about 3 wt in the liquid crystal of the L-body. The liquid crystal of the material CHrl (hereinafter referred to as the cholesteric liquid crystal LCg for green). The green dominant wavelength λ ΐ of the cholesteric liquid crystal LCg is approximately 560 nm. The An value is substantially the same as that of the blue cholesteric liquid crystal. As shown in Fig. 2(c), in the liquid crystal layer for red, a liquid crystal (hereinafter referred to as red cholesteric liquid crystal LCr) having a L-type optically active material CH11 having a content of about 5 wt is mixed in the base liquid crystal of the R body. Red cholesteryl liquid crystal LCr selectivity 10 The dominant wavelength of reflection λ ΐ ) is about 610 nm, and the An value is almost the same as that of blue cholesteric liquid crystal. As described above, in the present embodiment, the optical properties (R) of the blue and red cholesteric liquid crystals LCb and LCr are the same, and the optical (L) of the green cholesteric liquid crystal LCg is different. Further, the content of the optically active material is such that the green cholesteryl liquid crystal LCg is higher than the blue cholesteric liquid crystal LCb, and the red cholesteric liquid crystal LCr is higher than the green cholesteric liquid crystal LCg. Further, blue, green, and red were formed into a cholesterol phase at room temperature using cholesterol liquid crystals LCb, LCg, and LCr. Next, liquid crystal display elements and electronic paper using the above-described blue, green, and red cholesteric liquid crystals LCb, LCg, and LCr will be described with reference to Figs. 3 to 6 . 20 Fig. 3 shows a schematic structure of the liquid crystal display element 1 of the present embodiment. Fig. 4 schematically shows the cross-sectional structure of the liquid crystal display element 1. As shown in Figs. 3 and 4, the liquid crystal display element 1 has a blue display portion 6 blue, a green display portion 6g, and a red display portion 6r. The blue display portion 6b has a blue liquid crystal layer 17 1317032 3b that reflects blue light (light of the first wavelength) in a horizontal spiral state, and reflects green light (light of the second wavelength) when the green display portion 6g has a horizontal spiral state. The green liquid crystal layer 3g, the red display portion & has a red liquid crystal layer seven that reflects red light (light of the third wavelength) when it is in a horizontal spiral state. The respective display portions 6b, 6g, and 6r of blue, green, and red are stacked in this order from the light incident surface (display surface). The blue display portion 6b has a pair of upper and lower substrates 7b, % disposed opposite to each other, and a blue liquid crystal layer 3b sealed between the substrates 7b and 9b. The blue liquid crystal layer 3b has a blue cholesteric liquid crystal LCb having a composition as shown in Fig. 2 . The green display portion 6g has a pair of upper and lower substrates %, 9g, 10 and a green liquid crystal layer 3g which are packaged between the two substrates 7 and 9'. The green liquid crystal layer 3g has a green cholesteric liquid crystal LCg having a composition as shown in Fig. 2 . The red display portion 6r has a pair of upper and lower substrates 7r and 9r disposed opposite to each other, and a red liquid crystal layer 3r interposed between the substrates 7r and 9r. The red liquid crystal layer 3r has a red cholesteric liquid crystal LCr having a composition as shown in Fig. 2 . 15 Regarding the laminated structure of each of the display portions 6b, 6g, and 6r of blue, green, and red, since the optical rotation of the green liquid crystal layer 3 g is different from that of the blue and red liquid crystal layers 3b and 3r in the horizontal spiral state, In the region where the reflection spectrums of blue and green, and green and red are overlapped as shown in Fig. 12, the right circularly polarized light can be reflected by the blue liquid crystal layer 3b, and the left circularly polarized light can be reflected by the green liquid crystal layer 3g. Light. Thereby, the loss of reflected light can be reduced, and the brightness of the display surface of the liquid crystal display element 1 can be improved. The upper substrates 7b, 7g, and 7r and the lower substrates 9b, 9g, and 9r must have light transmissivity. In the present embodiment, two polycarbonate (PC) film substrates having a length of 10 (cm) x 8 (cm) after cutting are used. Further, a film substrate such as a glass substrate or poly 18 1317032 ethylene or polyethylene terephthalate (PET) can also be used. In the present embodiment, the upper substrates 7b, 7g, and 7r and the lower substrates 9b, 9g, and 9r have translucency, but the substrate 9r may be opaque under the red display portion 6r disposed at the lowermost layer. The lower substrate 9b of the blue display portion 6b is formed with a strip-shaped data electrode 19b extending in the vertical direction in the third drawing in parallel with the blue liquid crystal layer 3b side. Further, the lower substrate 形成 is formed with the strip-shaped scanning electrodes 17b extending in the left-right direction in the third drawing in parallel on the side of the blue liquid crystal layer. In the present embodiment, patterning is performed on an ITO (indium tin oxide) transparent electrode, and a strip-shaped complex scanning electrode 17 and a plurality of data electrodes 10 19 0 having a pitch of 0.44 mm are formed, as shown in FIG. 3, from the upper and lower substrates 7b, In view of the normal direction of the electrode forming surface of %, the two electrodes l7b, 19b are arranged opposite each other. The respective intersecting regions of the two electrodes 17b and 19b are pixels. The pixels are arranged in an array to form a display pupil. Further, as shown in Fig. 4, the numbers 17b and 1% 15 show only the existence regions of the two electrodes 17b, 19b, and do not represent the shapes. The material for forming the two electrodes 17b and 19b is, for example, Indium Oxide (ITO), and other transparent conductive films such as Indium Oxide (IZO), metal electrodes such as aluminum or tantalum, or Amorphous germanium, germanium oxide (Bismuth Silicon Oxide; BSO) and other photoconductivity 20 祺. It is preferable to apply an insulating film or a liquid crystal molecule < an alignment stabilization film (all not shown) as a functional film to each of the electrodes 17b and 19b. The insulating film prevents short-circuiting between the electrodes 17b and 19b and blocks the gas component as a gas barrier layer, and has a function of improving the reliability of the liquid crystal display element 1. In addition, the oriented stabilization film 19 1317032 can use an organic film such as a poly-imine, a poly-imine, a polyacrylonitrile, a polybutylene aldehyde resin, or an acrylate resin, or an oxidized stone, an oxidation, or the like. Inorganic materials. In the present embodiment, for example, the alignment stabilization film is coated on the entire surface of the substrate on the electrodes 17b and i9b. The directional stabilizing film can also be used in combination with a rim film. The upper and lower substrates 7b and 9b are coated with a package material ib around the outer periphery, and the blue liquid crystal layer 3b is sealed between the substrates 7b and 9b. Further, the thickness (cell gap) of the blue liquid helium layer 3b must be kept uniform. In order to maintain a predetermined cell gap, 10 spherical spacers made of resin or inorganic oxide may be dispersed in the blue liquid crystal layer 3b, and a column coated with thermoplastic resin may be formed in the blue liquid crystal layer 3b. Space spacers, etc. In the liquid crystal display element of the present embodiment: 1, a spacer (not shown) is inserted into the blue liquid crystal layer 3b to maintain the uniformity of the cell gap. The cell gap d of the blue liquid crystal layer hole is preferably in the range of 6 6 $6μπι. 15
20 由於綠色顯示部6g及紅色顯示部色顯示部你具 有相同之構造,故省略其說明。紅色顯示部如之下基板9、r 之外面(背面)設有可見光吸收層15。因此, 口诚、綠、紅各 液晶層全部為垂直螺旋狀態時,液晶顯示元件丨之顯示畫面 可顯示黑色。另外,可見光吸收層15可依需要來設置。里 土反7b、7g、7r連接有驅動複數掃描電極门乜、%、 17Γ之掃描電極'_電路25,該掃描電極㈣電路25 § =用驅動IC。另外,下基板9b、9"連接有驅動 ^貝料電㈣b、19g、19r之資料電極驅動電路I” 毛極驅動電路27安裝有㈣電極㈣動1C。該等驅動電 20 1317032 路25、27依控制電路23所輸出之預定訊號,將掃描訊號或 資料訊號輸出至預定之掃描電極17b 19b、19g、阶。 以或資料電極 本實施形態中,由於可將藍、綠、紅色用之各液晶声 5 電壓設為大致相同’因此掃描電極驅動 電路25之預定輸出端子與掃描電極17b、17g、〖π之預—各 輸入端子為共通之連接。由於藍、綠、紅色 6g、6r不須個別設置掃描電極驅動電路%,因此可簡略化 液晶顯示元件1驅動電路之構成。 ίο 接著’利用第5圖及第6圖說明液晶顯示元件〖之驅動方 法。第5圖顯示液晶顯示元件驅動波形之一例。第μ約圖係 使膽固醇液晶成為水平螺旋狀態之驅動波形,第5_係使 膽固醇液晶成為垂直螺旋狀態之驅動波形。第5(&)及_ 中,圖之上段顯示資料電極驅動電路27輸出之資料訊號電 15壓波形vd,中段顯示掃描電極驅動電路25輪出之掃描訊號 電壓波形Vs ’下段顯示施加於藍、綠、紅色用各液晶層孙、 3g、3r中任一者之施加電壓波形Vlc。另外,在第5⑻及⑻ 圖中’由左至右顯示時間經過,上下方向顯示電壓。 第6圖顯示膽固醇液晶之電壓一反射率特性之一例。橫 20軸顯示對膽固酵液晶施加之電壓值(V),縱軸顯示膽固醇液 晶之反射率(%)。第6圖所示之曲線p,顯示初期狀態為水平 螺旋狀態時膽固醇液晶之電壓一反射率特性,虛線之曲線 FC,。顯示初期狀態為垂直螺旋狀態時膽固醇液晶之電壓一 反射率特性。 21 1317032 在此,以對第3圖所示之藍色顯示部6b之第1列資料電 極19b與第1行掃描電極nb交差部之藍色⑻像素(u)施加 預疋電壓之情形為例’進行說明。如第5⑷圖所示,在選擇 第1订之掃描電極17b之選擇期間们之前半約1/2之期間 5中,相對於資料訊號電壓Vd會成為+32V,掃描訊號電壓Vs 曰成為ον,而在後半約1/2之期間中,資料訊號電壓Vd會成 為0V,相對地掃描訊號電壓Vs會成為+32v。因此,b像素 (u)之藍色用液晶層3b在選擇期間T1之間被施加有±32V 之脈衝電壓。如第6圖所示,膽固醇液晶若被施加預定之高 10電壓VP100(例如32V)而產生強力之電場,液晶分子之螺旋 構造完全解開’全部之液晶分子會成為依照電場方向之垂 直配向(homeotropic)狀態。因此,B像素(11)之藍色用液晶 層3b之液晶分子在選擇期間们之間會成為垂直配向狀態。 選擇時間T1結束後進入非選擇時間T2時,第【行之掃 15描電極17b ’例如會受到+28V及+4V、且周期為選擇時間丁! 之1/2之施加電壓。另—方面,第i列之資料電極19b則會被 施加預定之資料訊號電壓vd。在第5(a)圖中,例如+32¥及 0V之電壓會以選擇期間T1i1/2之周期對第i列之資料電極 19b施加。因此,B像素(1,1)之藍色用液晶層补在非選擇期 20間丁2之間會被施加±4V之脈衝電壓。因此,在非選擇期間 T2之間,於B像素(1,1)之藍色用液晶層3b產生之電場接近於 0 ° 液晶分子為垂直配向狀態時,液晶施加電壓若從 VP100(±32V)變化為VF0(±4V),電場急遽地變為接近於〇, 22 1317032 則液晶分子之螺旋軸會成為朝向相對於兩電極17b、19b大 致垂直之方向之螺旋狀態,成為依螺旋間距選擇性地反射 光之水平螺旋狀態。因此,B像素(1,1)之藍色用液晶層3b 會成為水平螺旋狀態並反射光,因此B像素(ι,ι)會顯示藍 5 色。 另一方面,如第5(b)圖所示,在選擇期間丁丨之前半約 1/2之期間及後半之約1/2之期間中,相對於資料訊號電壓 Vd成為24V/8V ’掃描訊號電壓Vs會成為〇ν/+32ν,B像素 (1,1)之藍色用液晶層3b會被施加±24V之脈衝電壓。如第6 10圖所示’對膽固醇液晶施加預定之低電壓vFlOOb(例如 24V),產生較弱之電場,則液晶分子之螺旋構造會成為未 完全解開之狀態。進入非選擇期間丁2時,第丨行之掃描電極 17b會被施加例如周期為選擇時間71之1/2、+28V/+4V之電 壓’資料電極19b則會被施加例如周期為選擇時間τ^1/2 15之負料訊號電屢Vd(例如+24V/+8V)。因此,Β像素(1,1)之 藍色用液晶層3b在非選擇期間T2之間會被施加—4V/4V之脈 衝電壓。因此,在非選擇期間丁2之間,於B像素(u)之藍色 用液晶層3b產生之電場接近於〇。 液as分子之螺旋構造為位完全解開之狀態時,膽固醇 20液晶之施加電壓若從VF1〇〇M±24V)變化為VF0(±4V),電場 急遽地變為接近於〇,則液晶分子之螺旋軸會成為朝向相對 於兩電極17b、19b大致平行之方向之螺旋狀態,成為使入 射光穿透之垂直螺旋狀態。因此,B像素(u)之藍色用液晶 層3b會成為垂直螺旋狀態並使光穿透。另外,如第6圖所 23 1317032 示,施加VP100(V)之電壓,使液晶層產生強電場之後,再 緩慢地除去電場,亦可使膽固醇液晶成為垂直螺旋狀態。 前述驅動電壓為一例,在室溫下對兩電極17b、19b之 間施加30〜35V、實際有效時間2〇ms之脈衝狀電壓,則藍 5色用液晶層%之膽固醇液晶會成為選擇性反射狀態(水平 螺旋狀態)’若15〜22V之脈衝電壓施加之實際有效時間為 2〇ms ’則會成為良好之穿透狀態(垂直螺旋狀態)。 藉由與前述B像素(1,1)之驅動同樣地驅動綠(G)像素及 紅(R)像素,可在積層有3個藍、綠、紅像素(u)之像素(u) 10上顯示彩色。另外,對從第1行到第n行為止之掃描電極 17b、17g、17r進行所謂的依序線驅動,改寫每丨行中之各 貧料電極19之資料電壓,可輪出像素(11)到像素(nm)為止 全部之顯示資料,實現1個框(顯示晝面)之彩色顯示。 另外,對膽固醇液晶施加中等強度之電場’在急遽地 15除去該電場,會成為混合有水平螺旋狀態與垂直螺旋狀態 之中間狀態,可藉以進行全彩之顯示。 接著’舉例簡單說明液晶顯示元件1之製造方法。 在2片裁切為縱橫1 〇(cm)x8 (CIn)尺寸之聚碳酸酯(pc)膜 基板上形成ITO透明電極,以蝕刻法形成圖案,分別形成間 2〇距〇.24mm之條狀電極(掃描電極17或資料電極19)。在2片PC 膜基板上分別形成條狀之電極,以進行32〇χ24〇像素之 QVGA顯不。接著,在2片pc膜基板7、9上分別形成之條狀 這明電極17、19上’以旋轉塗布法塗布約厚7〇〇入聚醯亞胺 乐之配向膜材料。接著在9(rc之爐中對業已塗布有配向膜 24 1317032 材料之2片PC膜基板7、9上進行烘烤處理,形成配向膜。接 著,在PC膜基板7或9其中之一上之周緣部,使用 DISPENCER塗布作為環氧系之封裝材21,形成預定高度之 壁。 接著,對另一PC膜基板9或7散布直徑4μιη之間隔體(積 水力少公司製)。接著,貼合2#pc膜基板7、 9 ’在160°C下加熱1小時,硬化封裝材21。接著,以真空注 入法注入藍色用膽固醇液晶L C b後,以環氧系之封裝材密封 庄入口,製作藍色顯示部6b。並以相同之方法製作G、紅色 10 顯示部6g、6r。 接著’如第4圖所示,從顯示面側依6b、6g ' 6r之順序 積層藍、綠、紅顯示部。接著,對業已積層之藍、綠、紅 顯示部6b、6g、6r之掃描電極π之端子部及資料電極19之 端子部壓合TCP(捲帶式封裝)構造之通用STN用驅動1C,再 5 連接電源電路及控制電路23。如此,完成可進行QVGA顯 示之液晶顯示元件1。另外,雖然在圖示中省略,但對於完 成之液晶顯示元件1,再設置輸出入裝置及統合控制全體之 控制裝置(皆未圖示)’即完成電子紙。 接著,對依前述製造方法製作,並具前述構成及動作 20 之本實施形態之液晶組成物及具有該液晶組成物之液晶顯 示元件1之顯示特性,與比較例相比較並進行說明。 首先,以第7圖說明使用作為比較例之習知液晶組成物 之材料比例。第7(a)圖顯示使用於藍色用液晶層之習知藍色 用膽固醇液晶之組成比例,第7(b)圖顯示使用於綠色用液晶 25 1317032 層之習知綠色用膽固醇液晶之組成比例,第7(c)圖顯示使用 於紅色用液晶層之習知紅色用膽固醇液晶之組成比例。 第7(a)圖所示之習知藍色用膽固醇液晶,是在預定重量 之向列液晶LCn,中添加R體之旋光性材料CHr,來製作。旋 5光性材料CHr’之含有率為30wt%。向列液晶LC,n,其 △η=0·20 ' Δε=20,在室溫下之黏度μ=37(πιΡα · s)。旋光性 材料CHr,,其Δη=〇.29、Δε=22,在室溫下為粉末狀。製成 之習知藍色用膽固醇液晶選擇性反射之主波長汕約為 48〇nm,Δη=0.23。 1〇 第7(b)圖所示之習知綠色用膽固醇液晶,是在預定重量 之向列液晶LCn ’中添加L體之旋光性材料CH1,來製作。旋光 性材料CH1,之含有率為26wt%。向列液晶LCn,與藍色用膽 固醇液晶所使用者相同。旋光性材料CH1,之Δη值、Δε值與 旋光性材料CHr,相同,在室溫下為粉末狀。製成之習知綠 15色用膽固醇液晶選擇性反射之主波長λΐ3約為560nm, △n=0.22。 第7 (a)圖所示之習知紅色用膽固醇液晶,是在預定重量 之向列液晶LCn’中添加r體之旋光性材料cHr”來製作。旋 光性材料CHr”之含有率為24wt%。向列液晶LCn,與藍色用 20膽固醇液晶所使用者相同。旋光性材料CHr”,其An=〇.29、 Αε=25,在室溫下為粉末狀。製成之習知紅色用膽固醇液晶 選擇性反射之主波長λΐ»約為610nm,^11=0.22。另外,向列 液晶L C η ’及旋光性材料c H r,、C Η Γ等使用通長市售之材料。 如此,習知監色用及紅色用之膽固醇液晶之旋光性(R) 26 1317032 相同,而與習知之綠色用膽固醇液晶之旋光性(L)相異。另 外,關於旋光性材料之含有率,習知之綠色用膽固醇液晶 比習知之紅色用膽固醇液晶高,而習知之藍色用膽固醇液 晶又比習知之綠色用膽固醇液晶更高。 5 接著,將調製成之習知藍、綠、紅色用各膽固醇液晶 封入具有與本實施形態之液晶顯示元件相同構造之比較用 液晶顯不元件(未圖不)之各液晶層中。 第8及第9圖,比較本實施形態之液晶顯示元件1與比較 用液晶顯示元件,顯示其顯示特性之改善效果。 10 第8圖顯示垂直螺旋狀態下紅色用液晶層3r之反射率 (散射)。橫軸顯示反射光之波長(nm),縱軸顯示散射(%)。 圖中之曲線A,顯示本實施形態之液晶顯示元件1之紅色用 液晶層3r之散射特性,圖中之曲線B,則顯示習知之液晶顯 示元件之紅色用液晶層之散射特性。本實施形態之液晶顯 15 示元件1之紅色用液晶層3r之Δη值為0.23,而習知之液晶顯 示元件之紅色用液晶層3r之Δη值為0.29,是大致相等之值。 然而,如第8圖所示,可知本實施形態之液晶顯示元件1之 紅色用液晶層3r在垂直螺旋狀態下之反射率,也就是所謂 散射在測定波長之全範圍中,比習知之紅色用液晶層低 20 30%到60%左右。 第9圖顯示本實施形態之液晶顯示元件1及習知之液晶 顯示元件在垂直螺旋狀態下藍、綠、紅色用之各液晶層之 散射特性之比較。橫方向顯示本實施形態之液晶顯示元件 1 (新液晶)及習知之液晶顯示元件(習知液晶)。圖中令顯示 27 1317032 紅色用液晶層之散射特性,顯示綠色用液晶層之散射特 性’ ▲顯不藍色用液晶層之散射特性。如第9圖所示,本實 施形態之液晶顯示itw之藍、綠、紅色狀各液晶層在垂 直螺旋狀態下之散射特性,全部比習知之液晶顯示元件在 5垂直螺旋狀態下之散射特性低。具體而言,紅色用液晶層 3r之散射比習知者降低了約6〇%左右,綠色用液晶層及藍色 用液晶層3g、3b之散射比習知者降低了約1〇%左右。另外, 藍色用液晶層之散射降低之原因,在於本實施形態中液晶 顯示元件1之旋光性材料之Δη值小於向列液晶之Δη值之緣 10故,從經驗巾已得知Δη有如此之關係,可適當地減低散射。 另外,反射率之測定是以使用反射型分光測器測定視 感反射率(Υ值)來進行。消去顏色時之丫值越小則在透明時 之黑色顯示越良好,而顯示顏色時γ值越大則顏色之顯示越 良好。而對比是以(水平螺旋狀態下之γ值/垂直螺旋狀態下 15 之Υ值)來算出。 依據本實施形態,可得到如下之作用效果。 首先,旋光性材料之含有率越高’則液晶分子之扭曲 會越劇烈,縮短螺旋間距使水平螺旋狀態下反射光之波長 越短。因此,習知之膽固醇液晶之旋光性材料含有率,是 20綠色用比藍色用低,紅色用又比綠色用低(參見第7圖)。 然而,如第1圖所示,膽固醇液晶使用旋光性材料含有 率相對較低者之紅色用液晶層,會發生體區域之液晶分子 33b之螺旋軸之方向及螺旋構造之差異大之問題。 因此,本實施形態中,以較配向限制力可傳導到體區 28 1317032Since the green display portion 6g and the red display portion color display portion have the same structure, the description thereof will be omitted. The red display portion is provided with a visible light absorbing layer 15 on the outer surface (back surface) of the lower substrate 9, r. Therefore, when the liquid crystal layers of the mouth, green, and red are all in the vertical spiral state, the display screen of the liquid crystal display element 可 can display black. In addition, the visible light absorbing layer 15 can be provided as needed. The inner electrodes 7b, 7g, and 7r are connected to a scan electrode '_circuit 25 that drives a plurality of scan electrode thresholds, %, 17 turns, and the scan electrode (four) circuit 25 § = uses a driver IC. Further, the lower substrate 9b, 9" is connected to the data electrode driving circuit I" for driving the electric power (four) b, 19g, 19r. The gross driving circuit 27 is provided with (four) electrodes (four) moving 1 C. The driving electric power 20 1317032 roads 25, 27 According to the predetermined signal outputted by the control circuit 23, the scanning signal or the data signal is output to the predetermined scanning electrodes 17b, 19b, 19g, or the data electrode. In the embodiment, the liquid crystals for blue, green and red can be used. The voltage of the sound 5 is set to be substantially the same. Therefore, the predetermined output terminal of the scan electrode driving circuit 25 and the scan electrodes 17b, 17g, and the pre-input terminals of π are connected in common. Since blue, green, red 6g, 6r do not need to be individual Since the scanning electrode driving circuit % is provided, the configuration of the driving circuit of the liquid crystal display element 1 can be simplified. Next, the driving method of the liquid crystal display element will be described with reference to FIGS. 5 and 6. FIG. 5 shows the driving waveform of the liquid crystal display element. For example, the fifth image is a driving waveform in which the cholesteric liquid crystal is in a horizontal spiral state, and the fifth signal is a driving waveform in which the cholesteric liquid crystal is in a vertical spiral state. In the mp;) and _, the upper part of the figure shows the data signal output voltage waveform vd outputted by the data electrode driving circuit 27, and the middle part shows the scanning signal voltage waveform Vs of the scanning electrode driving circuit 25. The lower part display is applied to blue, green, The voltage waveform Vlc is applied to any one of the liquid crystal layer sun, 3g, and 3r. In addition, in the fifth (8) and (8) diagrams, the time is displayed from left to right, and the voltage is displayed in the vertical direction. Fig. 6 shows the liquid crystal of cholesterol. An example of the voltage-reflectance characteristic. The horizontal axis shows the voltage value (V) applied to the cholesterol solid solution liquid crystal, and the vertical axis shows the reflectance (%) of the cholesteric liquid crystal. The curve p shown in Fig. 6 shows that the initial state is The voltage-reflectance characteristic of the cholesteric liquid crystal in the horizontal spiral state, the curve FC of the dotted line, shows the voltage-reflectance characteristic of the cholesteric liquid crystal when the initial state is the vertical spiral state. 21 1317032 Here, the blue color shown in Fig. 3 The case where the blue (8) pixel (u) of the intersection of the first column data electrode 19b of the color display portion 6b and the blue (8) pixel (u) of the intersection portion of the scanning electrode nb of the first row is applied as an example will be described. As shown in Fig. 5(4), When the selection period of the scan electrode 17b of the first order is selected, the period 5 of about 1/2 of the first half is +32 V with respect to the data signal voltage Vd, and the scanning signal voltage Vs 曰 becomes ον, and in the latter half, about 1/2. During the period, the data signal voltage Vd becomes 0 V, and the relative scanning signal voltage Vs becomes +32 V. Therefore, the blue liquid crystal layer 3b of the b pixel (u) is applied with a pulse voltage of ±32 V between the selection periods T1. As shown in Fig. 6, if the cholesteric liquid crystal is applied with a predetermined high voltage of VP100 (for example, 32V) to generate a strong electric field, the spiral structure of the liquid crystal molecules is completely solved. 'All liquid crystal molecules will become vertical alignment according to the direction of the electric field. (homeotropic) state. Therefore, the liquid crystal molecules of the blue liquid crystal layer 3b of the B pixel (11) become vertically aligned between the selection periods. When the selection time T1 is completed and the non-selection time T2 is entered, the [scanning electrode 17b] of the line is subjected to, for example, +28V and +4V, and the period is an applied voltage of 1/2 of the selection time. On the other hand, the data electrode 19b of the i-th column is applied with a predetermined data signal voltage vd. In Fig. 5(a), for example, voltages of +32¥ and 0V are applied to the data electrode 19b of the i-th column in the period of the selection period T1i1/2. Therefore, the blue color of the B pixel (1, 1) is applied with a liquid crystal layer to be applied with a pulse voltage of ±4 V between the non-selection periods 20 and 2. Therefore, between the non-selection period T2, when the electric field generated by the blue liquid crystal layer 3b of the B pixel (1, 1) is close to 0 °, when the liquid crystal molecules are in the vertical alignment state, the liquid crystal application voltage is from VP100 (±32 V). The change is VF0 (±4V), the electric field is sharply changed to be close to 〇, and 22 1317032, the spiral axis of the liquid crystal molecules becomes a spiral state which is oriented substantially perpendicular to the two electrodes 17b, 19b, and is selectively selected according to the helical pitch. The horizontal spiral state of the reflected light. Therefore, the blue liquid crystal layer 3b of the B pixel (1, 1) will be in a horizontal spiral state and reflect light, so the B pixel (ι, ι) will display blue 5 colors. On the other hand, as shown in Fig. 5(b), in the period of about 1/2 of the first half of the period and about 1/2 of the second half of the selection period, the data signal voltage Vd becomes 24V/8V 'scanning. The signal voltage Vs becomes 〇ν/+32ν, and the blue liquid crystal layer 3b of the B pixel (1, 1) is applied with a pulse voltage of ±24V. When a predetermined low voltage vF100b (e.g., 24V) is applied to the cholesteric liquid crystal as shown in Fig. 10, a weak electric field is generated, and the spiral structure of the liquid crystal molecules becomes a state in which the liquid crystal molecules are not completely unwound. When the non-selection period D2 is entered, the scanning electrode 17b of the first row is applied with, for example, a voltage of 1/2 of the selection time 71 and a voltage of +28 V/+4 V. The data electrode 19b is applied, for example, the period is the selection time τ. ^1/2 15 The negative signal is repeatedly Vd (for example, +24V/+8V). Therefore, the blue liquid crystal layer 3b of the pixel (1, 1) is applied with a pulse voltage of -4 V / 4 V between the non-selection periods T2. Therefore, between the non-selection periods 2, the electric field generated by the blue liquid crystal layer 3b at the B pixel (u) is close to 〇. When the spiral structure of the liquid as molecule is completely disengaged, the applied voltage of the cholesterol 20 liquid crystal changes from VF1〇〇M±24V) to VF0 (±4V), and the electric field rapidly becomes close to 〇, then the liquid crystal molecule The spiral axis is in a spiral state in a direction substantially parallel to the two electrodes 17b and 19b, and is a vertical spiral state in which incident light is transmitted. Therefore, the blue liquid crystal layer 3b of the B pixel (u) is in a vertical spiral state and penetrates light. Further, as shown in Fig. 6, 23 1317032, after applying a voltage of VP100 (V) to cause a strong electric field in the liquid crystal layer, the electric field is slowly removed, and the cholesteric liquid crystal can be made into a vertical spiral state. The driving voltage is an example. When a pulse voltage of 30 to 35 V and an effective effective time of 2 〇ms is applied between the two electrodes 17b and 19b at room temperature, the liquid crystal layer of the blue five-color liquid crystal layer becomes selective reflection. State (horizontal spiral state) 'If the actual effective time of applying a pulse voltage of 15 to 22 V is 2 〇 ms ', it will become a good penetration state (vertical spiral state). Driving the green (G) pixel and the red (R) pixel in the same manner as the driving of the B pixel (1, 1) can be performed on the pixel (u) 10 having three blue, green, and red pixels (u) laminated thereon. Display color. In addition, so-called sequential driving is performed on the scanning electrodes 17b, 17g, and 17r from the first row to the nth behavior, and the data voltage of each of the poor electrodes 19 in each row is rewritten, and the pixels (11) can be rotated. The display of all the data up to the pixel (nm) realizes the color display of one frame (displayed face). Further, by applying an electric field of medium intensity to the cholesteric liquid crystal, the electric field is removed in an imminent manner, and the intermediate state of the horizontal spiral state and the vertical spiral state is mixed, whereby the full color display can be performed. Next, an example of a method of manufacturing the liquid crystal display element 1 will be briefly described. ITO transparent electrodes were formed on two polycarbonate (pc) film substrates cut to a size of 1 〇 (cm) x 8 (CIn), and patterned by etching to form strips of 2 mm 〇.24 mm, respectively. Electrode (scan electrode 17 or data electrode 19). A strip-shaped electrode was formed on each of the two PC film substrates to perform QVGA display of 32 〇χ 24 〇 pixels. Next, on the two pc film substrates 7, 9 respectively, the strip electrodes are formed on the bright electrodes 17, 19 by a spin coating method to apply an alignment film material having a thickness of about 7 Å to the polyimine. Next, the two PC film substrates 7, 9 to which the alignment film 24 1317032 material has been applied are baked in a 9 (rc furnace) to form an alignment film. Next, on one of the PC film substrates 7 or 9. In the peripheral portion, a wall having a predetermined height is formed by using the DISPENCER coating as the epoxy-based sealing material 21. Next, a spacer having a diameter of 4 μm is dispensed to the other PC film substrate 9 or 7 (manufactured by the company). The 2#pc film substrate 7, 9' was heated at 160 ° C for 1 hour, and the package material 21 was cured. Then, the blue cholesteric liquid crystal LC b was injected by a vacuum injection method, and the inlet was sealed with an epoxy-based package. The blue display portion 6b is produced, and the G and red 10 display portions 6g and 6r are produced in the same manner. Next, as shown in Fig. 4, blue, green, and red are laminated in the order of 6b and 6g '6r from the display surface side. The display unit is connected to the terminal portion of the scanning electrode π of the blue, green, and red display portions 6b, 6g, and 6r, and the terminal portion of the data electrode 19, which is a TCP (tape-wrap) structure. 1C, then 5 is connected to the power circuit and the control circuit 23. Thus, the completion is The liquid crystal display element 1 of the QVGA display is displayed. Although not shown in the drawing, the completed liquid crystal display element 1 is further provided with an input/output device and a control device (not shown) for the overall control. Next, the liquid crystal composition of the present embodiment having the above-described configuration and operation 20 and the display characteristics of the liquid crystal display element 1 having the liquid crystal composition, which are produced by the above-described production method, will be described in comparison with a comparative example. The material ratio of the conventional liquid crystal composition using the comparative example is shown in Fig. 7. Fig. 7(a) shows the composition ratio of the conventional blue cholesteric liquid crystal used for the blue liquid crystal layer, the seventh (b) The figure shows the composition ratio of the conventional green cholesteric liquid crystal used for the green liquid crystal 25 1317032 layer, and the 7th (c) figure shows the composition ratio of the conventional red cholesteric liquid crystal used for the red liquid crystal layer. The conventional blue cholesteric liquid crystal shown in the figure is produced by adding an optical material CHr of a R body to a nematic liquid crystal LCn of a predetermined weight, and is produced by the optical material CHr'. 30% by weight. Nematic liquid crystal LC, n, Δη=0·20 ' Δε=20, viscosity at room temperature μ=37 (πιΡα · s). Optically active material CHr, Δη=〇.29 Δε=22, which is in the form of a powder at room temperature. The conventional blue wavelength of the selective reflection of cholesteric liquid crystal is about 48 〇nm, Δη=0.23. 1〇(7) It is known that a green cholesteric liquid crystal is produced by adding an L-form optically active material CH1 to a predetermined weight of nematic liquid crystal LCn'. The optically active material CH1 has a content of 26% by weight. The nematic liquid crystal LCn is the same as the user of the blue cholesteric liquid crystal. The optically active material CH1 has the same Δη value and Δε value as the optically active material CHr, and is powdery at room temperature. The conventional wavelength of λ ΐ 3 is approximately 560 nm, Δn = 0.22. The conventional red cholesteric liquid crystal shown in Fig. 7(a) is produced by adding a r-type optically active material cHr" to a predetermined weight of the nematic liquid crystal LCn'. The content of the optically active material CHr" is 24% by weight. . The nematic liquid crystal LCn is the same as the user of the blue 20 cholesteryl liquid crystal. The optically active material CHr", which has An = 〇.29, Α ε = 25, is powdery at room temperature. The dominant wavelength of the conventional red cholesteric liquid crystal is λ ΐ » about 610 nm, ^ 11 = 0.22 In addition, the nematic liquid crystal LC η ' and the optically active materials c H r, C Η Γ, etc. are commercially available materials. Thus, the optical rotation (R) of the cholesteric liquid crystal for color control and red color is used. 1317032 is the same, and is different from the conventional green chromotropic liquid crystal (L). In addition, regarding the content of optically active materials, the conventional green cholesteric liquid crystal is higher than the conventional red cholesteric liquid crystal, and the conventional blue color. Cholesterol liquid crystal is higher than the conventional green color cholesteric liquid crystal. 5 Next, the conventional blue liquid, green, and red are prepared by encapsulating each of the cholesteric liquid crystals with the liquid crystal display element having the same structure as that of the liquid crystal display element of the present embodiment. In the liquid crystal layers of the elements (not shown), in the eighth and ninth aspects, the liquid crystal display element 1 of the present embodiment and the liquid crystal display element for comparison are compared, and the display characteristics are improved. 10 Fig. 8 shows the vertical snail The reflectance (scattering) of the red liquid crystal layer 3r in the state of rotation, the horizontal axis shows the wavelength (nm) of the reflected light, and the vertical axis shows the scattering (%). The curve A in the figure shows the liquid crystal display element 1 of the present embodiment. The scattering characteristic of the red liquid crystal layer 3r, and the curve B in the figure, shows the scattering characteristics of the red liquid crystal layer of the conventional liquid crystal display element. The liquid crystal display 15 of the present embodiment shows the Δη value of the red liquid crystal layer 3r of the element 1. The Δη value of the red liquid crystal layer 3r of the conventional liquid crystal display device is 0.29, which is substantially equal. However, as shown in Fig. 8, the red liquid crystal layer of the liquid crystal display element 1 of the present embodiment is known. The reflectance of 3r in the vertical spiral state, that is, the scattering in the entire range of the measurement wavelength, is about 30% to 60% lower than the conventional red liquid crystal layer. Fig. 9 shows the liquid crystal display element 1 of the present embodiment. Comparison of scattering characteristics of liquid crystal display elements of the conventional liquid crystal display elements in blue, green, and red in a vertical spiral state. The liquid crystal display element 1 (new liquid crystal) of the present embodiment and the conventional one are displayed in the horizontal direction. Crystal display element (conventional liquid crystal). The figure shows the scattering characteristics of the liquid crystal layer of 27 1317032 red, showing the scattering characteristics of the green liquid crystal layer ' ▲ the scattering characteristics of the blue liquid crystal layer. As shown in Fig. 9. The scattering characteristics of the liquid crystal layers of the blue, green, and red liquid crystal layers of the present embodiment in the vertical spiral state are lower than those of the conventional liquid crystal display elements in the five vertical spiral states. Specifically, red The scattering by the liquid crystal layer 3r is reduced by about 6% by the conventional one, and the scattering of the green liquid crystal layer and the blue liquid crystal layers 3g and 3b is reduced by about 1% by the conventional one. The reason why the scattering of the liquid crystal layer is lowered is that the Δη value of the optically active material of the liquid crystal display element 1 in the present embodiment is smaller than the Δη value of the nematic liquid crystal. Therefore, it is known from the experience towel that Δη has such a relationship, and Ground reduces scattering. Further, the reflectance was measured by measuring the visual reflectance (Υ value) using a reflection type photodetector. The smaller the 丫 value when the color is erased, the better the black display when transparent, and the better the γ value is displayed when the color is displayed. The comparison is calculated as (the γ value in the horizontal spiral state/the Υ value in the vertical spiral state). According to this embodiment, the following effects can be obtained. First, the higher the content of the optically active material is, the more severe the distortion of the liquid crystal molecules will be, and the shorter the helical pitch is, the shorter the wavelength of the reflected light in the horizontal spiral state is. Therefore, the content of the optically active material of the conventional cholesteric liquid crystal is 20 green is lower than blue, and red is lower than green (see Fig. 7). However, as shown in Fig. 1, the red liquid crystal layer having a relatively low content of the optically active material in the cholesteric liquid crystal has a problem that the difference in the direction of the spiral axis and the spiral structure of the liquid crystal molecules 33b in the body region is large. Therefore, in this embodiment, the restraining force can be transmitted to the body region by a relatively more restrictive force. 28 1317032
雜訊。另外, ’膽固醇液晶之相對阻抗值R,宜在101QSRSNoise. In addition, the relative impedance value R of the cholesteric liquid crystal should be at 101QSRS.
【圖式簡單說明】 第1(a)〜(c)圖係模式化顯示習知之藍、綠、紅色用之 各液晶層在垂直螺旋狀態時液晶分子之狀態。 第2(a)〜(c)圖係顯示本發明一實施形態中液晶組成物 10所含有材料之組成比例之圖。 第3圖係顯示本發明一實施形態之液晶顯示元件1之概 略構造之圖。 第4圖係模式晝化顯示本發明一實施形態之液晶顯示 元件1之截面構造之圖。 15 第5(a)、(b)圖係顯示本發明一實施形態之液晶顯示元 件1驅動波形之一例之圖。 第6圖係顯示本發明一實施形態之液晶組成物之電 壓一反射率特性之一例之圖。 第7(a)〜(c)圖係顯示習知之液晶組成物所含有材料之 20 組成比例之圖。 第8圖係顯示本發明一實施形態之液晶顯示元件1在垂 直螺旋狀態時紅色用液晶層之反射率(散射)之圖。 第9圖係顯示本發明一實施形態之液晶顯示元件丨與習 知之液晶顯示元件之藍、綠、紅色用之各液晶層之散射之 31 1317032 比較例之圖。 第1 〇圖係模式化顯示習知之可全彩顯示液晶顯示元件 之截面構造之圖。 第11(a)、(b)圖係模式化顯示習知之液晶顯示元件之截 5 面構造之圖。 第12圖係顯示習知之液晶顯示元件在水平螺旋狀態時 之反射光譜一例之圖。 第13(a)、(b)圖係顯示習知之液晶顯示元件之折射率異 向性Δη與液晶層光反射關係之圖。 10 【主要元件符號說明】 1...液晶顯不元件 47、49...基板 15...可見光吸收層 6b、46B...藍色顯示部 17r、17g、17b.··掃描電極 6g、46G...綠色顯示部 19r、19g、19b··.資料電極 6r、46R...紅色顯示部 21r、21g、21b...封裝材 7b、7g、7r...上基板 23...控制電路 9b、9g、9r...下基板 25. ·.掃描電極驅動電路 27.. .貢料電極驅動電路 31.. .液晶層 CHr、CHrl、CHr’、CHr”...R 體旋光性材料 CHI、CH11、CHI’.·丄體旋光性 材料 33、33b、33s...液晶分子 LCb...藍色用膽固醇液晶 3b、43B...藍色用液晶層 3g、43G...綠色用液晶層 3r、43R...紅色用液晶層 41...脈衝電壓源 LCg...綠色用膽固醇液晶 LCr...紅色用膽固醇液晶 LCn、LCn’…向歹1J液晶 32BRIEF DESCRIPTION OF THE DRAWINGS The first (a) to (c) patterns schematically show the state of liquid crystal molecules in the vertical spiral state of the respective liquid crystal layers for blue, green, and red. 2(a) to 2(c) are views showing the composition ratio of the material contained in the liquid crystal composition 10 in the embodiment of the present invention. Fig. 3 is a view showing a schematic configuration of a liquid crystal display element 1 according to an embodiment of the present invention. Fig. 4 is a view showing a cross-sectional structure of a liquid crystal display element 1 according to an embodiment of the present invention. 15(a) and 5(b) are views showing an example of a driving waveform of the liquid crystal display element 1 according to the embodiment of the present invention. Fig. 6 is a view showing an example of voltage-reflectance characteristics of a liquid crystal composition according to an embodiment of the present invention. Figures 7(a) to (c) are diagrams showing the composition ratio of the materials contained in the conventional liquid crystal composition. Fig. 8 is a view showing the reflectance (scattering) of the red liquid crystal layer in the vertical spiral state of the liquid crystal display element 1 according to the embodiment of the present invention. Fig. 9 is a view showing a comparative example of the scattering of the liquid crystal display element of the embodiment of the present invention and the liquid crystal layers for blue, green and red of the conventional liquid crystal display element 31 1317032. The first diagram schematically shows a cross-sectional structure of a conventional full-color display liquid crystal display element. The 11th (a) and (b) drawings schematically show a cross-sectional view of a conventional liquid crystal display element. Fig. 12 is a view showing an example of a reflection spectrum of a conventional liquid crystal display element in a horizontal spiral state. Figs. 13(a) and (b) are views showing the relationship between the refractive index anisotropy Δη of the conventional liquid crystal display element and the light reflection of the liquid crystal layer. 10 [Description of main component symbols] 1: Liquid crystal display elements 47, 49... Substrate 15... Visible light absorbing layers 6b, 46B... Blue display portions 17r, 17g, 17b. Scan electrodes 6g 46G...green display portions 19r, 19g, 19b·.data electrodes 6r, 46R...red display portions 21r, 21g, 21b...packaging materials 7b, 7g, 7r...upper substrate 23... Control circuit 9b, 9g, 9r... lower substrate 25. Scan electrode driving circuit 27.. tributary electrode driving circuit 31.. liquid crystal layer CHr, CHrl, CHr', CHr"...R body Optically active materials CHI, CH11, CHI'.. steroidal optically active materials 33, 33b, 33s... liquid crystal molecules LCb... blue cholesteric liquid crystals 3b, 43B... blue liquid crystal layers 3g, 43G. .. green liquid crystal layer 3r, 43R... red liquid crystal layer 41... pulse voltage source LCg... green cholesteric liquid crystal LCr... red cholesteric liquid crystal LCn, LCn'... 歹1J liquid crystal 32