JP4621379B2 - 蒸発器 - Google Patents

蒸発器 Download PDF

Info

Publication number
JP4621379B2
JP4621379B2 JP2001144729A JP2001144729A JP4621379B2 JP 4621379 B2 JP4621379 B2 JP 4621379B2 JP 2001144729 A JP2001144729 A JP 2001144729A JP 2001144729 A JP2001144729 A JP 2001144729A JP 4621379 B2 JP4621379 B2 JP 4621379B2
Authority
JP
Japan
Prior art keywords
temperature
gas
heat exchange
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001144729A
Other languages
English (en)
Other versions
JP2002340484A (ja
Inventor
忠史 佐藤
篤 小林
伸之 高橋
直良 石川
利行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2001144729A priority Critical patent/JP4621379B2/ja
Publication of JP2002340484A publication Critical patent/JP2002340484A/ja
Application granted granted Critical
Publication of JP4621379B2 publication Critical patent/JP4621379B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温液化ガスを気化させる蒸発器に関し、詳しくは、気化ガスの温度を安定した状態にすることができる蒸発器に関する。
【0002】
【従来の技術】
一般に、比較的大量のガス、例えば窒素、酸素、アルゴン等のガスを使用する設備では、低温液化ガス貯槽内に充填した液体窒素、液体酸素、液体アルゴン等の低温液化ガスを蒸発器で気化させて使用するようにしている。低温液化ガスを気化させる蒸発器としては、大気を熱媒体とした空温式蒸発器や、温水を熱媒体とした温水式蒸発器、高温・高圧のスチームを熱媒体としたスチーム式蒸発器が用いられている。
【0003】
汎用的な蒸発器である空温式蒸発器は、熱交換器の材質として熱伝導率が高いアルミニウムを用いており、周囲にフィンを有するアルミニウム製配管を、必要な熱交換能力に応じて複数本組合わせた構造となっている。配管内を流れる低温液化ガスは、フィンを介して大気と熱交換を行うことにより気化するので、空温式蒸発器の熱交換能力は、熱交換するフィンの面積、すなわち、配管のトータル的な長さにより調節される。
【0004】
この空温式蒸発器は、低温液化ガスを大気との熱交換によって気化させるため、熱源が不要であり、汎用的に使用されている。しかし、設置場所の大気温度が低い場合には熱交換能力が小さくなり、大気温度によって能力が左右されるという問題があった。また、熱交換能力を大きくするために配管数を増やしたり、長くしたりすることは、蒸発器自体の大型化を招くため、他の形式の蒸発器に比べて設置スペースを要するという問題がある。
【0005】
スチーム式蒸発器は、スチームが導入される密閉容器内に熱交換用の配管を気密に配置し、この配管内に低温液化ガスを流すとともに容器内にスチームを導入し、スチームとの熱交換によって低温液化ガスを気化させるようにしている。スチームとしては、一般に、0.3MPa、120℃のスチームが用いられている。このスチーム式蒸発器は、熱交換効率が高く、スチームが供給できれば、設置場所は環境に限定されることがなく、しかも、装置はコンパクトになるという特徴を有している。しかし、熱交換前後のスチームの温度差が大きく、気化したガスの温度制御幅が広くなるという問題がある。
【0006】
また、温水式蒸発器は、所定温度の温水を入れた容器内に熱交換用の配管を気密に配置し、この配管内に低温液化ガスを流して熱交換させるものであって、熱交換によって温水から奪われる熱の補充は、一般にヒーターによって行うようにしている。この温水式蒸発器は、気化したガスの温度制御幅を狭くでき、しかも安定するという特徴を有している。しかし、スチーム式蒸発器に比べて容器自体が大きくなり、運転重量が嵩むために設置場所に注意を要するという問題がある。
【0007】
【発明が解決しようとする課題】
上述のように、従来の蒸発器では、安定した温度でガスを供給できる小型の蒸発器で適当なものがなく、略一定温度のガスを大量に供給する場合は、大型の温水式蒸発器を使用せざるを得なかった。このため、例えば、供給するガスの用途がガスタンク等の気密テストのように、スポット的なガス使用で、しかも大量のガスを必要とし、さらに、大気温度に近いガスの供給が望まれる場合は、供給ガス温度が比較的高く、ガス温度の制御も困難なスチーム式蒸発器を使用することはほとんどなく、大型の空温式蒸発器や温水式蒸発器を現地に搬送し、蒸発器の組立てや配管の接続を現地で行ってからガスの供給を開始するようにしている。
【0008】
したがって、現地において蒸発器を設置するためのスペースを必要とするだけでなく、機器の搬入からガス供給の開始までに相当の時間を必要とし、機器の運搬や組立て等に要するコストも多大なものとなっていた。
【0009】
そこで本発明は、スチームを利用した熱交換器の熱交換効率の高さを利用しながら、安定した温度でガスを供給することができ、さらに、温水を利用した熱交換器における気化ガスの温度安定性を組合わせることにより、小型高性能で、より温度安定性に優れた蒸発器を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の蒸発器は、第1の構成として、低温液化ガスを熱媒体と熱交換させることにより加温して気化させる蒸発器において、熱媒体が導入される容器内に前記低温液化ガスが導入される熱交換器を収納した主熱交換槽と、熱媒体が導入される容器内に低温液化ガスの一部が導入される熱交換器を収納した温調用熱交換槽と、前記主熱交換槽の熱交換器に低温液化ガスを導入する低温液化ガス導入経路と、該低温液化ガス導入経路から分岐し、流量調節弁を介して前記温調用熱交換槽の熱交換器に低温液化ガスを導入する温調用低温液化ガス導入経路と、前記主熱交換槽の熱交換器で気化したガスを導出する気化ガス導出経路と、前記温調用熱交換槽の熱交換器で気化したガスを導出する温調用気化ガス導出経路と、前記気化ガス導出経路のガスと前記温調用気化ガス導出経路のガスとを合流混合させてガス使用先に供給するガス供給経路と、該ガス供給経路を流れる供給ガスの温度を測定する温度測定手段と、該温度測定手段の測定温度に基づいて前記温調用低温液化ガス導入経路の流量調節弁を開閉制御する制御手段とを備えていることを特徴とし、さらに、前記温調用熱交換槽の熱交換能力を、前記主熱交換槽の熱交換能力と異なった能力に設定したことを特徴としている。
【0011】
また、本発明の蒸発器における第2の構成は、低温液化ガスを熱媒体と熱交換させることにより加温して気化させる蒸発器において、前記蒸発器は、熱媒体としてスチーム層及び温水層を有する少なくとも一つの熱交換槽内に、前記温水層内に配置されて前記低温液化ガスが導入される第一熱交換器と、前記スチーム層内に配置されて該第一熱交換器で熱交換後のガスが導入される第二熱交換器と、前記温水層内に配置されて前記第二熱交換器で熱交換後のガスが導入される第三熱交換器とを収納したことを特徴としている。
【0012】
さらに、上記構成において、前記第二熱交換器で熱交換後のガスの温度が、該蒸発器から導出されるガスの設定温度よりも高く設定され、前記第三熱交換器で熱交換後のガスの温度が、第二熱交換器で熱交換後のガスの温度より低く設定されていることを特徴としている。また、前記蒸発器から導出したガスの温度を測定する温度測定手段と、前記熱交換槽内にスチームを供給するボイラーと、前記温度測定手段で測定したガスの温度に基づいて前記熱交換槽内に供給するスチーム量を調節するスチーム供給量調節手段とを備えていることを特徴としている。
【0013】
【発明の実施の形態】
図1は、本発明の蒸発器の第1形態例を示す系統図である。この蒸発器は、主熱交換槽10と温調用熱交換槽20とを並列に設置したものであって、主熱交換槽10で気化したガスと温調用熱交換槽20で気化したガスとを適当に混合することによって所定温度のガスを供給するように形成されている。
【0014】
両熱交換槽10,20は、断熱構造を有する金属製密閉容器11,21内に、低温液化ガスが導入される熱交換器12,22をそれぞれ収納したものであって、各容器11,21には、ボイラーBで発生させたスチームを熱媒体として容器内に導入するスチーム導入管13,23と、熱交換によりスチームが凝縮して生じた水を容器内から抜取り、ボイラーに戻すドレン14,24とがそれぞれ設けられている。
【0015】
また、前記主熱交換槽10に設けられた熱交換器12の下部入口部には、低温液化ガス貯槽C等から供給される低温液化ガスを導入する低温液化ガス導入経路15が接続され、上部出口部には、熱交換器12内で気化したガスを導出する気化ガス導出経路16が接続されている。一方、温調用熱交換槽20に設けられた熱交換器22の下部入口部には、前記低温液化ガス導入経路15から分岐した温調用低温液化ガス導入経路25が流量調節弁27を介して接続され、上部出口部には、熱交換器22内で気化したガスを導出する温調用気化ガス導出経路26が接続されている。
【0016】
前記気化ガス導出経路16と温調用気化ガス導出経路26とは合流してガス供給経路17となり、このガス供給経路17を通してユーザーのガス使用設備にガスが供給される。また、ガス供給経路17には、供給するガスの温度を測定する手段である温度指示調節計(TIC)31が設けられている。この温度指示調節計31は、その指示値、測定値に基づいて前記流量調節弁27の開閉を制御し、温調用低温液化ガス導入経路25を流れて温調用熱交換槽20の熱交換器22に導入する低温液化ガス量を調節するように形成されている。
【0017】
なお、前記各熱交換槽10,20における容器11,21の容積や熱交換器12,22の形状、スチーム導入量等の各種条件は、蒸発器に求められる供給ガス量(蒸発量)や供給ガスの温度範囲等に応じて設計されるが、主熱交換槽10の熱交換能力と温調用熱交換槽20の熱交換能力とが異なるようにしておくことにより、供給ガスの温度調整をより容易に行うことができる。各熱交換槽における熱交換能力は、例えば、熱交換器の熱交換面積を大きくしたり、熱交換器内を流れるガスの流速を遅くしたり、スチームの導入量を多くしたりすることにより、熱交換能力を高めることができる。
【0018】
また、前記スチーム導入管13,23には、スチーム導入量を調節する調節弁13V、23Vがそれぞれ設けられているが、通常は所定の開度で常時開となっており、所定量のスチームが各容器11,21内に連続導入されている。
【0019】
このように形成した蒸発器を使用して所定温度のガスを所定流量で供給するには、まず、各容器11,21内に所定温度及び圧力のスチームをそれぞれ所定量ずつ導入する。このときの各容器11,21へのスチーム導入量は、低温液化ガスの蒸発量及び供給ガスの温度に応じて設定すればよいが、通常は、主熱交換槽10から導出されるガスの温度が供給ガスの設定温度より高くなるようにし、温調用熱交換槽20から導出されるガスの温度が供給ガスの設定温度より低くなるようにしておく。
【0020】
この状態で低温液化ガス貯槽C等からの低温液化ガスの供給を開始する。主熱交換槽10及び温調用熱交換槽20への各低温液化ガスの供給割合は、温度指示調節計31により制御される。すなわち、主熱交換槽10から導出した設定温度より高い温度のガス(高温ガス)と、温調用熱交換槽20から導出した設定温度より低い温度のガスとの混合割合を調節することにより、供給ガスの温度を所望の温度に調節することができる。
【0021】
例えば、温度指示調節計31で測定した供給ガスの温度が設定温度を超えたら流量調節弁27を開方向に作動させる。これにより、温調用熱交換槽20への低温液化ガス供給量が増加して主熱交換槽10への低温液化ガス供給量が減少し、結果的に、主熱交換槽10で気化した高温ガスの流量が減少するとともに温調用熱交換槽20で気化した低温ガスの流量が増加するので、両者が混合した供給ガスの温度が下がることになる。同様に、供給ガスの測定温度が設定温度以下になったら、流量調節弁27を閉方向に作動させることにより、供給ガスの温度を上昇させることができる。
【0022】
なお、同一構成の蒸発器であっても、各容器11,21内へのスチーム導入量を調節することにより、主熱交換槽10から導出するガスの温度を供給ガスの設定温度より低くし、温調用熱交換槽20から導出するガスの温度を供給ガスの設定温度より高くしておくことができる。この場合は、供給ガスの測定温度が設定温度を超えたら流量調節弁27を閉方向に作動させて温調用熱交換槽20からの高温ガスの混合割合を少なくする。また、上記説明では、各容器11,21内に所定量のスチームを連続導入するようにしたが、各熱交換槽10,20の適当な位置の温度や各導出ガスの温度を検出し、これに基づいて調節弁13V、23Vを開閉し、スチームを間欠的に導入したり、スチームの導入量を調節したりしてもよい。
【0023】
このように、熱媒体としてスチームを使用する場合であっても、主熱交換槽10から導出したガスと温調用熱交換槽20から導出したガスとの混合割合を調節することにより、供給ガスの温度を設定温度範囲に制御することが可能となる。そして、スチームを使用することにより、その熱交換率の高さを活かして蒸発器の小型化を図ることができ、ボイラーを含めた蒸発器ユニットとして形成することができ、現地への運搬や設置も容易に行うことができ、ガス使用設備へのガス供給も短時間で開始することができる。
【0024】
また、本形態例では、低温液化ガスを気化させて加温するための熱媒体としてスチームを使用したが、各容器内でスチームと温水とが共存した状態になっていてもよい。この場合、温水の加熱はスチームによって行うことができるが、ヒーターによる加熱を併用してもよい。さらに、蒸発器の大きさよりも供給ガス温度の安定性が要求される場合は、熱媒体として温水を用いることも可能である。
【0025】
図2は、本発明の蒸発器の第2形態例を示す系統図である。この蒸発器は、温水式蒸発器及びスチーム式蒸発器の双方の利点を活かして、小型でありながら温度安定性に優れた蒸発器を形成したものである。
【0026】
本形態例に示す蒸発器は、スチーム及び温水を熱媒体とする第一熱交換槽51と、スチームを熱媒体とする第二熱交換槽52とを組合わせたものであって、両熱交換槽51,52は、前記形態例と同様に、断熱構造を有する金属製密閉容器51a,52a内に、低温液化ガスが導入される第一乃至第三熱交換器53,54,55をそれぞれ収納するとともに、ボイラーBで発生させたスチームを容器内に導入するスチーム導入管56,57と、熱交換によりスチームが凝縮して生じた水を容器内から抜取り、ボイラーに戻すドレン58,59とがそれぞれ設けられている。
【0027】
前記各熱交換器は、ガスの流れ方向に対して、第一熱交換器53、第二熱交換器54、第三熱交換器55の順で直列に設けられており、第一熱交換器53及び第三熱交換器55は、下部が第一熱交換槽51の温水層W内に、上部がスチーム層S内に、それぞれ位置しており、第二熱交換器54は、そのほとんどが第二熱交換槽52のスチーム層S内に位置している。
【0028】
低温液化ガス貯槽C等から供給される低温液化ガスは、低温液化ガス導入経路61を通って第一熱交換器53に下部から流入し、最初に温水、次いでスチームと熱交換を行うことによって気化し、第一熱交換器53の上部から低温ガス経路62に導出する。低温ガス経路62のガスは、第一熱交換槽51を出て第二熱交換槽52に向かい、第二熱交換槽52内の第二熱交換器54に下部から流入してスチームと熱交換を行い、所定温度に加温されて高温ガス経路63に導出する。高温ガス経路63のガスは、第二熱交換槽52から再び第一熱交換槽51に入り、第一熱交換槽51内の第三熱交換器55に上部から流入する。この第三熱交換器55に流入したガスは、スチームと熱交換を行った後、温水と熱交換を行うが、最後に熱容量の大きな温水と熱交換を行うことにより温度調節され、安定した温度状態となって第三熱交換器55からガス供給経路64に導出し、ユーザーのガス使用設備に供給される。
【0029】
また、供給ガスの温度制御を行うための手段として、前記ガス供給経路64には、第一熱交換槽51にスチームを供給する第一スチーム導入管56の第一流量調節弁56Vを制御する第一温度指示調節計(TIC)65が設けられ、前記高温ガス経路63には、第二熱交換槽52にスチームを供給する第二スチーム導入管57の第二流量調節弁57Vを制御する第二温度指示調節計66が設けられている。
【0030】
第一温度指示調節計65は、供給ガスの温度が設定温度より低下したら第一流量調節弁56Vを開方向に作動させ、スチーム供給量を増加させて第一熱交換槽51内のスチーム層S及び温水層Wの温度を上昇させる。同様に、第二温度指示調節計66は、高温ガス経路63を流れるガスの温度が設定温度より低下したら第二流量調節弁57Vを開方向に作動させ、スチーム供給量を増加させて第二熱交換槽52内のスチーム層Sの温度を上昇させる。逆に各ガスの温度が上昇したら、スチーム導入量を減少させることにより、各ガスの温度を所定温度に維持することができる。
【0031】
このように、温水層Wに下部が設置された第一熱交換器53で熱容量の大きな温水と熱交換させて低温液化ガスを気化させた後、スチーム層Sに設置された第一熱交換器53の上部及び第二熱交換器54で高温のスチームと熱交換させてガスを加温するので、小型の熱交換器で十分な加温性能を得ることができ、蒸発器全体の小型を図れる。さらに、第二熱交換器54で供給ガスの設定温度以上にガスを加温した後、最後に温水層Wに下部が設置された第三熱交換器55で熱容量の大きな温水と熱交換させて所定の供給ガス温度に調節するようにしているので、蒸発器から導出される供給ガス温度の安定化が図れる。
【0032】
また、第二熱交換器54でスチームと熱交換後のガスの温度を供給ガスの設定温度よりも高く設定し、第三熱交換器55で熱交換後のガスの温度を第二熱交換器54で熱交換後のガスの温度より低く設定しておくことにより、スチームと温水との熱容量の差及び温度差を有効に利用して効率よく安定した温度調節を行うことができる。
【0033】
なお、本形態例では、第一熱交換槽51に供給するスチームを第一スチーム導入管56からスチーム層Sに供給するようにしているが、該導入管を槽(容器)下部まで延長して温水層W内にバブリングさせて供給することもできる。
【0034】
図3は、本発明の蒸発器の第3形態例を示す系統図である。この蒸発器は、前記第2形態例と同様に、温水式蒸発器及びスチーム式蒸発器の双方の利点を活かして、小型でありながら温度安定性に優れた蒸発器を形成したものであって、第2形態例よりもさらに小型化及び装置構成の簡略化を図ったものである。
【0035】
この蒸発器は、スチーム層S及び温水層Wの二層を有する気液共存状態の熱交換槽71内に、温水層W部分に収納された第一熱交換器72と、スチーム層S部分に収納された第二熱交換器73と、温水層W部分に収納された第三熱交換器74とを設置したものであって、第一熱交換器72、第二熱交換器73及び第三熱交換器74は、ガスの流れ方向に対してこの順に直列に接続されている。
【0036】
熱交換槽71には、ボイラーBで発生したスチームをスチーム層Sに供給する第一スチーム導入管75と、温水層S内にスチームをバブリングして供給する第二スチーム導入管76とが設けられており、各スチーム管75,76には、スチーム供給量を調節するため手段として第一調節弁75V及び第二調節弁76Vがそれぞれ設けられている。また、槽底部には、ドレン水をボイラーBに戻すためのドレン77が設けられている。
【0037】
また、蒸発器で気化したガスをガス使用設備に供給するガス供給管78には、供給ガスの温度を測定して前記第一調節弁75Vを開閉制御する供給ガス温度指示調節計(TIC)81が設けられており、熱交換槽71には、温水層Sの温度を測定して前記第二調節弁76Vを開閉制御する温水温度指示調節計(TIC)82が設けられている。さらに、本形態例では、前記ガス供給管78に供給ガスの流量を測定する流量指示調節計(FIC)83を設け、この流量指示調節計83の指示値と前記温度指示調節計81の指示値とを演算器84で処理することにより、第一調節弁75Vの開閉制御を円滑にかつ的確に行えるようにしている。
【0038】
低温液化ガス貯槽C等から供給される低温液化ガスは、低温液化ガス導入経路85を通って熱交換槽71に入り、最初に、温水層W内に設置された第一熱交換器72に導入される。この第一熱交換器72では、温水層Wの温水と熱交換を行って所定温度まで加温され、低温液化ガスが気化する。第一熱交換器72で気化したガスは、続いて第二熱交換器73に導入され、ここでスチーム層Sの高温のスチームと熱交換を行い、供給ガス温度よりも高い温度に加温される。この高温のガスは、第三熱交換器74に導入され、温水層Wの温水と熱交換を行って冷却され、所定の供給ガス温度に調節される。
【0039】
第三熱交換器74で温度調節されたガスは、熱交換槽71からガス供給管78に導出され、所定圧力、所定温度の供給ガスとなってユーザーのガス使用設備に供給される。このとき、前記供給ガス温度指示調節計81及び流量指示調節計83の測定値に基づいて第一調節弁75Vが開閉制御され、スチーム層Sに供給するスチーム量が調節されるとともに、温水温度指示調節計82の測定値に基づいて第二調節弁76Vが開閉制御され、温水層Wに供給するスチーム量が調節される。これにより、ガス供給管78から供給される供給ガスの温度が所定温度に制御される。
【0040】
また、本形態例に示す蒸発器においては、温水層Wに設置した第一熱交換器72で熱容量の大きな温水と熱交換させて低温液化ガスを気化させた後、スチーム層Sに設置した第二熱交換器73で高温のスチームと熱交換させてガスを加温するので、小型の第二熱交換器73で十分な加温性能を得ることができ、蒸発器全体の小型を図れる。さらに、第二熱交換器73で供給ガスの設定温度以上にガスを加温した後、最後に温水層Wに設置した第三熱交換器74で熱容量の大きな温水と熱交換させて所定の供給ガス温度に調節するようにしているので、蒸発器で気化させて供給するガス温度の安定化が図れる。
【0041】
さらに、本形態例では、一つの熱交換槽71内に第一乃至第三熱交換器72,73,74を収納しているので、前記第2形態例の蒸発器よりも全体的にさらなる小型化及び簡略化を図ることができる。したがって、低温液化ガスを昇圧するためのポンプやスチーム供給用のボイラーを含めて蒸発器全体を一つの設備ユニットとして一体化しても、トラック等で運搬可能な大きさに納めることができるので、現地への搬送や据付けが容易になり、ガス供給を迅速に開始することができ、スポット的に使用する蒸発器として最適である。
【0042】
また、第二熱交換器73でスチームと熱交換後のガスの温度を供給ガスの設定温度よりも高く設定し、第三熱交換器74で熱交換後のガスの温度を第二熱交換器73で熱交換後のガスの温度より低く設定しておくことにより、スチームと温水との熱容量の差及び温度差を有効に利用して効率よく安定した温度調節を行うことができる。
【0043】
なお、低温液化ガス供給源は、低温液化ガス貯槽だけでなくローリーでも同様であり、スチームは、ガス使用設備のボイラーから供給を受けてもよく、蒸発器に付設した専用のボイラーから供給してもよい。
【0044】
【実施例】
実施例1
図1に示す第1形態例の蒸発器を使用し、ローリーに搭載した0.3MPa、−196℃の液体窒素を気化させ、60℃に温度調節した窒素ガスを供給する実験を行った。スチームは120℃、0.3MPaで供給し、該スチームの供給量や熱交換器の形状等を調整することにより、主熱交換槽10は、熱交換後のガス温度が80℃になるように設定し、温調用熱交換槽20は、熱交換後のガス温度が50℃になるように設定した。
【0045】
温度指示調節計31で測定した供給ガスの温度が60℃を超えたときに、流量調節弁27を開方向に作動させて温調用熱交換槽20を流れる低温液化ガスの流量を増加させ、低温ガスの混合割合を多くして供給ガスの温度を下げ、供給ガスの温度が60℃を下回ったときに流量調節弁27を閉方向に作動させて温調用熱交換槽20を流れる低温液化ガスの流量を減少させ、低温ガスの混合割合を少なくして供給ガスの温度を上げるようにした。これにより、平均温度60℃で、温度変動幅が±10℃の窒素ガスを約5000m/hで供給することができた。
また、PID制御を行うことによってより高精度の温度調節を行うことができた。さらに、両熱交換槽導出後のガス温度を種々変更して実験を行ったが、本形態例の蒸発器は、比較的高い温度、例えば40〜60℃のガス供給に適していることがわかった。
【0046】
実施例2
図2に示す第2形態例の蒸発器を使用し、低温液化ガス貯槽内の0.3MPa、−193℃の液体窒素をポンプで1MPaに昇圧し、20℃に温度調節した窒素ガスを供給する実験を行った。スチームは120℃、0.3MPaで供給した。なお、第一熱交換槽51における温水層W及びスチーム層Sの体積、第二熱交換槽52のスチーム層Sの体積はそれぞれ約2mとした。第一温度指示調節計65の指示温度は20℃、第二温度指示調節計66の指示温度は35℃とし、各ガス温度がこの温度を超えたときに各流量調節弁56V,57Vを開方向に作動させ、各ガス温度が下回ったときに各流量調節弁を閉方向に作動させた。
【0047】
このように制御することにより、第一熱交換器53で気化した窒素ガスの温度は約0℃、第二熱交換器54で加温された窒素ガスの温度は約35℃、第三熱交換器55で冷却された窒素ガスの温度は約20℃となり、平均温度20℃で、温度変動幅が±5℃の窒素ガスを5000m/hで供給することができた。
【0048】
実施例3
図2に示す第2形態例の蒸発器を使用し、ローリーに搭載した0.3MPa、−196℃の液体窒素をポンプで1MPaに昇圧し、20℃に温度調節した窒素ガスを供給する実験を行った。スチームは120℃、0.3MPaで供給し、温水の温度は15℃に設定した。熱交換槽71内の温水層Wの体積は約2m、スチーム層Sの体積は約2.7mとした。第一温度指示調節計81及び第二温度指示調節計82の指示温度は15℃とし、各ガス温度がこの温度を超えたときに各流量調節弁75V,76Vを閉方向に作動させ、各ガス温度が下回ったときに各流量調節弁を開方向に作動させた。
【0049】
このように制御することにより、第一熱交換器72で気化した窒素ガスの温度は約0℃、第二熱交換器73で加温された窒素ガスの温度は約35℃、第三熱交換器74で冷却された窒素ガスの温度は約20℃となり、平均温度20℃で、温度変動幅が±5℃の窒素ガスを5000m/hで供給することができた。
【0050】
【発明の効果】
以上説明したように、本発明の蒸発器によれば、熱媒体としてスチームを使用したことにより、蒸発器全体の小型化を図ることができる。さらに、熱媒体としてスチームと温水とを併用することにより、供給ガスの温度をより安定化させることができる。
【図面の簡単な説明】
【図1】 本発明の蒸発器の第1形態例を示す系統図である。
【図2】 本発明の蒸発器の第2形態例を示す系統図である。
【図3】 本発明の蒸発器の第3形態例を示す系統図である。
【符号の説明】
10…主熱交換槽、11…金属製密閉容器、12…熱交換器、13…スチーム導入管、14…ドレン、15…低温液化ガス導入経路、16…気化ガス導出経路、17…ガス供給経路、20…温調用熱交換槽、21…金属製密閉容器、22…熱交換器、23…スチーム導入管、24…ドレン、25…温調用低温液化ガス導入経路、26…温調用気化ガス導出経路、27…流量調節弁、31…温度指示調節計、51…第一熱交換槽、52…第二熱交換槽、53…第一熱交換器、54…第二熱交換器、55…第三熱交換器、56…第一スチーム導入管、57…第二スチーム導入管、58,59…ドレン、61…低温液化ガス導入経路、62…低温ガス経路、63…高温ガス経路、64…ガス供給経路、65…第一温度指示調節計、66…第二温度指示調節計、71…熱交換槽、72…第一熱交換器、73…第二熱交換器、74…第三熱交換器、75…第一スチーム導入管、76…第二スチーム導入管、77…ドレン、78…ガス供給管、81…供給ガス温度指示調節計、82…温水温度指示調節計、83…流量指示調節計、84…演算器、85…低温液化ガス導入経路

Claims (5)

  1. 低温液化ガスを熱媒体と熱交換させることにより加温して気化させる蒸発器において、熱媒体が導入される容器内に前記低温液化ガスが導入される熱交換器を収納した主熱交換槽と、熱媒体が導入される容器内に低温液化ガスの一部が導入される熱交換器を収納した温調用熱交換槽と、前記主熱交換槽の熱交換器に低温液化ガスを導入する低温液化ガス導入経路と、該低温液化ガス導入経路から分岐し、流量調節弁を介して前記温調用熱交換槽の熱交換器に低温液化ガスを導入する温調用低温液化ガス導入経路と、前記主熱交換槽の熱交換器で気化したガスを導出する気化ガス導出経路と、前記温調用熱交換槽の熱交換器で気化したガスを導出する温調用気化ガス導出経路と、前記気化ガス導出経路のガスと前記温調用気化ガス導出経路のガスとを合流混合させてガス使用先に供給するガス供給経路と、該ガス供給経路を流れる供給ガスの温度を測定する温度測定手段と、該温度測定手段の測定温度に基づいて前記温調用低温液化ガス導入経路の流量調節弁を開閉制御する制御手段とを備えていることを特徴とする蒸発器。
  2. 前記温調用熱交換槽の熱交換能力は、前記主熱交換槽の熱交換能力と異なった能力に設定されていることを特徴とする請求項1記載の蒸発器。
  3. 低温液化ガスを熱媒体と熱交換させることにより加温して気化させる蒸発器において、前記蒸発器は、熱媒体としてスチーム層及び温水層を有する少なくとも一つの熱交換槽内に、前記温水層内に配置されて前記低温液化ガスが導入される第一熱交換器と、前記スチーム層内に配置されて該第一熱交換器で熱交換後のガスが導入される第二熱交換器と、前記温水層内に配置されて前記第二熱交換器で熱交換後のガスが導入される第三熱交換器とを収納したことを特徴とする蒸発器。
  4. 前記第二熱交換器で熱交換後のガスの温度が、該蒸発器から導出されるガスの設定温度よりも高く設定され、前記第三熱交換器で熱交換後のガスの温度が、第二熱交換器で熱交換後のガスの温度より低く設定されていることを特徴とする請求項3記載の高圧ガス供給設備。
  5. 前記蒸発器から導出したガスの温度を測定する温度測定手段と、前記熱交換槽内にスチームを供給するボイラーと、前記温度測定手段で測定したガスの温度に基づいて前記熱交換槽内に供給するスチーム量を調節するスチーム供給量調節手段とを備えていることを特徴とする請求項3記載の高圧ガス供給設備。
JP2001144729A 2001-05-15 2001-05-15 蒸発器 Expired - Fee Related JP4621379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144729A JP4621379B2 (ja) 2001-05-15 2001-05-15 蒸発器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144729A JP4621379B2 (ja) 2001-05-15 2001-05-15 蒸発器

Publications (2)

Publication Number Publication Date
JP2002340484A JP2002340484A (ja) 2002-11-27
JP4621379B2 true JP4621379B2 (ja) 2011-01-26

Family

ID=18990635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144729A Expired - Fee Related JP4621379B2 (ja) 2001-05-15 2001-05-15 蒸発器

Country Status (1)

Country Link
JP (1) JP4621379B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731042B2 (ja) * 2001-05-18 2011-07-20 大陽日酸株式会社 高圧ガス供給設備
WO2011051226A2 (en) * 2009-10-27 2011-05-05 Shell Internationale Research Maatschappij B.V. Apparatus and method for cooling and liquefying a fluid
US20110300050A1 (en) * 2010-06-08 2011-12-08 Memc Electronic Materials, Inc. Trichlorosilane Vaporization System
JP2022063018A (ja) * 2020-10-09 2022-04-21 有限会社 両国設備 液化ガス気化システム及び液化ガス気化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029754U (ja) * 1988-06-29 1990-01-22

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211798A (ja) * 1985-07-09 1987-01-20 Tokyo Gas Co Ltd 液化天然ガスの増熱方法
JPS63163098A (ja) * 1986-12-26 1988-07-06 Chiyoda Chem Eng & Constr Co Ltd 液化軽質炭化水素の加熱・気化方法とその装置
JPS6469898A (en) * 1987-09-11 1989-03-15 Tokyo Gas Co Ltd Lng gasification apparatus
JP2938878B2 (ja) * 1988-08-24 1999-08-25 川崎重工業株式会社 Lngの冷熱回収利用方法
JPH06185696A (ja) * 1992-12-21 1994-07-08 Tokyo Gas Co Ltd 低温液化ガスの気化装置
JPH1163474A (ja) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd 液化天然ガス加温装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029754U (ja) * 1988-06-29 1990-01-22

Also Published As

Publication number Publication date
JP2002340484A (ja) 2002-11-27

Similar Documents

Publication Publication Date Title
JP6111157B2 (ja) 冷熱回収機能付きガス気化装置及び冷熱回収装置
KR20080080157A (ko) 해양선박의 냉매 순환로에의 냉각 에너지 공급장치 및 방법
JP5330030B2 (ja) 低温液化ガス気化装置及び低温液化ガスの気化方法
KR20120070670A (ko) 부유식 구조물
JP4621379B2 (ja) 蒸発器
JP2021021433A (ja) 液化ガス気化器
JP4567849B2 (ja) 廃熱を利用した液化ガス気化システム及び廃熱供給方法
JPH0914587A (ja) 天然ガス焚きガスタービン複合サイクル発電所の燃料用lng気化装置
JP2001081484A (ja) 冷熱発生機能付き液化ガス気化設備
JP2001182894A (ja) 強制循環型空温式液化ガス気化装置及び液化ガスの気化方法
JP4035566B2 (ja) 強制循環型空温式液化ガス気化装置
JPH08291899A (ja) 液化天然ガスの気化装置及びその冷却待機保持方法
JPH10252994A (ja) 低温液化ガスの気化方法及び設備
JP2004301186A (ja) 液化ガス気化システム
JP3987245B2 (ja) 冷熱発生機能付き液化ガス気化設備
JP4731042B2 (ja) 高圧ガス供給設備
JPH05306890A (ja) ベーパライザ
JP2000120993A (ja) 液化ガス蒸発システム
JPH06229258A (ja) 蓄熱式ガスタービン空気冷却装置
JP7227710B2 (ja) 容器に加圧ガスを補給するための装置および方法
JP2020020412A (ja) 容器に加圧ガスを補給するための装置および方法
JPS604049Y2 (ja) 冷媒冷却装置
WO2022030103A1 (ja) 給湯システム
WO2019187894A1 (ja) 液化天然ガス気化システム
JPS588210A (ja) 液化天然ガスの流量変化に対するランキンサイクルの熱媒体流量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees