JP4593392B2 - 電極電解質のワニス - Google Patents

電極電解質のワニス Download PDF

Info

Publication number
JP4593392B2
JP4593392B2 JP2005207390A JP2005207390A JP4593392B2 JP 4593392 B2 JP4593392 B2 JP 4593392B2 JP 2005207390 A JP2005207390 A JP 2005207390A JP 2005207390 A JP2005207390 A JP 2005207390A JP 4593392 B2 JP4593392 B2 JP 4593392B2
Authority
JP
Japan
Prior art keywords
group
atom
electrode
integer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005207390A
Other languages
English (en)
Other versions
JP2007026888A (ja
Inventor
芳孝 山川
敏明 門田
長之 金岡
薫 福田
亮一郎 高橋
洋 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
JSR Corp
Original Assignee
Honda Motor Co Ltd
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, JSR Corp filed Critical Honda Motor Co Ltd
Priority to JP2005207390A priority Critical patent/JP4593392B2/ja
Publication of JP2007026888A publication Critical patent/JP2007026888A/ja
Application granted granted Critical
Publication of JP4593392B2 publication Critical patent/JP4593392B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、特定の構成単位からなる重合体を含む燃料電池用電極電解質、電極ペースト、電極、および膜−電極接合体に関する。
固体高分子型燃料電池は、高出力密度が得られ、低温で作動可能であることから小型軽量化が可能であり、自動車用動力源、定置用発電電源、携帯機器用発電電源などとして実用化が期待されている。
固体高分子型燃料電池はプロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、純水素あるいは改質水素を燃料ガスとして一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤としてもう一方の電極(空気極)へ供給し、発電を行うものである。
かかる燃料電池の電極は触媒成分が分散した電極電解質から構成され(このため電極は、電極触媒層ということもある)、燃料極側の電極触媒層は、燃料ガスから、プロトンと電子を発生させ、空気極側の電極触媒層で酸素とプロトンと電子とから水を生成し、固体高分子電解質膜はプロトンをイオン伝導させる。そして、かかる電極触媒層を通して電力が取り出される。
従来の固体高分子型燃料電池では、電極電解質として、Nafion(商標)に代表されるパーフルオロアルキルスルホン酸系高分子が使用されている。この材料は優れたプロトン伝導性を有しているが、非常に高価であり、また分子内にフッ素原子を大量に有していることから、燃焼性が小さく、電極触媒に用いられる白金などの高価な貴金属の回収再利用を非常に困難にしている問題がある。
一方これにかわる材料として、種々の非パーフルオロアルキルスルホン酸系高分子の検討も行われている。特に発電効率の高い、高温条件で用いることを狙い、耐熱性の高い芳香族スルホン酸系高分子を電極電解質として用いることが試みられている。
たとえば、特開2005−50726号公報(特許文献1)には、スルホン化ポリアリーレン重合体を電極電解質として用いることが開示されており、さらに、特開2004−253267号公報(特許文献2)には、特定のスルホン化ポリアリーレンを用いることが開示されている。
特開2005−50726号公報 特開2004−253267号公報
しかしながら、これらの従来より電解質として知られていた材料は、プロトン伝導性を上げるためにスルホン酸濃度を上げると、高温高湿条件下で、吸水による膨潤が大きく、ガス流路を閉塞して、発電性能が低下する問題がある。また従来の電解質は、高温下での耐熱性も不充分であった。
本発明は、上記の問題点を解決するためになされたものであり、窒素原子を含み、主鎖が特定の構成単位からなる重合体が、安価で、プロトン伝導性に優れ、また吸水による膨
潤が小なく、しかも、耐熱性および機械的特性にも優れていることを見出した。
この重合体を電極電解質として用いた場合、通常の重合体では膨潤の著しい高温高湿条件下においても燃料ガス流路となる細孔が確保され、触媒での反応が妨げられることなく、発電性能を向上させることができる。さらにこの重合体は、分子内にフッ素原子を含まないか、あるいは含んでもその含有量が大幅に低減されており、前述のような触媒金属の回収再利用に対する問題の解決が可能できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下の(1)〜(6)で示される。
(1)窒素原子およびスルホン酸基とを有し、主鎖がフェニレン結合であることを特徴とす
る構成単位を含むスルホン化ポリアリーレンからなる電極電解質。
(2)下記一般式(2)で表される構成単位を含む(1)の電極電解質。
Figure 0004593392
[式中、Zは硫黄原子、酸素原子、−NH−基を表す。Rは、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。j、kは1〜4の整数を示す。]
(3)上記式(2)で表される構成単位とともに、下記一般式(3)で表される構成単位を
含む(2)の電極電解質。
Figure 0004593392
(式中、A、Dは独立に直接結合または、−CO−、−SO2−、−SO−、−CONH
−、−COO−、−(CF2)l−(lは1〜10の整数である)、−(CH2)l−(lは1〜10の整数である)、−CR’2−(R’は脂肪族炭化水素基、芳香族炭化水素基および
ハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、R1〜R16は、互いに同一でも異なっていてもよく、水素原子、フッ素
原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。s、tは0〜4の整数を示し、rは0または1以上の整数を示す。)
(4)(1)〜(3)の電極電解質と電極触媒および溶媒を含む電極ペースト。
(5)(1)〜(3)の電解質と電極触媒とを含む固体高分子型燃料電池用電極。
(6)(5)の電極を、高分子電解質膜の少なくとも片面に接合した構造からなる膜−電極接合体。
本発明によれば、価格的な問題や、触媒金属の回収に関する問題を解決するとともに、プロトン伝導性や寸法安定性に優れた、固体高分子型燃料電池用電極電解質が提供される。さらに該電解質を含む、電極ペースト、電極、触媒付電解質膜を提供し、固体高分子型燃料電池の発電性能向上に寄与するものである。
以下、本発明について詳細に説明する。
電極電解質
本発明の燃料電池用電極電解質は、窒素原子とスルホン酸基とを有し、主鎖がフェニレン結合である構成単位を含む重合体からなる。このような重合体を本明細書では、スルホン化ポリアリーレンと言うこともある。
ここで、窒素原子は、アゾール基の形で含有されていることが好ましく、スルホン酸基は側鎖に結合していることが好ましい。アゾール基としては、オキサゾール基、チアゾール基、イミダゾール基があげられる。このうちオキサゾール基が好ましい。
前記スルホン化ポリアリーレンは、下記一般式(2)で表される構成単位を含む。
Figure 0004593392
Zは硫黄原子、酸素原子、−NH−基を示す。このうち酸素原子、硫黄原子が好ましく、酸素原子がより好ましい。
Rは、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。このうち、水素原子、フッ素原子が好ましい。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。ハロゲン化アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられる。アリル基としては、プロペニル基などが挙げられ、アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
j、kは1〜4の整数を示す。jは1または2であることが好ましく、1であることがさらに好ましい。kは1または2であることが好ましい。
(2)式で表される構成単位を含んでいると、耐熱性および機械的強度の高い重合体を得ることができる。また、スルホン酸基の導入量を増大させても、疎水性が高く、優れた耐熱水性を発揮する。
本発明で使用されるスルホン化ポリアリーレンは、上記一般式(2)で表される構成単
位以外の成分が共重合されていてもよい。共重合される成分としては、下記一般式(3)で示される構成単位が好ましい。
Figure 0004593392
一般式(3)において、A、Dは独立に直接結合または、−CO−、−SO2−、−S
O−、−CONH−、−COO−、−(CF2)l−(lは1〜10の整数である)、−(C
2)l−(lは1〜10の整数である)、−CR’2−(R’は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示す。ここで、−CR’2−で表される構造の具体的な例として、メチル基、エチル基、プロピル基、イ
ソプロピル基、ブチル基、イソブチル基、t−ブチル基、プロピル基、オクチル基、デシル基、オクタデシル基、フェニル基、トリフルオロメチル基、などが挙げられる。
これらのうち、直接結合または、−CO−、−SO2−、−CR’2−(R’は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−が好ましい。
Bは独立に酸素原子または硫黄原子であり、酸素原子が好ましい。
1〜R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル
基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。ハロゲン化アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられる。アリル基としては、プロペニル基などが挙げられ、アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
s、tは0〜4の整数を示す。rは0または1以上の整数を示し、上限は通常100、好ましくは1〜80である。
s、tの値と、A、B、D、R1〜R16の構造についての好ましい組み合わせとしては

(1)s=1、t=1であり、Aが−CR’2−(R’は脂肪族炭化水素基、芳香族炭化
水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基であり、Bが酸素原子であり、Dが−CO−または、−SO2−であり、R1〜R16が水素原子またはフッ素原子である構造、
(2)s=1、t=0であり、Bが酸素原子であり、Dが−CO−または、−SO2−で
あり、R1〜R16が水素原子またはフッ素原子である構造、
(3)s=0、t=1であり、Aが−CR’2−(R’は脂肪族炭化水素基、芳香族炭化
水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、Bが酸素原子であり、R1〜R16が水素原子またはフッ素原子またはニトリル基であ
る構造が挙げられる。
上記一般式(2)と(3)とを含むポリアリーレンの構造式は、下記一般式(6)のように表される。
Figure 0004593392
一般式(6)において、A、B、D、R、Z、j、k、r、s、tおよびR1〜R16
、それぞれ上記一般式(2)および(3)中のA、B、D、R、Z、j、k、r、s、tおよびR1〜R16と同義である。x、yはx+y=100モル%とした場合のモル比を示
す。
上記一般式(2)で表される構成単位と、一般式(3)で表される構成単位を含むことを特徴とする、一般式(4)で表されるスルホン化ポリアリーレンは、式(2)で表される構成単位すなわちxのユニットを0.5〜99.999モル%の割合で含有していることが好ましく、式(3)で表される構成単位すなわちyのユニットを90〜0.001モル%の割合で含有していることが好ましい。
かかる本発明のスルホン化ポリアリーレンの製造には、例えば下記に示すA法、B法の2通りの方法を用いることができる。
(A法)
例えば、特開2004−137444号公報に記載の方法で、下記一般式(1)で表される芳香族化合物をモノマーとし、上記一般式(3)で表される構造単位となりうるモノマー、またはオリゴマーとを共重合させ、スルホン酸エステル基を有するポリアリーレンを製造し、このスルホン酸エステル基を脱エステル化して、スルホン酸エステル基をスルホン酸基に変換する。
(B法)
例えば、特開2001−342241号公報に記載の方法で、下記一般式(1)で表される骨格を有しスルホン酸基、スルホン酸エステル基を有しないモノマーと、上記一般式(3)で表される構造単位となりうるモノマー、またはオリゴマーとを共重合させ、この重合体を、スルホン化剤を用いてスルホン化する。
本発明のスルホン化ポリアリーレンは、A法に示す方法により製造することが好ましい。
一般式(1)で表される芳香族化合物としては、
下記一般式(1)で表される芳香族化合物。
Figure 0004593392
[式中、Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2Rb(ここ
で、Rbはアルキル基、フッ素置換アルキル基またはアリール基を示す)から選ばれる原子または基を示し、Zは硫黄原子、酸素原子、−NH−基を示し、Rは、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示し、Raは炭素原子数1〜20の炭化
水素基を示し、j、kは1〜4の整数を示す。]
一般式(1)で表される芳香族化合物の具体的な例として、下記の構造が挙げられる。
Figure 0004593392
また、上記一般式(1)で表される本発明に係る芳香族化合物として、上記化合物において塩素原子が臭素原子に置き換わった化合物なども挙げられる。また、塩素原子や臭素原子の結合位置の異なる異性体も挙げることができる。
A法およびB法で用いられる、上記一般式(3)で表される構造単位となりうるモノマー、またはオリゴマーの具体的な例として、
r=0の場合、例えば4,4'−ジクロロベンゾフェノン、4,4'−ジクロロベンズアニリド、2,2−ビス(4−クロロフェニル)ジフルオロメタン、2,2−ビス(4−クロ
ロフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、4−クロロ安息香酸−4−クロロフェニルエステル、ビス(4−クロロフェニル)スルホキシド、ビス(4−クロロフェニル)スルホン、2,6−ジクロロベンゾニトリルが挙げられる。これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物などが挙げられる。
r=1の場合、例えば特開2003−113136号公報に記載の化合物を挙げることができる。
r≧2の場合、例えば特開2004−137444号公報、特開2004−244517号公報、特開2004−346146号公報、特願2003−348523号、特願2003−348524号、特願2004−211739号、特願2004−211740号に記載の化合物を挙げることができる。
B法においては、上記一般式(1)で表される骨格を有しスルホン酸基、スルホン酸エステル基を有しない、下記一般式(7)で表されるモノマーを用いることができる。
Figure 0004593392
(式中、j、k、Z、R、Xは、一般式(1)に記載の定義と同一である。)
一般式(7)の具体的な例として、下記の構造が挙げられる。
Figure 0004593392
上記化合物において塩素原子が臭素原子に置き換わった化合物なども挙げられる。また塩素原子や臭素原子の結合位置の異なる異性体も挙げられる。
スルホン酸基を有するポリアリーレンを得るためは、(A法)においては、上記一般式
(1)で表されるモノマーと、上記一般式(3)で表される構造単位となりうるモノマー、またはオリゴマーとを共重合させ、前駆体のポリアリーレンを得ることが必要である。
(B法)においては、上記一般式(7)で表されるモノマーと、上記一般式(3)で表される構造単位となりうるモノマー、またはオリゴマーとを共重合させ、前駆体のポリアリーレンを得ることが必要である。この重合は、触媒の存在下に行われるが、この際使用される触媒は、遷移金属化合物を含む触媒系であり、この触媒系としては、(1)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体(銅塩を含む)、ならびに(2)還元剤を必須成分とし、さらに、重合速度を上げるために、「塩」を添加してもよい。
たとえば、遷移金属塩としては、塩化ニッケル、臭化ニッケルなどが好適に使用され、また、配位子となる化合物としては、トリフェニルホスフィン、2,2′−ビピリジンが好適に使用される。さらに、あらかじめ配位子が配位された遷移金属(塩)としては、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2′ビピリジン)が好適に使用される。還元剤としては、例えば、鉄、亜鉛、マンガン、アルミニウム、マグネシウム、ナトリウム、カルシウムなどを挙げることできるが、亜鉛、マグネシウム、マンガンが好ましい。「塩」としては、臭化ナトリウム、ヨウ化ナトリウム、臭化カリウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウムが好ましい。反応には重合溶媒を使用してもよく、具体的には、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドンなどが好適に使用される。
これらの触媒成分の具体的な例、各成分の使用割合、反応溶媒、濃度、温度、時間等の重合条件としては、特開2001−342241号公報に記載の方法を挙げることができる。
スルホン酸基を有するポリアリーレンは、この前駆体のポリアリーレンを、スルホン酸基を有するポリアリーレンに変換して得ることができる。この方法としては、下記の2通りの方法がある。
(A法)
前駆体のスルホン酸エステル基を有するポリアリーレンを、特開2004−137444号公報に記載の方法で脱エステル化する方法。
(B法)
前駆体のポリアリーレンを、特開2001−342241号公報に記載の方法でスルホン化する方法。
上記のような方法により製造される、一般式(6)のスルホン酸基を有するポリアリーレンの、イオン交換容量は通常0.3〜5meq/g、好ましくは0.5〜3meq/g、さらに好ましくは0.8〜2.8meq/gである。0.3meq/g未満では、プロトン伝導度が低く発電性能が低い。一方、5meq/gを超えると、耐水性が大幅に低下してしまうことがある。
このようにして得られるスルホン酸基を有するポリアリーレンの分子量は、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量で、1万〜100万、好ましくは2万〜80万である。
本発明に係る電極電解質は、上記した重合体を含むものであればよく、このため、上記重合体のみから構成されるものであっても、さらに他の電解質を含んでいてもよい。他の
電解質としては、従来より用いられていたNafion、Flemion、Aciplexも代表されるパーフルオロカーボン重合体、ポリスチレンスルホン酸などのビニル系ポリマーのスルホン化物、ポリベンズイミダゾール、ポリエーテルエーテルケトンなどの耐熱性高分子に、スルホン酸基またはリン酸基を導入したポリマーなどの有機系ポリマーが挙げられる。他の電解質を含む場合、その使用割合は、全電極電解質中に50重量%以下、好適には30重量%であることが望ましい。
(電極ペースト)
本発明の電極ペーストは、上記の電極電解質、触媒金属粒子を導電性担体に担持してなる電極触媒、溶媒からなり、必要に応じて分散剤、炭素繊維などの他の成分を含んでいてもよい。
電極触媒
触媒金属粒子を担持させる導電性担体としては、導電性と適度な耐食性を備えていれば特に限定されないが、触媒金属粒子を高分散させるために十分な比表面積を有し、かつ、十分な電子伝導性を有することから、カーボン(炭素)を主成分とするものを使用することが望ましい。電極を構成する触媒担体は、触媒金属粒子を担持するだけではなく、電子を外部回路に取り出す、あるいは、外部回路から取り入れるための集電耐としての機能を果たさなければならない。触媒担体の電気抵抗が高いと電池の内部抵抗が高くなり、結果として電池の性能を低下させることになる。このため、電極に含まれる触媒担体の電子導電率は十分に低くなければならない。つまり電極触媒担体として十分な電子導電性を持っていれば利用可能であり、好適には細孔の発達したカーボン材料が用いられる。細孔の発達したカーボン材料としては、カーボンブラックや活性炭などが好ましく使用できる。カーボンブラックとしては、チャネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラックなどが挙げられる。これらの活性炭は、種々の炭素原子を含む材料を炭化、賦活処理して得られる。
また電子導電性を有する金属酸化物、金属炭化物、金属窒化物や高分子化合物を含むことも可能である。
本発明では、以上のような導電性担体に白金または白金合金を担持させた触媒を用いるが、白金合金を使用すると、電極触媒としての安定性や活性をさらに付与させることもできる。白金合金としては、白金以外の白金族の金属(ルテニウム、ロジウム、パラジウム、オスミウム、イジリウム)、鉄、コバルト、チタン、金、銀、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛、およびスズからなる群から選ばれる1種以上の金属と白金との合金が好ましく、該白金合金には、白金と合金化される金属との金属間化合物が含有されていてもよい。
触媒貴金属の粒径は0.1nm〜50nmの範囲にあることが好ましく、11nm〜10nmの範囲にあることがより好ましい。
導電性担体に担持される触媒の量としては、有効に触媒活性が発揮できる量であれば特に制限されるものではないが、担持量が担体重量に対して、0.1〜9.0g-metal/g-担体、好ましくは0.25〜2.4g-metal/g-担体の範囲である。
カーボンの大きさは特に制限されるものではなく、後述するペースト状を構成しうるものであればよい。
溶媒
本発明の電極ペーストの溶媒としては、前記電解質を溶解または分散しうる溶媒であればよく、特に限定されるものではない。また1種類のみでなく、2種以上の溶媒を用いることもできる。
具体的には、水、
メタノール、エタノール、n−プロピルアルコール、2−プロパノール、2−メチル−2−プロパノール、2−ブタノール、n−ブチルアルコール、2−メチル−1−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、2−メチル−2−ブタノール、3−メチル−2−ブタノール、2,2−ジメチル1−プロパノール、シクロヘキサノール、1−ヘキサノー
ル、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、4−メチル−2−ペンタノール、2−エチル−1−ブタノール、1−メチルシクロヘキサノール、2−メチルシクロヘキサノール、3−メチルシクロヘキサノール、4−メチルシクロヘキサノール、1−オクタノール、2−オクタノール、2−エチル−1−ヘキサノール、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、などのアルコール類、
エチレングリコール、プロピレングリコール、グリセロールなどの多価アルコール類、
ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−プロピルエーテル、ブチルエーテル、フェニルエーテル、イソペンチルエーテル、1,2−ジメトキシエタン、ジエトキシエタン、ビス(2−メトキシエチル)エーテル、ビス(2−エトキシエチル)エーテル、シネオール、ベンジルエチルエーテル、アニソール、フェネトール、アセタールなどのエーテル類、
アセトン、メチルエチルケトン、2−ペンタノン、3−ペンタノン、シクロペンタノン、シクロヘキサノン、2−ヘキサノン、4−メチル−2−ペンタノン、2−ヘプタノン、2,4−ジメチル−3−ペンタノン、2−オクタノンなどのケトン類、
γ-ブチロラクトン、酢酸エチル、酢酸プロピル、酢酸−n−ブチル、酢酸イソブチル
、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、3−メトキシブチルアセタート、酪酸メチル、酪酸エチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類、
ジメチルスルホキシド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリド
ン、テトラメチル尿素などの非プロトン性極性溶媒、
トルエン、キシレン、ヘプタン、ヘキサン、ヘプタン、オクタンなどの炭化水素系溶媒、を挙げることができ、これらは1種類以上を組み合わせて用いることもできる。
分散剤
必要に応じて含まれてよい分散剤としては、オレイン酸・N−メチルタウリン、オレイン酸カリウム・ジエタノールアミン塩、アルキルエーテルサルフェート・トリエタノールアミン塩、ポリオキシエチレンアルキルエーテルサルフェート・トリエタノールアミン塩、特殊変成ポリエーテルエステル酸のアミン塩、高級脂肪酸誘導体のアミン塩、特殊変成ポリエステル酸のアミン塩、高分子量ポリエーテルエステル酸のアミン塩、特殊変成燐酸エステルのアミン塩、高分子量ポリエステル酸アミドアミン塩、特殊脂肪酸誘導体のアミドアミン塩、高級脂肪酸のアルキルアミン塩、高分子量ポリカルボン酸のアミドアミン塩、ラウリン酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウムラウリル硫酸エステルナトリウム塩、セチル硫酸エステルナトリウム塩、ステアリル硫酸エステルナトリウム塩、オレイル硫酸エステルナトリウム塩、ラウリルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸ナトリウム、油溶性アルキルベンゼンスルホン酸塩、αーオレフィンスルホン酸塩、高級アルコールリン酸モノエステルジナトリウム塩、高級アルコールリン酸ジエステルジナトリウム塩、ジアルキルジチオリン酸亜鉛等のアニオン界面活性剤、ベンジルジメチル{2−[2−(P−1,1,3,3−テトラメチルブチルフェノオキ
シ)エトオキシ]エチル}アンモニウムクロライド、オクタデシルアミン酢酸塩、テトラ
デシルアミン酢酸塩、オクタデシルトリメチルアンモニウムクロライド、牛脂トリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヤシトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシジメチルベンジルアンモニウムクロライド、テト
ラデシルジメチルベンジルアンモニウムクロライド、オクタデシルジメチルベンジルアンモニウムクロライド、ジオレイルジメチルアンモニウムクロライド、1−ヒドロキシエチル-2-牛脂イミダゾリン4級塩、2−ヘプタデセニルーヒドロキシエチルイミダゾリン、
ステアラミドエチルジエチルアミン酢酸塩、ステアラミドエチルジエチルアミン塩酸塩、トリエタノールアミンモノステアレートギ酸塩、アルキルピリジウム塩、高級アルキルアミンエチレンオキサイド付加物、ポリアクリルアミドアミン塩、変成ポリアクリルアミドアミン塩、パーフルオロアルキル第4級アンモニウムヨウ化物等のカチオン界面活性剤、および
ジメチルヤシベタイン、ジメチルラウリルベタイン、ラウリルアミノエチルグリシンナトリウム、ラウリルアミノプロピオン酸ナトリウム、ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン、アミドベタイン、イミダゾリニウムベタイン、レシチン、3−[ω-フルオロアクカノイルーN−エチルアミノ]-1-プロパンスルホン酸ナトリ
ウム、N−[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N−ジメチル-N-カルボキシメチレンアンモニウムベタイン等の両性界面活性剤、およびヤシ脂肪酸ジエタノールアミド(1:2型)、ヤシ脂肪酸ジエタノールアミド(1:1型)、牛脂肪酸ジエタノールアミド(1:2型)、牛脂肪酸ジエタノールアミド(1:1型)、オレイン酸ジエタノールアミド(1:1型)、ヒドロキシエチルラウリルアミン、ポリエチレングリコールラウリルアミン、ポリエチレングリコールヤシアミン、ポリエチレングリコールステアリルアミン、ポリエチレングリコール牛脂アミン、ポリエチレングリコール牛脂プロピレンジアミン、ポリエチレングリコールジオレイルアミン、ジメチルラウリルアミンオキサイド、ジメチルステアリルアミンオキサイド、ジヒドロキシエチルラウリルアミンオキサイド、パーフルオロアルキルアミンオキサイド、ポリビニルピロリドン、高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビットの脂肪酸エステル、ソルビタンの脂肪酸エステル、砂糖の脂肪酸エステル、等の非イオン界面活性剤、およびラウリルアミノプロピオン酸ナトリウム、ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン等の両性界面活性剤などを挙げることができる。これらは1種単独で使用しても、2種類以上を組み合わせて用いることもできる。これらのなかでも、好ましくは、塩基性基を有する界面活性剤であり、より好ましくはアニオン性もしくは、カチオン性の界面活性剤であり、さらに好ましくは、分子量5千〜3万の界面活性剤である。
電極ペーストに上記の分散剤を添加すると、保存安定性および流動性に優れ、塗工時の生産性が向上する。
炭素繊維
本発明に係る電極ペーストでは、必要に応じてさらに触媒が担持されていない炭素繊維を添加することができる。
本発明で必要に応じて用いられる炭素繊維しては、レーヨン系炭素繊維、PAN系炭素繊
維、リグニンポバー系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維等を用いることができ、好ましくは、気相成長炭素繊維である。
電極ペーストに炭素繊維を添加すると、電極中の細孔容積が増加することにより、燃料ガスや酸素ガスの拡散性が向上し、また、生成する水によるフラッディング等を改善でき、発電性能が向上する。
その他の添加物
本発明に係る電極ペーストでは、必要に応じてさらに他の成分を添加することができる。例えば、フッ素系ポリマーやシリコン系ポリマーなどの撥水剤を添加してもよい。撥水
剤は生成する水を効率よく排出する効果をもち、発電性能の向上に寄与する。
組成
本発明に係るペースト中の電極触媒の使用割合は、重量比で1重量%〜20重量%、好ましくは3重量%〜15重量%であることが望ましい。また、電極電解質の使用割合は、重量比で0.5重量%〜30重量%、好ましくは1重量%〜15重量%であることが望ましい。さらに、溶剤の使用割合は、重量比で5重量%〜95重量%、好ましくは15重量%〜90重量%であることが望ましい。
必要に応じて用いられる分散剤の使用割合は、重量比で0重量%〜10重量%、好ましくは0重量%〜2重量%であり、必要に応じて用いられる炭素繊維の使用割合は、重量比で0重量%〜20重量%、好ましくは1重量%〜10重量%である。(なお、合計で100重量%を超えることはない)
触媒が担持されたカーボンの使用割合が、上記範囲未満であると、電極反応率が低下することがある。また、上記範囲より大きいと、電極ペーストの粘度が増加し、塗工時に塗りむらが発生することがある。
電解質の使用割合が、上記範囲未満であると、プロトン伝導度が低下する。さらに、バインダーとしての役割を果たせなくなり、電極を形成できない。また、上記範囲より大きいと、電極中の細孔容積が減少する。
溶剤の使用割合が、上記範囲内にあると、発電に必要な電極中の細孔容積が十分確保できる。また上記範囲にあれば、ペーストとしてのハンドリングに好適である。
分散剤の使用割合が、上記範囲内にあると保存安定性に優れた電極ペーストが得られる。炭素繊維の使用割合が、上記範囲未満であると、電極中の細孔容積の増加効果が低い。また、上記範囲より大きいと、電極反応率が低下することがある。
ペーストの調製
本発明に係る電極ペーストは、例えば上記各成分を所定の割合で混合し、従来公知の方法で混練することにより調製することができる。
各成分の混合順序は特に限定されないが、例えば全ての成分を混合して一定時間攪拌を行うか、分散剤以外の成分を混合して一定時間攪拌を行った後、必要に応じて分散剤を添加して一定時間攪拌を行うことが好ましい。また、必要に応じて、溶媒の量を調整して、ペーストの粘度を調整してもよい。
(電極および膜−電極接合体)
本発明の固体高分子型燃料電池用電極は、前記した電解質と電極触媒とを含む。このような本発明に係る電極ペーストを、転写基材上に塗布し、溶媒を除去すると本発明の電極が得られる。
転写基材としては、ポリテトラフルオロエチレン(PTFE)などのフッ素系ポリマーからなるシート、または表面を離型剤処理したガラス板や金属板、ポリエチレンテレフタレート(PET)のシートなども用いることができる。
塗布方法としては、刷毛塗り、筆塗り、バーコーター塗布、ナイフコーター塗布、ドクターブレード法、スクリーン印刷、スプレー塗布などがある。転写基材上に塗布された電極を、乾燥して溶媒を除去したのち、固体高分子電解質膜の両面に転写させる。
本発明の膜−電極接合体に用いられる、高分子電解質膜は、プロトン伝導性の固体高分子膜であれば、特に限定されない。
たとえば、Nafion(DuPont社製)、Flemion(旭硝子製)、Aciplex(旭化成製)などのパーフルオロアルキルスルホン酸ポリマーからなる電解質膜、
パーフルオロアルキルスルホン酸ポリマーに、ポリテトラフルオロエチレンの繊維や多孔質膜と複合化した補強型電解質膜、
ポリテトラフルオロエチレングラフトスルホン化ポリスチレンなどの部分フッ素化スルホン化ポリマーからなる電解質膜、
スルホン化ポリアリーレン、スルホン化ポリフェニレン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルニトリル、スルホン化ポリフェニレンエーテル、スルホン化ポリフェニレンスルフィド、スルホン化ポリベンズイミダゾール、スルホン化ポリベンズオキサゾール、スルホン化ポリベンズチアゾールなどの芳香族スルホン化ポリマーからなる電解質膜、
スルホン化ポリスチレン、スルホン酸含有アクリル系ポリマーなどの脂肪族スルホン化ポリマーからなる電解質膜、
これらを多孔質膜と複合化した細孔フィリング型電解質膜、
ポリベンズオキサゾール、ポリベンズイミダゾール、ポリベンズチアゾールなどのポリマーにリン酸、硫酸などを含浸させた酸含浸型ポリマーからなる電解質膜、などがあげられる。これらのうち、芳香族スルホン化ポリマーからなる電解質膜が好ましい。
また、上記電極用電解質を構成する重合体を固体高分子電解質として使用することもできる。
電極を固体高分子電解質膜に転写するには、ホットプレス法を用いることができる。ホットプレス法では、カーボンペーパーまたは離型シートに前記電極ペーストを塗布したものの、電極ペースト塗布面と電解質膜とを圧着する方法である。ホットプレスは、通常、50〜250℃の温度範囲で、1分〜180分の時間、10〜500kg/cm2の圧力
をかけて行う。
本発明の膜−電極接合体を得るための別の方法として、触媒層と電解質膜とを段階的に塗布、乾燥を繰り返す方法がある。塗布や乾燥の順序に特に制限はない。
例えば、PETフィルム等の基材上に、電解質膜の溶液を塗布し乾燥して、電解質膜を作
成した後、この上に本発明の電極ペーストを塗布する。次に基材をはがして、もう一方の面に電極ペーストを塗布する。最後に溶媒を除去すると膜−電極接合体が得られる。塗布方法は上記と同様の方法をあげることができる。
溶媒の除去は、乾燥温度20℃〜180℃、好ましくは50℃〜160℃、乾燥時間5分〜600分、好ましくは30分〜400分で行う。
必要に応じて、電解質膜を水浸漬して、溶媒を除去してもよい。水温は5℃〜120℃、好ましくは15℃〜95℃、水浸漬時間は1分〜72時間、好ましくは5分〜48時間である。
また上記の方法とは逆に、先に電極ペーストを塗布し、電極層を形成したあとに、電解質膜の溶液を塗布して、電解質膜を作成し、次にもう一方の触媒層を塗布し、乾燥して触媒付電解質膜としてもよい。
電極層の厚さは、特に制限されるものではないものの、触媒として担持された金属が、単位面積あたり、0.05〜4.0mg/cm2、好ましくは0.1〜2.0mg/cm2の範囲にあることが望ましい。この範囲にあれば、十分に高い触媒活性が発揮され、また効率的にプロトンを伝導することができる。
電極層の細孔容積は、0.05〜3.0ml/g、好ましくは0.1〜2.0ml/gの範囲にあることが望ましい。なお電極層の細孔容積は、水銀圧入法、ガス吸着法などの
方法により測定される。
電解質膜の厚さとしては、特に制限されるものではないが、厚くなると発電効率が低下したり軽量化が困難となったりするので、10〜200μm程度の厚さであればよいが、この限りではない。
[実施例]
以下、実施例を挙げ本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例中の各種の測定項目は、下記のようにして求めた。
(分子量)
重合体の分子量は、GPCによって、ポリスチレン換算の重量平均分子量を求めた。溶媒として臭化リチウムを添加した、N−メチル−2−ピロリドンを用いた。
(イオン交換容量)
得られたスルホン化ポリマーの水洗水がpH4〜6になるまで洗浄して、フリーの残存している酸を除去後、十分に洗浄し、乾燥後、所定量を秤量し、THF/水の混合溶剤に溶解し、フェノールフタレインを指示薬とし、NaOHの標準液にて滴定し、中和点からイオン交換容量を求めた。
(比抵抗の測定)
得られた重合体を、キャスティング法により製膜し、膜厚約50μmの膜を試料とした。
交流抵抗は、5mm幅の短冊状の試料膜の表面に、白金線(f=0.5mm)を押し当て、恒温恒湿装置中に試料を保持し、白金線間の交流インピーダンス測定から求めた。すなわち、85℃、相対湿度90%の環境下で交流10kHzにおけるインピーダンスを測定した。抵抗測定装置として、(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ヤマト科学製のJW241を使用した。白金線は、5mm間隔に5本押し当てて、線間距離を5〜20mmに変化させ、交流抵抗を測定した。線間距離と抵抗の勾配から、膜の比抵抗を算出した。
Figure 0004593392
[耐熱試験]
2cm×3cmにカットしたフィルムを、ベンコットに挟み、カラス製の試料管に入れ、コンパクト精密恒温槽(AWC−2)で、空気条件下で160℃×24時間加熱する。加熱したフィルムを、NMPに0.2wt%の濃度で溶解させ、GPC(NMP緩衝溶媒)(東ソー(株)HCL-8220製)で分子量およびエリア面積(
A24)を求める。加熱前のフィルムも同条件で測定を行い分子量およびエリア面積(A0)を求め、分子量の変化、および下記式にて不溶分率を求めた。
Figure 0004593392
@0013
[破断強度および弾性率の測定]
破断強度および弾性率の測定は、JIS K7113に準じて行った(引っ張り速度:50mm/min)。ただし、弾性率は、標線間距離をチャック間距離とし算出した。JIS K7113に従い、温度23±2℃、相対湿度50±5%の条件下で48時間試料の状態調整を行った。ただし、試料の打ち抜きは、JIS K6251に記載の7号ダンベ
ルを用いた。引っ張り試験測定装置は、INSTRON製5543を用いた。
(発電評価)
触媒付電解質膜をカーボンペーパーに挟んで、圧力100kg/cm2下で、160℃
×15minの条件でホットプレス成形して、膜電極接合体(MEA)を作成した。このMEAを2枚のチタン製の集電体で挟み、さらにその外側にヒーターを配置し、有効面積25cm2の燃料電池を組み立てた。
燃料電池の温度を85℃に保ち、湿度35%RHおよび100%RHで、水素および酸素を2気圧で供給した。それぞれの条件で、電流密度0.5A/cm2と1.0A/cm2のときの端子間電圧を測定した。
また、燃料電池の温度を85℃に保ち、湿度35%RHで水素および酸素を2気圧で供給し、電流密度0.5A/cm2のときの端子間電圧を、150時間測定した。
(合成例1) 実施例1で使用
<スルホン酸ユニットの合成>
撹拌羽根、温度計、窒素導入管を取り付けた2Lの3口フラスコに2,5−ジクロロ安息香酸114.6g(0.6mol)をとり、五酸化リン/メタンスルホン酸(PPMA)500mLに溶解させ、氷浴で冷却し、2−アミノフェノール196.4g(1.8mol)を少量ずつ添加した。添加後、110℃で5時間加熱した。反応終了後、氷水に滴下し、酢酸エチルから抽出を行った。1%炭酸水素ナトリウム水溶液により中和した後、飽和食塩水で洗浄し、濃縮を行った。メタノールから再結晶を行うことにより、下記式(8−1−A)を得た。収量134g。融点101〜102℃。
撹拌羽根、温度計、窒素導入管を取り付けた1Lの3口フラスコに下記式(8−1−A)100.4g(0.38mol)をとり、クロロスルホン酸440gに溶解させ、95〜100℃で15時間反応させた。原料の消失を薄相クロマトグラフィーにより確認した後、氷水に滴下し、酢酸エチルから抽出を行った。1%炭酸水素ナトリウム水溶液により中和した後、飽和食塩水で洗浄し、濃縮を行った。酢酸エチルから再結晶を行うことにより、下記式(8−1−B)を得た。下記式(8−1−B)は、クロロスルホニル基の置換位置が異なる位置異性体からなる混合物であることをNMRより確認した。収量119g。
撹拌羽根、温度計、窒素導入管を取り付けた1Lの3口フラスコに下記式(8−1−B)83.4g(0.23mol)、ネオペンチルアルコール29.5g(0.253mol)をピリジン482gに溶解させ、5〜10℃で8時間反応させた。反応終了後、1%塩酸・氷水に滴下した後、酢酸エチルから抽出を行った。1%炭酸水素ナトリウム水溶液により中和した後、飽和食塩水で洗浄し、濃縮を行った。酢酸エチル/メタノールから再結晶を行うことにより、下記式(8−1)で表される化合物を得た。下記式(8−1)は、ネオペンチルエステル基の置換位置が異なる位置異性体からなる混合物であることをNMRより確認した。収量77g。この化合物の1H−NMRスペクトルを図1に示す。
Figure 0004593392
<疎水性ユニットの合成>
撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン67.3g(0.20mol)、4,4'−ジクロロベンゾフェノン(4,4'−DCBP)60.3g(0.24mol)、炭酸カリウム71.9g(0.52mol)、N,N−ジメチルアセトアミド(DMAc)300mL、トルエン150mL
をとり、オイルバス中、窒素雰囲気下で加熱し撹拌下130℃で反応させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を130℃から徐々に150℃まで上げた。その後、反応温度を徐々に150℃まで上げながら大部分のトルエンを除去し、150℃で10時間反応を続けた後、4,4'−DCBP10.0g(0.040mol)を加え、さらに5時間反応した。得られた反応液を放冷後、副生した無機化合物の沈殿物を濾過除去し、濾液を4Lのメタノール中に投入した。沈殿した生成物を濾別、回収し乾燥後、テトラヒドロフラン300mLに溶解した。これをメタノール4Lに再沈殿し、目的の化合物95g(収率85%)を得た。
得られた重合体のGPC(THF溶媒)で求めたポリスチレン換算のMnは11,20
0であった。得られた化合物は式(8−2)で表されるオリゴマーであった。
Figure 0004593392
<ポリマーの合成>
乾燥したDMAc166mLを上記一般式(8−1)で表される化合物 40.89g
(98.7mmol)と前記式(8−2)で合成した疎水性ユニット14.56g(1.3mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド3.27g(5.0mmol)、トリフェニルホスフィン10.49g(40mmol)、ヨウ化ナトリウム0.45g(3.0mmol)、亜鉛15.69g(240mmol)の混合物中に窒素下で加えた。
反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中
で系中の粘度上昇が観察された。重合反応溶液をDMAc 390mLで希釈し、30分
撹拌し、セライトを濾過助剤に用い、濾過した。
濾液に臭化リチウム25.72g(296.1mmol)を加え、内温110℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4Lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N塩酸1500mLで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。得られたポリマーの分子量をGPCで測定した結果、Mnは47,000、Mwは145,000であった。イオン交換容量は2.25meq/gであった。得られたポリマーは、下記式(8−3)であった。
このポリマーの1H−NMRスペクトルを図2に示す。
Figure 0004593392
(合成例2) 実施例2で使用
<疎水性ユニットの合成>
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6−ジクロロベンゾニトリル154.8g(0.9mol)、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン269.0g(0.8mol)、炭酸カリウム143.7g(1.04mol)をはかりとった。窒素置換後、スルホラン1020mL、トルエン510mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を200℃に上げ、3時間攪拌を続けた後、2,6−ジクロロベンゾニトリル51.6g(0.3mol)を加え、さらに5時間反応させた。
反応液を放冷後、トルエン250mLを加えて希釈した。反応液に不溶の無機塩を濾過し、濾液をメタノール8Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥後、テトラヒドロフラン500mLに溶解し、これをメタノール5Lに注いで再沈殿させた。沈殿した白色粉末を濾過、乾燥し、目的物258gを得た。GPCで測定したMnは7,500であった。
得られた化合物は式(8−4)で表されるオリゴマーであることを確認した。
Figure 0004593392
<ポリマーの合成>
ポリマーの合成は、実施例1において、疎水性ユニットを前記式(8−4)に代えた以
外は同様に行った。
得られたポリマーの分子量をGPCで測定した結果、Mnは38,000、Mwは104,000であった。イオン交換容量は2.30meq/gであった。得られたポリマーは、下記式(8−5)であった。このポリマーの1H−NMRスペクトルを図3に示す。
Figure 0004593392
(合成例3) 実施例3で使用
<疎水性ユニットの合成>
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管を取り付けた1Lの三口フラスコに、2,2−ビス(4−ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン2
0.2g(60.2mmol)、9,9−ビス(4−ヒドロキシフェニル)フルオレン18.1g(51.6mmol)、4,4'−ジクロロジフェニルスルホン29.6g(1
03mmol)、炭酸カリウム20.1g(145mmol)をはかりとった。窒素置換後、スルホラン170ml、トルエン85mlを加えて攪拌し、オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を200℃に上げ、5時間攪拌を続けた後、4,4'−ジ
クロロベンゾフェノン10.8g(43mmol)を加え、さらに8時間反応させた。
反応液を放冷後、トルエン100mLを加えて希釈した。反応液に不溶の無機塩をろ過し、ろ液をメタノール2Lに注いで生成物を沈殿させた。沈殿した生成物をろ過、乾燥後、テトラヒドロフラン250mLに溶解し、これをメタノール2Lに注いで再沈殿させた。沈殿した白色粉末をろ過、乾燥し、疎水性ユニット56.5gを得た。GPCで測定した数平均分子量は7800であった。得られた化合物は、下記式(8−6)で表されるオリゴマーであることを確認した。下記式(8−6)中、aとbの比a:bは54:46であった。
Figure 0004593392
<ポリマーの合成>
ポリマーの合成は、実施例1において、疎水性ユニットを前記式(8−6)に代えた以外は同様に行った。
得られたポリマーの分子量をGPCで測定した結果、Mnは38,000、Mwは93,000であった。イオン交換容量は2.30meq/gであった。得られたポリマーは、下記式(8−7)であった。
Figure 0004593392
(合成例4) 実施例4で使用
<疎水性ユニットの合成>
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、2,6−ジクロロベンゾニトリル44.5g(259mmol)、9,9−ビス(4−ヒドロキシフェニル)フルオレン102.0g(291mmol)、炭酸カリウム52.3g(379mmol)をはかりとった。窒素置換後、スルホラン366mL、トルエン183mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を200℃に上げ、3時間攪拌を続けた後、2,6−ジクロロベンゾニトリル16.7g(97mmol)を加え、さらに5時間反応させた。
反応液を放冷後、トルエン100mLを加えて希釈した。反応液に不溶の無機塩を濾過し、濾液をメタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥後、テトラヒドロフラン250mLに溶解し、これをメタノール2Lに注いで再沈殿させた。沈殿した白色粉末を濾過、乾燥し、目的物118gを得た。GPCで測定した数平均分子量(Mn)は7,300であった。得られた化合物は式(8−8)で表されるオリゴマーであることを確認した。
Figure 0004593392
<ポリマーの合成>
ポリマーの合成は、実施例1において、疎水性ユニットを前記式(8−8)に代えた以外は同様に行った。
得られたポリマーの分子量をGPCで測定した結果、Mnは41,000、Mwは123,000であった。イオン交換容量は2.27meq/gであった。得られたポリマー
は、下記式(8−9)で表される化合物。
Figure 0004593392
(合成例5) 実施例5で使用
<疎水性ユニットの合成>
撹拌羽根、温度計、窒素導入管を取り付けた500mLの3口フラスコに、1,3−ビス(4−クロロベンゾイル)ベンゼン17.8g(50.0mmol)、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン15.1g(45.0mmol)、炭酸カリウム8.1g(58.5mol)、スルホラン117g、トルエン40gを入れ、窒素雰囲気下、130℃で撹拌した。トルエンとの共沸により水分を取り除いた後、トルエンを系外に取り除き、195℃で7時間撹拌した。反応溶液を100℃まで冷やしてから、1,3−ビス(4−クロロベンゾイル)ベンゼン5.34g(15.0mmol)を加え、再度195℃で3時間撹拌した。トルエンにより希釈し、セライト濾過により固形分を取り除いた。濾液をメタノール/濃塩酸溶液(メタノール2.0L/濃塩酸0.2L)に注ぎ、反応物を凝固させた。吸引濾過により固体を濾過し、得られた固体をメタノールで洗浄した後、風乾した。これをテトラハイドロフランに再溶解し、メタノール3.0Lに注ぎ、反応物を凝固させた。吸引濾過により固体を濾過し、得られた固体を風乾して、さらに真空乾燥することにより目的の疎水性ユニット22.1gを得た(収率75%)。GPC(ポリスチレン換算)で求めた生成物の数平均分子量は8000、重量平均分子量は14000であった。得られた化合物は下記式(8−10)で表わされるオリゴマーであることを確認した。
Figure 0004593392
<ポリマーの合成>
ポリマーの合成は、実施例1において、疎水性ユニットを前記式(8−10)に代えた以外は同様に行った。
得られたポリマーの分子量をGPCで測定した結果、Mnは49,000、Mwは152,000であった。イオン交換容量は2.28meq/gであった。得られたポリマーは、下記式(8−11)であった。
Figure 0004593392
(合成例6) 実施例6で使用
<スルホン酸ユニットの合成>
実施例1の<スルホン酸ユニットの合成>において、2−アミノフェノールを2−アミノチオフェノールに変更した以外は同様の実験操作を行い下記式(8−12)に示すスルホン酸ユニットを合成した。
Figure 0004593392
<ポリマーの合成>
実施例1の<ポリマーの合成>において、上記式(8−1)を上記式(8−12)に変えた以外は同様の実験操作を行い下記式(8−13)に示すポリマーを得た。
得られたポリマーの分子量をGPCで測定した結果、Mnは46,000、Mwは139,000であった。イオン交換容量は2.26meq/gであった。
Figure 0004593392
(合成例7) 実施例7で使用
実施例2の<ポリマーの合成>において、上記式(8−1)を上記式(8−12)に変えた以外は同様の実験操作を行い下記式(8−14)に示すポリマーを得た。 得られたポリマーの分子量をGPCで測定した結果、Mnは35,000、Mwは110,000であった。イオン交換容量は2.29meq/gであった。
Figure 0004593392
(合成例8) 実施例8で使用
実施例3の<ポリマーの合成>において、上記式(8−1)を上記式(8−12)に変えた以外は同様の実験操作を行い下記式(8−15)に示すポリマーを得た。 得られたポリマーの分子量をGPCで測定した結果、Mnは40,000、Mwは126,000であった。イオン交換容量は2.27meq/gであった。
Figure 0004593392
(合成例9) 実施例9で使用
合成例4の<ポリマーの合成>において、上記式(8−1)を上記式(8−12)に変えた以外は同様の実験操作を行い下記式(8−16)に示すポリマーを得た。 得られたポリマーの分子量をGPCで測定した結果、Mnは37,000、Mwは102,000であった。イオン交換容量は2.26meq/gであった。
Figure 0004593392
(合成例10)実施例10で使用
合成例5の<ポリマーの合成>において、上記式(8−1)を上記式(8−12)に変えた以外は同様の実験操作を行い下記式(8−17)に示すポリマーを得た。
得られたポリマーの分子量をGPCで測定した結果、Mnは45,000、Mwは128,000であった。イオン交換容量は2.27meq/gであった。
Figure 0004593392
[実施例1〜10]
合成例1〜10で得られたスルホン化ポリマーを、メタノール/NMP=50/50の混合溶媒に15重量%になるよう溶解して、電極電解質のワニスを調製した。このワニスからキャスト法により、膜厚40μmのフィルムを作製した。得られたフィルムを用いて、プロトン伝導性評価、耐熱性評価、機械的強度の測定を行った。結果を表1に示す。
Figure 0004593392
[実施例11]
[ペーストAの調製]
50mlのガラス瓶に直径10mmのジルコニアボール(商品名:YTZボール、株式会社ニッカトー製)25gを入れ、白金担持カーボン粒子(Pt:46重量%担持、(田中貴金属工業株式会社製:TEC10E50E)1.51g、蒸留水0.88g、合成例1と同様
にして作製したスルホン化ポリマーの15%水−1,2ジメトキシエタン溶液(重量比10:90)3.23g、1,2−ジメトキシエタン13.97gを加え、ウエーブローターで60分間攪拌し、粘度50cp(25℃)のペーストAを得た。
〔ガス拡散層の作製〕
カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子とを、カーボンブラック:PTFE粒子=4:6の重量比で混合し、得られた混合物をエチレングリコールに均一に分散させたスラリーをカーボンペーパーの片面に塗布し、乾燥させて下地層とし、該下地層とカーボンペーパーとからなる拡散層3を二つ作製した。
[ガス拡散電極の作製]
上記で作製した拡散層上に、ペーストAを白金塗布量が0.5mg/cm2になるよう
にドクターブレードを用いて塗布した。これを95℃で10分間加熱乾燥し、ガス拡散電極層を形成させた。
[膜−電極接合体の作製]
実施例1で作製したスルホン化ポリマーからなる電解質膜(膜厚40μm)の電解質膜を1枚用意し、上記で作製した一対のガス拡散電極層で挟み、圧力100kg/cm2
で、160℃×15minの条件でホットプレス成形して、膜−電極接合体を作成した。〔発電評価〕
上記で得た膜―電極接合体の両側にガス流路を兼ねるセパレータを積層することにより、固体高分子型燃料電池を構成させた。これを単セルとして、一方を酸素極として空気を供給し、一方は燃料極として純水素を供給して発電させた。発電条件は、セル温度95℃、空気極側相対湿度75%、燃料極側相対湿度40%で行い、初期と500時間後の電流密度1A/cm2でのセル電圧を測定した。結果を表2に示す。
[実施例12]
実施例2で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例13]
実施例3で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例14]
実施例4で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例15]
実施例5で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例16]
実施例6で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例17]
実施例7で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例18]
実施例8で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例19]
実施例9で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
[実施例20]
実施例10で作製したスルホン化ポリマーを用いた以外は、同様の方法で膜−電極接合体を作成し発電評価を行った。
〔発電評価結果〕
実施例11から20の結果を表2に示す。本発明に示す耐熱性および機械的特性に優れた高分子電解質膜を用いることにより、いずれの膜−電極接合体においても高温で高出力の発電が可能であり、かつ、長期発電性能にも優れることがわかった。
Figure 0004593392
図1は合成例1で得られた芳香族化合物の1H-NMRを示す。 図2は合成例1で得られたスルホン化ポリアリーレンの1H-NMRを示す。 図3は合成例2で得られたスルホン化ポリアリーレンの1H-NMRを示す。

Claims (6)

  1. 窒素原子およびスルホン酸基とを有し、主鎖がフェニレン結合であり、下記一般式(2)で表される構成単位を含むことを特徴とする構成単位を含むスルホン化ポリアリーレンからなる電極電解質と溶媒とを含む電極電解質のワニス
    Figure 0004593392
    [式中、Zは硫黄原子、酸素原子、−NH−基を表す。Rは、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。j、kは1〜4の整数を示す。]
  2. 前記スルホン化ポリアリーレンが上記式(2)で表される構成単位とともに、下記一般式(3)で表される構成単位を含むことを特徴とする請求項1に記載の電極電解質のワニス。
    Figure 0004593392
    (式中、A、Dは独立に直接結合または、−CO−、−SO2−、−SO−、−CONH−、−COO−、−(CF2)l−(lは1〜10の整数である)、−(CH2)l−(lは1〜10の整数である)、−CR’2−(R’は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、R1〜R16は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。s、tは0〜4の整数を示し、rは0または1以上の整数を示す。)
  3. 請求項1または2に記載の電極電解質のワニスと電極触媒を含むことを特徴とする電極ペースト。
  4. 窒素原子およびスルホン酸基とを有し、主鎖がフェニレン結合であり、下記一般式(2)で表される構成単位を含むことを特徴とする構成単位を含むスルホン化ポリアリーレンからなる電極電解質と電極触媒とを含むことを特徴とする固体高分子型燃料電池用電極。
    Figure 0004593392
    [式中、Zは硫黄原子、酸素原子、−NH−基を表す。Rは、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。j、kは1〜4の整数を示す。]
  5. 前記スルホン化ポリアリーレンが上記式(2)で表される構成単位とともに、下記一般式(3)で表される構成単位を含むことを特徴とする固体高分子型燃料電池用電極。
    Figure 0004593392
    (式中、A、Dは独立に直接結合または、−CO−、−SO 2 −、−SO−、−CONH−、−COO−、−(CF 2 ) l −(lは1〜10の整数である)、−(CH 2 ) l −(lは1〜10の整数である)、−CR’ 2 −(R’は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、Bは独立に酸素原子または硫黄原子であり、R 1 〜R 16 は、互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。s、tは0〜4の整数を示し、rは0または1以上の整数を示す。)
  6. 請求項4または5に記載の電極を、高分子電解質膜の少なくとも片面に接合した構造からなる膜−電極接合体。
JP2005207390A 2005-07-15 2005-07-15 電極電解質のワニス Expired - Fee Related JP4593392B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207390A JP4593392B2 (ja) 2005-07-15 2005-07-15 電極電解質のワニス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207390A JP4593392B2 (ja) 2005-07-15 2005-07-15 電極電解質のワニス

Publications (2)

Publication Number Publication Date
JP2007026888A JP2007026888A (ja) 2007-02-01
JP4593392B2 true JP4593392B2 (ja) 2010-12-08

Family

ID=37787401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207390A Expired - Fee Related JP4593392B2 (ja) 2005-07-15 2005-07-15 電極電解質のワニス

Country Status (1)

Country Link
JP (1) JP4593392B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579073B2 (ja) * 2005-07-15 2010-11-10 本田技研工業株式会社 固体高分子型燃料電池用膜−電極構造体
JP4600191B2 (ja) * 2005-07-15 2010-12-15 Jsr株式会社 新規芳香族化合物、スルホン化ポリアリーレンおよびその用途
JP4994945B2 (ja) * 2007-05-18 2012-08-08 Jsr株式会社 高分子型燃料電池用電極電解質およびその用途
JP5377845B2 (ja) 2007-10-25 2013-12-25 本田技研工業株式会社 燃料電池システム及びその掃気方法
US8362195B2 (en) * 2007-10-26 2013-01-29 Lalgudi Ramanathan S Ionically conductive polymer for use in electrochemical devices
KR102066033B1 (ko) * 2015-09-30 2020-01-14 코오롱인더스트리 주식회사 이온 전도체, 이의 제조 방법, 및 이를 포함하는 이온 교환막, 막-전극 어셈블리 및 연료전지
CN114094188B (zh) * 2021-11-19 2023-10-20 东莞新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022708A (ja) * 2001-07-09 2003-01-24 Toyobo Co Ltd ブレンドポリマー電解質、該電解質を主成分とする電解質膜、及び該電解質を用いた膜/電極接合体
WO2005056650A1 (ja) * 2003-12-09 2005-06-23 Jsr Corporation プロトン伝導膜
JP2007026841A (ja) * 2005-07-15 2007-02-01 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2007022959A (ja) * 2005-07-15 2007-02-01 Jsr Corp 新規芳香族化合物、スルホン化ポリアリーレンおよびその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022708A (ja) * 2001-07-09 2003-01-24 Toyobo Co Ltd ブレンドポリマー電解質、該電解質を主成分とする電解質膜、及び該電解質を用いた膜/電極接合体
WO2005056650A1 (ja) * 2003-12-09 2005-06-23 Jsr Corporation プロトン伝導膜
JP2007026841A (ja) * 2005-07-15 2007-02-01 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2007022959A (ja) * 2005-07-15 2007-02-01 Jsr Corp 新規芳香族化合物、スルホン化ポリアリーレンおよびその用途

Also Published As

Publication number Publication date
JP2007026888A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5100383B2 (ja) 固体高分子型燃料電池用電極電解質
JP4593392B2 (ja) 電極電解質のワニス
JP4994945B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP4896435B2 (ja) 固体高分子型燃料電池の電極用電解質
JP2007026819A (ja) 電極−膜接合体
JP5089061B2 (ja) 固体高分子電解質、プロトン伝導膜、電極電解質、電極ペーストおよび膜−電極接合体
JP5144024B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP2006344481A (ja) 固体高分子型燃料電池用電極電解質、電極ペースト、電極および膜−電極接合体
JP4871537B2 (ja) 膜−電極接合体の製造方法
JP4846273B2 (ja) 固体高分子型燃料電池用電極電解質
JP5364975B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP5037196B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP4997965B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP4879639B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP5057691B2 (ja) 固体高分子型燃料電池用電極電解質、電極ペースト、電極および膜−電極接合体
JP2007087889A (ja) 電極−膜接合体
JP2007213905A (ja) 高分子型燃料電池用電極電解質およびその用途
JP5261934B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JPWO2009078483A1 (ja) 直接メタノール型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体
JP2007035405A (ja) 固体高分子型燃料電池用電極および膜−電極接合体
JP2009295324A (ja) 固体高分子型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体
JP2007026709A (ja) 電極触媒層
JP5261935B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP5339757B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP2010010075A (ja) 固体高分子型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees