JP5364975B2 - 高分子型燃料電池用電極電解質およびその用途 - Google Patents

高分子型燃料電池用電極電解質およびその用途 Download PDF

Info

Publication number
JP5364975B2
JP5364975B2 JP2006353453A JP2006353453A JP5364975B2 JP 5364975 B2 JP5364975 B2 JP 5364975B2 JP 2006353453 A JP2006353453 A JP 2006353453A JP 2006353453 A JP2006353453 A JP 2006353453A JP 5364975 B2 JP5364975 B2 JP 5364975B2
Authority
JP
Japan
Prior art keywords
group
mmol
electrode
polymer
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006353453A
Other languages
English (en)
Other versions
JP2008166078A (ja
Inventor
政宏 上田
幸平 後藤
芳孝 山川
長之 金岡
薫生 中川
順二 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2006353453A priority Critical patent/JP5364975B2/ja
Publication of JP2008166078A publication Critical patent/JP2008166078A/ja
Application granted granted Critical
Publication of JP5364975B2 publication Critical patent/JP5364975B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、特定の構造単位からなる重合体を含む固体高分子型燃料電池用電極電解質、電極ペースト、電極、および膜−電極接合体に関する。
固体高分子型燃料電池は、高出力密度が得られ、低温で作動可能であることから小型軽量化が可能であり、自動車用動力源、定置用発電電源、携帯機器用発電電源などとして実用化が期待されている。
固体高分子型燃料電池はプロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、純水素あるいは改質水素を燃料ガスとして一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤としてもう一方の電極(空気極)へ供給し、発電を行うものである。
かかる燃料電池の電極は触媒成分が分散した電極電解質から構成され(このため電極は、電極触媒層ということもある)、燃料極側の電極触媒層は、燃料ガスから、プロトンと電子を発生させ、空気極側の電極触媒層で酸素とプロトンと電子とから水を生成し、固体高分子電解質膜はプロトンをイオン伝導させる。そして、かかる電極触媒層を通して電力が取り出される。
従来、固体高分子型燃料電池では、電極触媒層の電解質として、Nafion(商標)に代表されるパーフルオロアルキルスルホン酸系高分子が使用されている。この材料は優れたプロトン伝導性を有しているが、非常に高価であり、また分子内にフッ素原子を大量に有していることから、燃焼性が小さく、電極触媒に用いられる白金などの高価な貴金属の回収再利用を非常に困難にしている問題がある。
一方これにかわる材料として、種々の非パーフルオロアルキルスルホン酸系高分子の検討も行われている。特に発電効率の高い、高温条件で用いることを狙い、耐熱性の高い芳香族スルホン酸系高分子を電解質として用いることが試みられている。
たとえば、特開2005−50726号公報(特許文献1)には、スルホン化ポリアリーレン重合体を電極電解質として用いることが開示されており、さらに、特開2004−253267号公報(特許文献2)には、特定のスルホン化ポリアリーレンを用いることが開示されている。
特開2005−50726号公報 特開2004−253267号公報
しかしながらこれらの従来より電解質として知られていた材料は、高温下ではスルホン酸基の可逆的な脱離反応やスルホン酸が関与する架橋反応が発生することがあった。これにより、プロトン伝導性が低下したり、膜の脆化等が生じたりして、燃料電池の発電出力の低下や、膜が破断することにより発電不能に至る問題があった。
また、このような問題をできるだけ回避するために、現状、燃料電池発電時の上限温度を限定し使用しており、発電出力に制限があった。
プロトン伝導性を上げるためにスルホン酸濃度を上げると、高温高湿条件下で、吸水に
よる膨潤が大きく、ガス流路を閉塞して、発電性能が低下するという新たな問題もあった。
さらにまた、ナフィオンをはじめとする従来より使用されていた電解質膜は、メタノール水溶液中で膨潤しやすく、十分なメタノール耐性を有さないことなどから、ダイレクトメタノール型燃料電池に利用する電解質膜としてはまだ不十分であった。また、従来、膜が破断することにより発電不能に至る問題を回避するため、現状ではDMFC用の電解質膜をホットプレスする際に、その温度を制限することによって可能な限りこの問題を回避しているが、ガラス転移温度の高いポリマーでは電解質膜の加工性に限界があり、さらに加工性の高いものが望まれていた。
すなわち、本発明の課題は、前述のような、価格的な問題や、触媒金属の回収に関する問題を解決するとともに、プロトン伝導性や寸法安定性、熱水耐性、機械的特性、加工性に優れた、固体高分子型燃料電池用電極電解質を提供し、さらに該電解質を含む、電極ペースト、電極、触媒付電解質膜を提供するものである。
本発明は、上記の問題点を解決するためになされたものであり、特定のポリアリーレン系重合体を使用することで、高いスルホン酸濃度の共重合体が合成でき、プロトン伝導度の高い材料設計が可能となり、高温条件下でのスルホン酸基の安定性を向上できるとともに、共重合体中のスルホン酸基を有さないユニットの組成比を増加させても、高いスルホン酸濃度の共重合体が合成でき、熱水耐性や機械的特性、加工性に優れた材料設計が可能となり、上記問題を解決することを見出した。
さらにこの重合体は、フッ素原子を含まないか、あるいは含んでもその含有量が大幅に低減されており、前述のような触媒金属の回収再利用に対する問題の解決が可能できることを見出し、本発明を完成するに至った。
本発明の構成は以下の通りである。
[1]式(1)で表される構造単位を含有するポリアリーレン系重合体を含んでなることを
特徴とする高分子型燃料電池用電極電解質。
Figure 0005364975
[式(1)中、Tは下記式(2)で表わされ、少なくとも下記式(3)で表わされる構造を含む。
Figure 0005364975
A、Cは独立に直接結合または、−CO−、−SO2−、−SO−、−CONH−、−
COO−、−(CF2)l−(lは1〜10の整数である)、−(CH2)l−(lは1〜10の整数である)、−CR'2−(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン
化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、
Bは独立に酸素原子または硫黄原子であり、
Xはハロゲン原子である。
Dは下記式(4)で表わされる2,2−プロピリデン基もしくは1,1−シクロヘキシリデン基を示す。
Figure 0005364975
1〜R16は、互いに同一であっても異なっていてもよく、水素原子、フッ素原子、ア
ルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。
17、R18は互いに水素原子の場合を除き、同一であっても異なっていてもよく、水素原子、メチル基、イソプロピル基、イソブチル基、t−ブチル基、シクロヘキシル基を示す。
s、tは0〜4の整数を示し、rは1以上の整数を示す。]。
[2]および式(5)で表される構造単位とともに下記式(6)で表される構造単位を含む
ことを特徴とする[1]の高分子型燃料電池用電極電解質。
Figure 0005364975
[式(6)中、Yは−CO−、−SO2−、−SO−、−CONH−、−COO−、−(CF2l−(lは1〜10の整数である)、−C(CF32−からなる群より選ばれた少なくとも1種の構造を示し、
Zは直接結合または、−(CH2l−(lは1〜10の整数である)、−C(CH32−、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、
Arは−SO3H、−O(CH2pSO3Hまたは−O(CF2pSO3Hで表される置換
基を有する芳香族基を示す。
pは1〜12の整数を示し、mは0〜10の整数を示し、nは0〜10の整数を示し、kは1〜4の整数を示す。]。
[3][1]または[2]の電解質と触媒粒子および溶媒を含むことを特徴とする電極ペースト。
[4][1]または[2]の電解質と触媒粒子とを含むことを特徴とする固体高分子型燃料電池用
電極。
[5][4]の電極を、高分子電解質膜の少なくとも片面に備える膜−電極接合体。
本発明によれば、縮合芳香族環を含有するモノマーから合成される化合物から導かれる疎水性を有する構造単位を含んでいるので、スルホン酸基を高い濃度で導入しても、メタノール耐性が高く、加工性に優れ、プロトン伝導度が高い電極電解質が得られる。また、本発明によれば安価で、触媒金属の回収が容易であり、プロトン伝導性や寸法安定性に優れ、熱水耐性や機械的特性に優れた、固体高分子型燃料電池用電極電解質が提供される。さらに該電解質を含む、電極ペースト、電極、触媒付電解質膜を提供し、固体高分子型燃料電池の発電性能向上に寄与するものである。
以下、本発明について具体的に説明する。
(電極電解質)
本発明の固体高分子型燃料電池用電極電解質は、縮合芳香族環を含有するモノマーから誘導される構造単位を含むポリアリーレン系共重合体を含む。
なお、本明細書において重合体における繰り返し単位を「ユニット」といい、以下、疎水性を有する繰り返し単位を「疎水ユニット」、スルホン酸基を有する構造単位を「スルホン酸ユニット」ということもある。
ポリアリーレン系重合体
本発明で使用されるポリアリーレン系共重合体は、下記式(5)で表わされる構造単位(以下「疎水性ユニット」という)をのみから構成される単独重合体でもよいし、ユニット(A)および他のユニットから構成される共重合体でもよい。いずれの場合でも、重合体のゲルパーミエーションクロマトグラフィー(GPS)で測定したポリスチレン換算の重量平均分子量(以下、単に「重量平均分子量」という)は1万〜100万、好ましくは2万〜80万である。
なお、本明細書において重合体における構造単位を「ユニット」ということもある。
疎水性ユニット
疎水性ユニットは、下記式(1)で表わされ、以下「ユニット(1)」ともいう。
Figure 0005364975
[式(1)中、Tは下記式(2)で表わされ、少なくとも下記式(3)で表わされる構造
を含む。
Figure 0005364975
A、Cは独立に直接結合または、−CO−、−SO2−、−SO−、−CONH−、−
COO−、−(CF2l−(lは1〜10の整数である)、−(CH2l−(lは1〜10の整数である)、−CR'2−(R'は脂肪族炭化水素基、芳香族炭化水素基およびハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示す。
ここで、−CR'2−で表される構造の具体的な例として、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、プロピル基、オクチル基、デシル基、オクタデシル基、フェニル基、トリフルオロメチル基などが挙げられる。
これらのうち、直接結合、−CO−、−SO2−、−CR'2−(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−が好ましい。
Bは独立に酸素原子または硫黄原子であり、酸素原子が好ましい。
Xはハロゲン原子であり、塩素原子が好ましい。
Dは下記式(4)で表わされる2,2−プロピリデン基もしくは1,1−シクロヘキシリデン基を示す。
Figure 0005364975
1〜R16は、互いに同一であっても異なっていてもよく、水素原子、フッ素原子、ア
ルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基、シクロヘキシル基、オクチル基などが挙げられる。ハロゲン化アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられる。アリル基としては、プロペニル基などが挙げられ、アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
17、R18は互いに同一であっても異なっていてもよく、水素原子、メチル基、イソプロピル基、イソブチル基、t−ブチル基、シクロヘキシル基を示す。ただし、互いに水素原子の場合を除く。
s、tは0〜4の整数を示す。rは1〜100の整数を示し、好ましくは1〜80である。
s、tの値と、A、B、D、R1〜R18の好ましい組み合わせである構造として、s=
1、t=1であり、Aが−CO−または、−SO2−であり、Bが酸素原子であり、Dが
−CR'2−(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を
示す)、シクロヘキシリデン基、フルオレニリデン基であり、R1〜R16が水素原子また
はフッ素原子であり、R17、R18が水素原子、メチル基、t−ブチル基、シクロヘキシル基、フェニル基である構造が挙げられる。
このようなユニットとしては、具体的には下記式で表される。
なお、下記式中、aおよびbは各ユニットの組成比を示す。
Figure 0005364975
Figure 0005364975
Figure 0005364975
Figure 0005364975
Figure 0005364975
Figure 0005364975
ユニット(1)は、下記化合物(5)から誘導される。
本発明に係る芳香族化合物は、下記式(5)で表され、以下「化合物(5)」ともいう。
Figure 0005364975
式(1)中のX以外の符号は、上記式(1)と同じであり、Xは、フッ素を除くハロゲン
原子、−SO2CH2および−SO2CF2から選ばれる原子または基を示し、特にフッ素を除くハロゲン原子が好ましく、さらにClまたはBrが最も好ましい。
化合物(5)は、例えば以下に示す方法で合成することができる。
まずビスェノール化合物をビスフェノールのアルカリ金属塩とするために、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、スルホラン、ジフェニルスルホン、
ジメチルスルホキサイドなどの誘電率の高い極性溶媒中で、リチウム、ナトリウム、カリウムなどのアルカリ金属、または水素化アルカリ金属、水酸化アルカリ金属、アルカリ金属炭酸塩などのアルカリ金属化合物を加える。通常、アルカリ金属等はビスフェノールの
水酸基に対し、過剰気味で反応させ、通常、1.1〜2倍当量を使用する。好ましくは、1.2〜1.5倍当量を使用する。
ここで、ビスフェノールは少なくとも2,2−ビス(3,5−ジメチル−4−ヒドロキ
シフェニル)プロパン、2,2−ビス(3,5−ジ−t−ブチル−4−ヒドロキシフェニ
ル)プロパン、2,2−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン、1,1
−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−ジ−t−ブチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサンを用い、その他に2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−ヒドロキシフェニル)ケトン、2,2−ビス(4−ヒドロキシフェニル)スルホン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジフェニルフェニル)フルオレン、4,4’−ビス(4−ヒドロキシフェニル)ジフェニルメタン、4,4’−ビス(4−ヒドロキシ−3−フェニルフェニル)ジフェニルメタン、4,4’−ビス(4−ヒドロキシ3,5−ジフェニルフェニル)ジフェニルメタン、ヒドロキノン、レゾルシノール、2−フェニルヒドロキノンなどを用いても良い。
この際、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、クロロベンゼン、ジオキサン、テトラヒドロフラン、アニソール、フェネトールなどの水と共沸する溶媒を共存させて、電子吸引性基で活性化された芳香族ジハライド化合物(活性芳
香族ジバライド化合物)、例えば、4,4'−ジフルオロベンゾフェノン、4,4'−ジクロ
ロベンゾフェノン、4,4'−クロロフルオロベンゾフェノン、ビス(4−クロロフェニル)スルホン、ビス(4−フルオロフェニル)スルホン、4−フルオロフェニル−4'−クロロフェニルスルホン、ビス(3−ニトロ−4−クロロフェニル)スルホン、2,6−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、ヘキサフルオロベンゼン、デカフルオロビフェニル、2,5−ジフルオロベンゾフェノン、1,3−ビス(4−クロロベンゾイル)ベンゼンなどを反応させる。
活性芳香族ジハライド化合物は、ここでの反応性を重視すると、フッ素化合物が好ましいが、次の過程である芳香族カップリング反応性を重視すると、末端が塩素原子となるように芳香族求核置換反応を組み立てる必要があるので、塩素化合物が好ましい。活性芳香族ジハライドはビスフェノールに対し、2〜4倍モル、好ましくは2.2〜2.8倍モルである。これらは、あらかじめ芳香族求核置換反応の前に、ビスフェノールのアルカリ金属塩としていてもよい。活性芳香族ジハライドとして最も好ましいのは、反応性の異なるハロゲン原子を一個づつ有するクロロフルオロ体であり、この場合にはフッ素原子が優先してフェノキシドとの求核置換反応が起きるので、目的の活性化された末端クロロ体を得るのに好都合である。
反応温度は60℃〜300℃で、好ましくは80℃〜250℃の範囲である。反応時間は15分〜100時間、好ましくは1時間〜24時間の範囲である。
スルホン酸ユニット
本発明で使用される重合体は、前記式(1)で表される構造単位(疎水性ユニット)と
ともに下記式(6)で表される構造単位(スルホン酸ユニット、以下「ユニット(6)」ともいう)を含むことが望ましい。
Figure 0005364975
式(6)中、Yは−CO−、−SO2−、−SO−、−CONH−、−COO−、−(
CF2l−(lは1〜10の整数である)、−C(CF32−からなる群より選ばれた少なくとも1種の構造を示す。このうち、−CO−、−SO2−が好ましい。
Zは直接結合、−(CH2l−(lは1〜10の整数である)、−C(CH32−、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示す。このうち直接結合、−O−が好ましい。
Arは−SO3H、−O(CH2pSO3Hまたは−O(CF2pSO3Hで表される置
換基(pは1〜12の整数を示す)を有する芳香族基を示す。
この芳香族基として、例えばフェニル基、ナフチル基、アントリル基、フェナントリル基などが挙げられる。これらのうち、フェニル基、ナフチル基が好ましい。−SO3H、
−O(CH2pSO3Hまたは−O(CF2pSO3Hで表される置換基(pは1〜12の整数を示す)は、少なくとも1個置換されていることが必要であり、ナフチル基である場合には2個以上置換されていることが好ましい。
mは0〜10、好ましくは0〜2の整数であり、nは0〜10、好ましくは0〜2の整数であり、kは1〜4の整数を示す。
m、nの値とY、Z、Arの好ましい組み合わせである構造として、
(1)m=0、n=0であり、Yは−CO−であり、Arが置換基として−SO3Hを有
するフェニル基である構造、
(2)m=1、n=0であり、Yは−CO−であり、Zは−O−であり、Arが置換基として−SO3Hを有するフェニル基である構造、
(3)m=1、n=1、k=1であり、Yは−CO−であり、Zは−O−であり、Arが置換基として−SO3Hを有するフェニル基である構造、
(4)m=1、n=0であり、Yは−CO−であり、Zは−O−であり、Arが置換基として2個の−SO3Hを有するナフチル基である構造、
(5)m=1、n=0であり、Yは−CO−であり、Zは−O−であり、Arが置換基として−O(CH24SO3Hを有するフェニル基である構造などが挙げられる。
スルホン酸基を有するポリアリーレン系共重合体(共重合体(7))の構造
本発明に使用されるポリアリーレン系共重合体は、「疎水性ユニット」と、前記「スルホン酸ユニット」とを含み、下記式(7)で表される共重合体(以下「共重合体(7)」ともいう)である。
Figure 0005364975
式(7)中、A、B、D、Y、Z、Ar、k、m、n、r、s、tおよびR1〜R8は、それぞれ上記式(1)、(5)および(6)中のA、B、D、T、Y、Z、Ar、k、m、n、r、s、tおよびR1〜R8と同義である。x、yはx+y=100モル%とした場合のモル比であり、xはユニット(6)のモル比、yはユニット(1)のモル比を示す。
本発明に係る共重合体(7)におけるxの値は、0.5〜99.999モル%、好ましくは10〜99.999モル%、yの値は、99.5〜0.001モル%、好ましくは90〜0.001モル%である。
<スルホン酸基を有するポリアリーレン系共重合体(共重合体(7))の製造方法>
共重合体(7)の製造には、例えば下記に示すI法、II法、III法の3通りの方法を用いることができる。
(I法) 例えば、特開2004−137444号公報に記載の方法で、ユニット(1
)となりうるモノマーまたはオリゴマーと、ユニット(6)となりうるスルホン酸エステル基を有するモノマーとを共重合させ、スルホン酸エステル基を有するポリアリーレンを製造し、このスルホン酸エステル基を脱エステル化して、スルホン酸エステル基をスルホン酸基に変換することにより合成することができる。
(II法) 例えば、特開2001−342241号公報に記載の方法で、ユニット(1
)となりうるモノマーまたはオリゴマーと、ユニット(6)で表される骨格を有するがスルホン酸基およびスルホン酸エステル基を有しないモノマーとを共重合させ、この共重合体を、スルホン化剤を用いて、スルホン化することにより合成することもできる。
(III法) 式(6)において、Arが−O(CH2)pSO3Hまたは−O(CF2)pSO3
Hで表される置換基を有する芳香族基である場合には、例えば、特開2005−060625に記載の方法で、ユニット(1)となりうるモノマーまたはオリゴマーと、ユニット
(6)となりうる前駆体のモノマーとを共重合させ、次にアルキルスルホン酸またはフッ素置換されたアルキルスルホン酸を導入する方法で合成することもできる。
(I法)において用いることのできる、ユニット(6)となりうるスルホン酸エステル基を有するモノマーの具体的な例として、特開2004−137444号公報、特開2004−345997号公報、特開2004−346163号公報に記載されているスルホン酸エステル類を挙げることができる。
(II法)において用いることのできる、ユニット(6)となりうるスルホン酸基、またはスルホン酸エステル基を有しないモノマーの具体的な例として、特開2001−342241号公報、特開2002−293889号公報に記載されているジハロゲン化物を挙げることができる。
(III法)において用いることのできる、ユニット(6)となりうる前駆体のモノマー
の具体的な例として、特開2005−036125号公報に記載されているジハロゲン化物を挙げることができる。
共重合体(7)を得るためは、まず、ユニット(1)となりうるモノマーまたはオリゴ
マーと、これらのユニット(6)となりうるモノマーとを共重合させ、前駆体のポリアリーレンを得ることが必要である。この共重合は、触媒の存在下に行われるが、この際使用される触媒は、遷移金属化合物を含む触媒系であり、この触媒系としては、(1)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体(銅塩を含む)、ならびに(2)還元剤を必須成分とした触媒が該当するが、さらに、重合速度を上げるためにこれに「塩」を添加してもよい。
これらの触媒成分の具体的な例、各成分の使用割合、反応溶媒、濃度、温度、時間等の重合条件としては、特開2001−342241号公報に記載の化合物を挙げることができる。
共重合体(7)は、この前駆体のポリアリーレンを、スルホン酸基を有するポリアリーレンに変換して得ることができる。この方法としては、下記の3通りの方法がある。
・前駆体のスルホン酸エステル基を有するポリアリーレンを、特開2004−137444号公報に記載の方法で脱エステル化する方法。
・前駆体のポリアリーレンを、特開2001−342241号公報に記載の方法でスルホン化する方法。
・前駆体のポリアリーレンに、特開2005−060625号公報に記載の方法で、アルキルスルホン酸基を導入する方法。
上記のような方法により製造される共重合体(7)のイオン交換容量は、通常0.3〜5meq/g、好ましくは0.5〜3meq/g、さらに好ましくは0.8〜2.8meq/gである。0.3meq/g未満では、プロトン伝導度が低く発電性能が低い。一方、5meq/gを超えると、耐水性が大幅に低下してしまうことがある。
上記のイオン交換容量は、例えばユニット(1)となりうるモノマーまたはオリゴマー
と、ユニット(6)となりうる前駆体のモノマーの種類、使用割合、組み合わせを変えることにより、調整することができる。
このようなポリアリーレン系重合体は、特定の芳香族基を導入しておくことで、高いスルホン酸濃度の共重合体が合成でき、プロトン伝導度の高い材料設計が可能となり、高温条件下でのスルホン酸基の安定性を向上できるとともに、共重合体中のスルホン酸基を有さないユニットの組成比を増加させても、高いスルホン酸濃度の共重合体が合成でき、熱水耐性や機械的特性に優れた材料設計が可能となる。このような重合体は、燃料電池のプロトン伝導膜、電極電解質、結着剤として好適に使用できる。また、このようなポリアリーレン系重合体を含む電極電解質は、膜電極接合体としても好適である。
本発明に係る電極電解質は、上記した重合体を含むものであればよく、このため、上記重合体のみから構成されるものであっても、さらに他の電解質を含んでいてもよい。他の
電解質としては、従来より用いられていたNafion、Flemion、Aciplexも代表されるパーフルオロカーボン重合体、ポリスチレンスルホン酸などのビニル系ポリマーのスルホン化物、ポリベンズイミダゾール、ポリエーテルエーテルケトンなどの耐熱性高分子に、スルホン酸基またはリン酸基を導入したポリマーなどの有機系ポリマーが挙げられる。他の電解質を含む場合、その使用割合は、全電極電解質中に50重量%以下、好適には30重量%であることが望ましい。
(電極ペースト)
本発明の電極ペーストは、上記の電極電解質、触媒粒子、溶媒からなり、必要に応じて分散剤、炭素繊維などの他の成分を含んでいてもよい。
触媒粒子
触媒粒子は、触媒が、カーボン、金属酸化物の担体に担持されたもの、または、触媒の単体からなる。
触媒としては、白金または白金合金が用いられる。白金合金を使用すると、電極触媒としての安定性や活性をさらに付与させることもできる。このような白金合金としては、白金以外の白金族の金属(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム)、鉄、コバルト、チタン、金、銀、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛およびスズから選ばれる1種以上と白金との合金が好ましく、該白金合金には白金と合金化される金属との金属間化合物が含有されていてもよい。
触媒は、単体でも、担体に担持された状態でも、触媒粒子を形成している。
上記触媒を担持する担体としては、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが、電子伝導性と比表面積の大きさから好ましく用いられる。また、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素などを用いてもよい。
上記オイルファーネスブラックとしては、キャボット社製「バルカンXC−72」、「バルカンP」、「ブラックパールズ880」、「ブラックパールズ1100」、「ブラックパールズ1300」、「ブラックパールズ2000」、「リーガル400」、ライオン社製「ケッチェンブラックEC」、三菱化学社製「#3150、#3250」などが挙げられる。また、上記アセチレンブラックとしては電気化学工業社製「デンカブラック」などが挙げられる。
これらのカーボンの形態としては、粒子状のほか、繊維状も用いることができる。また、カーボンに担持される触媒の量としては、有効に触媒活性が発揮できる量であれば特に制限されるものではないが、担持量がカーボン重量に対して、0.1〜9.0g-metal/g-carbon、好ましくは0.25〜2.4g-metal/g-carbonの範囲である。
また、担体としては、カーボンの他に、金属酸化物、たとえば、チタニア、酸化亜鉛、シリカ、セリア、アルミナ、アルミナスピネル、マグネシア、ジルコニアなどであってもよい。
溶媒
本発明の電極ペーストの溶媒としては、前記電解質を溶解または分散しうる溶媒であればよく、特に限定されるものではない。また1種類のみでなく、2種以上の溶媒を用いることもできる。
具体的には、水、
メタノール、エタノール、n−プロピルアルコール、2−プロパノール、2−メチル−2−プロパノール、2−ブタノール、n−ブチルアルコール、2−メチル−1−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、2−メチル−2−ブタノール、3−メチル−2−ブタノール、2,2−ジメチル1−プロパノール、シクロヘキサノール、1−ヘキサノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、4−メチル−2−ペンタノール、2−エチル−1−ブタノール、1−メチルシクロヘキサノール、2−メチルシクロヘキサノール、3−メチルシクロヘキサノール、4−メチルシクロヘキサノール、1−オクタノール、2−オクタノール、2−エチル−1−ヘキサノール、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、などのアルコール類、
エチレングリコール、プロピレングリコール、グリセロールなどの多価アルコール類、
ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−プロピルエーテル、ブチルエーテル、フェニルエーテル、イソペンチルエーテル、1,2−ジメトキシエタン、ジエトキシエタン、ビス(2−メトキシエチル)エーテル、ビス(2−エトキシエチル)エーテル、シネオール、ベンジルエチルエーテル、アニソール、フェネトール、アセタールなどのエーテル類、
アセトン、メチルエチルケトン、2−ペンタノン、3−ペンタノン、シクロペンタノン、シクロヘキサノン、2−ヘキサノン、4−メチル−2−ペンタノン、2−ヘプタノン、2,4−ジメチル−3−ペンタノン、2−オクタノンなどのケトン類、
γ-ブチロラクトン、酢酸エチル、酢酸プロピル、酢酸−n−ブチル、酢酸イソブチル
、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、3−メトキシブチルアセタート、酪酸メチル、酪酸エチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類、
ジメチルスルホキシド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリド
ン、テトラメチル尿素などの非プロトン性極性溶媒、
トルエン、キシレン、ヘプタン、ヘキサン、ヘプタン、オクタンなどの炭化水素系溶媒を挙げることができ、これらは1種類以上を組み合わせて用いることもできる。
分散剤
必要に応じて含まれてよい分散剤としては、オレイン酸・N−メチルタウリン、オレイン酸カリウム・ジエタノールアミン塩、アルキルエーテルサルフェート・トリエタノールアミン塩、ポリオキシエチレンアルキルエーテルサルフェート・トリエタノールアミン塩、特殊変成ポリエーテルエステル酸のアミン塩、高級脂肪酸誘導体のアミン塩、特殊変成ポリエステル酸のアミン塩、高分子量ポリエーテルエステル酸のアミン塩、特殊変成燐酸エステルのアミン塩、高分子量ポリエステル酸アミドアミン塩、特殊脂肪酸誘導体のアミドアミン塩、高級脂肪酸のアルキルアミン塩、高分子量ポリカルボン酸のアミドアミン塩、ラウリン酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウムラウリル硫酸エステルナトリウム塩、セチル硫酸エステルナトリウム塩、ステアリル硫酸エステルナトリウム塩、オレイル硫酸エステルナトリウム塩、ラウリルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸ナトリウム、油溶性アルキルベンゼンスルホン酸塩、αーオレフィンスルホン酸塩、高級アルコールリン酸モノエステルジナトリウム塩、高級アルコールリン酸ジエステルジナトリウム塩、ジアルキルジチオリン酸亜鉛等のアニオン界面活性剤、ベンジルジメチル{2−[2−(P−1,1,3,3−テトラメチルブチルフェノオキシ)エトオキシ]エチル}アンモニウムクロライド、オクタデシルアミン酢酸塩、テトラデシルアミン酢酸塩、オクタデシルトリメチルアンモニウムクロライド、牛脂トリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヤシトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシジメチルベンジルアンモニウムクロライド、テトラデシルジメチルベンジルアンモニウムクロライド、オクタデシルジメチルベンジルアンモニウムクロライド、ジオレイルジメチルアンモニウムクロライド、1−ヒドロキシエチル-2-牛脂イミダゾリン4級塩、2−ヘプタデセニルーヒドロキシエチルイミダゾリン、ステアラミドエチルジエチルアミン酢酸塩、ステアラミドエチルジエチルアミン塩酸塩、トリエタノールアミンモノステアレートギ酸塩、アルキルピリジウム塩、高級アルキルアミンエチレンオキサイド付加物、ポリアクリルアミドアミン塩、変成ポリアクリルアミドアミン塩、パーフルオロアルキル第4級アンモニウムヨウ化物等のカチオン界面活性剤、
および
ジメチルヤシベタイン、ジメチルラウリルベタイン、ラウリルアミノエチルグリシンナトリウム、ラウリルアミノプロピオン酸ナトリウム、ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン、アミドベタイン、イミダゾリニウムベタイン、レシチン、3−[ω-フルオロアクカノイルーN−エチルアミノ]-1-プロパンスルホン酸ナトリウム、N−[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N−ジメチル-N-カルボキシメチレンアンモニウムベタイン等の両性界面活性剤、およびヤシ脂肪酸ジエタノールアミド(1:2型)、ヤシ脂肪酸ジエタノールアミド(1:1型)、牛脂肪酸ジエタノールアミド(1:2型)、牛脂肪酸ジエタノールアミド(1:1型)、オレイン酸ジエタノールアミド(1:1型)、ヒドロキシエチルラウリルアミン、ポリエチレングリコールラウリルアミン、ポリエチレングリコールヤシアミン、ポリエチレングリコールステアリルアミン、ポリエチレングリコール牛脂アミン、ポリエチレングリコール牛脂プロピレンジアミン、ポリエチレングリコールジオレイルアミン、ジメチルラウリルアミンオキサイド、ジメチルステアリルアミンオキサイド、ジヒドロキシエチルラウリルアミンオキサイド、パーフルオロアルキルアミンオキサイド、ポリビニルピロリドン、高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビットの脂肪酸エステル、ソルビタンの脂肪酸エステル、砂糖の脂肪酸エステル、等の非イオン界面活性剤、およびラウリルアミノプロピオン酸ナトリウム、ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン等の両性界面活性剤などを挙げることができる。これらは1種単独で使用しても、2種類以上を組み合わせて用いることもできる。これらのなかでも、好ましくは、塩基性基を有する界面活性剤であり、より好ましくはアニオン性もしくは、カチオン性の界面活性剤であり、さらに好ましくは、分子量5千〜3万の界面活性剤である。
電極ペーストに上記の分散剤を添加すると、保存安定性および流動性に優れ、塗工時の生産性が向上する。
炭素繊維
本発明に係る電極ペーストでは、必要に応じてさらに触媒が担持されていない炭素繊維を添加することができる。
本発明で必要に応じて用いられる炭素繊維しては、レーヨン系炭素繊維、PAN系炭素繊
維、リグニンポバー系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維等を用いることができ、好ましくは、気相成長炭素繊維である。
電極ペーストに炭素繊維を添加すると、電極中の細孔容積が増加することにより、燃料ガスや酸素ガスの拡散性が向上し、また、生成する水によるフラッディング等を改善でき、発電性能が向上する。
その他の添加物
本発明に係る電極ペーストでは、必要に応じてさらに他の成分を添加することができる。例えば、フッ素系ポリマーやシリコン系ポリマーなどの撥水剤を添加してもよい。撥水剤は生成する水を効率よく排出する効果をもち、発電性能の向上に寄与する。
組成
本発明に係るペースト中の触媒粒子の使用割合は、重量比で1重量%〜20重量%、好ましくは3重量%〜15重量%であることが望ましい。また、電極電解質の使用割合は、重量比で0.5重量%〜30重量%、好ましくは1重量%〜15重量%であることが望ましい。さらに、溶剤の使用割合は、重量比で5重量%〜95重量%、好ましくは15重量%〜90重量%であることが望ましい。
必要に応じて用いられる分散剤の使用割合は、重量比で0重量%〜10重量%、好ましくは0重量%〜2重量%であり、必要に応じて用いられる炭素繊維の使用割合は、重量比で0重量%〜20重量%、好ましくは1重量%〜10重量%である。(なお、合計で100重量%を超えることはない)
触媒粒子の使用割合が、上記範囲未満であると、電極反応率が低下することがある。また、上記範囲より大きいと、電極ペーストの粘度が増加し、塗工時に塗りむらが発生することがある。
電解質の使用割合が、上記範囲未満であると、プロトン伝導度が低下する。さらに、バインダーとしての役割を果たせなくなり、電極を形成できない。また、上記範囲より大きいと、電極中の細孔容積が減少する。
溶剤の使用割合が、上記範囲内にあると、発電に必要な電極中の細孔容積が十分確保できる。また上記範囲にあれば、ペーストとしてのハンドリングに好適である。
分散剤の使用割合が、上記範囲内にあると保存安定性に優れた電極ペーストが得られる。炭素繊維の使用割合が、上記範囲未満であると、電極中の細孔容積の増加効果が低い。また、上記範囲より大きいと、電極反応率が低下することがある。
ペーストの調製
本発明に係る電極ペーストは、例えば上記各成分を所定の割合で混合し、従来公知の方法で混練することにより調製することができる。
各成分の混合順序は特に限定されないが、例えば全ての成分を混合して一定時間攪拌を行うか、分散剤以外の成分を混合して一定時間攪拌を行った後、必要に応じて分散剤を添加して一定時間攪拌を行うことが好ましい。また、必要に応じて、溶媒の量を調整して、ペーストの粘度を調整してもよい。
(電極および触媒付電解質膜)
以上のような本発明に係る電極ペーストを、転写基材上に塗布し、溶媒を除去すると本発明の電極が得られる。
転写基材としては、ポリテトラフルオロエチレン(PTFE)などのフッ素系ポリマーからなるシート、または表面を離型剤処理したガラス板や金属板、ポリエチレンテレフタレート(PET)のシートなども用いることができる。
塗布方法としては、刷毛塗り、筆塗り、バーコーター塗布、ナイフコーター塗布、ドクターブレード法、スクリーン印刷、スプレー塗布などがある。
転写基材上に塗布された電極を、乾燥して溶媒を除去したのち、固体高分子電解質膜の両面に転写させると、本発明の触媒付電解質膜が得られる。
本発明の触媒付電解質膜に用いられる、固体高分子電解質膜は、プロトン伝導性の固体高分子膜であれば、特に限定されない。
たとえば、Nafion(DuPont社製)、Flemion(旭硝子製)、Aciplex(旭化成製)などのパーフルオロアルキルスルホン酸ポリマーからなる電解質膜、
パーフルオロアルキルスルホン酸ポリマーに、ポリテトラフルオロエチレンの繊維や多孔質膜と複合化した補強型電解質膜、
ポリテトラフルオロエチレングラフトスルホン化ポリスチレンなどの部分フッ素化スルホン化ポリマーからなる電解質膜、
スルホン化ポリアリーレン、スルホン化ポリフェニレン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルニトリル、スルホン化ポリフェニレンエーテル、スルホン化ポリフェニレンスルフィド、スルホン化ポリベンズイミダゾール、スルホン化ポリベンズオキサゾール、スルホン化ポリベンズチアゾールなどの芳香族スルホン化ポリマーからなる電解質膜、
スルホン化ポリスチレン、スルホン酸含有アクリル系ポリマーなどの脂肪族スルホン化ポリマーからなる電解質膜、
これらを多孔質膜と複合化した細孔フィリング型電解質膜、
ポリベンズオキサゾール、ポリベンズイミダゾール、ポリベンズチアゾールなどのポリマーにリン酸、硫酸などを含浸させた酸含浸型ポリマーからなる電解質膜、などがあげられる。これらのうち、芳香族スルホン化ポリマーからなる電解質膜が好ましい。
また、上記電極用電解質を構成する重合体を固体高分子電解質として使用することもできる。
電極を固体高分子電解質膜に転写するには、ホットプレス法を用いることができる。ホットプレス法では、カーボンペーパーまたは離型シートに前記電極ペーストを塗布したもものの、電極ペースト塗布面と電解質膜とを圧着する方法である。ホットプレスは、通常、50〜250℃の温度範囲で、1分〜180分の時間、10〜500kg/cm2の圧力をかけて行う。
本発明の触媒付電解質膜を得るための別の方法として、触媒層と電解質膜とを段階的に塗布、乾燥を繰り返す方法がある。塗布や乾燥の順序に特に制限はない。
例えば、PETフィルム等の基材上に、電解質膜の溶液を塗布し乾燥して、電解質膜を作
成した後、この上に本発明の電極ペーストを塗布する。次に基材をはがして、もう一方の面に電極ペーストを塗布する。最後に溶媒を除去すると触媒付電解質膜が得られる。塗布方法は上記と同様の方法をあげることができる。
溶媒の除去は、乾燥温度20℃〜180℃、好ましくは50℃〜160℃、乾燥時間5分〜600分、好ましくは30分〜400分で行う。
必要に応じて、電解質膜を水浸漬して、溶媒を除去してもよい。水温は5℃〜120℃、好ましくは15℃〜95℃、水浸漬時間は1分〜72時間、好ましくは5分〜48時間である。
また上記の方法とは逆に、先に電極ペーストを塗布し、電極層を形成したあとに、電解質膜の溶液を塗布して、電解質膜を作成し、次にもう一方の触媒層を塗布し、乾燥して触媒付電解質膜としてもよい。
電極層の厚さは、特に制限されるものではないものの、触媒として担持された金属が、単位面積あたり、0.05〜4.0mg/cm2、好ましくは0.1〜2.0mg/cm2の範囲にあることが望ましい。この範囲にあれば、十分に高い触媒活性が発揮され、また効率的にプロトンを伝導することができる。
電極層の細孔容積は、0.05〜3.0ml/g、好ましくは0.1〜2.0ml/gの範囲にあることが望ましい。なお電極層の細孔容積は、水銀圧入法、ガス吸着法などの
方法により測定される。
電解質膜の厚さとしては、特に制限されるものではないが、厚くなると発電効率が低下したり軽量化が困難となったりするので、10〜200μm程度の厚さであればよいが、この限りではない。
[実施例]
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお実施例における各種の測定項目は、下記のようにして求めた。
(分子量)
重合体の分子量は、GPCによって、ポリスチレン換算の重量平均分子量を求めた。溶媒として臭化リチウムを添加した、N−メチル−2−ピロリドンを用いた。
(イオン交換容量)
得られたスルホン化ポリマーの水洗水がpH4〜6になるまで洗浄して、フリーの残存している酸を除去後、十分に洗浄し、乾燥後、所定量を秤量し、THF/水の混合溶剤に溶解し、フェノールフタレインを指示薬とし、NaOHの標準液にて滴定し、中和点からイオン交換容量を求めた。
(プロトン伝導度の測定)
得られた重合体を、キャスティング法により製膜し、膜厚約50μmの膜を試料とした。
交流抵抗は、5mm幅の短冊状の試料膜の表面に、白金線(f=0.5mm)を押し当て、恒温恒湿装置中に試料を保持し、白金線間の交流インピーダンス測定から求めた。すなわち、85℃、相対湿度90%の環境下で交流10kHzにおけるインピーダンスを測定した。抵抗測定装置として、(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ヤマト科学製のJW241を使用した。白金線は、5mm間隔に5本押し当てて、線間距離を5〜20mmに変化させ、交流抵抗を測定した。線間距離と抵抗の勾配から、膜の比抵抗を算出し、比抵抗の逆数からプロトン伝導度を算出した。
比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
(熱水耐性)
上記の膜を、120℃の熱水中に24時間浸漬し、取り出した直後の膜の重量と寸法を、浸漬前の膜と比較し、含水率を求めた。
(メタノール水溶液浸漬試験)
50vol%の70℃メタノール水溶液に、伝導膜を6時間浸漬した。浸漬前後の面積を測定し、面積変化率(%)を計算した。
面積変化率(%)=(浸漬後の面積/浸漬前の面積)×100
(メタノール透過性)
浸透気化測定法(パーベーパレーション法)により測定した。所定のセルにフィルムをセットし、表面側から10重量%のメタノール水溶液を供給、裏面から減圧し、透過液を液体窒素でトラップした。メタノール透過量は下記の式から計算した。
メタノール透過量(g/m2/h)=[透過液重量(g)/回収時間(h)/試料面積(m2)]×透過液のメタノール濃度
(膜抵抗の測定)
膜を濃度1mol/lの硫酸を介して上下から導電性カーボン板ではさみ、室温でカーボン板間の交流抵抗を測定し、下記の式で求めた。
膜抵抗(Ω・cm2)=膜をはさんだカーボン間の抵抗値(Ω)−ブランク値(Ω)×接
触面積(cm2
(膜の動的粘弾性測定)
膜の動的粘弾性測定を周波数10Hzで行い、その変曲点温度(‘E)を測定した。
(発電評価)
触媒付電解質膜をカーボンペーパーに挟んで、圧力100kg/cm2下で、160℃
×15minの条件でホットプレス成形して、膜電極接合体(MEA)を作成した。このMEAを2枚のチタン製の集電体で挟み、さらにその外側にヒーターを配置し、有効面積25cm2の燃料電池を組み立てた。
燃料電池の温度を85℃に保ち、湿度35%RHおよび100%RHで、水素および酸素を2気圧で供給した。それぞれの条件で、電流密度0.5A/cm2と1.0A/cm2のときの端子間電圧を測定した。
〔合成例1〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン50.91g(233mmol)、4−クロロ
−4'−フルオロベンゾフェノン15.64g(67mmol)2,2−ビス(3-フェニ
ル−4−ヒドロキシフェニル)プロパン75.28g(265mmol)、炭酸カリウム44.23g(320mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン7.82g(33mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物92.2gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例2〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例1で得られた4,400(Mn)の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。
ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体27.0gを得た。得られた重合体の重量平均分子量(Mw
)は71,000であった。得られた重合体は式(II)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例3〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、2,2−ビス(3,5-ジ
メチル−4−ヒドロキシフェニル)プロパン45.17g(159mmol)、9,9−
ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン53.43g(106mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え
、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物118gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例4〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例3で得られた4,400(Mn)の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体28.1gを得た。得られた重合体の重量平均分子量(Mw
)は82,000であった。得られた重合体は式(IV)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例5〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、2,2−ビス(3-フェニ
ル−4−ヒドロキシフェニル)プロパン80.57g(212mmol)、9,9−ビス
(4−ヒドロキシ−3−フェニルフェニル)フルオレン26.72g(53mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物126gを得た。GPCで測定した数平均分子量(Mn)は5,000であった。
Figure 0005364975
〔合成例6〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.45g(46.0mmol)、合成例5で得られた5,000(Mn)の疎水性ユニット19.96g(4.00mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。
ここにDMAc114mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc114mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体27.0gを得た。得られた重合体の重量平均分子量(Mw)は86,000であった。得られた重合体は式(VI)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例7〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、1,1−ビス(3,5-ジ
メチル−4−ヒドロキシフェニル)シクロヘキサン51.53g(159mmol)、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン53.43g(106mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物125gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例8〕スルホン化ポリマーの合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例7で得られた4,400(Mn)の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmo
l)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。
ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体25.1gを得た。得られた重合体の重量平均分子量(Mw)は85,000であった。得られた重合体は式(VIII)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例9〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン91.62g(212mmol)、
9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン26.72g(53
mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物120gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例10〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例9で得られたMn4,400の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。
ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体26.3gを得た。得られた重合体の重量平均分子量(Mw)は86,000であった。得られた重合体は式(X)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例11〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、2,2−ビス(3,5-ジ
メチル−4−ヒドロキシフェニル)プロパン60.22g(212mmol)、4,4'
−(p-ジイソプロピリデンフェニレン)ビスフェノール18.34g(53mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物101gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例12〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例11で得られた4,400(Mn)の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体28.1gを得た。得られた重合体の重量平均分子量(Mw)は91,000であった。得られた重合体は式(XII)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例13〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、2,2−ビス(3-フェニ
ル−4−ヒドロキシフェニル)プロパン80.57g(212mmol)、4,4'−(p-ジイソプロピリデンフェニレン)ビスフェノール18.34g(53mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物120gを得た。GPCで測定した数平均分子量(Mn)は5,000であった。
Figure 0005364975
〔合成例14〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.45g(46.0mmol)、合成例13で得られた5,000(Mn)の疎水性ユニット10.15g(4.00mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体28.1gを得た。得られた重合体の重量平均分子量(Mw)は169,000であった。得られた重合体は式(XIV)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例15〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、1,1−ビス(3,5-ジ
メチル−4−ヒドロキシフェニル)シクロヘキサン51.53g(159mmol)、4,4'−(p-ジイソプロピリデンフェニレン)ビスフェノール36.68g(106mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物110gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例16〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例15で得られた4,400(Mn)の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体28.1gを得た。得られた重合体の重量平均分子量(Mw)は95,000であった。得られた重合体は式(XVI)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例17〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、1,1−ビス(3-シクロ
ヘキシル−4−ヒドロキシフェニル)シクロヘキサン57.26g(132mmol)、4,4'−(p-ジイソプロピリデンフェニレン)ビスフェノール45.86g(132m
mol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物123gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例18〕重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例17で得られたMn4,400の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体28.1gを得た。得られた重合体の重量平均分子量(Mw)は100,000であった。得られた重合体は式(XVIII)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔合成例19〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、2,2−ビス(3-フェニ
ル−4−ヒドロキシフェニル)プロパン80.57g(212mmol)、レゾルシノール5.83g(53mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物112gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔合成例20〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル18.29g(45.5mmol)、合成例19で得られた4,400(Mn)の疎水性ユニット19.96g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.64g(2.50mmol)、ヨウ化ナトリウム0.225g(1.50mmol)、トリフェニルホスフィン5.25g(20.0mmol)、亜鉛7.84g(120mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc114mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム11.9g(126.8mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体26.3gを得た。得られた重合体の重量平均分子量(Mw)は80,000であった。得られた重合体は式(XX)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔比較合成例1〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン133.58g(265mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップし
た。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6.90g(29mmol)を加え、さらに5時
間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物128gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔比較合成例2〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル16.27g(40.5mmol)、比較合成例1で得られた4,400(Mn)の疎水性ユニット17.83g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.47g(2.25mmol)、ヨウ化ナトリウム0.202g(1.35mmol)、トリフェニルホスフィン4.72g(18.0mmol)、亜鉛7.06g(108mmol)をはかりとり、乾燥窒素置換した。ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム10.6g(121.6mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体26.7gを得た。得られた重合体の重量平均分子量(Mw)は82,000であった。得られた重合体は式(XXII)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
〔比較合成例3〕疎水性ユニットの合成
攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1Lの三口フラスコに、4,4'−ジフルオロベンゾフェノン51.34g(235mmol)、4−クロロ
−4'−フルオロベンゾフェノン13.8g(59mmol)、2−フェニルヒドロキノ
ン49.29g(265mmol)、炭酸カリウム43.9g(318mmol)をはかりとった。窒素置換後、N,N-ジメチルアセトアミド(DMAc)313mL、トルエン125mLを加えて攪拌した。オイルバスで反応液を150℃で加熱還流させた。反応に
よって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を165℃に上げ、3時間攪拌を続けた後、4−クロロ−4'−フルオロベンゾフェノン6
.90g(29mmol)を加え、さらに5時間反応させた。
反応液を放冷後、メタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥し、目的物75gを得た。GPCで測定した数平均分子量(Mn)は4,400であった。
Figure 0005364975
〔比較合成例4〕共重合体(7)の合成
攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル16.27g(40.5mmol)、比較合成例1で得られた4,400(Mn)の疎水性ユニット17.83g(4.50mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.47g(2.25mmol)、ヨウ化ナトリウム0.202g(1.35mmol)、トリフェニルホスフィン4.72g(18.0mmol)、亜鉛7.06g(108mmol)をはかりとり、乾燥窒素置換した。
ここにDMAc126mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc126mLを加えて希釈し、不溶物を濾過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム10.6g(121.6mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。ついで、1N塩酸、純水の順で洗浄後、乾燥して目的の重合体26.7gを得た。得られた重合体の重量平均分子量(Mw)は100,000であった。得られた重合体は式(XXII)で表されるスルホン化ポリマーであると推定される。
Figure 0005364975
得られたスルホン化ポリアリーレンを用いて高分子電解質膜を作製し、評価結果を表1-1および表1-2に示す。
Figure 0005364975
Figure 0005364975
表1-1および表1-2より本発明の電解質は、優れた電極接合性をもちながら、メタノール透過性が低く、膜抵抗およびメタノール水溶液に対する寸法安定性とを両立できることがわかる。
[実施例1]
[電極ペーストの調製]
50mlのガラス瓶に直径10mmのジルコニアボール(商品名:YTZボール、株式会社ニッカトー製)25gを入れ、白金担持カーボン粒子(Pt:46重量%担持、(田中貴金属工業株式会社製:TEC10E50E)1.51g、蒸留水0.88g、合成例2の重合
体(II)の15%水−1,2ジメトキシエタン溶液(重量比10:90)3.23g、1,2−ジメトキシエタン13.97g、気相法炭素繊維(商品名:VGCF、昭和電工社製)0.1gおよび分散剤(商品名:DA234、楠本化成株式会社製)0.028gを加え、ウエーブローターで60分間攪拌し、粘度50cp(25℃)のペーストを得た。
[電極の作成]
離型剤処理したPETフィルム上に、ペーストを白金塗布量が0.5mg/cm2になるようにドクターブレードを用いて塗布した。これを95℃で10分間加熱乾燥し、電極層を形成させた。
[触媒付電解質膜の作成]
上記一般式(II)で表される構造の重合体からなる膜厚40μmの電解質膜を1枚用意し、2枚の電極層で挟み、圧力100kg/cm2下で、160℃×15minの条件で
ホットプレス成形して、触媒付電解質膜を作成した。
[実施例2]
実施例1の電極ペースト作成時のポリマー(II)を(IV)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例3]
実施例1の電極ペースト作成時のポリマー(II)を(VI)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例4]
実施例1の電極ペースト作成時のポリマー(II)を(VIII)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例5]
実施例1の電極ペースト作成時のポリマー(II)を(X)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例6]
実施例1の電極ペースト作成時のポリマー(II)を(XII)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例7]
実施例1の電極ペースト作成時のポリマー(II)を(XIV)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例8]
実施例1の電極ペースト作成時のポリマー(II)を(XVI)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例9]
実施例1の電極ペースト作成時のポリマー(II)を(XVIII)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[実施例10]
実施例1の電極ペースト作成時のポリマー(II)を(XX)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[比較例1]
実施例1の電極ペースト作成時のポリマー(II)を(XXII)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
[比較例2]
実施例1の電極ペースト作成時のポリマー(II)を(XXIV)に変更した以外は、同様の方法で電極ペースト、ガス拡散層、ガス拡散電極、膜−電極接合体を作成した。
〔評価結果〕
上記実施例および比較例で得られた触媒付電解質膜を用いて測定した発電特性の評価結果を表2に示す。
Figure 0005364975
表2より、本発明の電解質を用いて作製した燃料電池は、各電流密度で高い端子電圧を示し、発電性能に優れていることがわかる。

Claims (5)

  1. 式(1)で表される構造単位を含有するポリアリーレン系重合体を含んでなることを特徴とする高分子型燃料電池用電極電解質。
    Figure 0005364975
    [式(1)中、Tは下記式(2)で表わされ、少なくとも下記式(3)で表わされる構造を含む。
    Figure 0005364975
    A、Cは独立に直接結合または、−CO−、−SO2−、−SO−、−CONH−、−COO−、−(CF2)l−(lは1〜10の整数である)、−(CH2)l−(lは1〜10の整数である)、−CR'2−(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す)、シクロヘキシリデン基、フルオレニリデン基、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、
    Bは独立に酸素原子または硫黄原子である
    Dは下記式(4)で表わされる2,2−プロピリデン基もしくは1,1−シクロヘキシリデン基を示す。
    Figure 0005364975
    1〜R16は、互いに同一であっても異なっていてもよく、水素原子、フッ素原子、アルキル基、一部またはすべてがハロゲン化されたハロゲン化アルキル基、アリル基、アリール基、ニトロ基、ニトリル基からなる群より選ばれた少なくとも1種の原子または基を示す。
    17、R18は互いに水素原子の場合を除き、同一であっても異なっていてもよく、水素原子、メチル基、イソプロピル基、イソブチル基、t−ブチル基、シクロヘキシル基、フェニル基を示す。
    s、tは0〜4の整数を示し、rは1以上の整数を示す。]。
  2. 式(1)で表される構造単位とともに下記式(6)で表される構造単位を含むことを特徴とする、請求項1に記載の高分子型燃料電池用電極電解質。
    Figure 0005364975
    [式(6)中、Yは−CO−、−SO2−、−SO−、−CONH−、−COO−、−(CF2l−(lは1〜10の整数である)、−C(CF32−からなる群より選ばれた少なくとも1種の構造を示し、Zは直接結合または、−(CH2l−(lは1〜10の整数である)、−C(CH32−、−O−、−S−からなる群より選ばれた少なくとも1種の構造を示し、Arは−SO3H、−O(CH2pSO3Hまたは−O(CF2pSO3Hで表される置換
    基を有する芳香族基を示す。
    pは1〜12の整数を示し、mは0〜10の整数を示し、nは0〜10の整数を示し、kは1〜4の整数を示す。]。
  3. 請求項1または2に記載の電解質と触媒粒子および溶媒を含むことを特徴とする電極ペースト。
  4. 請求項1または2に記載の電解質と触媒粒子とを含むことを特徴とする固体高分子型燃料電池用電極。
  5. 請求項4に記載の電極を、高分子電解質膜の少なくとも片面に備える膜−電極接合体。
JP2006353453A 2006-12-27 2006-12-27 高分子型燃料電池用電極電解質およびその用途 Expired - Fee Related JP5364975B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353453A JP5364975B2 (ja) 2006-12-27 2006-12-27 高分子型燃料電池用電極電解質およびその用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353453A JP5364975B2 (ja) 2006-12-27 2006-12-27 高分子型燃料電池用電極電解質およびその用途

Publications (2)

Publication Number Publication Date
JP2008166078A JP2008166078A (ja) 2008-07-17
JP5364975B2 true JP5364975B2 (ja) 2013-12-11

Family

ID=39695273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353453A Expired - Fee Related JP5364975B2 (ja) 2006-12-27 2006-12-27 高分子型燃料電池用電極電解質およびその用途

Country Status (1)

Country Link
JP (1) JP5364975B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078483A1 (ja) * 2007-12-19 2009-06-25 Jsr Corporation 直接メタノール型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜-電極接合体
JP7187798B2 (ja) * 2018-03-30 2022-12-13 凸版印刷株式会社 固体高分子形燃料電池用触媒層および膜電極接合体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092926A (ja) * 2004-09-24 2006-04-06 Jsr Corp 電極用ペースト組成物及び該組成物から製造された電極層
JP4955209B2 (ja) * 2004-12-22 2012-06-20 本田技研工業株式会社 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池

Also Published As

Publication number Publication date
JP2008166078A (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5100383B2 (ja) 固体高分子型燃料電池用電極電解質
JP4994945B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP2007048643A (ja) 電極−膜接合体
JP4593392B2 (ja) 電極電解質のワニス
JP4896435B2 (ja) 固体高分子型燃料電池の電極用電解質
JP2007026819A (ja) 電極−膜接合体
JP5089061B2 (ja) 固体高分子電解質、プロトン伝導膜、電極電解質、電極ペーストおよび膜−電極接合体
JP5144024B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP2006344481A (ja) 固体高分子型燃料電池用電極電解質、電極ペースト、電極および膜−電極接合体
JP2010009912A (ja) 固体高分子型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体
JP4871537B2 (ja) 膜−電極接合体の製造方法
JP4846273B2 (ja) 固体高分子型燃料電池用電極電解質
JP5364975B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP2007048642A (ja) 電極触媒層の製造方法
JP5037196B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP4997965B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP4879639B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP5057691B2 (ja) 固体高分子型燃料電池用電極電解質、電極ペースト、電極および膜−電極接合体
JP2008277282A (ja) 直接メタノール燃料電池用膜−電極接合体および直接メタノール型燃料電池
JP5261934B2 (ja) 高分子型燃料電池用電極電解質およびその用途
JP2007087889A (ja) 電極−膜接合体
JP2007213905A (ja) 高分子型燃料電池用電極電解質およびその用途
JPWO2009078483A1 (ja) 直接メタノール型燃料電池用電極電解質およびそれを用いた電極ワニス、電極ペースト、膜−電極接合体
JP2007026709A (ja) 電極触媒層
JP2007035405A (ja) 固体高分子型燃料電池用電極および膜−電極接合体

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5364975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees