JP4590730B2 - 改質器の起動制御 - Google Patents

改質器の起動制御 Download PDF

Info

Publication number
JP4590730B2
JP4590730B2 JP2000397950A JP2000397950A JP4590730B2 JP 4590730 B2 JP4590730 B2 JP 4590730B2 JP 2000397950 A JP2000397950 A JP 2000397950A JP 2000397950 A JP2000397950 A JP 2000397950A JP 4590730 B2 JP4590730 B2 JP 4590730B2
Authority
JP
Japan
Prior art keywords
reforming
fuel
raw material
fuel cell
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000397950A
Other languages
English (en)
Other versions
JP2002201002A (ja
Inventor
幸彦 武田
温 荻野
憲治 木村
厚至 工匠
正佳 滝
泰明 田中
典彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000397950A priority Critical patent/JP4590730B2/ja
Publication of JP2002201002A publication Critical patent/JP2002201002A/ja
Application granted granted Critical
Publication of JP4590730B2 publication Critical patent/JP4590730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素系化合物を含む改質原料から水素リッチな燃料ガスを生成するための燃料改質装置の制御技術に関し、特に、改質器の起動時の制御技術に関する。
【0002】
【従来の技術】
改質装置では、改質触媒を用いた改質反応によって、炭化水素系化合物を含む改質原料から水素リッチな燃料ガス(「改質ガス」とも呼ぶ)を生成する。改質反応を効率良く行うには、改質触媒をある程度の温度(例えば200℃)まで昇温する必要がある。このため、改質装置の起動時には、改質触媒をなるべく早く昇温したいという要望がある。
【0003】
改質触媒を素早く昇温する技術として、例えば特開平11−130405号公報に記載された発熱・触媒体を利用する方法がある。この発熱・触媒体は、電気ヒータと改質触媒とを組み合わせたものであり、電気ヒータに通電することによって、改質触媒を素早く昇温させることが可能である。
【0004】
【発明が解決しようとする課題】
しかし、この発熱・触媒体は、改質触媒のごく一部を昇温できるだけなので、発熱・触媒体に通電した後に直ちに大量の改質原料を投入すると、改質装置から未反応のガスが大量に排出されてしまうという問題を生じる。そこで、従来は、改質装置の起動時には、改質触媒の全体の昇温が完了した後に、燃料電池への燃料ガスの供給を開始するようにしていた。すなわち、改質触媒の昇温が完了するまで、燃料電池への燃料ガスの供給を待たなければならなかった。このため、従来から、改質装置の起動時のなるべく早い時期から、燃料電池に供給可能な成分を有する燃料ガスを生成することのできる技術が望まれていた。
【0005】
本発明は、上述した従来の課題を解決するためになされたものであり、改質装置の起動時のなるべく早い時期から、燃料電池に供給可能な成分を有する燃料ガスを生成することのできる技術を提供することを目的とする。
【0006】
【課題を解決するための手段およびその作用・効果】
上記目的を達成するために、本発明の燃料改質装置は、炭化水素系化合物を含む改質原料から、燃料電池のための水素リッチな燃料ガスを生成するための燃料改質装置である。この燃料改質装置は、通電することによって発熱する発熱体と、前記発熱体に担持された改質触媒とを有し、前記改質触媒を加熱し、改質ガスを生成するための電気通電式触媒部と、前記電気通電式触媒部の下流側に設けられ、通電式の発熱体を有しておらず改質触媒を用いて前記改質原料を改質する改質部と、前記改質原料を前記電気通電式触媒部に供給するための原料供給部と、前記電気通電式触媒部前記原料供給部とを制御するための制御部と、前記電気通電式触媒部と、前記改質部内の複数の箇所とにおいて、前記改質触媒の上流側から下流側に至る流路に順次配置された複数の温度センサと、を備えている。前記制御部は、前記上流側から下流側に至る流路に沿って前記複数の温度センサで測定された温度が予め定められたしきい値温度に順次到達するたびに、前記改質原料の供給量を段階的に増加させる。
【0007】
この構成によれば、電気通電式加熱部を用いて改質触媒を最初に昇温させ、その後は、通電式の発熱体が設けられていない改質部の改質触媒の温度の上昇に伴って改質原料の供給量を次第に増加させるので、未反応ガスの量を低減することができる。従って、燃料改質装置の起動時の早い時期から、燃料電池に供給可能な成分を有する燃料ガスを生成することが可能である。また、改質触媒の温度が上流側から下流側にかけて次第に上昇するのに応じて、適切な量の改質原料を供給することができる。
【0014】
前記改質原料は、炭化水素系化合物を含む原燃料と、水蒸気と、酸素とを含んでおり、前記原燃料と水蒸気と酸素の供給量は、前記燃料ガスを前記燃料電池に供給するのに適した十分な割合の水素を含む前記燃料ガスが前記改質器で生成されるように設定されることが好ましい。
【0015】
この構成では、燃料電池に供給するのに適した十分な割合の水素を含む燃料ガスを、改質器の起動時の早い時期から生成することが可能である。
【0016】
なお、前記原燃料がメタノールのときには、前記制御部は、前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値が、約0.2から約3.0の範囲に収まるように前記メタノールと前記水蒸気と前記酸素の供給量を調整することが好ましい。
【0017】
また、前記原燃料はガソリンのときには、前記制御部は、前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値が、約0.7から約3.0の範囲に収まるように前記メタノールと前記水蒸気と前記酸素の供給量を調整することが好ましい。
【0018】
さらに、前記原燃料が天然ガスのときには、前記制御部は、前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値が、約0.8から約4.0の範囲に収まるように前記メタノールと前記水蒸気と前記酸素の供給量を調整することが好ましい。
【0019】
このような(O/C)比の範囲では、未反応ガスや水素ガスの濃度を適切な範囲の保つことが可能である。
【0022】
本発明による燃料電池システムは、燃料電池と、炭化水素系化合物を含む改質原料から、前記燃料電池のための水素リッチな燃料ガスを生成する上述の燃料改質装置と、前記燃料電池と前記燃料改質装置とを制御するための制御部と、を備える。
【0023】
この燃料電池システムでは、燃料改質装置の起動時の早い時期から、燃料電池に燃料ガスを供給して、発電を開始することが可能である。
【0024】
この燃料電池システムにおいて、前記制御部は、前記燃料改質装置の起動時において、前記改質器の暖機状態に応じて前記燃料電池の発電量の上限値を決定するようにしてもよい。
【0025】
燃料改質装置は、改質器の暖機状態が進行するにつれて、より多くの燃料ガスを供給することができる。従って、改質器の暖機状態に応じて燃料電池の発電量の上限値を決定するようにすれば、燃料電池が実際に発電しうる発電量を反映した制御を行うことが可能である。
【0026】
具体的には、前記制御部は、前記燃料改質装置の起動時において、前記改質触媒の温度に応じて前記燃料電池の発電量の上限値を決定するようにしてもよい。
【0027】
あるいは、前記制御部は、前記燃料改質装置の起動時において、前記燃料改質装置の起動からの時間に応じて前記燃料電池の発電量の上限値を決定するようにしてもよい。
【0028】
本発明による移動体は、燃料電池を含む電源と、炭化水素系化合物を含む原燃料から、前記燃料電池のための水素リッチな燃料ガスを生成する上述の燃料改質装置と、前記移動体の推進力を発生するための原動機と、前記電源から供給される電力を用いて前記原動機を駆動する駆動回路と、前記電源と前記燃料改質装置と前記原動機と前記駆動回路とを制御するための制御部と、を備える。
【0029】
この移動体によれば、燃料改質装置の起動時の早い時期から、燃料電池を用いて発電を開始することができるので、より早い時期から移動体を運転可能な状態にすることが可能である。
【0030】
なお、本発明は、種々の態様で実現することが可能であり、例えば、燃料改質装置およびその制御方法、燃料電池システムおよびその制御方法、それらの装置またはシステムを備える移動体およびその制御方法、それらの方法または装置の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体、そのコンピュータプログラムを含み搬送波内に具現化されたデータ信号、等の態様で実現することができる。
【0031】
【発明の実施の形態】
次に、本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.装置の全体構成:
B.起動制御の実施例:
C.変形例:
【0032】
A.装置の構成:
図1は、本発明の一実施例としての電気自動車の概略構成図である。この電気自動車(以下、単に「車両」と呼ぶ)の車輪駆動機構は、モータ20と、トルクコンバータ30と、変速機40とを有している。モータ20の回転軸13は、トルクコンバータ30に結合されている。トルクコンバータの出力軸14は、変速機40に結合されている。変速機40の出力軸15は、ディファレンシャルギヤ16を介して車輪18の車軸17に結合されている。
【0033】
モータ20は、ロータ22と、ステータ24とを備える三相の同期モータである。ロータ22の外周面には、複数個の永久磁石が設けられている。また、ステータ24には、回転磁界を形成するための三相コイルが巻回されている。モータ20は、ロータ22に備えられた永久磁石による磁界と、ステータ24の三相コイルによって形成される磁界との相互作用により回転駆動する。また、ロータ22が外力によって回転させられる場合には、これらの磁界の相互作用により三相コイルの両端に起電力を生じさせる。この場合には、モータ20は発電機として機能する。
【0034】
モータ20には、主電源としての燃料電池システム60と、補助電源としてのバッテリ(2次電池)50と、の2つの電源が備えられている。バッテリ50は燃料電池システム60が故障した場合や、車両の始動時等のように燃料電池システム60から十分な電力を出力することができない場合などに、不足する電力をモータ20に供給する。バッテリ50の電力は、さらに、車両の制御を行う制御ユニット70や、照明装置などの電力機器(図示せず)にも供給される。
【0035】
2つの電源50,60からの電力は、それぞれの駆動回路51,52と、切替スイッチ80とを介してモータ20に供給される。切替スイッチ80は、バッテリ50と、燃料電池システム60と、モータ20の3者間の接続状態を任意に切り替えることができる。ステータ24は、切替スイッチ80および第1の駆動回路51を介してバッテリ50に電気的に接続され、また、切替スイッチ80および第2の駆動回路52を介して燃料電池システム60に接続される。2つの駆動回路51,52は、それぞれトランジスタインバータで構成されており、モータ20の三相それぞれに対して、ソース側とシンク側の2つを一組としてトランジスタが複数備えられている。これらの駆動回路51,52は、制御ユニット70と電気的に接続されている。
【0036】
制御ユニット70は、シフトレバー72と、アクセルペダル74と、ブレーキペダル76とから与えられる運転者の指令に基づいて、車両のための各種の制御を実行する。制御ユニット70が駆動回路51,52の各トランジスタのオン・オフの時間をPWM制御すると、バッテリ50および燃料電池システム60を電源とする擬似三相交流がステータ24の三相コイルに流れ、回転磁界が形成される。モータ20は、このような回転磁界の作用によって、先に説明した通り電動機または発電機として機能する。
【0037】
なお、制御ユニット70の各種の制御動作は、制御ユニット70に内蔵されているメモリ71内に格納されたコンピュータプログラムを、制御ユニット70が実行することによって実現される。メモリ71としては、ROMやハードディスクなどの種々の記録媒体を利用することが可能である。
【0038】
図2は、燃料電池システム60の内部構成を示す説明図である。この燃料電池システム60は、メタノールなどの原燃料を貯蔵する原燃料タンク110と、水を貯蔵する水タンク120と、改質反応により原燃料から燃料ガス(「改質ガス」とも呼ぶ)を生成する改質器130と、燃料電池140とを備えている。改質器130は、原燃料と水とを蒸発させるための蒸発部133と、電気加熱式触媒部(EHC)135と、改質触媒を収納した改質部136と、選択酸化反応等を利用して改質ガス中の一酸化炭素を低減するためのCO低減部138と、を有している。なお、蒸発部133は、改質原料を気化する気化部132と、気化部132に熱を供給する触媒加熱部134と、を有している。EHC135は、通電することによって発熱する発熱体と、発熱体の上に担持された改質触媒とを有しているが、これらの図示は省略されている。
【0039】
原燃料タンク110には原燃料供給路102が接続されており、水タンク120には水供給路108が接続されている。原燃料供給路102は2つの分岐流路204,206に分岐している。第1の分岐流路204は、水供給路208と合流しており、合流後の流路210は気化部132に接続されている。一方、第2の分岐流路206は、加熱部134に接続されている。第1の分岐流路204には流量計151とポンプ152が設けられており、第2の分岐流路206にも流量計153とポンプ154が設けられている。また、水供給路208にも、流量計155とポンプ156が設けられている。
【0040】
原燃料(メタノール)と水は、ポンプ152,156によってそれぞれ吸い出され、混合された状態で気化部132に導入される。この混合物は、気化部132において気化される。
【0041】
EHC135の上流側の混合室135aには、空気供給部166によって空気AROが供給されている。空気供給部166は、エアーポンプ166aと、流量計166bと、電動弁166cとを有している。混合室135aで混合された空気AROとメタノール蒸気と水蒸気の混合物は、EHC135に供給される。なお、本明細書では、この混合物を「改質原料」または「改質原料ガス」と呼ぶ。
【0042】
EHC135は、発熱抵抗体上に改質触媒が担持されたものである。従って、改質器130の起動時においてEHC135に通電すれば、EHC135内の改質触媒を素早く昇温させて、改質反応を促進させることができる。また、未反応のガスも、発熱抵抗体によって加熱し、昇温させることができる。
【0043】
改質原料ガスは、EHC135によって部分的に改質され、昇温された後に改質部136に供給される。この改質原料ガスは、改質部136と、CO低減部138とにおける化学反応によって水素ガスリッチな燃料ガスHRGに変換される。EHC135や改質部136内では、主に水蒸気改質反応と部分酸化反応とが発生しており、これによって水素が生成される。なお、混合室135aに投入される空気AROは、主として部分酸化反応に利用されるので、以下では「部分酸化用空気」と呼ぶ。
【0044】
CO低減部138は、水蒸気改質反応によって発生する一酸化炭素を低減するためのものである。原燃料がメタノールの場合には、CO低減部138は、一酸化炭素を酸素で直接酸化する選択酸化反応を行う選択酸化部として構成される。
一方、原燃料がガソリンや天然ガスの場合には、CO低減部138は、いわゆるシフト反応を行うシフト反応部と、選択酸化を行う選択酸化部とで構成される。
【0045】
なお、EHC135と改質部136とは、いずれも改質触媒を用いた改質反応を行っている
【0046】
改質器130で生成された燃料ガスHRGは、燃料ガス流路212を介して燃料電池140内の燃料ガス通路142に導入される。また、燃料電池140内の空気通路144には、エアーポンプ146によって空気ARFが供給される。このエアーポンプ146としては、例えばブロアを利用することができる。燃料電池140内では、燃料ガスHRG内の水素と、空気ARF内の酸素との電気化学反応によって発電が行われ、この結果、燃料ガスHRG中の水素が消費される。
【0047】
燃料電池140からの燃料排ガスの排出路214は、改質器130の触媒加熱部134に戻されている。触媒加熱部134は、燃料排ガス中の水素を燃焼させて、その熱を気化部132に供給している。触媒加熱部134としては、白金触媒やパラジウム触媒などの貴金属触媒を用いて燃料排ガスやメタノールの燃焼反応を促進する装置を利用することができる。気化部132では、触媒加熱部134から与えられた熱によって改質原料が気化される。燃料排ガスの燃焼による熱では熱量が不足する場合には、ポンプ154を介して原燃料であるメタノールが触媒加熱部134に供給される。
【0048】
改質器130と燃料電池140との間の燃料ガス流路212には、酸素濃度センサ194と、一酸化炭素濃度センサ196とが設けられている。制御ユニット70は、これらのセンサ194,196を含む各種のセンサで測定された測定値を制御入力として用いて、燃料電池システム60の制御を実行する。なお、図2の例では、制御ユニット70は、図示の便宜上、一部の構成部品(センサやポンプ)への接続のみが描かれており、他の構成部品への接続は図示が省略されている。
【0049】
燃料ガス流路212上には、さらに、分配弁170が設けられている。改質器130の起動時の初期には、改質器130から排出される燃料ガスHRGは、未反応ガスを多く含んでいる。そこで、起動時の初期には、この燃料ガスHRGは、必要に応じて、分配弁170を介して燃料排ガスの排出路214にバイパスすることができる。
【0050】
なお、原燃料タンク110と、流量計151と、ポンプ152とは、原燃料供給部を構成している。また、水タンク120と、流量計155と、ポンプ156とは、水供給部を構成している。また、空気供給部166は、酸素供給部として機能する。これらの原燃料供給部と、水供給部と、酸素供給部とが、本発明における原料供給部を構成する。但し、酸素供給部としては、一般に、酸素を含む酸化性化学物質を供給するものを利用することができる。
【0051】
図3は、改質器130の斜視図である。改質部136は、前段改質部136aと後段改質部136bとを、連結管136cでU字状に連結したものである。すなわち、改質器130全体は、略U字状の形状を有しており、蒸発部133とCO低減部138が隣接した位置関係で配置されている。
【0052】
図4は、改質器130内の温度センサの配置を示す概念図である。本実施例では、EHC135内に1つの温度センサ180が設けられているとともに、改質部136内に4つの温度センサ181〜184が設けられている。4つの温度センサ181〜184は、改質部136の上流側から下流側にかけて、ほぼ等間隔に順に配置されている。但し、これらの温度センサ181〜184は、ほぼ等間隔に配置されている必要はなく、改質部136内の複数の箇所に配置されていればよい。
【0053】
B.起動制御の実施例:
図5は、本発明の実施例における改質装置の起動時の制御手順を示すフローチャートである。なお、この制御手順は、メモリ71(図2)に格納されたコンピュータプログラムを、制御ユニット70が実行することによって実現される。
【0054】
まず、車両が始動されると、ステップS1において燃料電池システム60が起動され、EHC135の通電が開始される。このとき、蒸発部133の運転も開始される。ステップS2では、少量の原燃料(メタノール)と水の投入が開始される。
【0055】
図6は、本実施例における改質器の起動運転の様子を示すグラフである。図6(A)は、気化部132へのメタノールと水の合計投入量の時間変化を示している。また、図6(B)は混合室135aへの空気AROの投入量を、図6(C)は改質触媒の温度Te,T1〜T4を、図6(D)は改質器130で生成される水素量をそれぞれ示している。
【0056】
図6の時刻t0は、図5のステップS2において、原燃料(メタノール)と水の投入が開始された時点に相当する。時刻t0では、気化部132において、メタノールや水があまり気化されておらず、また、EHC135の温度も低い。そこで、この時点では、混合室135aに投入される空気(改質触媒での部分酸化反応に利用される)は、投入されていない。
【0057】
図5のステップS3では、EHC135の温度Te(図6(C))が所定のしきい値Th(例えば約200℃)に達したか否かが判断され、しきい値Thに達したと判断されると、ステップS4において部分酸化用の空気AROが少量投入される(図6(B)の時刻t1)。すなわち、時刻t1からは、メタノールと水蒸気と空気との混合物である改質原料ガスが、EHC135に投入される。このとき、EHC135は、改質反応(水蒸気改質反応や部分酸化反応)が発生するのに十分な高温に達しているので、少量の酸素が投入されると、EHC135において、その投入量に応じた改質反応が発生する。この結果、改質器130からは、その反応量に応じた水素が発生する(図6(D))。
【0058】
時刻t1以降は、燃料電池140に供給するのに適した十分な割合の水素を含む燃料ガスHRGが生成されるように、改質原料の供給量が制御されている。具体的には、図6(B)に示すように、時刻t1以降は、改質原料ガス(メタノール+水蒸気+空気)に含まれる酸素原子数と炭素原子数との比(O/C)の値が、約0.4になるように、3つの原料の供給量がそれぞれ制御されている。改質器130内で発生する各種反応の活発さは、(O/C)比に依存することが知られている。本実施例では、この(O/C)比を、未反応ガスや一酸化炭素を低減しつつ、水素ガスを生成するための適切な値に設定しているので、時刻t1以降からは、燃料電池140に供給可能な改質ガスが生成される。従って、時刻t1からは、改質ガスを燃料電池140に供給して、発電を開始することが可能である。なお、(O/C)比の値は、メタノールを原料とした改質の場合には、約0.2〜約3.0の範囲に設定することが好ましい。(O/C)比が約0.2よりも小さいときには、大量のメタノールが未反応のまま排出される可能性がある。一方、(O/C)比が約3.0よりも大きいときには、水素ガス量が減少したり、一酸化炭素が増加したりする可能性がある。
【0059】
なお、燃料電池140に供給するのに適した燃料ガスHRG中の水素の「十分な割合」の値は、実験的に決定される。現実には、燃料ガスHRGが実際に燃料電池140に供給されて発電が行われている場合には、その燃料ガスHRGに、燃料電池140に供給するのに適した十分な割合の水素が含まれていると見なすことが可能である。
【0060】
こうして改質反応が進行すると、その熱によって、EHC135よりも下流側の改質触媒も徐々に加熱される。図5のステップS5では、改質部136内の1番目の温度センサ181の温度T1が、しきい値Thに達したか否かが判断され、しきい値Thに達したと判断されると、ステップS6において各原料(メタノールと水蒸気と空気)が、それぞれの要求量に達しているか否かが判断される。この要求量は、改質部136内部の温度T1〜T4が上昇するにつれて増加するように予め設定されている。従って、通常は、ステップS6からステップS7に移行して、各原料が要求量まで増量される。図6(A),(B)の例では、時刻t2において、メタノールと水蒸気が350cc/minまで増量されており、これに応じて空気量も増量されている。なお、時刻t2以降においても(O/C)比は約0.4に保たれているので、燃料電池140に供給するのに適した十分な割合の水素を含む燃料ガスHRGが生成される。また、時刻t2以降は、時刻t1〜t2の期間よりも多くの水素が生成されるので、燃料電池140の発電量も増加する。
【0061】
ステップS8〜S14においても同様に、改質部136内の温度センサ182〜184の温度T2〜T4が上昇するにつれて各原料を増量してゆく。そして、改質部136内の最下流の温度センサ184の温度T4がしきい値Thに達すると、改質器130の起動が完了したものと判断される。
【0062】
以上のように、本実施例では、改質器130の起動時の最初に、改質部136の上流側に設けられたEHC135内の改質触媒で改質を行い、生成された燃料ガスHRGを燃料電池140に供給している。従って、改質器130の起動時の早い時点から(具体的には時刻t1から)、燃料電池140による発電を行うことが可能である。
【0063】
また、改質触媒の上流側から下流側に至る流路に沿って複数の温度センサ181〜184が順次配置されており、各温度センサで測定された温度T1〜T4が順次次第に上昇していくにつれて改質原料の供給量を段階的に増加させている。従って、改質触媒の温度上昇に合わせて、燃料ガスHRG(改質ガス)の生成量と燃料電池140の発電量を徐々に増加させることができる。
【0064】
図7は、改質器130の暖機状態と燃料電池140の発電量の上限値との関係の一例を示す説明図である。改質器130の暖機状態CCは、例えば次の(1)式で定義することができる。
CC=Σ{ min(0.25, 0.25×(Ti-To)/(Th-To))} …(1)
【0065】
ここで、Tiは測定温度(i=1〜4)、Toは環境温度、Thはしきい値である。また、演算子minはかっこ内の最小値を取る演算を示し、演算子Σはかっこ内の和を取る演算を示す。
【0066】
例えば、4つの温度T1〜T4がすべて環境温度Toに等しいときには、暖機状態CCは0%である。また、4つの温度T1〜T4がすべてしきい値Thを超えているときには、暖機状態CCは100%である。制御ユニット70(図2)は、図7のような関係に基づいて、改質器130の暖機状態CCに応じて燃料電池140の発電量の上限値を決定することが可能である。
【0067】
なお、暖機状態CCと発電量の関係は、図8に示すように、ほぼ直線的な関係としてもよい。図8のような関係を用いるときには、図6に示した各改質原料の供給量の変化も、ステップ状ではなく、徐々に緩やかに増加する曲線状にすることが好ましい。
【0068】
また、暖機状態CCの定義としては、上述した(1)式に限らず、改質器130の暖機状態を表現することのできる他の種々の定義を採用することが可能である。
【0069】
なお、暖機状態CCの値に応じて発電量の上限値を決定する代わりに、改質器130の起動からの時間に応じて燃料電池140の発電量の上限値を決定するようにしてもよい。ほとんどの場合には、改質器130の暖機状態の時間的変化は、ほぼ一定の経過を辿ると考えられる。従って、改質器130の起動からの時間に応じて発電量の上限値を決定しても実際上の問題は少ない。
【0070】
以上のように、本実施例では、改質器130の暖機状態に応じて改質原料(メタノールと水と空気)の供給量を徐々に増加させるようにしたので、改質器130の起動時の早い時期から燃料電池140に燃料ガスHRGを供給して発電を始めることが可能である。この結果、車両が始動する(キーオンされる)と、早い時期から燃料電池140による発電ができるので、従来よりも早く車両が運転可能な状態になる。この際、燃料電池140の発電量では車両の要求動力を満足できない場合には、2次電池50(図1)の電気を利用して車両が運転される。
【0071】
C.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0072】
C1.変形例1:
図9は、改質器の変形例を示す説明図である。図4に示した改質器との違いは、改質部136の途中の複数の位置において空気を吹き込むように構成されている点だけである。このような改質器では、空気が吹き込まれた位置より下流側での発熱反応(部分酸化反応など)が活発化する。この結果、改質触媒全体の昇温を早めることが可能である。このような改質器を用いる場合にも、改質部136に供給される空気量を、改質部136内の複数の温度T1〜T4に応じて図6と同様に制御すればよい。
【0073】
C2.変形例2:
上記実施例では、改質触媒の温度が順次次第に上昇していくにつれて、改質原料の供給量を段階的に(ステップ的に)増加させていたが、改質原料の供給量は滑らかな曲線に沿って増加させるようにしてもよい。また、改質原料の供給量は、改質触媒の温度の測定結果に応じて変える必要はなく、例えば、改質器130の起動からの時間で供給量が決まるような所定の増加曲線に従って改質原料を増加させるようにしてもよい。この場合にも、改質触媒の温度は改質器130の起動からの時間の経過に応じて上昇するので、改質原料の供給量が改質触媒の温度の上昇とともに増加していく、という点では、上述した実施例と共通している。従って、この場合の改質原料の供給量の増加曲線も、改質触媒の温度の上昇に関連付けられたものであると考えることが可能である。すなわち、本発明では一般に、改質原料の供給量を、改質触媒の温度の上昇に関連付けられた増加率で、次第に増加させるようにすればよい。ここで、「増加率」という用語は、増加の仕方(増加曲線)を意味する広い意味を有している。この増加率は、各改質原料に関してそれぞれ異なる値や曲線に設定可能である。
【0074】
C3.変形例3:
上記実施例では、EHC135を改質触媒の最上流の位置に配置していたが、EHC135を他の位置に配置することも可能である。但し、通常は改質触媒は最上流側から下流側に向かって徐々に昇温していくので、EHC135を最上流側に配置することが好ましい。また、上記実施例では、EHC135は改質触媒の一部のみを加熱していたが、EHC135で改質触媒の全体を加熱するようにしてもよい。すなわち、EHC135は、改質触媒の少なくとも一部を加熱するように構成されていればよい。また、改質触媒を加熱するための加熱部としては、電気加熱式以外の他の方式による加熱部を用いることも可能である。
【0075】
C4.変形例4:
改質器の原燃料としては、メタノール以外の炭化水素系燃料を使用可能であり、例えば、他のアルコールや、ガソリン、天然ガス、アルデヒド、エーテルなどの種々の炭化水素系化合物を利用可能である。例えば、原燃料としてガソリンを用いた場合には、起動期間における(O/C)比の値は、約0.7〜約3.0の範囲に設定することが好ましい。また、原燃料として天然ガスを用いた場合には、起動期間における(O/C)比の値は、約0.8〜約4.0の範囲に設定することが好ましい。
【0076】
C5.変形例5:
上記実施例では、燃料電池システム60を使用した電気自動車の例について説明したが、本発明は、車輪駆動用の原動機として、モータと内燃機関との2つの原動機を用いたハイブリッド自動車(ハイブリッド車両)にも適用することができる。また、本発明は、船舶や電車などのような、自動車以外の移動体にも適用可能である。すなわち、本発明は、一般に、燃料電池と、燃料改質装置と、燃料電池を含む電源から供給される電力によって駆動される原動機と、を備える移動体に適用可能である。
【図面の簡単な説明】
【図1】本発明の実施例としての電気自動車の概略構成図。
【図2】燃料電池システム60の内部構成を示す説明図。
【図3】改質器130の斜視図。
【図4】改質器130内の温度センサの配置を示す概念図。
【図5】実施例における改質装置の起動時の制御手順を示すフローチャート。
【図6】実施例における改質器の起動運転の様子を示すグラフ。
【図7】改質器130の暖機状態と燃料電池140の発電量との関係の一例を示す説明図。
【図8】改質器130の暖機状態と燃料電池140の発電量との関係の他の例を示す説明図。
【図9】改質器130の変形例を示す説明図。
【符号の説明】
13…回転軸
14…出力軸
15…出力軸
16…ディファレンシャルギヤ
17…車軸
18…車輪
20…モータ
22…ロータ
24…ステータ
30…トルクコンバータ
40…変速機
50…バッテリ
51,52…駆動回路
51…第1の駆動回路
52…第2の駆動回路
60…燃料電池システム
70…制御ユニット
71…メモリ
72…シフトレバー
74…アクセルペダル
76…ブレーキペダル
80…切替スイッチ
102…原燃料供給路
108…水供給路
110…原燃料タンク
120…水タンク
130…改質器
132…気化部
133…蒸発部
134…触媒加熱部
135…電気加熱式触媒部(EHC)
135a…混合室
136…改質部
136a…前段改質部
136b…後段改質部
136c…連結管
138…CO低減部
140…燃料電池
142…燃料ガス通路
144…空気通路
146…エアーポンプ
151…流量計
152…ポンプ
153…流量計
154…ポンプ
155…流量計
156…ポンプ
166…空気供給部
166a…エアーポンプ
166b…流量計
166c…電動弁
170…分配弁
180〜184…温度センサ
194…酸素濃度センサ
196…一酸化炭素濃度センサ
204,206…分岐流路
208…水供給路
210…流路
212…燃料ガス流路
214…排出路

Claims (10)

  1. 炭化水素系化合物を含む改質原料から、燃料電池のための水素リッチな燃料ガスを生成するための燃料改質装置であって、
    通電することによって発熱する発熱体と、前記発熱体に担持された改質触媒とを有し、前記改質触媒を加熱し、改質ガスを生成するための電気通電式触媒部と、
    前記電気通電式触媒部の下流側に設けられ、通電式の発熱体を有しておらず改質触媒を用いて前記改質原料を改質する改質部と、
    前記改質原料を前記電気通電式触媒部に供給するための原料供給部と、
    前記電気通電式触媒部と前記原料供給部とを制御するための制御部と、
    前記電気通電式触媒部と、前記改質部内の複数の箇所とにおいて、前記改質触媒の上流側から下流側に至る流路に順次配置された複数の温度センサと、
    を備えており、
    前記制御部は、前記上流側から下流側に至る流路に沿って前記複数の温度センサで測定された温度が予め定められたしきい値温度に順次到達するたびに、前記改質原料の供給量を段階的に増加させる、燃料改質装置。
  2. 請求項1に記載の燃料改質装置であって、
    前記改質原料は、炭化水素系化合物を含む原燃料と、水蒸気と、酸素とを含んでおり、
    前記原燃料と水蒸気と酸素の供給量は、前記燃料ガスを前記燃料電池に供給するのに適した十分な割合の水素を含む前記燃料ガスが前記改質器で生成されるように設定され、
    前記制御部は、前記燃料改質装置の起動期間における前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値を、前記原燃料の種類に応じて設定する、燃料改質装置。
  3. 請求項2記載の燃料改質装置であって、
    前記原燃料は、メタノールであり、
    前記制御部は、前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値が、0.2から3.0の範囲に収まるように前記メタノールと前記水蒸気と前記酸素の供給量を調整する、燃料改質装置。
  4. 請求項2記載の燃料改質装置であって、
    前記原燃料は、ガソリンであり、
    前記制御部は、前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値が、0.7から3.0の範囲に収まるように前記ガソリンと前記水蒸気と前記酸素の供給量を調整する、燃料改質装置。
  5. 請求項2記載の燃料改質装置であって、
    前記原燃料は、天然ガスであり、
    前記制御部は、前記改質原料中の炭素の原子数Cと酸素の原子数Oとの比(O/C)の値が、0.8から4.0の範囲に収まるように前記天然ガスと前記水蒸気と前記酸素の供給量を調整する、燃料改質装置。
  6. 燃料電池システムであって、
    燃料電池と、
    炭化水素系化合物を含む改質原料から、前記燃料電池のための水素リッチな燃料ガスを生成する燃料改質装置と、
    前記燃料電池と前記燃料改質装置とを制御するための制御部と、
    を備え、
    前記燃料改質装置は、
    通電することによって発熱する発熱体と、前記発熱体に担持された改質触媒とを有し、前記改質触媒を加熱し、改質ガスを生成するための電気通電式触媒部と、
    前記電気通電式触媒部の下流側に設けられ、通電式の発熱体を有しておらず改質触媒を用いて前記改質原料を改質する改質部と、
    前記改質原料を前記電気通電式触媒部に供給するための原料供給部と、
    前記電気通電式触媒部と、前記改質部内の複数の箇所とにおいて、前記改質触媒の上流側から下流側に至る流路に順次配置された複数の温度センサと、
    を備えており、
    前記制御部は、前記上流側から下流側に至る流路に沿って前記複数の温度センサで測定された温度が予め定められたしきい値温度に順次到達するたびに、前記改質原料の供給量を段階的に増加させる、燃料電池システム。
  7. 請求項6記載の燃料電池システムであって、
    前記制御部は、
    前記燃料改質装置の起動時において、前記改質器の暖機状態に応じて前記燃料電池の発電量の上限値を決定する、燃料電池システム。
  8. 請求項7記載の燃料電池システムであって、
    前記制御部は、
    前記燃料改質装置の起動時において、前記改質触媒の温度に応じて前記燃料電池の発電量の上限値を決定する、燃料電池システム。
  9. 請求項7記載の燃料電池システムであって、
    前記制御部は、
    前記燃料改質装置の起動時において、前記燃料改質装置の起動からの時間に応じて前記燃料電池の発電量の上限値を決定する、燃料電池システム。
  10. 移動体であって、
    燃料電池を含む電源と、
    炭化水素系化合物を含む原燃料から、前記燃料電池のための水素リッチな燃料ガスを生成する燃料改質装置と、
    前記移動体の推進力を発生するための原動機と、
    前記電源から供給される電力を用いて前記原動機を駆動する駆動回路と、
    前記電源と前記燃料改質装置と前記原動機と前記駆動回路とを制御するための制御部と、
    を備え、
    前記燃料改質装置は、
    通電することによって発熱する発熱体と、前記発熱体に担持された改質触媒とを有し、前記改質触媒を加熱し、改質ガスを生成するための電気通電式触媒部と、
    前記電気通電式触媒部の下流側に設けられ、通電式の発熱体を有しておらず改質触媒を用いて前記改質原料を改質する改質部と、
    前記改質原料を前記電気通電式触媒部に供給するための原料供給部と、
    前記電気通電式触媒部と、前記改質部内の複数の箇所とにおいて、前記改質触媒の上流側から下流側に至る流路に順次配置された複数の温度センサと、
    を備えており、
    前記制御部は、前記上流側から下流側に至る流路に沿って前記複数の温度センサで測定された温度が予め定められたしきい値温度に順次到達するたびに、前記改質原料の供給量を段階的に増加させる、移動体。
JP2000397950A 2000-12-27 2000-12-27 改質器の起動制御 Expired - Fee Related JP4590730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397950A JP4590730B2 (ja) 2000-12-27 2000-12-27 改質器の起動制御

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000397950A JP4590730B2 (ja) 2000-12-27 2000-12-27 改質器の起動制御

Publications (2)

Publication Number Publication Date
JP2002201002A JP2002201002A (ja) 2002-07-16
JP4590730B2 true JP4590730B2 (ja) 2010-12-01

Family

ID=18863007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397950A Expired - Fee Related JP4590730B2 (ja) 2000-12-27 2000-12-27 改質器の起動制御

Country Status (1)

Country Link
JP (1) JP4590730B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265173B2 (ja) * 2002-08-23 2009-05-20 日産自動車株式会社 発電装置
JP2005132643A (ja) * 2003-10-28 2005-05-26 Denso Corp 水素貯蔵供給システム
JP4827405B2 (ja) * 2004-12-17 2011-11-30 パナソニック株式会社 水素生成装置及びそれを用いた燃料電池システム
JP5164441B2 (ja) * 2007-06-13 2013-03-21 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法
JP5325403B2 (ja) * 2007-08-29 2013-10-23 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法
JP5214230B2 (ja) * 2007-12-04 2013-06-19 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法
JP5243858B2 (ja) * 2008-06-27 2013-07-24 Jx日鉱日石エネルギー株式会社 酸化自己熱型改質装置の運転方法
JP4761260B2 (ja) * 2009-05-28 2011-08-31 Toto株式会社 固体電解質型燃料電池
EP2703341B1 (en) * 2011-04-26 2018-03-07 Panasonic Intellectual Property Management Co., Ltd. Method of operating a hydrogen generator
DE102011082498A1 (de) * 2011-09-12 2013-03-14 Robert Bosch Gmbh Brennstoffzellensystem mit verbesserter Anodengasrezirkulation und Verfahren zum Betreiben eines Brennstoffzellensystems
JP6981089B2 (ja) * 2017-08-09 2021-12-15 日産自動車株式会社 燃料電池システム及び燃料電池システムの制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151983A (ja) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd ハイブリツド燃料電池システム
JPH097618A (ja) * 1995-06-22 1997-01-10 Mitsubishi Electric Corp 燃料電池発電システム
WO1998046525A1 (fr) * 1997-04-11 1998-10-22 Chiyoda Corporation Procede de preparation d'un gaz de synthese par reformage autothermique
JPH10291803A (ja) * 1997-04-21 1998-11-04 Tonen Corp 合成ガス製造方法および合成ガス製造装置
JPH1131521A (ja) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd 燃料電池システムおよび電力負荷予測装置
JPH11130405A (ja) * 1997-10-28 1999-05-18 Ngk Insulators Ltd 改質反応装置、触媒装置、それらに用いる発熱・触媒体、及び改質反応装置の運転方法
WO2000019084A1 (fr) * 1998-09-30 2000-04-06 Hitachi, Ltd. Systeme a cellule electrochimique et vehicule utilisant ce systeme
JP2000342968A (ja) * 1999-06-07 2000-12-12 Toyota Motor Corp 触媒およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151983A (ja) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd ハイブリツド燃料電池システム
JPH097618A (ja) * 1995-06-22 1997-01-10 Mitsubishi Electric Corp 燃料電池発電システム
WO1998046525A1 (fr) * 1997-04-11 1998-10-22 Chiyoda Corporation Procede de preparation d'un gaz de synthese par reformage autothermique
JPH10291803A (ja) * 1997-04-21 1998-11-04 Tonen Corp 合成ガス製造方法および合成ガス製造装置
JPH1131521A (ja) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd 燃料電池システムおよび電力負荷予測装置
JPH11130405A (ja) * 1997-10-28 1999-05-18 Ngk Insulators Ltd 改質反応装置、触媒装置、それらに用いる発熱・触媒体、及び改質反応装置の運転方法
WO2000019084A1 (fr) * 1998-09-30 2000-04-06 Hitachi, Ltd. Systeme a cellule electrochimique et vehicule utilisant ce systeme
JP2000342968A (ja) * 1999-06-07 2000-12-12 Toyota Motor Corp 触媒およびその製造方法

Also Published As

Publication number Publication date
JP2002201002A (ja) 2002-07-16

Similar Documents

Publication Publication Date Title
JP4967185B2 (ja) 改質器内の析出炭素の除去
JP4590730B2 (ja) 改質器の起動制御
JP4479096B2 (ja) 水素生成システム
CN100472912C (zh) 车载设备的燃料电池动力装置
US7147946B2 (en) Fuel cell system
JP4131309B2 (ja) 燃料電池と内燃機関のハイブリッドシステム
JP4130302B2 (ja) 燃料電池用燃料ガス生成装置
JP2002050378A (ja) 電気自動車用燃料電池の起動制御装置
JP2001348206A (ja) 燃料改質装置
WO2006009495A1 (en) Method of starting a fuel reforming process and a fuel reforming system
WO2017110367A1 (ja) 燃料電池システム、及び、燃料電池システムの制御方法
JP2002154805A (ja) 改質反応装置及び改質システム
JP4556316B2 (ja) 改質器の原料投入量制御
JP2003303608A (ja) 燃料電池発電システム、燃料電池発電システムの制御方法
JP2003212506A (ja) 燃料改質装置の起動制御
JP2002117873A (ja) 固体高分子型燃料電池・原動機複合システム
WO2008001656A1 (fr) Procédé pour faire démarre un système de pile à combustible
JP2003002607A (ja) 燃料改質システム
JP2002274805A (ja) 改質原料を冷媒として利用した熱交換器を有する改質器の制御
JP7120323B2 (ja) 燃焼システムおよび燃焼システムの制御方法
JP2002231288A (ja) 燃料電池システム
JP2005039939A (ja) 燃料改質器の制御装置及びコンピュータプログラム
JP4172178B2 (ja) 蒸気発生装置の制御
JP2022181933A (ja) 改質システム
JP4000860B2 (ja) 燃料処理装置とその起動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees