JP4412495B2 - 駆動機構 - Google Patents

駆動機構 Download PDF

Info

Publication number
JP4412495B2
JP4412495B2 JP2005501953A JP2005501953A JP4412495B2 JP 4412495 B2 JP4412495 B2 JP 4412495B2 JP 2005501953 A JP2005501953 A JP 2005501953A JP 2005501953 A JP2005501953 A JP 2005501953A JP 4412495 B2 JP4412495 B2 JP 4412495B2
Authority
JP
Japan
Prior art keywords
coil
permanent magnet
drive
magnetic
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005501953A
Other languages
English (en)
Other versions
JP2006500887A (ja
Inventor
啓佐敏 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JP2006500887A publication Critical patent/JP2006500887A/ja
Application granted granted Critical
Publication of JP4412495B2 publication Critical patent/JP4412495B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/02Loudspeakers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • H02P25/034Voice coil motors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/06Telephone receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • H04R9/066Loudspeakers using the principle of inertia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/904Micromirror

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Control Of Linear Motors (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Control Of Position Or Direction (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【技術分野】
【0001】
本発明は駆動機構、駆動装置に関し、詳しくは、複数の磁性材から構成される駆動装置に関する。詳しくは、磁性体(磁石体)間に引力或いは反発力を加えることにより、磁性体を振動させてこれを駆動源として利用した駆動機構に関するものである。さらに詳しくは、誘導型音響変換装置に係わり、詳しくは平面型或いはパネル型と呼ばれるスピーカに関するものである。この平面スピーカは、音源発生機、携帯音響機器、電子新聞音響機器、PDA音響機器、水中音響機器、超音波発生機器に使用可能であり、薄型、軽量、高音質であることから、液晶表示装置等の各種表示機器の表示面の一部として設置されることが可能である。
【0002】
さらに詳しくは、本発明はデジタル・マイクロミラー・デバイスに関するものであり、詳しくは、マイクロミラーを傾動させる駆動機構に関するものである。さらに詳しくは、磁性体の組み合わせを駆動源とし、駆動回路は駆動源をPWM制御することを特徴とする駆動機構に関するものである。さらに詳しくは、電気エネルギーを運動エネルギーに変換して回転軸を回転駆動する動力出力装置に関し、特に、回転トルクの高出力化に適した改良技術に関する。
【背景技術】
【0003】
従来、装置を駆動させて振動を発生させる方法としては、不均衡な重量バランサを用いた振動モーターが知られている。このような振動モーターは、コイルの回転軸の両端が軸受け(ベアリング)を介して筺体に固定されている。回転軸の一端には、重量バランサが取り付けられている。この重量バランサは、回転軸の中心からずらして取り付けられているため、コイルの回転に伴い回転軸が不均衡に振動し、その振動は軸受けを介して筺体に伝達されることになる。
【0004】
また、近年、携帯端末機においては、着信を通知する手段として呼出音と呼出振動がそれぞれ用意されている(例えば、特許文献1を参照。)。このような携帯端末機には、呼出音や音声を発生させるためのスピーカと、呼出振動を発生させるための振動モーターとが、それぞれ搭載されている。使用者は、周囲の状況に応じて、呼出音または呼出振動を適宜選択することができる。
【0005】
また、駆動機構の代表的なものとして、例えば、内燃機関や電動モーターがある。駆動源からの駆動力は伝達機構を介して被駆動体に供給されることになる。このような駆動源として、例えば、クランク機構やカム機構がある。
【0006】
従来磁性体の振動を駆動源として利用する従来例は見当たらない。例えば、特開2000−166174号公報には、体感振動のばらつきを減少させる振動発生装置が記載されている。この振動発生装置は、振動体と、磁場発生装置を具備し、磁場発生装置は、印加された電圧に基づいて磁場を発生させる磁場発生部と、磁場発生部へ電圧を印加する電圧印加部とからなり、振動体は、支点部と、支点部の両端に設けられた1対の磁気振動部からなり、1対の磁気振動部は磁場発生部によって発生させられた磁場に応答して、支点部を軸として動くことを特徴としている。
【0007】
また、従来からDM方式の平面型スピーカが知られている。この平面型スピーカは、磁気回路とボイスコイルとから構成されるエキサイターと、このエキサイターによって励振される振動材(振動板)とを備えている。このスピーカは、コーン型のように振動材を剛体として前後に往復振動させるのではなく、周波数に応じて共振点を移動させた撓み振動を行うように構成されている。すなわち、DM方式とは、Distributed modeの略で、共振モード(曲げ波動)を自在にコントロールすることにより、特定の箇所を加振して分割振動を起こして音を作り出す方式である。
【0008】
この種のピーカとして、例えば、古川電工時報(平成13年6月/平面スピーカ振動膜の開発)に記載されたものが存在する。この平面スピーカでは、外枠を兼ねる平板状ヨークに永久磁石がN極、S極交互に配置され、フレキシブルプリント回路で形成されたボイスコイルパターン付振動膜が、エッジにより永久磁石の磁極面から一定距離に柔軟に支持されている構成となっている。
【0009】
また、振動膜をフィルムから作り、この振動膜内にボイスコイルをパターン形成した平面スピーカも存在する。さらに、特開2001−333493号公報には、振動面をポリイミドなどの高分子フィルムなどで構成し、導電コイルパターンを、振動面上に展着されたCu薄膜をエッチングすることによって平面渦巻き状に形成した平面スピーカが開示されている。
【0010】
ボイスコイルに電気信号の音声電流が流れると、電磁作用の原理に従ってボイスコイルに駆動力が発生し、駆動力の方向はフレミングの左手の法則に従う。ボイスコイルが全面に形成された振動膜は、回路に流れる電流変化に比例してピストン運動を行い、空気が振動して音圧が発生する。
【0011】
また、デジタル・マイクロミラー・デバイス(以下、「DMD」と略称することがある。)は、SRAMと数十万のマイクロミラーで構成された反射型デバイスで、個々のミラーを±10度の角度でオン・オフのスイッチングをすることで、デバイス表面の光の反射方向を切り替え、その反射する時間を調節することによりRGB各色で256階調のグレースケールを実現することができる。
【0012】
マイクロミラーに光が当ると、−10度の鏡に反射した光は光吸収板に吸収され(オフ:黒くなる)、+10度の鏡(オン)に反射した光は投影レンズを通ってスクリーンに映像を映し出す。
【0013】
オン・オフの回数を調整する(黒と光の回数比)によって、濃度表現を行う。DMDは、送られてきたイメージ符号に従い、毎秒数千回もの高速でミラーが±10度にオン・オフする。ここにランプからの光を、R(赤)G(緑)B(青)のカラーフィルターを通してDMDに当てると、ミラーに反射した光はレンズを通って、スクリーンに写し出される。つまり、鏡の一つ一つが画素となり、映像を構成する。鏡の間隔はきわめて狭く、またハイスピードで動くため、非常になめらかに動く映像としてスクリーンに投影される。また、このデジタル・マイクロミラー・デバイスによれば、液晶透過式に見られるような電極部もなく、デバイス表面全体で反射するため、滑らかなシームレス画面を実現することができる。
【0014】
このようなデジタル・マイクロミラー・デバイスとして、例えば、特開平7−306368号公報(特許文献1)に記載されたものが存在する。このデジタル・マイクロミラー・デバイスはマイクロミラー素子を複数配列して成り、マイクロミラー素子の各々は、1つのマイクロミラー部と、この1つのマイクロミラー部に対応して設けられた、マイクロミラー部の位置を制御するための1つの位置制御手段を備えている。マイクロミラー部には永久磁石が備えられている。一方、位置制御手段は一種の電磁石から成り、そして、その一端はトランジスタ素子に接続されている。トランジスタ素子の制御により位置制御手段に発生する電磁力によってマイクロミラー部位置を制御する。トランジスタ素子のオン・オフ制御により位置制御手段に電流を流し、これにより位置制御手段で発生する電磁力によってマイクロミラー部に備えられた永久磁石42との間に生じる引力・斥力を利用してマイクロミラー部の位置を制御する。
【0015】
また、電気エネルギーを運動エネルギーに変換して回転軸を回転駆動する動力出力装置として、例えば、特開平10−174331号公報(特許文献2)に開示されているように、スイッチド・リラクランスモータが知られている。スイッチド・リラクタンスモータは、内周縁に沿って複数の突極を有する環状ステータと、外周縁において当該突極に対峙する向きに形成された複数の突極を有し、環状ステータ内部で回転自在に軸支されたロータとから構成される一種の誘導同期モータである。ステータの突極を相毎に順次励磁させることで、ステータ内部の中空部分に磁束を発生させ、ロータの突極とステータの突極との間に作用する磁力でロータに回転トルクを与えることができる。
【特許文献1】
特開平7−306368号公報
【特許文献2】
特開平10−174331号公報
【発明の開示】
【発明が解決しようとする課題】
【0016】
しかしながら、上述したような携帯端末機においては、スピーカと振動モーターとがそれぞれ搭載されていたため、それぞれについて取り付け工程を要するとともに、携帯端末機の小型化や軽量化を実現する上での障害となっていた。さらに、上述したような振動モーターが使用されている場合には、不均衡な重量バランサを用いた構成であったため、回転軸や軸受けに大きなストレスが生じやすく、その結果、振動モーターの寿命が短くなりやすいといった問題があった。また、前記従来技術においては、磁性体の振動を駆動源として被駆動体を駆動させるための開示及び示唆はない。
【0017】
また、既述した従来の平面スピーカによれば、導電体を含んだ振動板を振動させるために、複数のコイル構成と永久磁石を必要とする。また、振動板が電磁コイルを含んでいると振動板のほか導電体も振動させるために、振動板内で振動のバラツキが生じ、さらに、低周波数に対応した変換も難しくなる。そして、永久磁石とコイル部との隙間は振動板の振動を可能にするために、一定の隙間が必要となり磁力効率が低下する問題がある。
【0018】
また、従来のマイクロミラーに関する従来例においては、トランジスタ素子がオフの状態にあっては、トランジスタ素子に接続された位置制御手段には電流が流れず、電磁石には電磁力が発生せず、マイクロミラー部に備えられた永久磁石42とこの電磁石との間に働く引力によって、マイクロミラー部から射出された光は、デジタル・マイクロミラー・デバイスとスクリーンとの間に設けられた開口部を有する遮蔽板によって遮られ、スクリーンに到達しない。しかしながら、この状態において、電磁石に通電されないために、マイクロミラーの挙動が安定しない問題がある。また、マイクロミラーの変位量をアナログ的に制御できない問題がある。
【0019】
しかし、このような電動モータでは、相数を増大したり、励磁電流の値を大きくしても、回転トルクの高出力化には構造的な限界があり、改良技術の開発が望まれる。
【0020】
そこで、本発明の目的は、磁性体に供給される信号の極性を制御して、磁性体を、被駆動体を駆動させるための駆動源として利用した駆動機構を提供することである。
【0021】
本発明の他の目的は、振動発生機能と音発生機能とを兼ね備えた駆動装置を提供することである。
【0022】
また、本発明のさらに他の目的は、装置へ局所的な負荷を与えることなく振動を発生させることができる駆動装置を提供することである。
【0023】
本発明のさらに他の目的は、簡単な磁性体の構成で、振動材内での振動がばらつかず、かつ低周波数領域での周波数特性に優れ、さらに、磁力効率にも優れた誘導型音響変換装置を提供することである。
【0024】
本発明の更に他の目的は、デジタル・マイクロミラー・デバイスにおいて、マイクロミラーの変位挙動を安定化するとともに、その変位量をアナログ的に変化させることが可能なデジタル・マイクロミラー・デバイスにおけるマイクロミラーの駆動機構を提供することを目的とするものである。
【0025】
さらに、本発明の他の目的は、複数の磁性体からなる組を駆動源とした駆動機構において、周波数信号のPWM制御を利用した、被駆動体の駆動機構、及びこの駆動機構を備えた表示装置を提供することにある。
【0026】
本発明の更に他の目的は、本発明は回転トルクの高出力化を実現できる動力出力装置を提供することである。本発明の更に他の目的は、回転駆動の安定化を実現する動力出力装置を提供することである。
【課題を解決するための手段】
【0027】
前記課題を解決するために、本発明は、複数の磁性体を備える組と、この組に周波数信号を供給する手段と、前記磁性体間の吸引―反発による運動を形成する手段と、を備え、この運動を駆動源とした、駆動機構であることを特徴とする。
【0028】
本発明の第1の形態は、第1の磁性材と第2の磁性材とを備え、一方の磁性材を固定側に設けるとともに、他方の磁性材を駆動側に設けてなり、さらに、前記第1の磁性材又は第2の磁性材に周波数信号を与えて前記第1の磁性材と前記第2の磁性材との間に磁気作用を生じさせることにより、駆動側の磁性材を固定側の磁性材に対して駆動させる駆動手段と、を備え、一方の磁性材は、他方の磁性材が発生する磁力線上の方向に対して自身が発生する磁力線上の方向が交差又は平行になるように設置されたことを特徴とする駆動装置、又は駆動装置を制御する方法であることを特徴とする。
【0029】
本発明の他の形態は、互いに対向配置される複数の磁性体と、これら磁性体間に互いに反発又は引き合う力を発生する極性の信号を印加する駆動回路と、を備え、前記複数の磁性体からなる組を支点において支持し、前記駆動回路は当該磁性体を、前記支点を中心にして傾動させるように駆動させ、前記磁性体の組は駆動源として被駆動体に連結されて構成された駆動機構であることを特徴とする。
【0030】
本発明のさらに他の形態は、磁場制御機構、及びこれを用いた駆動機構に関するものであり、すなわち、複数の磁場発生手段と、当該磁場発生手段で発生する磁場を互いに干渉させる手段と、前記複数の磁場発生手段の少なくとも一つの挙動によって駆動される被駆動体と、を備えてなる駆動機構であることを特徴とする。
【0031】
後述する実施形態において説明するように、磁場発生手段は、永久磁石と電磁コイル(誘起磁場発生手段)のユニット或いは電磁コイル同士のユニットである。駆動機構にはこのユニットが単独又は複数備われている。前記干渉手段は、周波数信号をコイルに供給する手段であり、これに際しては周波数信号のPLL制御、PWM制御等各種制御を適用することができる。
【0032】
本発明のさらに他の形態は、複数の磁性体を平面状に互いに対向して配置するとともに、当該磁性体を相対的に振動させ、少なくとも一方の磁性体をボイスコイルと振動材とから構成し、このボイスコイルは前記振動材の振動領域外に存在し、さらに、前記ボイスコイルに駆動信号を供給する駆動回路を備えてなる音響変換装置であることを特徴とする。
【0033】
本発明の更に他の形態は、デジタル・マイクロミラー・デバイスにおけるマイクロミラーの駆動機構において、マイクロミラーの支持機構と、当該支持機構に駆動信号を供給する駆動回路と、を備え、前記支持機構は複数の磁性体からなる組を備え、前記駆動回路はこの磁性体の少なくとも一つに周波数信号を供給し、前記磁性体からの磁場を互いに干渉させるようにして、前記支持機構が前記マイクロミラーを傾動させるようにしたことを特徴とする。
【0034】
本発明はさらに、複数の磁性体からなる組を駆動源とした駆動機構であって、駆動回路を備え、この駆動回路から周波数信号からなる駆動信号を少なくとも一つの磁性体に供給し、前記磁性体間に磁界の干渉を起こして、前記磁性体間で当該磁性体を傾動させ、前記駆動回路は、PWM制御手段を備えることにより、前記駆動信号のデューティ比を提供でき、このデューティ比によって前記磁性体の傾動量を制御し、この傾動量を被駆動体の駆動量に適用してなることを特徴とするものである。
【0035】
本発明の更に具体的な形態は、コイルが巻回された中空筒体と、前記中空筒体の中空部内に挿通された柱状の永久磁石と、前記中空筒体と永久磁石との相対的な往復運動を回転軸の回転運動に変換するクランク機構、とを含み、前記中空筒体は前記コイルに供給される駆動パルス信号によってその中空部に挿通された永久磁石との間で磁気回路を形成し、交互に変化する駆動パルス信号の極性に応じて、前記中空筒体と永久磁石との間に磁気反発力と磁気吸引力とを交互に発生させることで、前記中空筒体と前記永久磁石とを相対的に往復運動させ、クランク機構を介して前記往復運動を回転軸の回転運動に変換することである。かかる構成により、中空筒体と永久磁石との間に作用する磁気反発力及び磁気吸引力のベクトル方向に中空筒体と永久磁石とが相対的に往復運動を行うため、電気エネルギーを効率よく往復運動に変換でき、クランク機構を介してこの往復運動を回転軸の回転運動に変換するため、回転トルクの高出力化を実現できる。また、永久磁石が中空筒体の中空部内に挿通された状態で両者間に磁気回路が形成されるため、磁気反発力及び磁気吸引力の大きさを比較的大きくすることができる。
【発明を実施するための最良の形態】
[第1の実施の形態]
【0036】
次に、本発明の第1の実施の形態について、図面を参照しつつ説明する。なお、本実施の形態において、第1の磁性材にはコイル、第2の磁性材には永久磁石、がそれぞれ該当する。
【0037】
まず、本発明の第1の実施の形態に係る駆動装置について説明する。図1は、第1の実施の形態に係る駆動装置の構成を示す図で、(A)は上面図、(B)は(A)のB−B断面図である。図2は、図1に示した駆動装置の回路構成図である。図3は、図1に示したコイルを駆動する回路構成図である。
【0038】
図1(A)において、駆動装置1は、基板10、磁気発生用のコイル11、永久磁石12、コイル11を駆動させる駆動回路13、を備えている。固定子としてのコイル11は、その一方の面が基板10に取り付け固定されている。振動子としての永久磁石12は、コイル11の中空部11aに位置するように、一端が共振板としての蓋に保持されている。なお、同図1(A)は、駆動装置1の内部を見せるように、同図1(B)記載の蓋15を除去して記載している。
【0039】
同図1(B)に見るように、駆動装置1は、基板10と該基板10と対抗する位置に設けられた蓋15とを備えている。この蓋15は、基板10とともに所定のケースを形成するように構成されている。磁気回路を構成するコイル11は、ケースの下面を構成する基板10に固定されている。そして、永久磁石12は、その一端がコイル11の内周形状を画定する中空部11aに内挿されるように、その他端が、緩衝ホールダ14を介して蓋15に対して振動可能に取り付けられている。つまり、略長方形状の永久磁石12の長手方向一端部は、コイル11の中空部11aに位置するとともに、永久磁石12の長手方向他端部は、緩衝ホールダ14に振動可能に取り付けられている。
【0040】
緩衝ホールダ14は、コイル11の中空部11aに対向する蓋15の位置に固定されている。また、永久磁石12は、長手方向と並行の両端部にS極とN極をそれぞれ有し、各磁極面がコイル11の内周に対向するように配置されている。つまり、永久磁石12は、コイル11が発生する磁力線に対して永久磁石12が発生する磁力線上の方向が交差するように配置されている。また、同図では、永久磁石12が発生する磁力線上の方向が90度の傾きで交差するように配置されているが、傾きは90度に限定されない。
【0041】
なお、同図1(B)では、永久磁石12の長手方向略中央部から長手方向一端部までの部分が、コイル11の中空部11aに位置するように配置されている。しかし、永久磁石12の長手方向一端部が、コイル11の中空部11aの上部に位置するように(永久磁石12の全部がコイル11の外側に位置するように)配置してもよい。また、振動子である永久磁石の形状、材質及び質量等は、要求仕様に従って適宜選択可能である。また、緩衝ホールダの材質は、シリコン等が該当するが、これも要求仕様に従って適宜選択可能である。
【0042】
図2において、駆動装置の駆動回路は、また、OSC(Oscillator)100、PLL(Phase Locked Loop)101、ドライバ102、コイル11、及びCPU(Central Processing Unit)103とから構成される。コイル11に入力する駆動電流の周波数を制御する周波数制御手段としてのPLL101は、CPU103の制御に従って、所定の周波数を出力する。駆動装置1が携帯端末機に適用された場合には、利用者の設定に基づいて、所定の周波数を出力する。例えば、利用者が着信方法として振動音を設定している場合には、CPU103は、呼出振動に対応した低周波信号を出力するようにPLL101を制御する。また、利用者が着信方法として呼出音を設定している場合には、CPU103は、呼出音に対応した高周波数信号を出力するようにPLL101を制御する。なお、低周波数(振動周波数)領域には、4Hz〜30Hz、高周波数領域には、400Hz〜40KHzが設定される。
【0043】
図3において、コイルは、図2に示した駆動回路で発生する駆動信号がコイルに入力されて動作する。駆動装置1のコイルを駆動する回路は、一対のPNPトランジスタ201、203、NPNトランジスタ202、204を襷がけにして構成される。トランジスタ201とトランジスタ202のコレクタと、トランジスタ203とトランジスタ204のコレクタ間には、コイル11が接続され、トランジスタ201とトランジスタ202のベースと、トランジスタ203とトランジスタ204のベース間には、インバータ207を介して接続され、入力接続点209を形成する。トランジスタ201とトランジスタ203のエミッタには、電源電圧205が、トランジスタ202とトランジスタ204のエミッタにはグランド206が接続される。励振信号210は、矢印IaまたはIbの方向に交互に流れ、低周波の場合には、例えば、4Hz〜30Hzの信号が、高周波の場合には、例えば、400Hz〜40KHzの信号が、それぞれ入力される。なお、後述する図7及び図8における駆動装置に適用する場合には、低周波として0.1Hz〜30Hz、高周波として400Hz〜40KHzを設定することが望ましい。
【0044】
図1に戻り、このように構成された駆動装置1の基本的な動作について説明する。駆動装置1において、駆動回路13がコイル11に駆動電流(交流電流)を印加すると、コイル11と永久磁石12との間で互いに磁気吸引と反発とが繰り返される。つまり、コイル11に印加された電流と永久磁石12の磁気作用により、永久磁石12は、緩衝ホールダ14に保持された部分を支点として、極方向へ振動する。
【0045】
具体的には、駆動回路13がコイル11に低周波数領域、つまり、後述する音声周波数領域よりも低い周波数領域(機械振動周波数)の駆動電流を印加すると、永久磁石12が振動し、この永久磁石12の振動は、永久磁石12を保持した緩衝ホールダ14に伝達される。その結果、永久磁石12と緩衝ホールダ14とが一体となって振動し、この振動量が大きくなると、発生した振動は蓋15を介して外部に伝達される。一方、駆動装置1において、駆動回路13がコイル11に高周波数領域、つまり音声周波数領域(例えば、電話機等で使用される音声周波数領域)の駆動電流を印加した場合には、永久磁石12の極方向への振動によって音圧が生じ、所定の可聴音を発生させる。
【0046】
従って、駆動装置1を携帯端末機に搭載した場合には、着信を着信音と振動音のいずれによって通知するかといった通知条件に従って、駆動信号の周波数を制御すればよい。例えば、利用者によって振動音による着信通知(マナーモード)が選択されている場合には、駆動回路13は、コイル11に低周波数領域の駆動電流を印加する。その結果、永久磁石12の振動は、蓋15を介して図示しない携帯端末機の筺体に呼出振動として伝達され、利用者に着信を知らせることになる。一方、着信音による着信通知(ブザー音やメロディなど)が選択されている場合には、駆動回路13は、コイル11に高周波数領域の駆動電流を印加する。その結果、永久磁石12の振動による音圧は、携帯端末機の筺体の空気通路から放出され、着信音を発し、利用者に着信を知らせることになる。なお、利用者が通話中の場合には、この永久磁石12の振動は、相手あるいは利用者の音声となるように構成することもできる。
【0047】
上記のような駆動装置1によれば、1つの駆動装置において、振動発生体と発音体の両機能を共用するこことが可能なる。また、コイル11の駆動電流の周波数を制御するだけでよいので、簡単な制御構造で、1の駆動装置を振動発生源あるいは音発生源として切り換え、利用することが可能になる。また、発音と振動の2つの作用をする駆動装置を、簡単な部品構造で廉価に実現することが可能になる。
【0048】
さらにまた、上記駆動装置1によれば、振動子である永久磁石は緩衝ホールダ14により保持されているので、駆動装置1には、局部的な負荷が加えられない。よって、振動に伴う機械振動系のストレスを減少させることができるので、駆動装置の長寿命化を図ることが可能になる。
[第2の実施の形態]
【0049】
次に、本発明の第2の実施の形態に係る駆動装置について説明する。図4は、第2の実施の形態に係る駆動装置の断面図である。なお、第2の実施の形態に係る駆動装置の構造については、第1の実施の形態に係る駆動装置と異なる点についてのみ説明するものとし、第1の実施の形態と同じ構成部品については、同じ番号を付している。
【0050】
図4において、第2の実施の形態に係る駆動装置が、第1の実施の形態に係る駆動装置と異なる点は、振動子である永久磁石12を保持する緩衝ホールド16が、ケースの蓋15側ではなく基板10側に設けられている点である。この構成によれば、永久磁石12は、基板10側に設けられた緩衝ホールダ16に保持された部分を支点として、極方向へ振動することになる。
【0051】
第2の実施の形態に係る駆動装置1の動作は、第1の実施の形態に係る駆動装置1と実質的に同じであるため、詳細な説明は省略する。なお、駆動回路13がコイル11に低周波数領域の駆動電流を印加すると、永久磁石12の振動は、緩衝ホールダ16及び基板10を介して外部に伝達される。よって、ここでは、基板10が、永久磁石12の振動に共振する振動板としても機能することになる。
【0052】
第2の実施の形態に係る駆動装置は、第1の実施の形態に係る駆動装置の効果に加え、緩衝ホールダ16がコイル11を固定する基板10側に設けられていることにより、省スペース空間を得るために振動用の蓋を用いない場合でも、直接筺体(基板10)を振動させることが可能になる。また、コイル11と永久磁石12とを同じ基板10に配置することができるので、駆動装置1を構成する部品数をより少なくさせることができる。
[第3の実施の形態]
【0053】
次に、本発明の第3の実施の形態に係る駆動装置について説明する。図5は、第3の実施の形態に係る駆動装置の断面図である。なお、第3の実施の形態に係る駆動装置の構造については、第1の実施の形態に係る駆動装置と異なる点についてのみ説明するものとし、第1の実施の形態と同じ構成部品については、同じ番号を付している。
【0054】
図5において、第3の実施の形態に係る駆動装置が、第1の実施の形態に係る駆動装置1と異なる点は、振動子となる永久磁石12が、緩衝サポータ17によって保持されている点である。
【0055】
なお、第3の実施の形態に係る駆動装置1の動作は、第1の実施の形態に係る駆動装置1と実質的に同じであるため、詳細な説明は省略する。第3の実施の形態に係る駆動装置1は、第1の実施の形態に係る駆動装置1の効果に加え、緩衝サポータ17を用いることにより、振動振幅領域を大きくすることが可能になる。
[第4の実施の形態]
【0056】
次に、本発明の第4の実施の形態に係る駆動装置について説明する。図6は、第4の実施の形態に係る駆動装置の断面図である。なお、第4の実施の形態に係る駆動装置の構造については、第1の実施の形態に係る駆動装置と異なる点についてのみ説明するものとし、第1の実施の形態と同じ構成部品については、同じ番号を付している。
【0057】
図6において、第4の実施の形態に係る駆動装置が、第1の実施の形態に係る駆動装置と異なる点は、円錐形状を有する振動板としての共振部15aを蓋15の中心部に設け、この共振部15aによって永久磁石14を保持する構成とした点である。なお、図6では、永久磁石14は、その全体がコイル11の外側であって、かつ、コイル11の中空部11aの上部に位置するように保持されている。
【0058】
第4の実施の形態に係る駆動装置の動作は、第1の実施の形態に係る駆動装置と実質的に同じであるため、詳細な説明は省略する。なお、駆動回路13がコイル11に低周波数領域の駆動電流を印加すると、永久磁石14の振動は、共振部15aに伝達され、共振部15aの振動が音圧を発生させることになる。
【0059】
第4の実施の形態に係る駆動装置は、第1の実施の形態に係る駆動装置の効果に加え、円錐形状を有する振動板としての共振部15aを設け、この共振部15aにより音を発生させることとしたので、より性能のよい音を発生することが可能になる。高域周波数特性を向上させることが可能になる。
[第5の実施の形態]
【0060】
次に、本発明の第5の実施の形態に係る駆動装置について説明する。図7は、第5の実施の形態に係る駆動装置の上面図である。第5の実施の形態に係る駆動装置は、例えば、歩行や飛行を行うロボットに適用される。なお、図7(A)は、コイルに励振信号を与えていない状態、図7(B)は、コイルに励振信号を与えた状態、図7(C)は、コイルに、図7(B)と逆の励振信号を与えた状態、をそれぞれ説明している。
【0061】
図7(A)において、駆動装置2は、固定部として磁気発生用のコイル21、コイル21の中空部に嵌め込むように取り付け固定された基板22とを備え、さらに、振動子として永久磁石23(23a及び23b)、永久磁石23に取り付けられた棒状の振動部材24(24a及び24b)とを備えている。なお、図示してはいないが、コイルを駆動させる駆動回路も備えている。
【0062】
永久磁石23は、第1の永久磁石23aおよび第2の永久磁石23bからなり、長手方向と並行の端部にS極とN極をそれぞれ有している。第1の永久磁石23aおよび第2の永久磁石23bは、それぞれの長手方向一端部が、基板22の両端面の対応する位置に、振動可能に取り付けられている。長手方向一端部の取り付け箇所は、基板22の両端面であればどこでも構わないが、本実施の形態では、該両端面の中央部、つまりコイル21の内周の中心部に対応する位置に取り付けられている。なお、第1の永久磁石23aおよび第2の永久磁石23bは、異なる磁極同士が基板22をはさんで対向するように保持される。また、第1の永久磁石23aおよび第2の永久磁石23bは、それぞれの長手方向他端部に、棒状の振動部材24a及び24bが取り付けられている。この棒状の振動部材24a及び24bは、例えば、プラスチック等の軽量かつ堅固な材料で形成され、永久磁石23の振動と共振するように構成されている。
【0063】
次に、このように構成された駆動装置2の基本的な動作について説明する。図7(B)において、図示しない駆動回路がコイル21に駆動電流を印加すると、コイル21に磁束が発生する。ここでは、第1の永久磁石23a側にS極、第2の永久磁石23b側にN極が発生するように、励磁されたため、第1の永久磁石23a及び第2の永久磁石23bは、矢印mの方向へ移動する。
【0064】
次に、図7(C)に示すように、第1の永久磁石23a側にN極、第2の永久磁石23b側にS極が発生するように励磁すると、今度は、第1の永久磁石23a及び第2の永久磁石23bは、矢印nの方向へ移動する。よって、駆動回路が、コイル21の磁束が切り替わるように駆動電流を印加すると、第1の永久磁石23a及び第2の永久磁石23bは、駆動電流の向きに応じて同一方向への移動を繰り返す。
【0065】
ここで、駆動回路がコイル21に低周波数領域の駆動電流を印加すると、第1の永久磁石23a及び第2の永久磁石23bがそれぞれ振動し、永久磁石23と永久磁石23に固定された振動部材24とが一体となって振動する。よって、例えば、駆動装置2が、昆虫の形態をしたロボットに適用された場合には、振動部材24の振動を昆虫の歩行運動に利用することも可能である。
【0066】
一方、駆動装置2において、駆動回路がコイル22に高周波数領域の駆動電流を印加した場合には、永久磁石23と振動部材24の振動によって音圧が生じ、所定の可聴音を発生させることができる。よって、駆動装置2が、昆虫の形態をしたロボットに適用された場合には、所定の可聴音を、昆虫の羽根のすり合わせにより発生する所謂「虫の音」として構成することも可能である。
【0067】
このような駆動装置2によれば、振動発生と音源発生とを兼用可能な振動装置を、昆虫などのロボットの分野へも応用することができるようになるので、昆虫ロボットの興趣をよりいっそう高めることが可能になる。また、振動部材24を薄く軽量の羽状に構成することにより、トンボのように飛行する昆虫ロボットへの応用や、魚介類、植物の葉等の自然界における生態アクチュエータとしての応用が可能になる。
【0068】
また、コイル21を永久磁石にし、永久磁石23A、23Bをコイル磁石にしても同様の効果が得られる。
【0069】
本実施形態の駆動装置の駆動回路は、図2および図3のものと同様に構成されている。コイル21に入力する駆動電流の周波数を制御する周波数制御手段としてのPLL101は、CPU103の制御に従って、所定の周波数の駆動信号をドライバ102に供給する。低周波数(振動周波数)領域には、0.1〜30Hz、高周波数領域には、400Hz〜40KHzが設定される。励振信号210は、矢印IaまたはIbの方向に交互に流れ、低周波の場合には、例えば、4Hz〜30Hzの信号が、高周波の場合には、例えば、400Hz〜40KHzの信号が、それぞれ入力される。つまり、コイル21に印加された電流と永久磁石の磁気作用により、永久磁石は基板22の25a,25bを支点として、磁気反発力と引力とに従い図に示す矢印のm,n方向に円弧の軌跡にしたがった振動或いは往復運動を行う。したがって、磁性体の振動によって、駆動体である振動部材24a,24bを駆動させることができる。
【0070】
図7に戻り、このように構成された駆動装置2の基本的な動作について説明する。駆動装置2において、駆動回路(図2参照)がコイル21に駆動電流(交流電流)を印加すると、コイル21と永久磁石23a、23bとの間で互いに磁気吸引と反発とが繰り返される。つまり、コイル21に印加された電流と永久磁石の磁気作用により、永久磁石は基板22の25a、25bを支点として、磁気反発力と引力とに従い図11で示す矢示m,n方向に円弧の軌跡にしたがった振動或いは往復運動を行う。したがって、磁性体の振動によって被駆動体である振動部材24a,24bを駆動させることができる。
[第6の実施の形態]
【0071】
次に、本発明の第6の実施の形態に係る駆動装置について説明する。図8は、第6の実施の形態に係る駆動装置の上面図である。なお、第6の実施の形態に係る駆動装置の構造については、第5の実施の形態に係る駆動装置と異なる点についてのみ説明するものとし、第5の実施の形態と同じ構成部品については、同じ番号を付している。
【0072】
図8において、第6の実施の形態に係る駆動装置が、第5の実施の形態に係る駆動装置と異なる点は、永久磁石の代わりに電気磁石を用いている点である。このように構成された駆動装置の基本的な動作について説明する。ここでは、コイル22への励磁にあわせて、電気磁石の極性を変えるように電気磁石を制御することによって、より複雑な制御を行うことを特徴とする。
【0073】
図8(B)では、第1の電気磁石23a側にS極、第2の電気磁石23b側にN極が発生するように励磁された場合に、第1の電気磁石23aの極性を変えるように第1の電気磁石23aに対して駆動電流を印加する。これにより、第1の電気磁石23aは矢印mの方向へ移動するが、第2の電気磁石23bは矢印nの方向へ移動するため、第1の電気磁石23aと第2の電気磁石23bは、それぞれ異なる方向へ移動することになる。
【0074】
次に、図8(C)に示すように、第1の電気磁石23a側にN極、第2の電気磁石23b側にS極が発生するように励磁された場合には、第1の電気磁石23aは矢印nの方向へ移動するが、第2の電気磁石23bは矢印mの方向へ移動するため、第1の電気磁石23aと第2の電気磁石23bは、異なる方向へ移動することになる。
【0075】
これによれば、第1の電気磁石23a及び第2の電気磁石23bの極性を制御することによって、第1の電気磁石23a及び第2の電気磁石23bの移動方向が同一方向または異方向となるように、適宜制御することが可能になる。
【0076】
このように、第6の実施の形態に係る駆動装置は、第5の実施の形態に係る駆動装置の効果に加え、永久磁石の代わりに電気磁石を用いているので、駆動装置2が、昆虫の形態をしたロボットに適用された場合には、より複雑な歩行運動を実現させることが可能になる。また、振動部材24を薄く軽量の羽状に構成して、トンボのように飛行する昆虫ロボットへ応用した場合には、飛行中の気流に合わせて、飛行コースを変更するように制御することによって、安定した飛行を実現することが可能になる。
【0077】
図9は、図3に示す駆動回路の変形例を示すものである。この実施形態に係わる駆動回路が図3の駆動回路と異なる点は、励振信号210として、デューティ比が制御された信号が供給されることである。符号250は、水晶発信器から作られた鋸歯状波信号を示し、符号252は、CPU(図2参照)の指令によって作られた角度指示信号を示す。この角度指示信号とは、永久磁石12が緩衝ホールダ14等に保持された部分を支点として円弧の往復運動を描く場合において、この円弧の角度を指示するためのものである。鋸歯状波信号と角度指示信号とが比較器254で比較されて、デューティ比を持った信号がコイルに供給される。
【0078】
図10は、これら信号波形に対応した波形図であり、図10(1)は角度指示信号であり、図10(2)は鋸歯状波信号であり、図10(3)は角度指示信号の拡大図であり、図10(4)は鋸歯状波信号の拡大図である。角度指示信号と鋸歯状波信号とが比較されて、図10(5)のようなデューティ比を持った励振信号210が形成される。角度指示信号を変更することにより、励振信号のデューティ比を変更して前記角度を調整するPWM制御を行うことが可能となる。なお、このデューティ比と角度指示信号の周波数の関係は前記CPUに付帯するメモリに記憶されている所定のテーブルに設定記憶されている。
【0079】
本発明は、携帯電話以外にも、健康器具、ゲーム器、体感装置、小型ポンプ、振動センサ、噴霧器、水中内スピーカ、移動ロボット(空中、陸、海中)、バルブ弁、流体/気体の方向調整等の分野に応用することもできる。
[第7の実施の形態]
【0080】
次に、本発明の第7の実施の形態に係る駆動機構について説明する。図11は、第7の実施の形態に係る駆動装置の構成を説明するための図である。この形態では、上記各実施の形態に係る駆動機構と異なり、永久磁石を固定側に配置し、コイルを稼動側に配置している。さらに、図8のコイルコイル21を永久磁石に代えて各電器磁石の23A,23Bの極性を代えても同様な効果が得られる。
【0081】
図11(A)において、駆動機構300は、基板301、永久磁石302、コイル303、振動部材304、コイルを駆動させる駆動回路305を備えて構成される。固定子としての永久磁石302は、磁極を有する一方の面が、基板301に取り付け固定されている。なお、永久磁石302の代わりに電気磁石を用いてもよい。振動子としてのコイル303は、コイル303の内周を画定する振動板303aが永久磁石302の磁極を有する他方の面と対向するように配置されている。振動部材304の一方の端部は、コイル303の外周の所定部分に取り付けられ、他方の端部は、図示してはいないが、所定の方法での可動状態で固定されている。これにより、コイル303は、振動部材304の他方の端部を固定点(支点)として一点に固定される。
【0082】
なお、本実施の形態では、永久磁石302のS極を有する面が基板301に固定され、N極を有する面がコイル303の振動板303aと対向するように配置されている。よって、永久磁石302が発生する磁力線上の方向と、コイル303が発生する磁力線上の方向は略並行となる。
【0083】
次に、このように構成された駆動装置300の基本的な動作について説明する。駆動機構300において、駆動回路305がコイル303に所定の駆動信号を与えると、永久磁石302とコイル303との間に磁気作用が生じる。このコイル303は、振動部材304を介して一点固定されているので、コイル303の振動運動は、その固定点を中心とした円弧運動となる。さらに、駆動回路305がコイル303に交流信号を与えることにより、永久磁石302とコイル303との間に互いに磁気吸引と反発とが繰り返され、その結果、コイル303は、固定点を中心として円弧で往復運動を描くことができる。さらに、高周波の場合は、振動板303aが平面振動スピーカーとして可聴音を発生する駆動体ともなる。
【0084】
図11(B)は、永久磁石302とコイル303とが互いに吸引しあう様子、図11(C)は、永久磁石302とコイル303とが互いに反発しあう様子を示す図である。このように、振動部材304を、支点を中心に円弧状に往復させることができるという効果がある。また、回転モーターやメカを用いることなく振動部材を駆動できるので、この振動部材を既述のように飛行模型や歩行模型の駆動源として利用することにより、駆動効率に優れた駆動機構を提供することができるとともに小型軽量化を容易に実現することが可能になる。
[第8の実施の形態]
【0085】
次に、本発明の第8の実施の形態に係る駆動機構について説明する。図12は、この駆動機構を示す模式図である。図12(A)と図12(B)において、駆動機構が、前記駆動機構と異なる点は、永久磁石302を挟み込むように永久磁石302の両側にコイルをそれぞれ配置している点である。具体的には、駆動機構は、永久磁石302、第1のコイル303、第2のコイル306、第1の振動部材304、第2の振動部材307、第1のコイルを駆動させる第1の駆動回路305、第2のコイルを駆動させる第2の駆動回路308を備えて構成される。
【0086】
なお、図示してはいないが、永久磁石302は、所定の方法で固定されているものとする。第1のコイル303は、第1のコイル303の中空部が永久磁石302の例えばN極を有する面と対向するように配置され、第2のコイル306は、第2のコイル306の中空部が永久磁石302の例えばS極を有する面と対向するように配置されている。つまり、第1のコイル303と第2のコイル306とは、永久磁石302に対して対称となるように配置される。
【0087】
第1のコイル303の外周の所定部分には第1の振動部材304の一方の端部が、第2のコイル306の外周の所定部分には第2の振動部材307の一方の端部が、それぞれ取り付けられている。そして、第1の振動部材304と第2の振動部材307のそれぞれ他方の端部同士が所定の方法で取り付け固定されている。これにより、第1のコイル303と第2のコイル306は、第1の振動部材304及び第2の振動部材307の他方の端部を共通の固定点310として一点に固定される。
【0088】
このように構成された駆動機構の動作について説明する。図12(A)と図12(B)において、第1の駆動回路305と第2の駆動回路308は、第1のコイル303及び第2のコイル306に、同じタイミングでそれぞれ逆方向の第1の駆動信号と第2の駆動信号を与える。
【0089】
これにより、第1のコイル303及び第2のコイル306と永久磁石302との間には、同じタイミングで磁気吸引作用(A)あるいは磁気反発作用(B)が生じるので、第1のコイル303及び第2のコイル366は、永久磁石302に対して対称的に円弧の往復運動(開閉運動)を描くことになる。
【0090】
このように、この駆動機構によれば、永久磁石302に対して対称となるように独立制御できる一対のコイルを配置するとともに、各コイルを振動部材を介して共通の固定点で固定する構成としたので、各コイルが共通の固定点を中心に、かつ、永久磁石に対して対称的に円弧で往復運動を描くようになる。これにより、駆動装置をロボットへ応用した場合には、空中飛行や昆虫歩行、水中歩行や水上歩行などを実現させることが可能になる。
[第9の実施の形態]
【0091】
図13は第9の実施の形態の模式図である。図13(A)と図13(B)において、駆動機構が、既述の駆動機構と異なる点は、永久磁石の磁力線上の方向とコイルの磁力線上の方向とが交差するように永久磁石の配置している点である。つまり、この実施の形態では、永久磁石を略90度傾けた構成としている。
【0092】
永久磁石の配置変更に伴い、第1のコイル303と第2のコイル306との間隔を広げるため、第1の振動部材304と第2の振動部材307とを、所定の支持材309を介して固定している。
【0093】
図13(A)と図13(B)において、第1の駆動回路305と第2の駆動回路308は、第1のコイル303及び第2のコイル306に、同じタイミングでそれぞれ同じ方向の第1の駆動信号と第2の駆動信号を与える。これにより、第1のコイル303及び第2のコイル306と永久磁石302との間には、同じタイミングで磁気吸引作用(A)あるいは磁気反発作用(B)が生じるので、第1のコイル303及び第2のコイル306は、永久磁石302に対して対称的に円弧の往復運動(開閉運動)を描くことになる。なお、駆動回路は、図9に示すものと同じである。
【0094】
図14は、前記駆動機構のさらなる変形例を示す模式図である。ここでの変更点は、永久磁石及びコイルが2点において支持されていることである。図14(A)に示すように、駆動回路がコイル303に永久磁石の磁力方向と引き合う方向の磁極を発生するように通電すると、両支点T1とT2が互いに離れるように移動して、両支点間の距離hが広がるようになる。一方、図14(B)のように、駆動回路がコイル303に反対の磁極を発生するように通電すると、両支点間の距離が縮まるようにコイル303と永久磁石302の組が振動する。即ち、磁性体の組を連結する両支点を中心にして、磁性体の組が近づいたり離れたりする駆動を行う。
【0095】
この動作は、一例としてポンプ駆動や生体の筋肉繊維の動きに類似する。したがって、駆動体をポンプ駆動させ、或いは駆動体を拡張―収縮させる駆動源として磁性体の組が動作する。
[第10の実施の形態]
【0096】
図15は図14の実施形態の変更例である。変更点は、永久磁石に変えてコイルを設けた点である。図15(A)は一対のコイル303aと303bが互いに引き合っている状態であり、図15(B)は一対のコイル303aと303bとが互いに反発している状態である。各コイルに対して駆動回路305a,305bが設けられている。また、図16は各コイル間に永久磁石302が配置されている状態を示している。
[第11の実施の形態]
【0097】
図17は、図15の変更例であって、コイルを指示する支点をさらに加えてT1乃至T3の3点でコイルを支持している状態を示している。支点T1乃至T3は120度の間隔を介して配置されている。図17(A)はコイルが互いに引き合っている状態であり、図17(B)はコイルが互いに反発している状態を示している。
【0098】
図18は、図17に示すコイルの組を、支点を介して異なるコイルの組と連結している状態を示している。この連結を繰り返すことにより、コイルの組を正六角形の単位Sとし、これを複数連結させてハニカム状の構造体を組み立てることができる。コイルの駆動回路に所定の極性の電流を印加することによって、図19に示すように、正六角形の単位(セル)が伸張し(図19(A))、かつ収縮(図19(B))する。これを繰り返すことにより、この伸縮―収縮動作を被駆動体に直接加えることができる。
【0099】
図20は、図17に示すユニットが2基互いに接続されている状態を示す等価回路図である。複数の駆動回路305a、305bにそれぞれ同じ極性の電流を印加することにより、図19に示すように、コイルユニットが複数存在する構造体を全体として伸張させたり、或いは収縮させたりすることが可能となる。
【0100】
図21は、図7に係わる駆動機構を実現した、飛行模型に適用可能な駆動機構の斜視図である。基本的構造は、図7と同じであるが、振動部材224a,224bを羽として応用した実施形態である。この実施形態では、2つのコイル(221a、221b)が存在するために、各コイルに供給される駆動信号の極性をそれぞれ制御することにより、振動部材224a,224bを同方向或いはmn方向、nm方向(m←→n方向)の交互方向に振動させることができる。
【0101】
図22は、図17の駆動機構の変形例に係わる駆動機構の斜視図である。コイル303aとコイル303bとの間には永久磁石500が配置されている。永久磁石、各コイルは各支点T1乃至T3からの支持部材502によって、互いに離されて各支点と連結されている。
【0102】
図23は、羽構造をより改良した構造を説明する模式図である。この羽構造は、本発明の駆動機構と一体で、或いはこれから独立しても飛行模型等の飛行体の飛翔手段として有効な手段である。以下、具体的に説明する。図23は、この羽構造の模式図である。本発明の実施形態に従えばこの羽構造は、振動部材に対応する。
【0103】
図23の(1)は、羽を構成する主骨部600を示す平面図である。主骨はその基部において太く、先端に行くに従って細い径の構造となっている。また、先端において図23(1)に示すように略U字型に湾曲している。図23(3)に示すように、主骨からほぼ直角に複数の副骨602が延設されている。副骨602はほぼ等間隔を経て複数存在する。副骨は、先端に進むにしたがって細くかつ僅かに主骨の基部に向かって湾曲するように構成されている。図23(3)に示すように、主骨と副骨からなる構造に対して、フィルムの薄膜604が接着されている。副骨602は主骨600が図21に示すような振動(m←→n)をすると、副骨602の主骨との接合部にある基部を基準に、空気抵抗によって揺動するようになっている。即ち、主骨が垂直方向に振動した場合、図24に示すように、主骨を下方向に揺動させると、主骨及び副骨からなる羽構造が水平を維持する(図24(1)参照)。一方、羽構造が上方向に移動すると、羽部の副骨及び薄膜604が下方向に垂下するようになる(図24(2)参照)。
【0104】
この羽構造の垂直往復運動、即ち、主骨を上下に垂直に一定周期で移動させると、羽構造は、その主骨の支点部から先端部に掛けて正弦波からなる揺動運動を発生させる(図25参照)。この羽構造は左右一対を対象体に設けられるが、これを複数組対象体に設けても良い。同様に図21の振動部材も左右一対の組を複数設けるようにしても良い。
【0105】
以上説明した羽構造によれば、羽構造の垂直往復運動により、水平方向に推進力が発生して、これを飛行模型等に適用することにより、模型を飛翔させることができる。この時左右の羽構造を独立に振動させることも可能となる。
【0106】
本発明は、健康器具、ゲーム器、体感装置、小型ポンプ、振動センサ、噴霧器、水中内スピーカ、移動ロボット(空中、陸、海中)、バルブ弁、流体/気体の方向調整等の分野に応用することもできる。また、人工筋肉として利用することができる。
[第12の実施の形態]
【0107】
図26はこの実施形態の原理を示す模式図であり、互いに平面状に対向配置された一対の磁性体410,412が示されている。一方が永久磁石410であり、他方がボイスコイル414と振動板416からなる磁性体412である。ボイスコイル414は永久磁石410の磁力線の外側にある環状の電磁コイルに設けられている。
【0108】
永久磁石410は薄型円形状に形成され、一方の表面がN又はS極に着磁され、他方がその反対極に着磁されているが、その径は電磁コイル414の径より小さいため、電磁コイル414は永久磁石410の外側磁力線上に存在する。
【0109】
電磁コイル414の内径領域に振動板(振動部材或いは振動膜)が支持されている。振動板416は、例えば、高分子フィルム等の振動可能部材から構成されている。電磁コイル414で囲まれた振動部材416の振動可能領域には、電磁コイル414は存在せず、振動部材416の周縁である振動可能領域外に存在する。したがって、振動部材416と永久磁石410とを、振動部材が振動時に当接しない範囲で極力近接させることができる。
【0110】
上記電磁コイル414には、音声信号に対応した駆動信号を供給する駆動回路420が接続されている。コイルに周波数信号を供給するとコイルから発生する磁界と永久磁石の磁界とが干渉してコイルが振動しようとする。後述のとおり、永久磁石がハウジングに固定され、かつコイルも剛体部分に支持されていることから、コイルの振動は振動部材416に伝達され図示する駆動電流の向き422に応じて、振動部材は両方向矢印424のそれぞれの方向に交互に振動するようになる。
【0111】
図27は、本発明に係わる音響変換装置のより具体的な構成を示すものであり、ハウジング430に図26で説明した音響変換手段が支持されていることを示している。ハウジングは深さ方向の断面が略U字状の環状に構成されている。U字側の底の中心には永久磁石410が固定されており、この永久磁石に近づいて対向する振動板416が設けられている。振動板の周縁部は内部に前記コイル414を収容するドーナツ状のフランジ領域432として形成する。
【0112】
このフランジ領域の内部には環状のコイル414を収納している。なお、符号434は空気穴であって、振動板416の振動による内室436の内圧変化を緩衝して振動板416の振動性を良好に維持するための手段である。
【0113】
図28は、図26の音響変換手段がハウジングの両面に形成されている状態を示すものであり、環状の永久磁石410がハウジング430の中心に嵌め込まれている。コイル414のそれぞれには、別個の駆動電流が供給され得る。逆位相の駆動電流を各コイルに供給すると、二つのコイルはそれぞれ逆方向に振動するために、図28に示す平面スピーカの両面の振動板416から同じ音が出力され、スピーカの指向性を無くすことができる。
【0114】
また、二つのコイルのそれぞれに同位相の駆動電流を供給することにより、平面スピーカの両面の振動板416が常に同じ方向に振動するために、振動面から出力される音の音圧レベルが向上される。
【0115】
図29は、環状の振動手段(コイル414と振動材416)の平面図(1)と側面図(2)である。図29(1)は、振動板から所定の径を持つ共振位置440が、振動周波数の増加に応じて振動材の径方向の外側に向けて移動する様子が示されている。振動材内にはコイルが存在しない、即ちコイルは振動材の振動可能領域外に振動するために、図29(2)に示すように、低周波数領域においても周波数特性が良好であり、1Hz乃至20KHzの振動周波数特性を奏することができる。
【0116】
以上説明した平面スピーカは、図30に示すように、粘着材440によって平面ディスプレイの表面フィルム441上に貼付することができる。なお、符号442はコイルを収容する剛体を示すものである。
【0117】
図31は駆動回路を示したものであり、この駆動回路は、OSC(Oscillator)100、PLL(Phase Locked Loop)101、ドライバ102、PWM制御回路111、及びCPU(Central Processing Unit)103とから構成される。コイル14に入力する駆動電流の周波数を制御する周波数制御手段としてのPLL101は、CPU103の制御に従って、所定の周波数からなる基本周波数信号(後述の鋸歯状波)を形成して、これをPWM制御回路111に出力する。このPWM制御回路111には、後述のように音源信号が供給される。音源信号が基本周波数信号によって変調されて駆動信号210となり、ドライバ102に供給される。駆動信号は、既述の音声周波数の10乃至100倍の周波数をもった信号からなり、これが図29の振動部材に供給され、図29の(2)に示すように、1Hz乃至20KHzの周波数を持った音声を再生できるように共振点が駆動信号の周波数に合わせて移動する。
【0118】
駆動信号の周波数と共振点の位置の関係は、振動部材の材質や平面型スピーカが設けられる対象物(携帯電話か、ディスプレイか等)の剛性等によって異なる。よって、CPUは振動部材や対象物の特性の種類に応じて、好適な鋸歯状波を発生できるように予めプログラムされてあることが好適である。すなわち、CPU103は、振動部材16での音声を低周波領域まで再生するために、駆動信号の周波数を適宜制御してドライバ102に供給する上で、必要な制御をPLLに対して実行する。このとき、振動板の振動特性や対象物の特性等に応じて好適な周波数信号がコイルに供給されるようにして、音色特性を適宜選択することができるようになる。コイルの駆動回路は、図3で説明したものと同様である。
【0119】
なお、ドライバ回路102には、後述のとおり高周波数(MHz帯域)のPWM制御波が入力されることもあるために、この場合には、NPN/PNPトランジスタに代えて、Nチャンネル/PチャンネルのFETがドライバ回路102のスイッチング手段として適用される。
【0120】
図32において、符号350は図31のPLL回路101において作られた鋸歯状波を示し、符号352は音源信号である。既述のとおり、CPUは、振動部材の特性や再生周波数領域などに応じて鋸歯状波の周波数を適宜調整する。
【0121】
この音源信号と鋸歯状波とが比較器354で比較されて、鋸歯状波の波形が音源周波数信号で変調され、所定のデューティ比を持った駆動信号210が駆動回路102に供給される。
【0122】
図33は、これら信号波形に対応した波形図であり、図33(1)は音源信号であり、図33(2)は鋸歯状波信号であり、図33(3)は音源信号の拡大図であり、図33(4)は鋸歯状波信号の拡大図である。音源信号と鋸歯状波信号とが比較されて、図33(5)のようなデューティ比を持った励振信号(変調後の駆動信号)210が形成される。
【0123】
鋸歯状波からなる基本周波数信号の周波数をCPUが適宜変更することにより、励振信号のデューティ比を変更したPWM制御波形をコイル14に供給することが可能となる。図32に示すコイルの駆動制御手段においては、再生音の特性や振動材の特性等に応じて適当な周波数を持った駆動信号が出力され、鋸歯状波を変調してコイルに供給される駆動信号のデューティ比が決定される。コイル14はこのデューティ比制御された信号を受けて振動する。駆動信号のデューティ比を変化させることによって、振動材の共振点を再生させる音声に相当するように移動させた、DM方式の音響変換方式を実現することが可能となる。
【0124】
以上説明したように、本発明に係わる音響変換装置によれば、導電体(電磁コイル)の位置と振動部位置(振動材の振動領域)とに距離を持たせているために、すなわち、コイルが振動材の振動領域外に存在しているために、導電体の振動が振動部で音増幅されるという利点がある。また、振動部材の中心部に向けて共振点を移動させて振動増幅が行われるために振動体の振動が安定するし、低周波数から高周波数まで安定した周波数特性が得られる。また、永久磁石に対面した振動板を設けることにより音の指向性が得られる。また、コイルが振動材の振動領域外に配置されているために、コイルと永久磁石を極力近接させることができ、磁力効率(磁力と振動による効率)を向上させることができる。
[第13の実施の形態]
【0125】
図34はこの動作原理を示すものであり、二つの磁性体からなる組はコイル700と永久磁石702とからなり、符号704はコイルへ周波数パルス信号を供給する駆動回路である。コイル700によって発生する磁界の方向に交差する磁界となるように永久磁石702が置かれており、しかも、永久磁石は、コイルに供給される電流の極性によって一方に傾動可能の状態で支点において他部材に支持されている。
【0126】
コイル700に極性が交互に切り替わる周波数信号を供給すると、コイル700の磁極の向きが交互に切り替わり、永久磁石702の磁界と交互に干渉を起こして、コイル700に対して揺動自在に支持されている永久磁石702が当該コイル700に対して傾動する。
【0127】
図3(1)はコイルへ供給される正極性及び逆極性の電流周波数信号のデューティ比が両方の極性において同じ値である場合を示している。この状態では永久磁石702はコイル700に対して中立な位置を中心に位置する。
【0128】
図3(2)は周波数信号のデューティ比が両極性の一方において大きい値(8/10)であり、他方において小さい値(2/10)である状態を示している。この状態では永久磁石702が一方の側へ傾動した状態となる。永久磁石が傾斜する角度はデューティ比によって調整される。
【0129】
図3(3)はデューティ比の大小を、駆動信号の極性が図3(2)とは反対になるように、変えた場合を示している。このとき永久磁石702は図3(2)の場合とは反対方向に傾動するように制御される。駆動回路から供給されるPWM制御される周波数信号のデューティ比を順次変化させることにより、永久磁石を図3(1)乃至(3)の範囲にあるように、連続的(アナログ的)に傾斜させることができる。このとき、図3(2)又は(3)のときに、マイクロミラーをオンにして投影レンズに光源からの光を反射させることができる。ここで、マイクロミラーは、被駆動体の一つである。
【0130】
図3は、図3に示す機構をデジタル・マイクロミラー・デバイス(表示装置/投射装置の反射素子)に適用した場合を示している。図3において、符号706は光源であり、符号708はマイクロミラー(反射板)である。符号710は表示向レンズである。マイクロミラー708は永久磁石702の一端に固定されており、この永久磁石702は支点を中心にして電磁コイル700に通電されるパルス波の特性(両極性間でのデューティ比の差)によって、一方に傾動される。
【0131】
図3において説明したように、永久磁石702はコイル700によって発生する磁界の方向と交差する方向の磁界を発生するように、コイル700に対して配置される。図35(1)及び図35(2)において、支点712はコイルの領域内に定義されている。図3(1)は画素の消灯状態を示しており、光源16からの光はレンズ710に向けて反射されていない。このとき駆動回路からコイルに供給される駆動信号の両極性におけるデューティ比が等しい。一方、図3の(2)および(3)に述べたように、駆動回路から駆動信号が電磁コイル700に供給されると、図36(2)に示すように、マイクロミラー708が傾斜して光源706からの光がマイクロミラー708において反射され、レンズ710に反射光が到達して点灯状態となる。
【0132】
これに対して、図3は支点712をコイル700の領域外に置いた場合における本発明の動作原理を示している。永久磁石702とコイル700とはお互いの磁界の向きが平行になるように配置されている。永久磁石702の一面にはマイクロミラー708が積層されている。電磁コイル700に駆動信号が供給されると永久磁石702が電磁コイル700に対して傾動し、永久磁石702と一体でマイクロミラー708も傾動する。符号712は電磁コイルの領域外に設けられた支点である。
【0133】
図3(1)は電磁コイル700に供給される周波数信号のデューティ比が両極性において等しい場合を示している。図3(2)は、支点712を中心にしてマイクロミラー708が、デューティ比が大きい方向の極性によって発生する電磁コイルの磁界に基づいて、一方に傾斜している状態を示している。
【0134】
マイクロミラー708の傾斜角は両極性におけるデューティ比の差によって決まるものであり、傾斜角とデューティ比の関係は、駆動回路に内蔵されるメモリに予め設定されている。両極性におけるデューティ比差の値にしたがって傾斜角を連続的に変化させることが可能となる。
【0135】
駆動回路の制御手段は、マイクロミラーの所望の傾斜角を得るために、前記テーブルを参照して必要なデューティ比差を求め、このデューティ比差を持つ周波数信号を前記電磁コイルに供給する。
【0136】
この駆動回路は、図2および図3と同じものである。
【0137】
PLL101は、CPU103の制御に従って、所定の周波数の駆動信号をドライバ102に供給する。例えば、10.0MHz〜200MHzの信号が、入力される。
【0138】
励振信号210は、矢印IaまたはIbの方向に交互に流れ、例えば、10.0MHz〜200MHzの信号が、入力される。また、図9と同様の回路を、駆動回路の変形例として、本実施形態に適用してもよい。
【0139】
符号302は、既述のCPUの指令によって作られたデューティ比指示信号を示す。この指示信号とは、電磁コイルに供給される周波数信号の両極性毎のデューティ比を指示するためのものである。鋸歯状波信号と指示信号とが比較器304で比較されて、デューティ比を持った信号がコイルに供給される。
【0140】
指示信号の周波数を変更することにより、励振信号のデューティ比を変更するためのPWM制御を行うことが可能となる。
[第14の実施の形態]
【0141】
図37は、本発明の他の実施形態を示すものであり、既述の実施形態と異なる点は、マイクロミラー708に各RGBの反射膜708R,708G,708Bが形成されている点である。駆動回路は、PWM制御のデューティ比を変化させることによって、永久磁石702によって傾動自在に支持されたマイクロミラーの傾き量を制御できる。図37(1)はマイクロミラーが、駆動回路からの駆動信号が電磁コイルに供給されることによって、光源からのG色の反射光をレンズに反射できる角度に傾斜した状態を説明した動作図であり、(a)はマイクロミラーのオフ状態であり、(b)はオン状態を示している。図37(2)はR色駆動の場合を示しており、図37(3)はB色駆動の場合を示している。
【0142】
以上説明した実施形態によれば、磁性体に周波数信号を供給することによって、マイクロミラーをレンズに向けて傾斜させることができる。この傾斜角は、周波数信号のデューティ比を変化させることによって可能となる。即ち、コイルに供給される周波数信号の極性間でデューティ比を変化させることにより、永久磁石(磁性体)をデューティ比差に基づいた傾斜量で傾斜させることができる。
【0143】
また、本実施形態の駆動機構をデジタル・マイクロミラー・デバイスにおけるマイクロミラー以外の被駆動体に対して、適用することも可能である。
【0144】
なお、既述の実施形態では、磁性体の組を永久磁石と電磁コイルとから構成したが、これをともに電磁コイルから構成することもできる。また、図35、図36、図37の構成を、半導体製造技術を用いて実現することにより、基板上にマイクロミラーを多数形成することができる。
[第15の実施の形態]
【0145】
図38は本実施形態に係わる動力出力装置の主要部分(ピストン駆動系)の構成図である。図中、符号42は円柱状の永久磁石(内部鉄心)であり、ハウジングなどの固定部材41に固着されている。永久磁石42の固定部材側の端部はS極に磁化され、もう一方の端部はN極に磁化されている。符号43は有底中空筒体からなるピストンであり、中空部43eの一端からは永久磁石42が挿通されている。ピストン43は、中空円筒状の中空筒体43aと、中空部43eの開口縁から径方向に延出するフランジ43bと、中空筒体43aの側面をほぼ均一な巻回密度で巻回されたコイル43cと、中空部43eの一端を閉塞する底板43dとから構成される。中空部43eの径は、中空部43eに永久磁石42を挿通した状態でピストン43が自在に往復動できるように永久磁石42の外径よりもやや大きめに設計されている。
【0146】
コネクティングロッド45の一端はピストンピン44を介して底板43dに軸止される一方、他端はクランクジャーナル46を介してクランクアーム47に軸止されている。クランクアーム47にはクランクシャフト48が連結されており、ピストン43の往復運動はコネクティングロッド45、クランクジャーナル46、及びクランクアーム47からなるクランク機構を介してクランクシャフト48の回転運動に変換される。クランクシャフト48は回転運動の出力軸として機能し、図示しないギヤトレーンなどの駆動機構に動力を供給することができる。
【0147】
クランクシャフト48の一端にはフライホイール(はずみ車)49が連結されており、クランクシャフト48の回転エネルギーを慣性エネルギーとして保持できるよう構成されている。フライホイール49の慣性モーメントは、ピストン43が慣性力で往復動を継続できるよう適度な値に選定されている。
【0148】
本実施形態の動力出力装置は、上記の構成を備えることにより、コイル43cに励磁電流としての交流駆動パルス信号を供給し、ピストン43内部の磁化方向を周期的に反転させることで、永久磁石42との間に作用する磁力を通じてピストン43を往復動させることができる。ここでは、同図(A)に示すように、コイル43cに正の駆動パルス信号を与えたときに、磁気反発力でピストン43が図示下方に押し出される一方、同図(B)に示すように、コイル43cに負の駆動パルス信号を与えたときに、磁気吸引力でピストン43が図示上方へ吸引されるよう構成されている。
【0149】
このように、コイル43cに交流駆動パルス信号を順次供給することで、電気エネルギーをクランクシャフト48の回転運動に変換することができるが、本実施形態においては、永久磁石42は、磁気回路を形成する中空部43e内の大部分を占める空間を常に占めるようピストンと永久磁石42の相対的位置関係が定められているため、電気エネルギーを運動エネルギーに変換する効率は高い。例えば、図38(A)では、ピストン43が下死点に位置し、図38(B)では、ピストン43は上死点に位置する。したがって、中空部43e内のおよそ半分以上を占める空間に永久磁石42が位置している。中空部43e内に強い磁束を発生させ、ピストン43と永久磁石42との間に作用する磁気反発力及び磁気吸引力を大きくするには、中空筒体43aは透磁率の高い材質で構成するのが望ましい。また、永久磁石42の径及び長さ、ピストン43の軸方向の長さ、磁気回路を形成する中空部43e内の永久磁石42と中空筒体43aの内周壁との距離、駆動パルス信号の振幅、コイル43cの巻回数、コネクティングロッド45の長さなどのパラメータを適度な値に調整することで、コネクティングロッド45に高回転トルクを与えることができる。但し、ピストンストロークが過度に長い場合や、コネクティングロッド45が不必要に長いと、高速駆動に不向きな構成となるため、これらのパラメータの値は動力出力装置の利用形態等(適用回転数、回転トルク)を参考に適宜設定すればよい。
【0150】
尚、上記の説明では、説明の便宜上、内燃機関を構成する構成部材の名称を用いて本実施形態の動力出力装置の各構成部材を説明したが、ピストン43、コネクティングロッド45などの部材は内燃機関で使用されているものと同じ材質、寸法、形状、大きさ、強度である必要はなく、電気エネルギーを運動エネルギーに効率よく変換できる材質、寸法、形状、大きさ、強度、透磁率などを具備するものであれば、特に限定されるものではない。ここでは、永久磁石42を固定した状態でピストン43を往復動させる構成としたが、これに限らず、例えば、ピストン43を固定した状態で、永久磁石42を往復動させ、永久磁石42の端部に設けられたクランク機構で動力を出力するよう構成してもよい。
【0151】
図39は、動力出力装置の制御系システムのブロック構成図、図40は各種制御信号のタイミングチャートである。図39において、位置センサ20はクランクシャフト48の回転角度変位を検出するセンサであり、ピストン43が上死点及び下死点に到来したときにそれぞれパルス(検出信号)を出力するよう構成されている(図40(C)、(D))。つまり、位置センサ(正)のパルスが出力されてから位置センサ(負)のパルスが出力されるまでの時間は、ピストン43が上死点から下死点に移行する時間、つまり、クランクシャフト48の半回転時間に相当する。位置センサ20の出力信号と、1/N2に分周された電圧制御発振器18の発振信号は位相比較器16に入力される。図39に示す制御系システムは、位相比較器16、ローパスフィルタ17、電圧制御発振器18、及び分周器21によってフィードバック制御回路(位相同期回路)を構成しており、電圧制御発信器18の発振周波数(図40(E))をクランクシャフト48の回転周波数のN2倍に調整する。
【0152】
一方、発振器10はピストン駆動系を制御する基準信号となる一定周波数の発振信号(図40(A))を出力する。当該基準信号は分周器11において、1/Mに分周される(図40(B))。また、電圧制御発振器18の発振信号は分周器15において、1/N1に分周される(図40(G))。分周器11の出力信号(図40(B))と、分周器15の出力信号(図40(G))は位相比較器12に入力され、両者の位相差信号(図40(H))が駆動信号生成部13へ出力される。位相比較器12の特性としては、精密なフォードバック制御を可能とするため、入力信号の位相差が微小である範囲で、入出力特性が線形であるものが望ましい。ここで、分周器11の出力信号(OSC/M)と、分周器15の出力信号(VCO/N1)は、システムが過度的な状態においては、異なる位相及び周波数であるが、位相差信号(図40(H))に対応した励磁電流をコイル43cに流すことで、次第に同位相及び同一周波数に収束するため、定常状態においては、OSC/M=VCO/N1となる。ここで、OSCは発信器10の発振周波数、VCOは電圧制御発振器18の発振周波数である。クランクシャフト48の単位時間あたりの回転数をxとすれば、VCO=x・N2であるから、x=OSC・N1/M・N2となる。分周器11,15,21は分周値をプログラマブルに可変できるカウンタICで構成されており、CPU22によってその分周値を変更できる。つまり、CPU22は分周器11,15,21の分周値をパラメータ制御することで、クランクシャフト48の回転速度を調整できる。
【0153】
極切替部19は位置センサ20の出力信号を取り込み、極性信号(図40(F))を駆動信号生成部13に出力する。極性信号(図40(F))とは、後述する駆動パルス信号の極性(コイル43cを流れる電流の向き)を制御するための信号であり、図40に示すように、位置センサ820の出力信号に対してΔθの位相遅れが設定されている。位相遅れΔθの値はCPU22によってパラメータ制御される。位相遅れΔθはピストン43の動きに対してやや遅れたタイミングで駆動パルス信号の極性を反転させるために設けられ、クランクシャフト48の回転速度(ピストン43の往復周波数)に応じてその値が定められる。駆動信号生成部13は極切替部19から出力される極性信号(図40(F))と、位相比較器12から出力される位相差信号(図40(H))からコイル43cに供給する駆動パルス信号(図40(I))を生成する。駆動パルス信号(図40(I))は極性信号(図40(F))の極性が負である期間において、位相差信号(図40(H))の極性を反転させることで得られる3値信号であり、「1」,「0」,「−1」の値をとる。
【0154】
また、駆動信号生成部13では、駆動パルス信号の他に、許可信号が生成される。許可信号はコイル43cに供給される励磁電流のオン/オフを制御する信号であり、許可信号が「0」のときにコイル43cに流れる励磁電流はオフになり、許可信号が「1」のときにコイル43cに流れる励磁電流はオンになる。許可信号は駆動パルス信号を2値化した信号(「1」及び「−1」を「1」に、「0」を「0」に変換)に相当する。駆動パルス信号及び許可信号はピストン駆動系回路14へ出力される。
【0155】
尚、CPU22が要求するクランクシャフト48の回転速度(要求値)と、クランクシャフト48の実際の回転速度(実際値)とが一致しない場合には、分周器11の出力信号(OSC/M)と、分周器15の出力信号(VCO/N1)の位相及び周波数は異なるため、両者の位相差に対応した駆動パルス信号をコイル43cに供給することで、位相同期回路(16,17,18,21)のフィードバック制御により、OSC/M=VCO/N1とすることができる。つまり、要求値に対応する運動エネルギーと実際値に対応する運動エネルギーの差分に相当する電気エネルギーをコイル43cに供給する(電力供給制御)ことで、所望の回転速度を得ることができる。このため、駆動信号生成部13は電力供給手段として機能し、フィードバック制御系システム全体(発信器10、分周器11、位相比較器12、駆動信号生成部13、分周器15、位相比較器16、ローパスフィルタ17、電圧制御発信器18、極切替部19、位置センサ20、分周器21、及びCPU22を含むシステム全体)としては、電力供給制御手段として機能する。
【0156】
ここで、要求値と実際値が等しくなると、分周器11の出力信号(OSC/M)と、分周器15の出力信号(VCO/N1)の位相及び周波数は等しくなるから、位相比較器12から出力される位相差信号は0となり、コイル43cに電力供給を行わなくても、フライホイールに蓄積される慣性エネルギーでクランクシャフト48の回転運動をある程度持続できる。しかし、クランクシャフト48の回転負荷や、クランクジャーナル46等の機械摩擦の影響でクランクシャフト48の回転速度が低下し、OSC/M=VCO/N1が成立しなくなると、両者の位相差信号から駆動パルス信号が生成され、ピストン駆動系の回転運動を持続するための電気エネルギーが補充される。例えば、本発明の動力出力装置を電気自動車の動力源として利用すると、運転手のアクセル開度から要求されるクランクシャフト48の回転速度を求め、実際の回転速度との差分に対応する電気エネルギーをコイル43cに供給すれば、所望の回転速度を得ることができる。
【0157】
図41はピストン駆動系回路14の構成図である。図41に示すように、同駆動系回路14は、電源供給部Vccと、トランジスタTr1〜Tr5と、インバータ25と、コイル43c(コイル43cに相当)とを含み、入力端子23から駆動パルス信号を入力するとともに、入力端子24から許可信号を入力し、コイル43cに所定のタイミングで励磁電流を供給する。駆動パルス信号が「1」のときは、許可信号も「1」であるから、トランジスタTr2、Tr3及びTr5が開状態となり、トランジスタTr3のエミッタ端子からコイル43cを介してトランジスタTr2のコレクタ端子に励磁電流が流れる一方で、駆動パルス信号が「−1」のときは、許可信号も「1」であるから、トランジスタTr1、Tr4及びTr5が開状態となり、トランジスタTr1のエミッタ端子からコイル43cを介してトランジスタTr4のコレクタ端子に励磁電流が流れる。一方、駆動パルス信号が「0」のときはTr5は閉状態となるため、コイル43cに励磁電流は流れない。
【0158】
尚、許可信号が「0」のときは、ピストン43の往復運動によりコイル43cに逆起電力が発生し、電源供給部Vccへ電力が供給されるため(エネルギー回生機構)、運動エネルギーを電気エネルギーに変換することで、エネルギー回生をすることができる。電源供給部Vccからはコイル43cだけでなく、CPU22などの電子回路に電源供給が行われるため、エネルギー回生制御を行うことで、電気エネルギーの有効利用が可能となる。
【0159】
このように、本実施形態の動力出力装置によれば、コイル43c(43cに相当)による磁気回路の極性切り替えで得られたピストン43の1次元運動エネルギーを単振動エネルギーとして利用し、これをクランク機構を介してクランクシャフト48の回転エネルギーに変換したため、回転トルクの高出力化を実現できる。また、クランクシャフト48の一端にフライホイール49を連結し、慣性エネルギーを蓄えるよう構成したため、ピストン43の往復動を円滑に行うことができる。また、クランクシャフト48の回転速度を基にPLL回路による電圧制御発信器18の発振周波数をフィードバック制御し、当該発振周波数を基に駆動パルス信号を生成するため、安定したシステム制御が可能となる。また、分周器11,15,21の分周値を可変とすることで、PLL回路のフィードバック制御によりクランクシャフト48の回転速度を調整できる。さらに、分周器11,15,21の分周値をCPUによってパラメータ制御することで、ピストン駆動系の回転制御を行うことができる。また、駆動パルス信号の位相遅れΔθを各回転数に対応して調整することで、ピストン43の円滑な駆動を可能にできる。
【0160】
本実施形態の動力出力装置の他の構成例を図42乃至図44に示す。図42はクランク機構を2つ設けることで、2本のクランクシャフト48を同時に回転駆動するタイプのものである。ピストン43は図示しない固定部材に固定され、その中空部を挿貫する永久磁石42が中空筒体43a内部をその長手方向に沿って往復動可能に構成されている。永久磁石42の両端には、コネクティングロッド45、クランクジャーナル46、及びクランクアーム47からなるクランク機構が設けられており、1つの動力源で2軸出力機構を構成できる。ここでは、ピストン43を固定した状態で永久磁石42を往復動させる構成としたが、これに限らず、例えば、永久磁石42を固定した状態で、ピストン43を往復動させ、ピストン43の両端に設けられたクランク機構で2軸出力を構成してもよい。
【0161】
図43はクランクシャフト48上にピストン43の駆動機構を対向配置したタイプであり、対向配置されるピストンの位相が180度ずれるよう構成されている。ここでは、水平対向配置を示しているが、Vバンク配置としてもよい。クランクシャフト48には2つの動力源からの回転トルクが加えられるため、回転トルクの高出力化を実現できる。ピストン43は2つに限らず、それぞれのバンクに複数配置できる。図44はクランクシャフト48上にピストン43を縦列配置したタイプであり、クランクシャフト48の回転運動を円滑に行うために、各々のピストン43の位相差が調整されている。ランクシャフト48には複数の動力源からの回転トルクが加えられるため、回転トルクの高出力化を実現できる。
【0162】
本発明の動力出力装置は、例えば、電気自動車、電動建設機械、電動農業機具、電動ロボット、電動玩具、電動飛行機などの動力源として利用できる他、カメラやプロジェクタなどの光学電動制御の動力源としても利用できる。
【0163】
上記の実施形態を単相コイルに関して説明してきたが、二つ以上の位相を有するコイルを使用してもよい。
【図面の簡単な説明】
【0164】
【図1】 第1の実施の形態に係る駆動装置の構成を示す図である。
【図2】 図1に示した駆動装置を駆動する回路構成図である。
【図3】 図1に示したコイルを駆動する回路構成図である。
【図4】 第2の実施の形態に係る駆動装置の断面図である。
【図5】 第3の実施の形態に係る駆動装置の断面図である。
【図6】 第4の実施の形態に係る駆動装置の断面図である。
【図7】 第5の実施の形態に係る駆動装置の上面図である。
【図8】 第6の実施の形態に係る駆動装置の上面図である。
【図9】 図3に示す回路の変形例である。
【図10】 図9の回路において利用される制御信号の波形図である。
【図11】 第7の実施の形態に係る駆動機構の模式図である。
【図12】 第8の実施の形態に係る駆動機構の模式図である。
【図13】 第9の実施の形態に係る駆動機構の模式図である。
【図14】 同駆動機構の模式図である。
【図15】 第10の実施の形態に係る駆動装置の模式図である。
【図16】 同駆動機構の模式図である。
【図17】 同駆動機構の模式図である。
【図18】 磁性体の連結構造を示す模式図である。
【図19】 その動作を模式的に示す線画である。
【図20】 同ユニットが2つ互いに接続されている状態を示す等価回路図である。
【図21】 図7に係わる駆動機構を実現した、飛行模型に適用可能な駆動機構の斜視図である。
【図22】 図17の駆動機構の変形例に係わる駆動機構の斜視図である。
【図23】 構造をより改良した羽構造を説明する模式図である。
【図24】 羽構造の挙動を説明する模式図である。
【図25】 羽構造の挙動を説明する第2の模式図である。
【図26】 本発明に係わる音響変換装置の原理を示す模式図である。
【図27】 音響変換装置の詳細な構成を示す一部断面図である。
【図28】 音響変換手段がハウジングの両側に設けられている状態を示す一部断面図である。
【図29】 振動部材の共振位置と振動周波数との関係を示す説明図である。
【図30】 平面型スピーカが表示装置の表示平面部に添着されている状態を示す模式図である。
【図31】 駆動回路の一例を示す回路ブロック図である。
【図32】 変形回路ブロック図である。
【図33】 その信号波形図である。
【図34】 本発明の駆動機構を実現する動作原理図である。
【図35】 マイクロミラー素子の駆動機構の動作模式図である。
【図36】 他のマイクロミラー素子の駆動機構の動作模式図である。
【図37】 マイクロミラー素子の駆動機構の他の実施形態に係わる動作模式図である。
【図38】 本実施形態の動力出力装置の駆動系の構成図である。
【図39】 本実施形態の動力出力装置の駆動制御系の回路構成図である。
【図40】 制御信号のタイミングチャートである。
【図41】 ピストン駆動系の回路構成図である。
【図42】 本実施形態の動力出力装置の他の構成例である。
【図43】 本実施形態の動力出力装置の他の構成例である。
【図44】 本実施形態の動力出力装置の他の構成例である。

Claims (6)

  1. 互いに対向配置される一組の磁性体と、
    これら磁性体間に互いに反発又は引き合う力を発生する極性の信号を印加する駆動回路と、を備え、該磁性体の動作によって被駆動体を動作させる駆動機構であって、
    前記一組の磁性体の各々は一端側が回動を可能とする支点となっている複数組の振動部材の各振動部材の他端側にそれぞれ取り付けられ、
    前記駆動回路は前記磁性体を往復運動させて前記複数組の振動部材の各支点相互間の距離を伸縮させ、
    前記磁性体は駆動源として前記被駆動体に結合される、駆動機構。
  2. 前記一組の磁性体は、永久磁石とコイルとからなる、請求項に記載の駆動機構。
  3. 前記一組の磁性体は、複数のコイルからなる、請求項に記載の駆動機構。
  4. 前記一組の磁性体が永久磁石を間に介して対向配置される、請求項に記載の駆動機構。
  5. 前記駆動回路は前記磁性体に周波数信号を印加して、当該磁性体を振動させる、請求項に記載の駆動機構。
  6. 前記一組の磁性体の複数を、前記振動部材の支点で相互に連結してなる、請求項に記載の駆動機構。
JP2005501953A 2002-09-26 2003-09-26 駆動機構 Expired - Fee Related JP4412495B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002281843 2002-09-26
JP2002357156 2002-12-09
JP2003002562 2003-01-08
JP2003014026 2003-01-22
JP2003037147 2003-02-14
PCT/JP2003/012352 WO2004030407A2 (en) 2002-09-26 2003-09-26 Drive mechanism

Publications (2)

Publication Number Publication Date
JP2006500887A JP2006500887A (ja) 2006-01-05
JP4412495B2 true JP4412495B2 (ja) 2010-02-10

Family

ID=32046109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005501953A Expired - Fee Related JP4412495B2 (ja) 2002-09-26 2003-09-26 駆動機構

Country Status (6)

Country Link
US (1) US8144380B2 (ja)
EP (1) EP1543702A2 (ja)
JP (1) JP4412495B2 (ja)
KR (1) KR100780148B1 (ja)
CN (2) CN1685760B (ja)
WO (1) WO2004030407A2 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0314007D0 (en) * 2003-06-17 2003-07-23 Harris Hynd Ltd Audio transducer
SE527582C2 (sv) 2004-04-23 2006-04-18 Lars Stroembaeck Kombinerad fläkt och högtalare
JP2006046326A (ja) * 2004-07-09 2006-02-16 Yamaha Motor Co Ltd 1次バランサ付きエンジンおよび自動二輪車
US7671712B2 (en) * 2005-03-25 2010-03-02 Ellihay Corp Levitation of objects using magnetic force
JP2008092789A (ja) * 2006-09-05 2008-04-17 Seiko Epson Corp ブラシレス発電機
US20080182479A1 (en) * 2007-01-26 2008-07-31 Ellihay Corp. Items With Stretchable Members And/Or Magnetic Action
US8360999B2 (en) 2007-10-05 2013-01-29 The Chinese University Of Hong Kong Magnetic levitation vibration systems and methods for treating or preventing musculoskeletal indications using the same
JP5292770B2 (ja) * 2007-11-07 2013-09-18 セイコーエプソン株式会社 Pwm制御回路、該pwm制御回路を備えた電動機、該電動機を備えた装置及びpwm信号を生成する方法
DE102009041995A1 (de) * 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Optische Ablenkeinheit für scannende, ophthalmologische Mess- und Therapiesysteme
JP5394222B2 (ja) * 2009-12-24 2014-01-22 国際ディスプレイ工業株式会社 はばたき式推進器及びはばたき式推進器を備える飛行玩具
US8786138B2 (en) 2010-05-21 2014-07-22 General Electric Company Systems, methods, and apparatus for controlling actuator drive current using bi-directional hysteresis control
US20130268122A1 (en) * 2010-05-21 2013-10-10 General Electric Company Systems, Methods, and Apparatus for Driving Servo Actuators
US20110288662A1 (en) * 2010-05-21 2011-11-24 General Electric Company Systems, methods, and apparatus for providing high efficiency servo actuator and excitation drivers
CH704198A2 (fr) * 2010-12-10 2012-06-15 Montres Breguet Sa Mecanisme de sonnerie d'une montre.
WO2013136137A1 (en) * 2012-03-16 2013-09-19 Nokia Corporation A sound producing vibrating surface
JP5991024B2 (ja) * 2012-05-22 2016-09-14 セイコーエプソン株式会社 ミラーデバイス、光スキャナーおよび画像形成装置
EP2907131B1 (de) 2012-10-12 2021-03-31 Volkswagen Aktiengesellschaft Kraftfahrzeug mit wenigstens einem schallerzeugungssystem zur erzeugung eines künstlichen motorengeräusches
US10023307B2 (en) * 2013-03-08 2018-07-17 Purdue Research Foundation Electromagnetic actuator system with a rotor oscillation
DE102013005105A1 (de) * 2013-03-23 2014-09-25 Bernhard Holldack Schallwandler für die Signaltonerzeugung in industriellen Anwendungen und für die Fahrzeugkommunikation als Lautsprecher.
US10086516B2 (en) * 2014-04-02 2018-10-02 President And Fellows Of Harvard College Color- or grayscale-sensing, magnetic, mobile, marking robot
CA2997902A1 (en) 2015-09-14 2017-03-23 Wing Acoustics Limited Improvements in or relating to audio transducers
CN112987621B (zh) * 2015-09-16 2023-08-04 深圳市大疆创新科技有限公司 用于发出声音的系统、设备和方法
CN105459141A (zh) * 2015-12-30 2016-04-06 华南理工大学 一种应用磁力架原理的磁性机械手
CN209590407U (zh) * 2017-02-20 2019-11-05 磁化电子株式会社 具有多轴结构的反射系统驱动装置
DE102017203598A1 (de) 2017-03-06 2018-09-06 nui lab GmbH Elektromagnetischer Aktuator
WO2018167538A1 (en) 2017-03-15 2018-09-20 Wing Acoustics Limited Improvements in or relating to audio systems
US11137803B2 (en) 2017-03-22 2021-10-05 Wing Acoustics Limited Slim electronic devices and audio transducers incorporated therein
GB201704683D0 (en) * 2017-03-24 2017-05-10 Siemens Healthcare Ltd Electromagnetic assembley
KR101858904B1 (ko) * 2017-07-25 2018-05-17 한양대학교 산학협력단 마그네틱 로봇
CN107733318B (zh) * 2017-09-06 2020-10-09 深圳市道通智能航空技术有限公司 一种电机发音方法、装置、电子调速器和无人飞行器
US10352797B2 (en) * 2017-10-10 2019-07-16 International Business Machines Corporation Tunable shock sensor with parallel dipole line trap system
TWI649540B (zh) * 2017-10-26 2019-02-01 財團法人工業技術研究院 無電池旋轉編碼器
US11909291B2 (en) * 2018-06-26 2024-02-20 Mitsumi Electric Co., Ltd. Rotary reciprocating drive actuator with movable element and magnets and rotating mirror
CN110530457B (zh) * 2018-11-09 2024-09-17 湖南信量电子有限公司 一种用于物体检测的动作机构及物体检测装置
KR102601236B1 (ko) * 2018-11-30 2023-11-13 주식회사 씨케이머티리얼즈랩 광대역 액추에이터
CN110166904B (zh) * 2019-06-12 2020-08-18 瑞声科技(南京)有限公司 屏幕发声装置
CN110286770B (zh) * 2019-06-28 2022-06-07 Oppo广东移动通信有限公司 发声模组、基于所述发声模组的控制方法及显示设备
CN110420824B (zh) * 2019-07-23 2020-12-01 长沙金信诺防务技术有限公司 一种水下声源
JP7140980B2 (ja) * 2019-12-13 2022-09-22 ミツミ電機株式会社 回転往復駆動アクチュエーター
CN111107476B (zh) * 2020-02-22 2021-04-20 瑞声科技(新加坡)有限公司 微型扬声器
CN111952035B (zh) * 2020-07-14 2022-03-08 中国科学院电工研究所 一种摆动磁场发生装置及其控制方法
CN112706193B (zh) * 2021-01-27 2022-03-01 浙江谱麦科技有限公司 一种基于动捕相机的清扫机器人性能检测系统
EP4040643A1 (en) * 2021-02-09 2022-08-10 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with cavity accommodating at least part of driven body being magnetically drivable to move
CN115097593B (zh) * 2022-08-26 2023-03-24 北京瑞控信科技股份有限公司 一种一维高速动磁式柔性支撑快速反射镜
JP7460216B1 (ja) 2022-12-26 2024-04-02 ムマス・コンサルティング・グループ合同会社 アクチュエータ装置

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL15084C (ja)
BE341619A (ja)
CH92529A (de) 1920-10-12 1922-01-02 Balmer Friedrich Lautsprechendes Telephon.
CH113262A (de) 1924-12-20 1926-01-16 Maria Schlatter Radiophonischer Lautsprecher.
US3094293A (en) * 1960-01-08 1963-06-18 Motorola Inc Tape feeding and storage device
CH437500A (de) 1965-08-09 1967-06-15 Bbc Brown Boveri & Cie Einrichtung zur Erzeugung einer Drehbewegung mittels lichtelektrischer Ströme
US3798391A (en) * 1972-06-22 1974-03-19 Gen Electric Movable magnet loudspeaker
BE902749A (fr) 1985-06-26 1985-10-16 Lambert Albert J Nouveau principe de moteur pour taille-haie et autres appareils trancheurs.
JPS6276395A (ja) * 1985-09-28 1987-04-08 Sony Corp Mm型トランスジユ−サ
KR910006578B1 (ko) * 1988-04-14 1991-08-28 교오도인사쯔 가부시기가이샤 자기기록매체 및 그 진위의 판정방법
US5036930A (en) * 1990-05-17 1991-08-06 Bisel Charley W Electromagnetically powered engine apparatus and method
EP0541646B1 (en) * 1990-08-04 1995-01-11 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Panel-form loudspeaker
US5131048A (en) * 1991-01-09 1992-07-14 Square D Company Audio distribution system
JPH0548450A (ja) * 1991-08-08 1993-02-26 Fujitsu Ltd Pllシンセサイザ回路
US5448116A (en) * 1994-01-11 1995-09-05 Weiss, Deceased; Abraham Linear magnetic motor with rotational output
JP3446306B2 (ja) 1994-05-13 2003-09-16 ソニー株式会社 デジタルマイクロミラーデバイス
US5701358A (en) * 1994-07-05 1997-12-23 Larsen; John T. Isobaric loudspeaker
JP3333322B2 (ja) * 1994-07-22 2002-10-15 三菱電機株式会社 音響装置
KR100343219B1 (ko) * 1995-02-25 2002-11-23 삼성전기주식회사 거울구동장치
JPH0918555A (ja) 1995-06-29 1997-01-17 Oki Electric Ind Co Ltd 無線通信装置の着信バイブレータ
US6192136B1 (en) * 1995-09-02 2001-02-20 New Transducers Limited Inertial vibration transducers
US5828295A (en) * 1996-09-04 1998-10-27 Motorola, Inc. Mode tracking transducer driver for a non-linear transducer
US6025951A (en) * 1996-11-27 2000-02-15 National Optics Institute Light modulating microdevice and method
TW353849B (en) 1996-11-29 1999-03-01 Matsushita Electric Ind Co Ltd Electric-to-mechanical-to-acoustic converter and portable terminal unit
JP3493600B2 (ja) * 1996-12-05 2004-02-03 Necトーキン株式会社 音声および低周波振動発生用振動アクチュエータ
JP3624598B2 (ja) 1996-12-11 2005-03-02 日産自動車株式会社 電動モータの巻線構造及び巻線形成方法
JPH11202226A (ja) * 1998-01-20 1999-07-30 Olympus Optical Co Ltd 光偏向器
DE19821862A1 (de) 1998-05-15 1999-11-18 Nokia Deutschland Gmbh Schallwiedergabeanordnung
JP4001436B2 (ja) * 1998-07-23 2007-10-31 三菱電機株式会社 光スイッチ及び光スイッチを用いた光路切換装置
JP4428741B2 (ja) * 1998-09-04 2010-03-10 キヤノン株式会社 ガルバノミラーアクチュエータ
US6547145B2 (en) * 1998-09-14 2003-04-15 Psc Scanning, Inc. Resonant motor driver system for data reading
JP2000166174A (ja) 1998-11-20 2000-06-16 Nec Corp 振動発生装置
JP2000184759A (ja) * 1998-12-10 2000-06-30 Canon Inc 振動型アクチュエ―タ駆動装置
KR100526006B1 (ko) * 1999-06-21 2005-11-08 피셔 앤 페이켈 어플라이언스 리미티드 리니어 모터
US6464633B1 (en) * 1999-08-23 2002-10-15 Olympus Optical Co., Ltd. Light source device for endoscope using DMD
JP3717719B2 (ja) * 1999-08-23 2005-11-16 オリンパス株式会社 内視鏡光源装置
US6639713B2 (en) * 2000-04-25 2003-10-28 Umachines, Inc. Silicon micromachined optical device
DE10022150A1 (de) 2000-05-08 2001-11-15 Roland Manowski Magnetkolbenmotor und Verfahren zu dessen Herstellung
JP2001333493A (ja) 2000-05-22 2001-11-30 Furukawa Electric Co Ltd:The 平面スピーカ
DE10037373C1 (de) 2000-07-29 2002-07-18 Michael Daus Verfahren und Einrichtung zum Ansteuern eines elektro-dynamischen Wandlers
US6574026B2 (en) * 2000-12-07 2003-06-03 Agere Systems Inc. Magnetically-packaged optical MEMs device
JP2002178856A (ja) * 2000-12-13 2002-06-26 Matsushita Electric Ind Co Ltd 車載用電子装置
US6753931B2 (en) * 2001-08-10 2004-06-22 Lightwave Electronics Pulse sequencing for generating a color image in laser-based display systems
KR20020027407A (ko) * 2002-02-05 2002-04-13 정권하 회전테이블을 구성한 의자
US6992810B2 (en) * 2002-06-19 2006-01-31 Miradia Inc. High fill ratio reflective spatial light modulator with hidden hinge

Also Published As

Publication number Publication date
US20060028751A1 (en) 2006-02-09
WO2004030407A2 (en) 2004-04-08
CN1685760A (zh) 2005-10-19
CN102158170B (zh) 2013-01-02
KR20050065559A (ko) 2005-06-29
WO2004030407B1 (en) 2005-02-03
US8144380B2 (en) 2012-03-27
CN102158170A (zh) 2011-08-17
WO2004030407A3 (en) 2004-11-25
EP1543702A2 (en) 2005-06-22
KR100780148B1 (ko) 2007-11-27
JP2006500887A (ja) 2006-01-05
CN1685760B (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4412495B2 (ja) 駆動機構
JP4065769B2 (ja) 振動発生装置
US10615677B2 (en) Actuator, air pump, beauty treatment device, and laser scanning device
JP4315811B2 (ja) 動的磁石システム
JP2010509065A (ja) 超小型線形振動装置
JP2020036445A (ja) 振動アクチュエータ、及びこれを備える携帯型電子機器
JPH11168869A (ja) 振動発生器
KR101793072B1 (ko) 수평 진동 디바이스
JPH0865990A (ja) 振動アクチュエータ
JP4928833B2 (ja) 共鳴振動モーター
JPH11178304A (ja) 振動装置
JP2004202327A (ja) 振動発生器
JPH10146035A (ja) 振動発生器の取付構造
JP2003211086A (ja) 振動発生装置
JP3649891B2 (ja) 単巻型リニア振動アクチュエータ
JP2000308323A (ja) 振動体
CN207135276U (zh) 一种受话器
JP3831645B2 (ja) 振動発生装置及び前記装置を搭載した電子機器
US20220029513A1 (en) Linear vibration actuator with electromagnet
JPH11178305A (ja) 振動装置
JP2004304694A (ja) 振動スピーカ
JPH11146626A (ja) 振動装置
JP2004358443A (ja) 振動アクチュエータおよびその駆動方法
JPH1118394A (ja) 振動発生器
JP2001347226A (ja) 往復動型振動アクチュエータと携帯用電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees