JP4328161B2 - シリコン鋳造用鋳型 - Google Patents

シリコン鋳造用鋳型 Download PDF

Info

Publication number
JP4328161B2
JP4328161B2 JP2003332024A JP2003332024A JP4328161B2 JP 4328161 B2 JP4328161 B2 JP 4328161B2 JP 2003332024 A JP2003332024 A JP 2003332024A JP 2003332024 A JP2003332024 A JP 2003332024A JP 4328161 B2 JP4328161 B2 JP 4328161B2
Authority
JP
Japan
Prior art keywords
release material
silicon
mold
material layer
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003332024A
Other languages
English (en)
Other versions
JP2005095924A (ja
Inventor
幸薫 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003332024A priority Critical patent/JP4328161B2/ja
Publication of JP2005095924A publication Critical patent/JP2005095924A/ja
Application granted granted Critical
Publication of JP4328161B2 publication Critical patent/JP4328161B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、特に太陽光発電用の多結晶シリコンウェハーの製造に好適に用いることができるシリコン鋳造用鋳型に関する。
従来から太陽電池を形成するための半導体基板の一種として多結晶シリコンが用いられている。このような多結晶シリコンは、高温で加熱溶融させたシリコン融液を鋳型内に注湯して凝固させることによって形成したり、シリコン原料を鋳型内に入れて溶解した後に凝固させたりすることによって形成している。
このような鋳型としては、通常、分割可能な黒鉛製鋳型の内表面に離型材を塗布したものが用いられ、離型材としては窒化珪素(Si)粉末、炭化珪素(SiC)粉末、シリカ(SiO)粉末などが用いられる。一般に、窒化珪素、炭化珪素、酸化珪素等の粉末を適当なバインダーと溶剤とから構成される溶液中に混合して攪拌してスラリーとし、これを鋳型内壁に塗布若しくはスプレー等の手段でコーティングすることが一般に知られている(例えば、非特許文献1参照)。
しかしながら上記に開示されている窒化珪素のみから形成される離型材層は、層自体の強度が脆弱であり、黒鉛製鋳型との付着性も弱いので、シリコン融液を注湯する際に、離型材層が破損して鋳型にシリコン融液が接触し、シリコンが鋳型に付着して取り外せなくなる問題や、シリコンと黒鉛の熱膨張係数の違いにより冷却時にシリコン鋳塊に欠けが発生するという問題があった。さらに、シリコン融液と窒化珪素との反応が活性なため、微細な窒化珪素粉末が融液内に混入して窒化珪素系の析出物を生成させるという問題もあった。このような析出物が存在すると、シリコン鋳塊をスライスしてシリコンウェハーを作製するときに歩留まりを落としてしまう恐れがある。
また、シリカ(SiO)を黒鉛製鋳型の内表面に塗布してシリコンを鋳造することも提案されている(例えば、特許文献1参照)。シリカを離型材として用いる場合、離型材層が強固になりシリコン融液の鋳型との接触は防止できるが、一方、シリカは、黒鉛やシリコンの鋳塊との付着性が高いために、シリカが鋳型に付着して鋳型の再使用が困難になったり、鋳型が離型材を介してシリコンの鋳塊に付着し、脱型するときにシリコンの鋳塊の一部に欠けが発生するという問題があった。さらに、シリコンの融点付近の高温下では、わずかではあるがシリカから酸素の供給源となって、離型材中のシリカと黒鉛の鋳型が接触している部分において黒鉛の酸化が促進して鋳型基材の損傷を早めたり、シリコン融液中の酸素濃度が増加して、シリコンウェハーの特性に悪影響を与えたりするという問題もあった。
特開2002−292449号公報 特開平7−206419号公報 特開平9−175809号公報 特開2001−198648号公報 15th Photovoltaic Specialist Conf.(1981),P576~P580,"A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FOR POLYCRYSTALINE SOLAR GRADE SILICON"
上記問題を解決するために、特許文献2には、鋳型表面の一層目に二酸化シリコン、二層目に二酸化シリコンと窒化シリコンの混合物、さらに三層目に窒化シリコンをそれぞれ塗布して多層の離型材層を形成することが提案されている。このように離型材層を多層に塗布すると、それぞれの層に対応する離型材を調合して塗布しなければならず、離型材の塗布と調合に手間が掛かり、離型材層形成のための時間的および経済的ロスを生じることが避けられない。また、離型材層のシリコン融液側に設けられた窒化珪素がもろいため、剥離してシリコン融液に混入したり、窒化珪素とシリコン融液とが反応して、微細な窒化珪素粉末が融液内に混入する危険性が避けられなかった。
また、特許文献3には、窒化珪素とシリカを特定比率で混合した単独層を形成することも提案されている。具体的には、窒化珪素とシリカを28:72〜75:25の重量比率で混合した離型材を黒鉛鋳型に塗布・乾燥して形成するものであり、シリカ成分がガラス化して内部に窒化珪素粉末を固着させる効果を引き出せる。しかしながら部分的にではあるが離型材中のシリカと黒鉛とが接触しているため、シリコンの融点付近で黒鉛の酸化が促進して鋳型の基材の損傷を早める問題があり、特にシリカの比率が高いほどこの問題は顕著となる。また、離型材の最表面部分にもシリカ粒子が過剰に存在するので、シリコン融液と混合層中のシリカとの接触割合が増え、シリコン融液中の酸素濃度が増加する。融液中の酸素はウエハーにした後のデバイス工程における種々の処理工程において析出物として顕在化し、ウエハー特性に悪影響を及ぼすので、シリコン融液と長時間に渡って接触する離型材層に多量のシリカが存在することは望ましくない。
さらに、従来の離型材に使用するシリカは平均粒径が20μm程度のものであった(例えば特許文献3参照)。このようなシリカは石英ガラスを粉砕し、分級することによって得ることができるが、窒化珪素と混合したときに、窒化珪素粉末粒子の間の空隙にシリカ粉末がうまく充填されず、離型材強度が弱くなるという問題があった。
本発明は、このような従来技術の問題点に鑑みてなされたものであり、鋳型内にシリコン融液を注湯する際、その後の凝固する際、あるいは鋳型に入れたシリコン原料を溶解する際に離型材が剥離してシリコン融液中に混入したり、離型材が鋳型に付着して鋳型が再使用できなくなったりすることを抑制し、鋳型材を黒鉛にした場合の酸化消耗や、鋳塊中の酸素濃度の増加を抑えたシリコン鋳造用鋳型を手間を省いて安価に提供することを目的とする。
上記目的を達成するために、請求項1にかかるシリコン鋳造用鋳型は、鋳型内表面に離型材層を設けた鋳型内部のシリコン融液を凝固させるシリコン鋳造用鋳型において、前記離型材層は、鋳型に接する側に設けられた第一の離型材層と、シリコン融液に接する側に設けられた第二の離型材層とを具備するとともに、これらの各離型材層は、表面にシリカ層が形成された窒化珪素粉末を含有してなり、前記第二の離型材層は、前記第一の離型材層よりも前記窒化珪素粉末の含有比率が少ないことを特徴とする。
このように鋳型の内表面に設けられた離型材層に、表面にシリカ層が形成された窒化珪素粉末を含有しているので、この鋳型を鋳造炉内で高温に保持してシリコン融液を注湯する際に、離型材層の窒化珪素粉末同士が焼結して離型材層の強度が適度に向上し、シリコン融液を注湯する際に離型材層が破損して、シリコン融液と鋳型とが接触することがない。そして離型材層のシリコン融液側をシリコン融液と活性の高い窒化珪素粉末の含有比率を少なくしたので、窒化珪素がシリコン融液内に混入しにくくなる。
また、請求項2にかかるシリコン鋳造用鋳型は、請求項1に記載のシリコン鋳造用鋳型において前記シリカ層は非晶質相を含むようにしたので、離型材層の窒化珪素粉末同士の焼結性がさらに良くなり、離型材層の強度が向上しやすくなる。
さらに、請求項3にかかるシリコン鋳造用鋳型は、請求項1または2に記載のシリコン鋳造用鋳型において前記第二の離型材層は、前記窒化珪素粉末よりも平均粒径の小さいシリカ粉末を含有することを特徴とする。このように、シリコン融液側の離型材層に窒化珪素粉末よりも平均粒径が小さく焼結性の高いシリカ粉末が含有されているので、窒化珪素粉末の間をこのシリカ粉末が密に充填する。そして、窒化珪素粉末の表面にもシリカ層が形成されているので、互いに強固に焼結し、シリコン融液側は密度が高く強固に結合した離型材層となり、シリコン融液に離型材の成分が溶けこんだり、離型材が剥離して混入したりしにくくなる。そして、シリカは、窒化珪素粉末の間に充填され、シリコン融液と接触する面積が少なく抑えられているので、シリコン融液に酸素が供給されて酸素濃度を上げることを抑制することができる。
そして、請求項4にかかるシリコン鋳造用鋳型は、請求項3に記載のシリコン鋳造用鋳型において、前記シリカ粉末が非晶質相を含むようにしたので、離型材層の窒化珪素粉末とシリカ粉末との焼結性がさらに良くなり、離型材層の強度が向上しやすくなる。
そして、請求項5にかかるシリコン鋳造用鋳型は、請求項3に記載のシリコン鋳造用鋳型において前記窒化珪素粉末が、イミド熱分解法によって得られた窒化珪素の球状粉末を酸化改質処理を施して表面に非晶質シリカ層を形成してなることを特徴とする。このようにしたので、窒化珪素粉末の粒度分布の幅が狭く、大きさの揃った粉末粒子が得られる。その結果、焼成したときに窒化珪素粉末粒子の粒径のバラツキによって、粒子が凝集したり、融着したりすることを防止することができるので、離型材層の強度が安定する。
また、請求項6にかかるシリコン鋳造用鋳型は、請求項5に記載のシリコン鋳造用鋳型において前記第一の離型材層は、前記酸化改質処理を施した窒化珪素粉末を90重量%以上含有することを特徴とする。このように鋳型側に接する第一の離型材層の主成分を焼結性が改善された窒化珪素粉末によって構成するようにしたので、従来のように二酸化珪素粉末を添加しなくても離型材層の強度が高く、鋳型から容易に剥離することがない。さらに黒鉛製の鋳型を用いたときに、窒化珪素が鋳型と反応しにくいので強固に固着しすぎて鋳型の再使用を妨げることがなく、高温下で鋳型を酸化させる原因となる二酸化珪素を添加しなくてもよいので、鋳型が酸化消耗することを抑制できる。
さらに、請求項7にかかるシリコン鋳造用鋳型は、請求項5または6に記載のシリコン鋳造用鋳型において前記第二の離型材層は、前記酸化改質処理を施した窒化珪素粉末とシリカ粉末とを含有する混合層であり、前記シリカ粉末を10〜70重量%含有することを特徴とする。このようにシリコン融液側に接する第二の離型材層のシリカ粉末量を最適に制御したので、窒化珪素粉末の間をこのシリカ粉末によって充填し、高密度とする効果を最大限に高めることができる。
そして、請求項8にかかるシリコン鋳造用鋳型は、請求項1から7のいずれかに記載のシリコン鋳造用鋳型において前記鋳型の本体は、黒鉛を主成分として含むようにしたことから、本発明の請求項1から7に記載された離型材層と最適な組合せとなり、上述の作用効果を最大限に発揮することができる。
本発明において、離型材層は上述のように最低、第一の離型材層と第二の離型材層の2層を備えれば発明の効果を奏するので、手間がかからず、極めて簡単に離型材層を形成することができる。
なお、本発明において、酸化改質処理によって表面に非晶質相を含有するシリカ層が形成された窒化珪素や非晶質相を含むシリカ粉末は、その表面に大気中の水分などに由来するシラノール基(Si−OH)を有しているため、離型材層を形成した状態で各々がシロキサン結合(Si−O−Si)を生じて、互いに強固に結合する。そのため、離型材の塗布時などに混合して用いられる有機バインダーを、酸化雰囲気で加熱するなどして脱バインダー処理を行っても、離型材がバラバラになりにくい。そのため、この離型材層が形成された鋳型を鋳造炉内で高温に保持してシリコン融液を注湯する際に、離型材同士が焼結しやすいものと推測する。
また、窒化珪素粉末の表面のシリカ層に非晶質相が存在すること、あるいはシリカ粉体に非晶質相が存在することについては、TEMを用いた電子線回折やX線回折などの手段により、非晶質特有のハローパターンが存在することによって、検出することができる。
そして、請求項3で規定した窒化珪素粉末とシリカ粉末の各粒子の平均粒径については、微粒子の粒径測定に適したレーザードップラー法によって求めるものとする。測定条件としては、水を溶媒として、超音波ホモジナイザーを用い、出力300〜400μAで6分間の超音波分散による前処理を施した後、各試料の粒径分布を測定し、累積度数の50%値を平均粒径とする。
さらに、請求項6と請求項7における、離型材層中の材料の含有比率について、離型材層にバインダーなどの有機物質が含まれている場合は、これらの有機物質を除いた全体に対する重量比率を指すものと定義する。
本発明の請求項1にかかるシリコン鋳造用鋳型によれば、鋳型の内表面に設けられた離型材層に、表面にシリカ層が形成された窒化珪素粉末を含有しているので、この鋳型を鋳造炉内で高温に保持してシリコン融液を注湯する際に、離型材層の窒化珪素粉末同士が焼結して離型材層の強度が適度に向上する。その結果、注湯のときに離型材が剥離して、鋳型とシリコン鋳塊とが接触することがなく、シリコン鋳塊を鋳型から脱型する際に窒化珪素粉末同士の離型材層がバラバラに壊れながら脱型することができるので、鋳型とシリコン鋳塊とが付着することによって発生するシリコンの欠けを防止することができる。そして離型材層のシリコン融液側をシリコン融液と活性の高い窒化珪素粉末の含有比率を少なくしたので、窒化珪素がシリコン融液内に混入しにくくなり、窒化珪素系の異物の析出を抑制することができるので、シリコン鋳塊をスライスしてシリコンウェハーを作製するときに、このような異物が原因となって歩留まりを落とすことがない。
本発明の請求項2にかかるシリコン鋳造用鋳型によれば、シリカ層は非晶質相を含むようにしたので、離型材層の窒化珪素粉末同士の焼結性がさらに良くなり、離型材層の強度が向上しやすくなる。その結果、鋳型から離型材が剥離してシリコン融液と鋳型が接触する問題や、シリコン鋳塊中への析出といった問題をさらに有効に抑制することができる。
本発明の請求項3にかかるシリコン鋳造用鋳型によれば、シリコン融液側の離型材層に焼結性が高く、窒化珪素粉末よりも平均粒径の小さいシリカ粉末が含有されているので、窒化珪素粉末の間をこのシリカ粉末が高密度に充填する。そして、窒化珪素粉末の表面にもシリカ層が形成されているので、互いに強固に焼結し、シリコン融液側は密度が高く強固に結合した離型材層となり、シリコン融液に離型材の成分が溶けこんだり、離型材が剥離して混入したりしにくくなる。そして、シリカ粉末は、窒化珪素粉末の間に充填され、シリコン融液と接触する面積は少なく抑えられているので、シリコン融液に酸素が供給されて酸素濃度を上げることを抑制することができ、太陽電池素子化したときのデバイスの光電特性に対する悪影響、例えば、太陽電池の変換効率の低下などを抑えることができる。
本発明の請求項4にかかるシリコン鋳造用鋳型によれば、シリカ粉末は非晶質相を含むようにしたので、離型材層の窒化珪素粉末とシリカ粉末との焼結性がさらに良くなり、離型材層の強度が向上しやすくなる。その結果、シリコン鋳塊中への離型材の混入、析出の問題をさらに有効に抑制することができる。
本発明の請求項5にかかるシリコン鋳造用鋳型によれば、窒化珪素粉末は、イミド熱分解法によって得られた粒度分布の幅が狭く、大きさの揃った窒化珪素の球状粉末に対して、酸化改質処理を施して表面に非晶質シリカ層を形成したものを用いるようにした。その結果、焼成したときに粉末粒子の粒径のバラツキによって、粒子が凝集したり融着したりすることを防止することができ、離型材層において、部分的に脆弱な箇所ができたりすることがなく、全体として安定した強度のものが得られる。
本発明の請求項6にかかるシリコン鋳造用鋳型によれば、第一の離型材層は、酸化改質処理を施した窒化珪素粉末を90重量%以上含有するようにしたので、鋳型側に接する第一の離型材層の主成分が窒化珪素により構成されている。そして、この窒化珪素粉末は表面に非晶質を含有するシリカ層が形成されているので、離型材層の窒化珪素粉末同士の焼結性が良く、従来のように二酸化珪素粉末を添加しなくても離型材層の強度が高く、鋳型から容易に剥離することがない。その結果、特に黒鉛製の鋳型を用いたときに、窒化珪素が鋳型と反応しにくいので強固に固着しすぎて鋳型の再使用を妨げることがなく、高温下で鋳型を酸化させる原因となる二酸化珪素を添加しなくてもよいので、鋳型が酸化消耗することを抑制できる。
本発明の請求項7にかかるシリコン鋳造用鋳型によれば、シリコン融液側に接する第二の離型材層は、酸化改質処理を施した窒化珪素粉末と非晶質の微細シリカ粉末とを含有する混合層であり、微細シリカ粉末の量を10〜70重量%含有するように最適に制御したので、窒化珪素粉末の間をこの非晶質の微細シリカ粉末によって充填し、高密度とする効果を最大限に高めることができる。
そして、本発明の請求項8にかかるシリコン鋳造用鋳型によれば、鋳型の本体は、黒鉛を主成分として含むようにしたことから、本発明の請求項1から7に記載された離型材層と最適な組合せとなり、上述の本発明の作用を最大限に享受することができる。
本発明において、離型材層は上述のように最低、第一の離型材層と第二の離型材層の2層を備えれば発明の効果を奏するので、手間がかからず、極めて簡単に離型材層を形成することができる。さらに、2層構造になっているので、鋳型から離型材を剥離する際に単層構造のものよりも剥離しやすくすることができ、剥離作業で生じる鋳型へのダメージを軽減することができる。
以下、本発明の実施形態を添付図面に基づき詳細に説明する。
図1は、本発明にかかるシリコン鋳造用鋳型を説明する図である。図1(a)は、シリコン鋳造用鋳型の一例を示す斜視図であり、図1(b)は、図1(a)のA−a方向の断面図である。
図1(a)に示すように、鋳型1は、例えば黒鉛などからなり、一つの底部材101と四つの側部材102とを組み合わせた分割と組み立てが可能な分割型鋳型などで構成される。黒鉛以外にシリカで形成することも可能である。この場合には底と側面を一体で成形した鋳型にする場合が多い。底部材101と側部材102は、ボルト(不図示)や、底部材101と側部材102が嵌合する枠部材(不図示)で固定することによって分割可能に組み立てられる。また、底部材101および側部材102の少なくとも一面には凹凸加工を施すことが好ましい。これは後述する鋳型部材への離型材スラリーの接着性、定着性を向上させるためである。
鋳型1の内表面には、何回も繰り返して使用することができるように後述する構成を有する離型材層2が設けられている。なお、離型材層2の作製方法の詳細についても後述するが、離型材の粉末(必要に応じて多種)の所定量を秤量し、例えば10重量%のPVA(ポリビニルアルコール)水溶液に混合し、撹拌すれば、離型材の粉末をスラリー状とすることができるので、これを鋳型1の内表面に塗布、乾燥することによって、本発明のシリコン鋳造用鋳型の離型材層2を形成することができる。
このようにして離型材層2を設けた鋳型1を7.0〜90Torrに減圧したアルゴン(Ar)雰囲気中に置き、鋳型1をシリコン融液と同程度か若干低い温度で加熱してシリコン融液を注湯する。その後、冷却し凝固させた後、脱型しシリコン鋳塊を得る。鋳型1内にシリコン原料を入れ、直接溶解してもよい。しかる後、鋳型1の底部から徐々に降温させてシリコン融液を鋳型1の底部から徐々に凝固させる。最後に鋳型1を分割してシリコン鋳塊を脱型する。なお、脱型後、鋳型1の部材から離型材層2をへらなどで除去した後、再度、離型材層2で被覆し、複数回繰り返し使用することができる。
本発明のシリコン鋳造用鋳型の断面図を図1(b)に示す。本発明においては、鋳型1の内表面に設けられた離型材層2は、鋳型1側に面して設けられた第一の離型材層2aと、シリコン融液側に面して設けられた第二の離型材層2bとの少なくとも2層を含んでいる。そして、これらの第一の離型材層2aと第二の離型材層2bには、表面にシリカ層を形成した窒化珪素粉末が含まれている。
図2には本発明にかかる表面にシリカ層を設けた窒化珪素粉末の構造概念図を示す。同図には窒化珪素粉末201の周囲に非晶質シリカ層201aが形成された例を示す。
本発明において用いる窒化珪素粉末201としては、シリコンジイミドの熱分解法で得られる球状粉末を用いることが望ましい。この方法によって得られた窒化珪素粉末201は、粒度分布の幅が狭く、大きさの揃ったものとなる。そのため、後述する方法によって離型材層2が焼成されたときに、窒化珪素粉末201の粒径のバラツキによって、粒子が凝集したり融着したりすることを防止することができ、離型材層2の強度が安定するからである。なお、窒化珪素粉末201としては、粒径が0.1〜1.5μmの球状粉末を用いることが好ましい。この範囲を外れると、酸化改質処理を施した窒化珪素粉末201中に凝集粒子あるいは融着粒子などの粗大粒子の含有率が高くなって好ましくない。
そして、このシリコンジイミドの熱分解法で得られた球状の窒化珪素粉末201を酸化雰囲気下で電気炉内で酸化改質処理を施し、表面に非晶質シリカ層201aを形成することができる。この酸化改質処理は、窒化珪素粉末201を例えば電気炉(酸化炉)などに入れて酸化雰囲気下850℃〜1300℃で30分〜600分程度加熱すればよい。なお、温度が高くなりすぎると、表面に形成されるシリカ層中に結晶質相が多くなって窒化珪素粉末201の焼結性に問題が出る可能性があり、低すぎると酸化改質が進まず、処理に多大な時間を要するという問題がある。
このような酸化改質処理により、窒化珪素粉末201の表面に形成する非晶質シリカ層201aの厚みは、処理温度と時間によって制御することができるが、1〜100nm厚の範囲とすることが望ましい。この範囲以下では、窒化珪素粉末201の焼結性を向上させる効果に乏しい。また、この範囲を超えると、酸化改質処理を施した窒化珪素粉末201同士が非晶質シリカ層201aの部分で結合あるいは融着して凝集する結果、硬い粗大粒子が形成される。硬く粗大な粒子群が粉末中に多いと、離型材スラリーとして使用した場合、その作製または塗布における作業性が悪いため好ましくない。具体的には、粗大な粒子はスラリー中で沈降するために均一なスラリーが作製できず、また均一に塗布できないために、形成した離型材層2の厚みや強度にばらつきが生じ、離型材層2の薄い部分や破損した部分でシリコン融液と鋳型1が融着しやすくなる問題がある。さらに、離型材層2中の粗大粒子は層中での凝集力が弱く、鋳型1との付着性も悪くて剥離し易いため、この粗大粒子を含んだ離型材層2が剥離してシリコン融液中に混入して異物になるという問題が発生して不適である。なお、非晶質シリカ層201aの厚みはTEM(透過型電子顕微鏡)像、及びそれによる元素分析により測定することができる。
このような方法によって酸化改質した窒化珪素粉末201の表面の非晶質シリカ層201aは、大気中の水分などに由来するSi−OH(シラノール基)が形成されている。そして、相互の窒化珪素粉末201のSi−OH(シラノール基)間でSi−O−Si(シロキサン結合)が生じるので、窒化珪素粉末201同士の密着性が大幅に改善され、離型材層2が強固なものになる。
このように、離型材層2には表面に非晶質シリカ層201aが形成された窒化珪素粉末201が含有されているので、この鋳型1を鋳造炉内で高温に保持してシリコン融液を注湯する際に、離型材層2の窒化珪素粉末201同士が焼結して離型材層2の強度が適度に向上する。そのためシリコン融液を注湯するときに離型材層2が剥離して、鋳型1とシリコン鋳塊とが接触することがなく、シリコン鋳塊を鋳型1から脱型する際に離型材層2がバラバラになるため、脱型が容易になり、鋳型1とシリコン鋳塊とが付着することによって発生するシリコンの欠けを防止することができる。
また、第一の離型材層2aは、この酸化改質して表面に非晶質シリカ層201aを形成した窒化珪素粉末201を主成分として含有することが望ましく、その含有率を90重量%以上とすることが望ましい。従来は、このような窒化珪素粉末を主成分として離型材として形成すると非常にもろく、シリコン融液を注湯したときなどに離型材層が壊れ、鋳型とシリコン鋳塊とが接触して付着することにより発生するシリコンの欠けの問題があったが、本発明においては、上述に説明したように、非晶質シリカ層201aを表面に形成した窒化珪素粉末201同士が焼結して結合し、適度な強度を有するようになるため、このような問題が起こらない。なお、窒化珪素粉末201の含有比率が90重量%よりも少なくても本発明の効果を奏するが、鋳型1とシリコン融液との接触を防ぐ効果を最適に保つために、この範囲とすることが望ましい。
また、シリコン融液側に面して設けられた第二の離型材層2bは、上述の非晶質シリカ層201aを表面に形成した窒化珪素粉末201とシリカ粉末が含まれている。
図3には本発明にかかる表面にシリカ層を設けた窒化珪素粉末およびシリカ粉末とを混在させたときの構造概念図を示す。窒化珪素粉末201の周囲に非晶質シリカ層201aが形成されており、さらにその周りを取り巻くようにシリカ粉末202が存在している。
このようなシリカ粉末202としては、可燃ガスと助燃ガス、例えば水素ガスと酸素ガスとの高温火炎中に四塩化珪素を噴射して加熱処理して得られる非晶質の球状のシリカ微細粉末(いわゆる、フュームドシリカ微粉末、あるいはフューズドシリカ粉末)を用いることが好ましく、粒径は0.01〜0.1μm程度の微粉末を用いることが望ましい。
図3に示すように第二の離型材層2bは、窒化珪素粉末201と、シリカ粉末202とが混合された混合層となっているので、窒化珪素粉末201の周囲をシリカ粉末202が取り巻き、窒化珪素粉末201同士が強く結合させる効果を誘発する。
なお、ここで用いるシリカ粉末202としては、非晶質の微細なシリカ粉末を用いることが望ましく、さらに非晶質の微細なシリカ粉末の中でも、上述の気相法によって得られるものを用いることが望ましい。珪酸ソーダ(NaO・nSiO)水溶液の加水分解法やイオン交換法で得られる非晶質球状シリカ微粉末は、アルカリ金属不純物を多く含み、シリコン鋳塊汚染の原因となるので、不純物を除去してから使用する必要がある。
また、第二の離型材層2b中のシリカ粉末202の重量比率は10〜70重量%の範囲とすることが望ましく、さらに好適には、シリカ粉末202を10〜20重量%添加するのが望ましい。シリカ粉末202の重量比率が70%よりも大きくなると、離型材層2が鋳型1に付着して剥がれなくなり、鋳型1の再使用が困難になる。また、鋳型1が離型材を介してシリコンの鋳塊に付着し、シリコンの鋳塊から鋳型を剥離するときに、シリコンの一部に欠けが発生する。また、シリカ粉末202の重量比率が10%より小さくなると、窒化珪素粉末201とシリカ粉末202との固着効果が低減して、離型材層2の強度が低下するので好ましくない。
なお、本発明において、離型材層2中の微細なシリカ粉末202として、水素ガスと酸素ガスとによって形成される高温火炎中に四塩化珪素を噴射して加熱処理して得られる球状の非晶質微細シリカを使用すれば、焼結性が高いため、その添加比率が5〜20重量%の範囲であっても、鋳型1への第二の離型材層2bの形成を容易にすることができ、上述のシリカ粉末を用いたとき(最低10重量%)と比べて、使用できる重量比率の幅を広げることができる。
また、本発明においては、シリコン融液に接する側に設けられた第二の離型材層2bは、鋳型1に接する側に設けられた第一の離型材層2aよりも窒化珪素粉末201の含有比率が少なくなっている。これは、上述のように、第一の離型材層2aを主成分を窒化珪素粉末201とし、第二の離型材層2bを窒化珪素粉末201とシリカ粉末202との混合層によって形成することにより容易に達成することができる。これによって、シリコン融液側である第二の離型材層2bにおいて、シリコン融液と活性の高い窒化珪素粉末201の含有比率を少なくしたので、窒化珪素がシリコン融液内に混入しにくくなり、窒化シリコン系異物の析出を抑制することができる。
ところで、特許文献4に、珪酸ソーダのイオン交換法で得られる微細シリカ(いわゆるコロイダルシリカ)と窒化ケイ素粉末を混合して得られた混合素地と微細溶融シリカ砂のスタッコ層からなる離型材層を形成する例が開示されているが、この発明は内部残留応力の少ないシリコン鋳塊を製作すべく湿式法によって得られる微細球状シリカを用いることを考案した発明であり、本発明のように、離型材層2を強化する目的で、気相法によって得られる微細な球状のシリカ粉末を用いるのとは大きく異なる。
また特に本発明による酸化改質した窒化珪素粉末201と非晶質の微細なシリカ粉末202とを用いれば、従来問題であった窒化珪素粉末間の固着力不足を有効に回避することができる。その理由は、上述の方法によって酸化改質した窒化珪素粉末201や、非晶質の微細なシリカ粉末202には、その表面に、大気中の水分などに由来するSi−OH(シラノール基)が形成されている。そして窒化珪素粉末201同士、あるいは窒化珪素粉末201と非晶質の微細なシリカ粉末202同士のシラノール基の間において、水が脱離してSi−O−Si(シロキサン結合)が生じるので、粉末粒子同士の密着性が大幅に改善され、離型材層2が強固なものになるという効果が得られるからである。その結果、鋳型1内にシリコン融液を注湯する際、あるいはその後に凝固する際に、離型材層2が剥離したり欠落してシリコン融液内に混入したり、微細な窒化珪素粉末201がシリコン融液内に巻き込まれることを防げる。
また上述の気相法によって得られる非晶質の微細なシリカ粉末202を使用することによって、従来の石英ガラスを粉砕して得られるシリカと異なり、汚染(コンタミネーション)の問題が発生することはない。
次に、本発明の離型材層2の形成方法について説明する。
まず、第一の離型材層2aを形成するために、上述の方法により酸化改質した窒化珪素粉末201を、5〜15重量%のPVA(ポリビニルアルコール)水溶液に混合し、撹拌すれば、粉体である窒化珪素粉末201をスラリー状とすることができるので、鋳型1に塗布することが容易となる。この離型材スラリーを鋳型1の内表面に塗布、乾燥することによって、本発明のシリコン鋳造用鋳型の離型材層2の第一の離型材層2aを形成することができる。
次に、第二の離型材層2bを形成するために、上述の方法により作製した窒化珪素粉末201とシリカ粉末202とを所定の混合比とし、第一の離型材層2aの場合と全く同様にして、離型材スラリーを作製する。その後、鋳型1に形成された第一の離型材層2aの上に塗布し、乾燥することによって、第一の離型材層2bを形成することができる。
なお、本発明による離型材層2の形成には、上述のように刷毛や、箆(ヘラ)で鋳型1の部材に塗布し、ホットプレート上で乾燥させる方法を用いることが好ましいが、例えば、スプレーなどを用いて鋳型1の内表面に塗布し、乾燥して形成する方法、加熱板・シリコンラバーダイアフラムを設えたラミネート装置を用いて、加熱圧着させる方法も可能である。さらに対象となる鋳型1の内表面が平面である場合には、スクリーン印刷を用いることも可能である。
第一の離型材層2aについては、0.1〜2mmの厚さとし、第二の離型材層2bについては、0.1〜2mmの厚さの範囲内で形成することが望ましい。この範囲を超えると離型材層2の乾燥時間が長くなるという問題があり、この範囲以下では完全に離型材層2によって鋳型1の内表面を被覆することができず、シリコン融液と鋳型1との接触が起こる可能性があるからである。
なお、これらの離型材層を必要な厚みとするためには、塗布する量を変更したり、塗布・乾燥した後に繰り返し重ねて、同一の離型材スラリーを塗布・乾燥を行えばよい。
このようにして本発明にかかる離型材層2を設けた鋳型1を7.0〜90Torrに減圧した鋳造炉などの内部でアルゴン(Ar)雰囲気中に置き、鋳型1をシリコン融液と同程度か若干低い温度で加熱してシリコン融液を注湯する。その後、冷却し凝固させた後、脱型しシリコン鋳塊を得る。鋳型1内にシリコン原料を入れ、直接溶解してもよい。
このとき、本発明にかかる離型材層2は、表面にシリカ層、好ましくは非晶質シリカ層201aが形成された窒化珪素粉末201を含有しているので、この鋳型1を鋳造炉内で高温に保持されたときに、窒化珪素粉末201同士が焼結して離型材層2の強度が適度に向上するという効果が得られる。
しかる後、鋳型1の底部から徐々に降温させてシリコン融液を鋳型1の底部から徐々に凝固させる。最後に鋳型1を分割してシリコン鋳塊を脱型するが、本発明にかかる離型材層2は、脱型するときにはバラバラになり、スムースにシリコン鋳塊を脱型することができる。なお、通常は脱型後、鋳型1の部材から離型材層2をへらなどで除去し、再度、離型材層2で被覆し、複数回繰り返し使用するが、離型材層2を除去する際にも鋳型1の部材にダメージを与えることがなく、極めて容易に剥離することができる。
なお、本発明の実施形態は上述の例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはもちろんである。
例えば、上述の説明において、酸化改質処理として、あらかじめ大気中もしくは酸素を含む雰囲気下で窒化珪素粉末を加熱して、表面改質を行い、酸化物層を形成する処理した例によって説明したが、これに限るものではなく、あらかじめ鋳型に塗布しておいた窒化珪素粉末を含む離型材層に対して、酸化改質処理を行って、窒化珪素粉末の表面にシリカ層を設けても構わない。特に離型材層が多孔質である場合や、耐酸化性が大きい鋳型、例えば、シリカ製の鋳型を用いた場合などに、効果的である。
また、酸化改質処理としても、加熱処理に限るものではなく、例えば、窒化珪素粉末を含む離型材の原料ををスラリーとしたときに、例えば、酢酸などの酸性の薬品を適宜添加することによって、窒化珪素粉末の表面にシリカ層を設けてもよい。さらには、窒化珪素粉末を含む離型材の原料粉体を大気中などでプラズマ溶射して離型材層を形成することによって、窒化珪素粉末の表面にシリカ層を形成してもよい。いずれの方法によっても、本発明の効果を奏することが可能となる。
また、上述の説明では、離型材層2は、第一の離型材層2aと第二の離型材層2bの2層から構成される例によって説明したが、これに限るものではなく、これらの第一の離型材層2aと第二の離型材層2bとの間に、別の層が設けられていても構わない。本発明の離型材層2の層構成は、鋳型1側の第一の離型材層2aとシリコン融液側の第二の離型材層2bとを備えていればよい。
さらに、上述の説明では、窒化珪素粉末201の表面に非晶質シリカ層201aが形成された例で説明したが、これに限るものではなく、このシリカ層は部分的に非晶質相を含むものであっても、結晶質シリカ層であっても本発明の効果を奏することができる。ただし、上述の説明のような非晶質シリカ層201aであれば、最適に本発明の効果を奏することができるので好ましい。
また、上述の説明では、第一の離型材層2aを主成分を窒化珪素粉末201とし、第二の離型材層2bを窒化珪素粉末201とシリカ粉末202との混合層とした例で説明したが、これに限るものではなく、第一の離型材層2aよりも第二の離型材層2bの方が、窒化珪素粉末201の含有比率が少なくなるように形成されていれば、別の材料との混合層であっても構わないが、鋳型1やシリコン融液に対して影響を与えない材料であることが必要である。上述の説明において提示した材料の組合せが本発明の最良の実施形態であることはいうまでもない。
そして、上述の説明では、鋳型1の材質としては、黒鉛を主成分として含むものについて説明したが、この場合、高純度黒鉛の単体材料に限るものではなく、炭素繊維によって強化した黒鉛材料を用いてもよい。さらに、黒鉛以外に溶融シリカなどによって形成された鋳型を用いても構わないし、分割型の鋳型ではなく、一体型の鋳型を用いても構わない。
さらに、上述の説明では、窒化珪素粉末201がイミド熱分解法によって製造された場合によって説明したが、金属珪素の直接窒化法で得られる窒化珪素粉末を用いることも可能である。ただし、直接窒化法による窒化珪素粉末は、直接窒化反応時に生成する粗大粉末の未粉砕粒子を多く含み、粒度分布の幅が広いため、加熱焼成後の凝集粒子及び/又は融着粒子の粒径制御が困難となる恐れがある。適宜、分級などの手段によって、粒度分布の幅を狭く抑えることが望ましい。
以下、本発明の実施例について説明する。
シリコンジイミドの熱分解法によって得られた平均粒子径が0.5μmの窒化珪素粉末201を、大気雰囲気下、バッチ式電気炉(酸化炉)で1000℃で3時間加熱することによって、約20nmの非晶質シリカ層201aをこの窒化珪素粉末201の表面に形成した。厚さについてはTEMにより確認している。
この窒化珪素粉末201を8%のポリビニルアルコール水溶液で攪拌混合して得られた離型材スラリーを黒鉛製の鋳型プレートの内表面に第一の離型材層2aとして箆で塗布した。その後、ホットプレート上で乾燥させ、0.8mmの厚さの第一の離型材層2aを得た。
次に、上述の窒化珪素粉末201と四塩化珪素の水素・酸素燃焼法で得られた平均粒径0.05μmの非晶質のシリカ粉末202を総量に対して所定量を秤量し、8%のポリビニルアルコール水溶液で攪拌混合して得られた離型材スラリーを第一の離型材層2a上に重ね塗りをしホットプレート上で乾燥させることによって、1.2mmの厚さの第二の離型材層2bを得た。これによって、本発明のシリコン鋳造用鋳型にかかる離型材層2を得ることができた。
なお、窒化珪素粉末201の非晶質シリカ層201a、および非晶質のシリカ粉末202において、非晶質相が存在することについては、TEMによる電子線回折によりハローパターンの存在によって確認した。
上述の方法により作製した本発明にかかる鋳型1を8.0Torrに減圧したアルゴン雰囲気中に置き、黒鉛ヒータを使って1000℃に加熱した状態で鋳型1内にシリコン融液68kgを注湯し、7時間かけて徐々に凝固させた。冷却後固化したシリコンの鋳塊を鋳型1から取り出し、スライスしてシリコンウェハーとした。ここで、評価項目としては、鋳型1から離型材層2が剥離の有無(目視による確認)、シリコン鋳塊中の析出物の有無(スライスしたシリコンウェハーの顕微鏡観察による確認)、シリコンウェハーの素子特性評価(周知の手法によってバルク型の太陽電池素子を形成し、その発電効率による確認)とし、評価を行った。
なお、第一の離型材層2a、第二の離型材層2bについて、窒化珪素粉末201およびシリカ粉末202の含有比率、平均粒径の数値を本発明の範囲内で変更して、表1に示す条件No.1〜16の試料を作製した。さらに、比較のため、本発明の範囲外の試料として、第一の離型材層2aの窒化珪素粉末の含有比率が第二の離型材層2bのそれよりも少なくなった試料(条件No.17、18)、第一の離型材層2aのみの試料(条件No.19)、第二の離型材層2bのみの試料(条件No.20)についてもそれぞれ上述の方法により作製し、評価を行った。結果を表1に示す。なお、各評価結果において、◎は全く問題ない、○は若干悪いが問題となるレベルではない、△は許容範囲ギリギリ、×は不可を示す。
Figure 0004328161
表1の条件No.1〜16の試料は本発明の範囲内であるが、すべて許容範囲以上の結果が得られた。それに対して、本発明の範囲外の試料である、条件No.17〜20の試料については、いずれかの評価項目が、不可(×)の結果となり、本発明の効果が確認された。
本発明にかかるシリコン鋳造用鋳型は、以上の実施例に何等制限されるものではなく、その要旨の範囲内で種々変更することができることはいうまでもない。
本発明のシリコン鋳造用鋳型を説明する図であり、(a)は、シリコン鋳造用鋳型の一例を示す斜視図、(b)は、(a)のA−a方向の断面図である。 本発明のシリコン鋳造用鋳型に設けた離型材層にかかる、表面にシリカ層を設けた窒化珪素粉末の構造概念図である。 本発明のシリコン鋳造用鋳型に設けた離型材層にかかる、表面にシリカ層を設けた窒化珪素粉末およびシリカ粉末とを混在させたときの構造概念図である。
符号の説明
1:鋳型
2:離型材層
2a:第一の離型材層
2b:第二の離型材層
101:底部材
102:側部材
201:窒化珪素粉末
201a:非晶質シリカ層
202:シリカ粉末

Claims (8)

  1. 鋳型内表面に離型材層を設けた鋳型内部のシリコン融液を凝固させるシリコン鋳造用鋳型において、前記離型材層は、鋳型に接する側に設けられた第一の離型材層と、シリコン融液に接する側に設けられた第二の離型材層とを具備するとともに、これらの各離型材層は、表面にシリカ層が形成された窒化珪素粉末を含有してなり、前記第二の離型材層は、前記第一の離型材層よりも前記窒化珪素粉末の含有比率が少ないことを特徴とするシリコン鋳造用鋳型。
  2. 前記シリカ層は非晶質相を含むことを特徴とする請求項1に記載のシリコン鋳造用鋳型。
  3. 前記第二の離型材層は、前記窒化珪素粉末よりも平均粒径の小さいシリカ粉末を含むことを特徴とする請求項1または2に記載のシリコン鋳造用鋳型。
  4. 前記シリカ粉末は非晶質相を含むことを特徴とする請求項3に記載のシリコン鋳造用鋳型。
  5. 前記窒化珪素粉末は、イミド熱分解法によって得られた窒化珪素の球状粉末を酸化改質処理を施して表面に非晶質シリカ層を形成してなることを特徴とする請求項3に記載のシリコン鋳造用鋳型。
  6. 前記第一の離型材層は、前記酸化改質処理を施した窒化珪素粉末を90重量%以上含有することを特徴とする請求項5に記載のシリコン鋳造用鋳型。
  7. 前記第二の離型材層は、前記酸化改質処理を施した窒化珪素粉末と、シリカ粉末とを含有する混合層であり、前記シリカ粉末を10〜70重量%含有することを特徴とする請求項5または6に記載のシリコン鋳造用鋳型。
  8. 前記鋳型の本体は、黒鉛を主成分として含むことを特徴とする請求項1から7のいずれかに記載のシリコン鋳造用鋳型。
JP2003332024A 2003-09-24 2003-09-24 シリコン鋳造用鋳型 Expired - Fee Related JP4328161B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332024A JP4328161B2 (ja) 2003-09-24 2003-09-24 シリコン鋳造用鋳型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332024A JP4328161B2 (ja) 2003-09-24 2003-09-24 シリコン鋳造用鋳型

Publications (2)

Publication Number Publication Date
JP2005095924A JP2005095924A (ja) 2005-04-14
JP4328161B2 true JP4328161B2 (ja) 2009-09-09

Family

ID=34460498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332024A Expired - Fee Related JP4328161B2 (ja) 2003-09-24 2003-09-24 シリコン鋳造用鋳型

Country Status (1)

Country Link
JP (1) JP4328161B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032789B4 (de) * 2005-06-06 2010-12-30 Deutsche Solar Ag Behälter mit Beschichtung und Herstellungsverfahren
WO2007010622A1 (ja) * 2005-07-22 2007-01-25 Kyocera Corporation 多結晶シリコン基板及びその製造方法、並びに光電変換素子及び光電変換モジュール
BRPI0706659A2 (pt) 2006-01-20 2011-04-05 Bp Corp North America Inc métodos de fabricação de silìcio moldado e de célula solar, células solares, corpos e wafers de silìcio multicristalinos ordenados geometricamente continuos
JP4781232B2 (ja) * 2006-11-07 2011-09-28 コバレントマテリアル株式会社 多結晶シリコンブロックの製造に用いられるシリコン溶融ルツボ
JP2011528308A (ja) 2007-07-20 2011-11-17 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド シード結晶からキャストシリコンを製造するための方法及び装置
WO2009015167A1 (en) 2007-07-25 2009-01-29 Bp Corporation North America Inc. Methods for manufacturing monocrystalline or near-monocrystalline cast materials
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
EP2116637A3 (en) 2008-05-07 2012-03-21 Covalent Materials Corporation Crucible for melting silicon and release agent used to the same
KR20130133822A (ko) 2010-12-28 2013-12-09 우베 고산 가부시키가이샤 다결정 실리콘 잉곳 주조용 주형 및 그 제조 방법, 그리고 다결정 실리콘 잉곳 주조용 주형의 이형재용 질화규소 분말 및 그것을 함유한 슬러리
SG191386A1 (en) 2010-12-28 2013-08-30 Ube Industries Mold for casting polycrystalline silicon ingot, and silicon nitride powder for mold release material thereof, slurry containing silicon nitride powder for mold release layer thereof and mold release material for casting thereof
KR20130133820A (ko) 2010-12-28 2013-12-09 우베 고산 가부시키가이샤 다결정 실리콘 잉곳 주조용 주형 및 그 제조 방법, 그리고 다결정 실리콘 잉곳 주조용 주형의 이형재용 질화규소 분말 및 그것을 함유한 슬러리
JP5762777B2 (ja) * 2011-02-01 2015-08-12 信越石英株式会社 多結晶シリコンインゴット製造用角形シリカ容器並びに多孔質シリカ板体及びその製造方法
JP5762784B2 (ja) * 2011-03-25 2015-08-12 信越石英株式会社 多結晶シリコンインゴット製造用角形シリカ容器並びに多孔質シリカ板体及びその製造方法
JP2013016532A (ja) * 2011-06-30 2013-01-24 Tokyo Electron Ltd シリコン製部品の製造方法及びエッチング処理装置用のシリコン製部品
KR101431457B1 (ko) * 2012-04-09 2014-08-22 한국화학연구원 도가니 보호막 제조 방법
FR3003272A1 (fr) * 2013-03-14 2014-09-19 Saint Gobain Ct Recherches Creuset

Also Published As

Publication number Publication date
JP2005095924A (ja) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4328161B2 (ja) シリコン鋳造用鋳型
JP5153636B2 (ja) シリコンインゴット製造用鋳型の形成方法、太陽電池素子用基板の製造方法、および太陽電池素子の製造方法
WO2011122585A1 (ja) シリコンインゴット鋳造用積層ルツボ及びその製造方法
JP5637221B2 (ja) 多結晶シリコンインゴット鋳造用鋳型及びその製造方法並びに多結晶シリコンインゴット鋳造用鋳型の離型材用窒化珪素粉末及びそれを含有したスラリー
JP3931322B2 (ja) シリコンインゴット鋳造用鋳型およびその製造方法
CN102589286A (zh) 用于熔化硅的坩埚和该坩埚使用的脱模剂
JP4192070B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP2007261832A (ja) 窒化珪素離型材粉末、離型材の作製方法及び焼成方法
CN101576346A (zh) 用于熔化硅的坩埚和该坩埚使用的脱模剂
JP4884150B2 (ja) シリコン鋳造用鋳型の製造方法
JP4081411B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP3250149B2 (ja) シリコンインゴット鋳造用鋳型およびその製造方法
JP4116914B2 (ja) シリコン鋳造用鋳型の製造方法、シリコンインゴットの製造方法
JP4025671B2 (ja) シリコン鋳造用鋳型の製造方法
JP4051181B2 (ja) シリコン鋳造用鋳型及びこれを用いた太陽電池の形成方法
JP4081413B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP2011088771A (ja) 型材を用いた石英ガラス材料の成形方法
JP6096653B2 (ja) シリコン鋳造用鋳型およびその製造方法
CN108796617A (zh) 坩埚结构及其制作方法与硅晶结构及其制作方法
JP3161663B2 (ja) シリコンインゴット鋳造用鋳型
JP2005152987A (ja) シリコン鋳造用鋳型およびその製造方法
JP2002321037A (ja) シリコン鋳造方法
JP2005104743A (ja) シリコン鋳造用鋳型
JP2005211937A (ja) シリコン鋳造用鋳型とそれを用いたシリコン鋳造装置
JP2003313023A (ja) シリコン鋳造用鋳型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees