JP4253974B2 - SiC単結晶およびその成長方法 - Google Patents

SiC単結晶およびその成長方法 Download PDF

Info

Publication number
JP4253974B2
JP4253974B2 JP36459399A JP36459399A JP4253974B2 JP 4253974 B2 JP4253974 B2 JP 4253974B2 JP 36459399 A JP36459399 A JP 36459399A JP 36459399 A JP36459399 A JP 36459399A JP 4253974 B2 JP4253974 B2 JP 4253974B2
Authority
JP
Japan
Prior art keywords
single crystal
sic single
crystal
angle
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36459399A
Other languages
English (en)
Other versions
JP2001181095A (ja
Inventor
弘 塩見
恒暢 木本
弘之 松波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP36459399A priority Critical patent/JP4253974B2/ja
Priority to PCT/JP2000/006057 priority patent/WO2001046500A1/ja
Priority to DE60025502T priority patent/DE60025502T2/de
Priority to EP00956968A priority patent/EP1249521B8/en
Priority to TW089118615A priority patent/TW581831B/zh
Publication of JP2001181095A publication Critical patent/JP2001181095A/ja
Application granted granted Critical
Publication of JP4253974B2 publication Critical patent/JP4253974B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体電子部品等に適したSiC単結晶およびその成長方法に関するものである。
【0002】
【従来の技術】
近年、炭化珪素(SiC)あるいは窒化ガリウム(GaN)等の軽元素で構成される化合物半導体の研究が盛んである。かかる化合物半導体は、軽元素で構成されているため結合エネルギーが強く、その結果、エネルギーの禁制帯幅(バンドギャップ)、絶縁破壊電界、熱伝導度が大きいことが特徴である。そして、特にSiCは、このワイドバンドギャップの特徴を活かして、高効率・高耐圧パワーデバイス、高周波パワーデバイス、高温動作デバイス、あるいは青色から紫外発光デバイス用の材料として注目を集めている。しかしながら、結合エネルギーが強いため、SiCの化合物は、大気圧では高温にしても融解せず、シリコン(Si)など他の半導体で用いられる融液の再結晶化によるバルク結晶の育成が困難である。
【0003】
バルク状のSiC単結晶を成長させる方法としては、特公昭第59−48792号公報や特開平2−30699号公報に掲載されたいわゆる改良型レーリー法が知られている。この改良型レーリー法は、黒鉛製のるつぼにSiC単結晶からなる種結晶を設置し、さらに減圧雰囲気下で原料SiC粉末を昇華させて、種結晶上に目的規模のSiC単結晶を再結晶させるものである。
【0004】
この改良型レーリー法をはじめとするいわゆる昇華法においては、その種結晶として、主として{0001}面を露出させたSiC単結晶基板が使用されている。しかしながら、面方位が{0001}であるSiC単結晶基板を用いてSiC単結晶を成長させる場合、マイクロパイプという<0001>軸方向に延びる欠陥が単結晶の表面に到達するため、このSiC単結晶を用いて素子を作製すると、リーク電流等が発生する場合があった。
【0005】
このマイクロパイプに関する問題を解消するための技術として、例えば特許第2804860号公報に掲載されたSiC単結晶の成長方法が知られている。この方法は、種結晶として{0001}面より60゜〜120゜の角度αだけずれた結晶面を露出させたSiC単結晶を使用するものであり、より好ましくは、{1−100}面や{11−20}面を露出させたSiC単結晶を使用するものである。このような種結晶を使用すれば、単結晶の表面に到達するマイクロパイプを減少させることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、特許第2804860号公報に掲載されたSiC単結晶の成長方法には、次のような問題があった。すなわち、同公報に記載された発明の発明者らがフィジカステイタスソリッド(b)(202号163頁〜175頁1997年)において述べているように、{1−100}面あるいは{11−20}面が露出したSiC単結晶を種結晶として使用する場合は、結晶多形の制御ができ、マイクロパイプの表面への到達を抑制できるものの、高密度の積層欠陥(スタッキングフォールト)がSiC単結晶の表面に露出するという問題があった。この積層欠陥は、結晶を成長させる際に面状に広がるものであり、かかる積層欠陥が表面に露出したSiC単結晶を用いて素子を作製すると、マイクロパイプが表面に露出したSiC単結晶を用いる場合と同様に、リーク電流等が発生するおそれがある。
【0007】
本発明は、かかる事情に鑑みてなされたものであり、表面に露出するマイクロパイプおよび積層欠陥が低減されたSiC単結晶およびその成長方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は、SiC単結晶を成長させる方法であって、{0001}面に対して角度α(20゜<α<60゜)だけずれ、且つ、その法線ベクトルを{0001}面に投影したベクトルと<11−20>方向とのなす角度βが15゜以内である面を露出させたSiC単結晶からなる種結晶上に、SiC単結晶を成長させることを特徴とする。
【0009】
本発明に係るSiC単結晶の成長方法によれば、このような面を露出させた種結晶を用いることで、<0001>方向に延びるマイクロパイプやこの<0001>方向と垂直な面に広がる積層欠陥はSiC単結晶の側面に到達し、マイクロパイプ及び積層欠陥が表面に到達する事態を抑制することができる。
【0010】
また、角度αは、25゜以上55゜以下であることが好ましく、角度βは、10゜以内であることが好ましい。
【0011】
さらに、本発明に係るSiC単結晶の成長方法において、黒鉛製の坩堝内に種結晶を設置し、坩堝内でSiC原料粉末を昇華させて種結晶上にSiC単結晶を再結晶させることが好ましい。また、反応炉内に種結晶を設置し、反応炉内で化学気相堆積法によって種結晶上にSiC単結晶を成長させてもよい。
【0012】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係るSiC単結晶およびその成長方法の好適な実施形態について詳細に説明する。尚、実施形態および実施例の説明で結晶の格子方向および格子面を使用する場合があるが、ここで、格子方向及び格子面の記号の説明をしておく。個別方位は[ ]、集合方位は< >、個別面は( )、集合面は{ }でそれぞれ示すことにする。また、負の指数については、結晶学上、”−”(バー)を数字の上に付けることになっているが、明細書作成の都合上、数字の前に負号を付けることにする。
【0013】
図1は、本実施形態のSiC単結晶を成長させるための結晶成長装置2を示す断面図である。結晶成長装置2は、主として、内部でSiC単結晶を成長させるための黒鉛製の坩堝4と、坩堝4の熱が外部へ放出されるのを防止する熱シールド部材6と、この熱シールド部材6を包囲する水冷式の反応管8と、反応管8の周囲に巻回されるとともに坩堝4を加熱するための高周波コイル10と、から構成されている。また、反応管8の頂上部には、アルゴンガスなどの不活性ガスを導入するためのガス導入管12が介挿され、反応管8の底部には、不活性ガスを外部に排出するためのガス排出管14が介挿されている。
【0014】
坩堝4は、有底円筒形状をなしてSiC多結晶からなる原料15を収容する収容部16と、この収容部16の上部開口を封止する蓋部18と、蓋部18に取り付けられるとともに種結晶30が底面に固定された種結晶配置部20と、から成る。
【0015】
ここで、図2を参照して、本実施形態の種結晶30について説明する。同図に示すように、種結晶30として、(1){0001}面に対して角度α(α=54.7゜)だけずれ、且つ、(2)その法線ベクトルXを{0001}面に投影したベクトルYと<11−20>の一つである[11−20]方向とが平行となる面30u、が露出した4H型ポリタイプ(“H”は六方晶系、“4”は原子積層が4層で一周期となる結晶構造を意味する)のSiC単結晶を用いる。
【0016】
次に、図1〜図4を参照して、SiC単結晶の成長方法を説明する。
【0017】
原料15および種結晶30を収容した坩堝4を反応管8内に設置した後、反応管8内を約1時間ほど真空排気し、次に、ガス導入管12より不活性ガスを導入して反応管8内を常圧(約1.013×105Pa)にする。そして、再び反応管8内を約10分ほど真空排気した後、ガス導入管12より不活性ガスを導入して反応管8内を再度常圧(約1.013×105Pa)にする。
【0018】
以上の作業が終了した後、高周波コイル10によって坩堝4を加熱し始める。この際、坩堝4の温度を約2000℃にするとともに、種結晶30の温度が原料15の温度よりも約50℃だけ低くなるように温度勾配をつける。同時に、反応管8内の圧力を約5.3×102Paまで低下させる。これにより、SiC多結晶からなる原料15が昇華し、原料15のガスが種結晶30に到達して、図3に示すように、種結晶30の表面(露出面)30u上に直径約2インチの4H型ポリタイプのSiC単結晶40を成長させることができる。なお、図3においては、発明の理解を容易にするために種結晶30の上方にSiC単結晶40を位置させているが、実際は、図1から分かるように種結晶30の下方にSiC単結晶40が成長する。
【0019】
ここで、図3を参照して、SiC単結晶40の成長過程を詳説する。通常、SiC単結晶を成長させるに際して、<0001>方向に延びるマイクロパイプや、<0001>方向と垂直な面に広がる積層欠陥がSiC単結晶の内部に含まれることが多い。そして、多数のマイクロパイプや積層欠陥が表面に露出したSiC単結晶を用いて素子を作製すると、リーク電流等が発生するおそれがある。
【0020】
ここで、本実施形態のように、(1){0001}面に対して角度α(α=54.7゜)だけずれ、且つ、(2)その法線ベクトルXを{0001}面に投影したベクトルYと<11−20>の一つである[11−20]方向とが平行となる面を露出させた種結晶30を用いると、種結晶30の表面30uは、マイクロパイプ42(図中一点鎖線で示す)が延びる<0001>方向に対して約35.3゜の傾きを有することになる。このため、ある程度SiC単結晶40を成長させると、マイクロパイプ42はSiC単結晶40の側面40sに到達し、マイクロパイプ42が表面40uに到達する事態を抑制することができる。また、種結晶30の表面30uは、積層欠陥44(図中破線で示す)が広がる面、すなわち<0001>方向と垂直な面に対して約54.7゜の傾きを有する。このため、ある程度SiC単結晶40を成長させると、積層欠陥44はSiC単結晶40の側面40sに到達し、積層欠陥44が表面40uに到達する事態を抑制することができる。
【0021】
また、1996年に行われたマテリアル・リサーチ・ソサイアティのシンポジウムのプロシーディング423巻583頁の杉山らの論文にも示されているように、(0001)面が表面に現れた種結晶を用いて結晶成長させる場合、<11−20>方向は<1−100>方向に比べて成長速度が速く、得られた結晶は<11−20>方向が稜になった六角柱となる傾向になる。このような現象は、表面に現れるSi原子及びC原子の結合手の相違によって生じると考えられる。そして、このようにSi原子とC原子の結合手が相違するため、ベクトルYを[11−20]方向と平行にすることで、マイクロパイプ42及び積層欠陥44がSiC単結晶40の側面40sに向かって延びる速度が増加し、後述の実施例に示されるようにSiC単結晶40の表面40uに露出するマイクロパイプ42及び積層欠陥44が減少すると考えられる。
【0022】
なお、角度αは54.7゜に限られず、20゜<α<60゜を満たせばよい。後述の実施例からも分かるように、角度αが20゜以下ではマイクロパイプ42がSiC単結晶40の側面40sに逃げず、角度αが60゜以上では積層欠陥44が側面40sに逃げないためである。また、1997年のフィジカル・スティタス・ソリッド(b)202巻5頁に示されているように、マイクロパイプは必ずしも<0001>方向に延びるとは限らず多少傾きをもって延びる場合があるため、角度αは、好ましくは25゜以上55゜以下にするとよい。角度αをこのような範囲にすれば、マイクロパイプ42及び積層欠陥44がSiC単結晶40の側面40sに到達する可能性を高めることができる。
【0023】
また、図4に示すように、ベクトルYと[11−20]方向とは必ずしも平行である必要はなく、両者の間の角度βが15゜以内であればよい。角度βが15゜以内程度であれば、マイクロパイプ42及び積層欠陥44がSiC単結晶40の側面40sに向かって延びる速度が増加し、これらの欠陥がSiC単結晶40の表面に到達する事態を効果的に防止することができる。さらに、後述の実施例からも分かるように、角度βは10゜以内であれば、欠陥密度を一層低減させることができる。なお、本実施形態では、ベクトルYと個別方位[11−20]との間を角度βとしているが、集合方位<11−20>に含まれる他の個別方位との間を角度βとしてもよい。
【0024】
なお、上記実施形態では、いわゆる昇華法によってSiC単結晶を成長させる場合について説明したが、この他、いわゆる化学気相堆積法によって反応炉内の種結晶上にSiC単結晶を成長させてもよい。
【0025】
【実施例】
本発明のSiC単結晶およびその成長方法について、さらに実施例に基づいて具体的に説明する。
【0026】
[実施例1]
実施例1では、種結晶30として、角度α=24゜で、β=0゜の4H−SiC単結晶を使用した。そして、反応管8内に不活性ガスを導入して圧力を約1.013×105Paに保持し、原料15の温度を約2300℃にするとともに種結晶30の温度を約2170℃にした。このように常圧で温度設定を行うことにより、結晶性の悪い結晶が成長することを防止することができる。この後、反応管8内の圧力を5.3×102Paまで下げて、種結晶30上に直径2インチのSiC単結晶40をバルク成長させた。このときの成長速度は、約0.7mm/hであった。
【0027】
このようにして得られたSiC単結晶40をラマン分光分析したところ、表面全体が4H型になっていることが判明した。さらに、SiC単結晶40のバルクを厚さ約330μmのウエハ状にスライスした後、ダイヤモンド砥石によって研磨処理を施して、ウエハの表裏面を鏡面状にした。目視により、このSiC単結晶のウエハは、表面全体が均質であり、端部からの多結晶化や結晶の多形化は起こっていないことが分かった。さらに、溶融水酸化カリウムを用いてウエハにエッチング処理を施して評価したところ、ウエハの表面に、マイクロパイプおよび積層欠陥は観察されなかった。
【0028】
[実施例2]
実施例2では、種結晶30として、角度α=30゜で、β=5゜の6H−SiC単結晶を使用した。そして、反応管8内の圧力を約3.99×103Paに保持し、原料15の温度を約2400℃にするとともに種結晶30の温度を約2350℃にして、種結晶30上に直径2インチのSiC単結晶40をバルク成長させた。このときの成長速度は、0.7mm/hであった。そして、実施例1と同様に、SiC単結晶40のバルクをスライスしてウエハを作製し、このウエハにエッチング処理を施して評価したところ、マイクロパイプおよび積層欠陥は観察されなかった。
【0029】
さらに、角度βを一定(0゜)にしたまま、角度αを5゜ずつ変えてSiC単結晶の欠陥密度を調べたところ、以下の表1に示すような結果が得られた。欠陥密度の評価には、500℃の溶融水酸化カリウムで10分間エッチングして現れた穴状、筋状、及びくさび状の全ての欠陥を考慮した。なお、種結晶には4H−SiCを使用した。
【表1】
Figure 0004253974
【0030】
表1から、角度αが25゜(実験6)以上すなわち20゜よりも大きく、55゜(実験12)以下すなわち60゜未満のときに、欠陥密度を著しく低減できることが分かった。
【0031】
次に、角度αを一定(30゜)にしたまま、角度βを5゜ずつ変えてSiC単結晶の欠陥密度を調べたところ、以下の表2に示すような結果が得られた。なお、種結晶には4H−SiCを使用した。
【表2】
Figure 0004253974
【0032】
表2から、角度βが15゜(実験4)以内、さらには10゜(実験3)以内のときに、欠陥密度を著しく低減できることが分かった。
【0033】
[実施例3]
実施例3では、実施例1で得られたSiCウエハを種結晶として用い、化学気相堆積法(CVD法)でこの種結晶上にSiC単結晶を成長させた。この種結晶は、実施例1の種結晶と同様に角度α=24゜、角度β=0゜となっている。
【0034】
まず、1300℃でSiCウエハにHCl/H2ガスによる気相エッチングを施した後、1500℃に昇温し、原料ガス(シラン:SiH4、プロパン:C38など)を導入して成長を開始した。化学気相堆積法では、実効ドナー密度3×1017cm-3〜4×1017cm-3のn型SiCバッファ層を4.6μm成長させた後、実効ドナー密度1×1016cm-3〜2×1016cm-3のn型活性層を12μm成長させた。なお、成長中に窒素ガスを添加することで、n型伝導性制御を行った。このときの主な成長条件は下記の通りである。なお、流量は全て標準状態に換算した値を示している。
バッファ層: SiH4流量 0.30 cm3/min
C3H8流量 0.20 cm3/min
N2流量 6x10-2 cm3/min
H2流量 3.0 l/min
基板温度 1500℃
成長時間 110分
活性層: SiH4流量 0.50 cm3/min
C3H8流量 0.50 cm3/min
N2流量 2x10-2 cm3/min
H2流量 3.0 l/min
基板温度 1500℃
成長時間 180分
【0035】
この条件で成長させたSiC単結晶の表面を微分干渉光学顕微鏡で観察したところ、鏡面状態とされていることが判明した。また、KOHエッチングによって評価したところ、マイクロパイプ、積層欠陥は表面に到達していないことが分かった。
【0036】
[実施例4]
実施例4では、実施例1と同様の種結晶(角度α=24゜、角度β=0゜)をSiCコーティングした支持台の上に設置し、反応管内にて化学気相堆積法(CVD法)でこの種結晶上にSiC単結晶を成長させた。1800℃で種結晶にH2ガスによる気相エッチングを施した後、2100℃に昇温し、原料ガス(シラン:SiH4、プロパン:C38など)を導入して成長を開始した。成長条件は下記の通りである。
SiH4流量 50 cm3/min
C3H8流量 30 cm3/min
H2流量 10.0 l/min
基板温度 2100℃
【0037】
この条件の下で、厚さが35mmになるまでSiC単結晶を成長させた。成長させたSiC単結晶の表面を微分干渉光学顕微鏡で観察したところ、鏡面状態とされていることが判明した。また、KOHエッチングによって評価したところ、マイクロパイプ、積層欠陥は表面に到達していないことが分かった。
【0038】
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、SiC単結晶を成長させるための結晶成長装置は、図1に示すものに限られず、この他種々のものを使用することができる。
【0039】
【発明の効果】
以上説明したように、本発明のSiC単結晶は、表面にマイクロパイプおよび積層欠陥が殆ど露出しておらず、また、本発明のSiC単結晶の成長方法によれば、SiC単結晶の表面に露出するマイクロパイプおよび積層欠陥を低減させることができる。
【図面の簡単な説明】
【図1】本発明のSiC単結晶を成長させるための結晶成長装置を示す断面図である。
【図2】本発明で用いた種結晶の露出面を説明するために用いた図である。
【図3】SiC単結晶内のマイクロパイプおよび積層欠陥の状態を示す図である。
【図4】角度βを説明するために用いた図である。
【符号の説明】
2…結晶成長装置、4…坩堝、6…熱シールド部材、8…反応管、10…高周波コイル、15…原料、20…種結晶配置部、30…種結晶、30u…種結晶表面(露出面)、40s…種結晶側面、40…SiC単結晶、40u…SiC単結晶表面、42…マイクロパイプ、44…積層欠陥。

Claims (6)

  1. SiC単結晶を成長させる方法であって、
    {0001}面に対して角度α(20゜<α<60゜)だけずれ、且つ、その法線ベクトルを{0001}面に投影したベクトルと<11−20>方向とのなす角度βが15゜以内である面を露出させたSiC単結晶からなる種結晶上に、SiC単結晶を成長させることを特徴とするSiC単結晶の成長方法。
  2. 前記角度αは、25゜以上55゜以下であることを特徴とする請求項1記載のSiC単結晶の成長方法。
  3. 前記角度βは、10゜以内であることを特徴とする請求項1又は請求項2記載のSiC単結晶の成長方法。
  4. 黒鉛製の坩堝内に前記種結晶を設置し、前記坩堝内でSiC原料粉末を昇華させて前記種結晶上に前記SiC単結晶を再結晶させることを特徴とする請求項1〜請求項3のうち何れか一項記載のSiC単結晶の成長方法。
  5. 反応炉内に前記種結晶を設置し、前記反応炉内で化学気相堆積法によって前記種結晶上に前記SiC単結晶を成長させることを特徴とする請求項1〜3のうち何れか一項記載のSiC単結晶の成長方法。
  6. 請求項1〜請求項5のうち何れか一項記載のSiC単結晶の成長方法により成長させられたことを特徴とするSiC単結晶。
JP36459399A 1999-12-22 1999-12-22 SiC単結晶およびその成長方法 Expired - Lifetime JP4253974B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP36459399A JP4253974B2 (ja) 1999-12-22 1999-12-22 SiC単結晶およびその成長方法
PCT/JP2000/006057 WO2001046500A1 (fr) 1999-12-22 2000-09-06 Monocristal en sic et son procede de croissance
DE60025502T DE60025502T2 (de) 1999-12-22 2000-09-06 Sic-einkristall und herstellungsverfahren dafür
EP00956968A EP1249521B8 (en) 1999-12-22 2000-09-06 SiC SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
TW089118615A TW581831B (en) 1999-12-22 2000-09-11 SiC single crystal and growth method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36459399A JP4253974B2 (ja) 1999-12-22 1999-12-22 SiC単結晶およびその成長方法

Publications (2)

Publication Number Publication Date
JP2001181095A JP2001181095A (ja) 2001-07-03
JP4253974B2 true JP4253974B2 (ja) 2009-04-15

Family

ID=18482198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36459399A Expired - Lifetime JP4253974B2 (ja) 1999-12-22 1999-12-22 SiC単結晶およびその成長方法

Country Status (5)

Country Link
EP (1) EP1249521B8 (ja)
JP (1) JP4253974B2 (ja)
DE (1) DE60025502T2 (ja)
TW (1) TW581831B (ja)
WO (1) WO2001046500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106051B2 (en) 2001-09-14 2012-01-31 Shionogi & Co., Ltd. Utilities of amide compounds

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585137B2 (ja) * 2001-04-03 2010-11-24 新日本製鐵株式会社 炭化珪素単結晶インゴットの製造方法
JP4523733B2 (ja) * 2001-04-05 2010-08-11 新日本製鐵株式会社 炭化珪素単結晶インゴットの製造方法並びに炭化珪素単結晶育成用種結晶の装着方法
US7527869B2 (en) 2001-06-04 2009-05-05 Kwansei Gakuin Educational Foundation Single crystal silicon carbide and method for producing the same
DE10247017B4 (de) * 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC-Einkristall, Verfahren zur Herstellung eines SiC-Einkristalls, SiC-Wafer mit einem Epitaxiefilm und Verfahren zur Herstellung eines SiC-Wafers, der einen Epitaxiefilm aufweist
JP3776374B2 (ja) * 2002-04-30 2006-05-17 株式会社豊田中央研究所 SiC単結晶の製造方法,並びにエピタキシャル膜付きSiCウエハの製造方法
US6814801B2 (en) 2002-06-24 2004-11-09 Cree, Inc. Method for producing semi-insulating resistivity in high purity silicon carbide crystals
US7601441B2 (en) 2002-06-24 2009-10-13 Cree, Inc. One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
KR100782998B1 (ko) * 2003-06-16 2007-12-07 쇼와 덴코 가부시키가이샤 실리콘 카바이드 단결정의 성장 방법, 실리콘 카바이드 씨드결정 및 실리콘 카바이드 단결정
JP4694144B2 (ja) 2004-05-14 2011-06-08 住友電気工業株式会社 SiC単結晶の成長方法およびそれにより成長したSiC単結晶
JP4690906B2 (ja) * 2006-02-21 2011-06-01 新日本製鐵株式会社 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶の製造方法
JP5545268B2 (ja) * 2011-05-18 2014-07-09 学校法人関西学院 SiCマルチチップ基板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958132A (en) * 1991-04-18 1999-09-28 Nippon Steel Corporation SiC single crystal and method for growth thereof
JPH1017399A (ja) * 1996-07-04 1998-01-20 Nippon Steel Corp 6H−SiC単結晶の成長方法
TW526300B (en) * 1999-09-06 2003-04-01 Sixon Inc SiC single crystal and method for growing the same
JP4304783B2 (ja) * 1999-09-06 2009-07-29 住友電気工業株式会社 SiC単結晶およびその成長方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106051B2 (en) 2001-09-14 2012-01-31 Shionogi & Co., Ltd. Utilities of amide compounds

Also Published As

Publication number Publication date
TW581831B (en) 2004-04-01
EP1249521B8 (en) 2006-05-03
EP1249521A1 (en) 2002-10-16
JP2001181095A (ja) 2001-07-03
WO2001046500A1 (fr) 2001-06-28
DE60025502D1 (de) 2006-04-06
EP1249521A4 (en) 2003-02-05
EP1249521B1 (en) 2006-01-11
DE60025502T2 (de) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4979579B2 (ja) 炭化珪素成長システム及び炭化珪素大型単結晶を成長させる種結晶昇華法
JP3692076B2 (ja) SiC単結晶およびその成長方法
US9099377B2 (en) Micropipe-free silicon carbide and related method of manufacture
JP2804860B2 (ja) SiC単結晶およびその成長方法
JP4603386B2 (ja) 炭化珪素単結晶の製造方法
JP4253974B2 (ja) SiC単結晶およびその成長方法
WO2003085175A1 (fr) Cristal germe de monocristal de carbure de silicium et procede de production de lingot au moyen de celui-ci
JP4460236B2 (ja) 炭化珪素単結晶ウェハ
JP4304783B2 (ja) SiC単結晶およびその成長方法
JPH1045499A (ja) 炭化珪素単結晶の製造方法およびそれに用いる種結晶
JP3508519B2 (ja) エピタキシャル成長装置およびエピタキシャル成長法
EP1122341A1 (en) Single crystal SiC
JP3848446B2 (ja) 低抵抗SiC単結晶の育成方法
JP3087065B1 (ja) 単結晶SiCの液相育成方法
JP4157326B2 (ja) 4h型炭化珪素単結晶インゴット及びウエハ
JP3590464B2 (ja) 4h型単結晶炭化珪素の製造方法
JP2004262709A (ja) SiC単結晶の成長方法
JPH07267795A (ja) SiC単結晶の成長方法
JP2009102187A (ja) 炭化珪素単結晶育成用坩堝、及びこれを用いた炭化珪素単結晶の製造方法、並びに炭化珪素単結晶インゴット
JPH0797299A (ja) SiC単結晶の成長方法
JP3717562B2 (ja) 単結晶の製造方法
JP3719341B2 (ja) SiC結晶の液相エピタキシャル成長方法
JP4160769B2 (ja) 炭化珪素単結晶インゴット及びウエハ
JP7476890B2 (ja) SiC単結晶インゴットの製造方法
JPH08208394A (ja) 単結晶炭化珪素の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4253974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term