JP4148674B2 - 強誘電体メモリ - Google Patents

強誘電体メモリ Download PDF

Info

Publication number
JP4148674B2
JP4148674B2 JP2001357239A JP2001357239A JP4148674B2 JP 4148674 B2 JP4148674 B2 JP 4148674B2 JP 2001357239 A JP2001357239 A JP 2001357239A JP 2001357239 A JP2001357239 A JP 2001357239A JP 4148674 B2 JP4148674 B2 JP 4148674B2
Authority
JP
Japan
Prior art keywords
film
lower electrode
ferroelectric memory
ferroelectric
simple matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357239A
Other languages
English (en)
Other versions
JP2003158248A (ja
Inventor
運也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001357239A priority Critical patent/JP4148674B2/ja
Publication of JP2003158248A publication Critical patent/JP2003158248A/ja
Application granted granted Critical
Publication of JP4148674B2 publication Critical patent/JP4148674B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、強誘電体メモリに関し、特に、キャパシタを有する強誘電体メモリに関する。
【0002】
【従来の技術】
近年、強誘電体キャパシタを含む半導体メモリ(強誘電体メモリ)は、高速で低消費電力な不揮発性メモリとして、精力的に研究されている。また、従来の強誘電体メモリの中で、1つのメモリセルが1つの強誘電体キャパシタのみによって構成される単純マトリックス型の強誘電体メモリが知られている。図22は、従来の単純マトリックス型の強誘電体メモリのメモリセルアレイを示した等価回路図である。また、図23は、従来の単純マトリックス型の強誘電体メモリのメモリセル部分の断面図である。
【0003】
図22および図23を参照して、従来の単純マトリックス型の強誘電体メモリのメモリセル部分の構造について説明する。この従来の強誘電体メモリでは、図23に示すように、p型シリコン基板101の表面上に、LOCOS(Local Oxidation of Silicon)法による素子分離絶縁膜102が形成されている。また、全面を覆うように、シリコン酸化膜(SiO2膜)からなる層間絶縁膜103が形成されている。層間絶縁膜103上には、IrSiN膜105aと、Pt膜105bとの積層膜からなる下部電極105が形成されている。
【0004】
下部電極105および層間絶縁膜103を覆うように、強誘電体膜であるSrBi2Ta29(SBT)膜106が形成されている。SBT膜106上には、Pt膜からなる上部電極107が形成されている。この上部電極107は、下部電極105と直交する方向に延びるように形成されている。下部電極105と、SBT膜106と、上部電極107とによって、強誘電体キャパシタ110が構成されている。
【0005】
次に、従来の単純マトリックス型の強誘電体メモリの製造方法について説明する。
【0006】
まず、p型シリコン基板101の表面上に、LOCOS法を用いて、素子分離絶縁膜102を形成する。そして、素子分離絶縁膜102上に、シリコン酸化膜からなる層間絶縁膜103を形成する。
【0007】
次に、全面を覆うように、IrSiN膜105aを約50nmの厚みで形成した後、Pt膜105bを約200nmの厚みで形成する。その後、フォトリソグラフィ技術と、Cl2/Ar系ガスを用いたドライエッチング技術とを用いて、IrSiN膜105aおよびPt膜105bを所定の形状にパターニングすることによって、下部電極105が形成される。
【0008】
次に、ゾル・ゲル法、LSMCD(Liquid Source Misted Chemical Deposition)またはCVD法を用いて、全面を覆うように、強誘電体膜であるSBT膜106を形成する。
【0009】
さらに、SBT膜106上に、Pt膜からなる上部電極107を形成した後、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、上部電極107およびSBT膜106を所定の形状にパターニングする。このようにして、図23に示した従来の単純マトリックス型の強誘電体メモリが完成される。
【0010】
【発明が解決しようとする課題】
上記した従来の単純マトリックス型の強誘電体メモリのキャパシタ構造は、平坦な上面を有する下部電極105上に、SBT膜106を介して上部電極107が対向するように形成された平行平板型であった。このような構造において、素子の微細化を進めると、下部電極105の幅が小さくなるため、その分、キャパシタ面積が小さくなる。このため、キャパシタ容量も小さくなるという不都合があった。その結果、素子が微細化された場合に、十分なキャパシタ容量を確保するのが困難であるという問題点があった。
【0011】
この発明は上記のような課題を解決するためになされたものであり、
この発明の目的は、素子が微細化された場合にも、十分なキャパシタ容量を確保することが可能な強誘電体メモリを提供することである。
【0012】
【課題を解決するための手段】
請求項1における強誘電体メモリは、実質的にL字形状の断面を有する下部電極と、下部電極上に形成された酸化物系誘電体膜を含む強誘電体膜と、強誘電体膜上に形成された上部電極と、下部電極の垂直部分の一方の表面の少なくとも一部に接触するように形成された絶縁膜とを備え、下部電極と上部電極とは、互いに交差するようにマトリックス状に配置されており、下部電極と上部電極とが交差する領域において、強誘電体膜が下部電極と上部電極との間に配置された単純マトリックス型に構成されている。なお、本発明における半導体基板は、通常の半導体基板のみならず、絶縁基板上に形成された半導体層なども含む広い概念である。また、本発明の実質的にL字状の断面とは、角度が90°の角ばった形状の完全なL字形状のみならず、90°以外のL字形状に近い形状や角ばっていない丸みを有するL字形状も含む広い概念である。つまり、水平部分と垂直部分とを有するL字形状に近い形状のものを全て含む広い概念である。
【0013】
請求項1では、上記のように、下部電極を実質的にL字形状の断面を有するように形成することによって、そのL字形状の水平部分のみならず垂直部分もキャパシタとして利用することができる。この場合、垂直部分は、キャパシタの平面積を増加させることなく、キャパシタとして利用できる面積を増加させることができるので、素子が微細化された場合にも、十分なキャパシタ容量を確保することができる。また、下部電極を実質的にL字形状の断面を有するように形成することによって、L字形状の水平部分により、下部電極形成後の製造プロセスにおいて下部電極が倒れるのを抑制することができる。また、請求項1では、下部電極の垂直部分の一方の表面の少なくとも一部に接触するように形成された絶縁膜を備える。このように構成すれば、絶縁膜によりL字形状の下部電極が支持されるので、下部電極形成後の製造プロセスにおいて下部電極が倒れるのを確実に防止することができる。また、下部電極と上部電極とは、互いに交差するようにマトリックス状に配置されており、強誘電体膜は、下部電極と上部電極とが交差する領域において、下部電極と上部電極との間に配置されている。このように構成すれば、マトリックス型の強誘電体メモリなどに容易に適用することができる。これにより、マトリックス型の強誘電体メモリにおいて、素子が微細化された場合にも、十分なキャパシタ容量を確保することができる。
【0014】
請求項2における強誘電体メモリは、請求項1の構成において、強誘電体膜は、少なくとも下部電極の垂直部分の他方の表面および水平部分の一方の表面に接触するように形成されている。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0019】
(第1実施形態)
図1は、本発明の第1実施形態による単純マトリックス型の強誘電体メモリのメモリセル部分を示した断面図である。
【0020】
以下、図1を用いて第1実施形態における強誘電体メモリのメモリセル部分の構造について説明する。
【0021】
この第1実施形態の強誘電体メモリでは、p型シリコン基板1の表面上に、LOCOS法による素子分離絶縁膜2が形成されている。また、全面を覆うように、シリコン酸化膜(SiO2)からなる層間絶縁膜3が形成されている。層間絶縁膜3上には、約50nmの厚みを有するIrSiN膜5aと、約200nmの厚みを有するPt膜5bとの積層膜から構成される下部電極5が所定の間隔を隔てて形成されている。なお、p型シリコン基板1は、本発明の「半導体基板」の一例である。
【0022】
また、下部電極5は、図1に示すように、実質的にL字形状の断面を有するように形成されている。また、そのL字形状の下部電極5は、先端部に丸みを有するサイドウォール形状の垂直部分を含む。また、隣接する2つのL字形状の下部電極5間には、2つの下部電極5の側面(一方の表面)に接触するように、シリコン窒化膜(SiN膜)4が形成されている。このシリコン窒化膜4は、本発明の「絶縁膜」の一例である。
【0023】
また、層間絶縁膜3、シリコン窒化膜4およびL字形状の下部電極5の他方の表面を覆うように、強誘電体膜であるSBT膜6が形成されている。また、SBT膜6上には、下部電極5と直交する方向に延びるように、Pt膜からなる上部電極7が形成されている。なお、SBT膜6は、本発明の「酸化物系誘電体膜を含む強誘電体膜」の一例である。
【0024】
第1実施形態の単純マトリックス型の強誘電体メモリでは、上記のように、下部電極5を実質的にL字形状の断面を有するように形成することによって、そのL字形状の水平部分のみならず垂直部分の他方の表面もキャパシタとして利用することができる。この場合、垂直部分は、キャパシタの平面積を増加させることなく、キャパシタとして利用できる面積を増加させることができるので、素子が微細化された場合にも、十分なキャパシタ容量を確保することができる。
【0025】
また、下部電極5を実質的にL字形状の断面を有するように形成することによって、下部電極5形成後の製造プロセスにおいて、下部電極5が倒れるのを抑制することができる。さらに、第1実施形態では、上記のように、実質的にL字形状の断面を有する下部電極5の一方の表面に接触するように形成されたシリコン窒化膜4を設けることによって、シリコン窒化膜4によりL字形状の下部電極5が支持される。これにより、下部電極5形成後の製造プロセスにおいて下部電極5が倒れるのを確実に防止することができる。
【0026】
さらに、第1実施形態における単純マトリックス型の強誘電体メモリでは、上記のように、L字形状の下部電極5を、先端部に丸みを有するサイドウォール形状の垂直部分を含むように構成することによって、先端部が矩形形状である場合に比べて、電界が集中するのを防止することができる。
【0027】
また、第1実施形態における単純マトリックス型の強誘電体メモリでは、上記のように、下部電極5を、SiNと、金属との複合膜であるIrSiN膜5aを含むように構成することによって、SiNと、金属との複合膜により酸素が下方に侵入するのを抑制することができる。
【0028】
図2〜図7は、図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。以下、図1〜図7を参照して、第1実施形態の単純マトリックス型の強誘電体メモリの製造方法について説明する。
【0029】
まず、図2に示すように、p型シリコン基板1の表面上に、LOCOS法を用いて、素子分離絶縁膜2を形成する。そして、素子分離絶縁膜2上に、シリコン酸化膜からなる層間絶縁膜3を形成する。
【0030】
次に、CVD法を用いて、全面にシリコン窒化膜(図示せず)を約500nmの厚みで形成した後、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、そのシリコン窒化膜を所定の形状にパターニングする。これにより、図3に示すような形状を有するパターニングされたシリコン窒化膜4が得られる。
【0031】
次に、図4に示すように、全面を覆うように、IrSiN膜5aを約50nmの厚みで形成した後、Pt膜5bを約200nmの厚みで形成する。さらに、CVD法を用いて、シリコン酸化膜8aを約500nmの厚みで形成する。その後、シリコン酸化膜8aを異方性エッチングすることによって、図5に示すような形状を有するサイドウォール絶縁膜8が得られる。
【0032】
さらに、サイドウォール絶縁膜8をマスクとして、Cl2/Ar系ガスを用いて、IrSiN膜5aと、Pt膜5bとを異方性エッチングする。その後、O2ガスを用いたプラズマモードドライエッチングによりサイドウォール絶縁膜8を除去する。これにより、図6に示すようなサイドウォール形状を有する下部電極5が自己整合的に形成される。
【0033】
次に、図7に示すように、全面を覆うように、CVD法またはLSMCD法を用いて、強誘電体膜であるSBT膜6を形成する。
【0034】
この後、SBT膜6上に、Pt膜からなる上部電極7を形成する。そして、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、上部電極7およびSBT膜6を所定の形状にパターニングする。最後に、上記エッチング工程で、SBT膜6に入った欠陥を回復するとともに、強誘電体キャパシタ特性を向上させるために、600℃〜800℃で30分程度のOアニールを行う。このようにして、第1実施形態の強誘電体メモリが完成される。
【0035】
参考例
図8は、参考例による単純マトリックス型の強誘電体メモリのメモリセル部分を示した断面図である。この参考例では、上記した第1実施形態と異なり、強誘電体膜であるSBT膜を、L字形状を有する下部電極の他方の表面のみならず一方の表面にも接触するように形成した例について説明する。
【0036】
以下、図8を用いて参考例における強誘電体メモリのメモリセル部分の構造について説明する。
【0037】
この参考例の強誘電体メモリでは、p型シリコン基板11の表面上に、LOCOS法による素子分離絶縁膜12が形成されている。また、全面を覆うように、シリコン酸化膜(SiO膜)からなる層間絶縁膜13が形成されている。ここで、参考例では、層間絶縁膜13上の全面に、シリコン窒化膜14(SiN膜)が形成されている。シリコン窒化膜14上には、約50nmの厚みを有するIrSiN膜15aと、約200nmの厚みを有するPt膜15bとの積層膜から構成される下部電極15が所定の間隔を隔てて形成されている
【0038】
また、下部電極15は、図8に示すように、実質的にL字形状の断面を有するように形成されている。また、そのL字形状の下部電極15は、先端部に丸みを有するサイドウォール形状の垂直部分を含む。
【0039】
また、シリコン窒化膜14およびL字形状の下部電極15の表面を覆うように、強誘電体膜であるSBT膜16が形成されている。また、SBT膜16上には、下部電極15と直交する方向に延びるように、Pt膜からなる上部電極17が形成されている。
【0040】
ここで、参考例では、上記した第1実施形態と異なり、SBT膜16は、下部電極15の他方の表面のみならず、一方の表面のほぼ全面に接触するように形成されている
【0041】
参考例の単純マトリックス型の強誘電体メモリでは、上記のように、下部電極15を実質的にL字形状の断面を有するように形成するとともに、SBT膜16をそのL字形状の下部電極15の他方の表面のみならず、一方の表面のほぼ全面に接触するように形成することによって、一方の表面のほぼ全面をキャパシタとして利用することができるので、第1実施形態と比べて、よりキャパシタとして利用できる面積を増加させることができる。これにより、素子が微細化された場合にも、より十分なキャパシタ容量を確保することができる。
【0042】
また、参考例では、下部電極15を実質的にL字形状の断面を有するように形成することによって、下部電極15形成後の製造プロセスにおいて下部電極15が倒れるのを抑制することができる。
【0043】
なお、参考例のその他の効果は、第1実施形態と同様である。
【0044】
図9〜図14は、図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。以下、図8〜図14を参照して、参考例の強誘電体メモリの製造方法について説明する。
【0045】
まず、図9に示すように、p型シリコン基板11の表面上に、LOCOS法を用いて、素子分離絶縁膜12を形成する。そして、素子分離絶縁膜12上に、シリコン酸化膜からなる層間絶縁膜13を形成し、層間絶縁膜13上に、シリコン窒化膜14を形成する。
【0046】
次に、CVD法を用いて、全面にシリコン酸化膜(図示せず)を約500nmの厚みで形成した後、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、そのシリコン酸化膜を所定の形状にパターニングする。これにより、図10に示すような形状を有するパターニングされたシリコン酸化膜18が得られる。
【0047】
次に、図11に示すように、全面を覆うように、IrSiN膜15aを約50nmの厚みで形成した後、Pt膜15bを約200nmの厚みで形成する。さらに、CVD法を用いて、シリコン酸化膜19aを約500nmの厚みで形成する。その後、シリコン酸化膜19aを異方性エッチングすることによって、図12に示すような形状を有するサイドウォール絶縁膜19が得られる。
【0048】
さらに、サイドウォール絶縁膜19をマスクとして、Cl2/Ar系ガスを用いて、IrSiN膜15aと、Pt膜15bとを異方性エッチングする。その後、第2実施形態では、上記した第1実施形態と異なり、O2ガスを用いたプラズマモードドライエッチングによって、サイドウォール絶縁膜19と、シリコン酸化膜18とを同時に除去する。これにより、図13に示すようなサイドウォール形状を有する下部電極15が自己整合的に形成される。
【0049】
次に、図14に示すように、CVD法またはLSMCD法を用いて、全面を覆うように、強誘電体膜であるSBT膜16を形成する。
【0050】
この後、SBT膜16上に、Pt膜からなる上部電極17を形成する。そして、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、上部電極17およびSBT膜16を所定の形状にパターニングする。最後に、上記エッチング工程で、SBT膜16に入った欠陥を回復するとともに、強誘電体キャパシタ特性を向上させるために、600℃〜800℃で30分程度のOアニールを行う。このようにして、参考例強誘電体メモリが完成される。
【0051】
(第実施形態)
図15は、本発明の第実施形態による単純マトリックス型の強誘電体メモリのメモリセル部分を示した断面図である。この第実施形態では、上記した第1実施形態および参考例と異なり、強誘電体膜であるSBT膜を、L字形状を有する下部電極の他方の表面のみならず、一方の表面の一部に接触するように形成した例について説明する。
【0052】
以下、図15を用いて本発明の第実施形態における強誘電体メモリのメモリセル部分の構造について説明する。
【0053】
この第実施形態の強誘電体メモリでは、p型シリコン基板21の表面上に、LOCOS法による素子分離絶縁膜22が形成されている。また、全面を覆うように、シリコン酸化膜(SiO膜)からなる層間絶縁膜23が形成されている。ここで、第実施形態では、層間絶縁膜23上の全面に、シリコン窒化膜(SiN膜)24が形成されている。シリコン窒化膜24上には、約50nmの厚みを有するIrSiN膜25aと、約200nmの厚みを有するPt膜25bとの積層膜から構成される下部電極25が所定の間隔を隔てて形成されている。なお、p型シリコン基板21は、本発明の「半導体基板」の一例である。
【0054】
また、下部電極25は、図15に示すように、実質的にL字形状の断面を有するように形成されている。また、そのL字形状の下部電極25は、先端部に丸みを有するサイドウォール形状の垂直部分を含む。また、隣接する2つの下部電極25間には、2つの下部電極25の側面(一方の表面)の一部に接触するように、シリコン酸化膜28が形成されている。このシリコン酸化膜28は、本発明の「絶縁膜」の一例である。
【0055】
また、シリコン窒化膜24、シリコン酸化膜28およびL字形状の下部電極25の表面を覆うように、強誘電体膜であるSBT膜26が形成されている。また、SBT膜26上には、下部電極25と直交する方向に延びるように、Pt膜からなる上部電極27が形成されている。
【0056】
ここで、第実施形態では、上記した第1実施形態および参考例と異なり、SBT膜26は、下部電極25の他方の表面のほぼ全面と、一方の表面の一部とに接触するように形成されている。なお、SBT膜26は、本発明の「酸化物系誘電体膜を含む強誘電体膜」の一例である。
【0057】
実施形態の単純マトリックス型の強誘電体メモリでは、上記のように、下部電極25を実質的にL字形状の断面を有するように形成するとともに、SBT膜26をそのL字形状の下部電極25の他方の表面のみならず、一方の表面の一部に接触するように形成することによって、下部電極25の垂直部分の一方の表面の一部をキャパシタとして利用することができるので、第1実施形態と比べて、よりキャパシタとして利用できる面積を増加させることができる。これにより、素子が微細化された場合にも、より十分なキャパシタ容量を確保することができる。
【0058】
また、下部電極25を実質的にL字形状の断面を有するように形成することによって、下部電極25形成後の製造プロセスにおいて下部電極25が倒れるのを抑制することができる。さらに、第実施形態では、上記した参考例と異なり、実質的にL字形状の断面を有する下部電極25の他方の表面の一部に接触するように形成されたシリコン酸化膜28を備えることによって、シリコン酸化膜28によりL字形状の下部電極25が支持される。これにより、下部電極25形成後の製造プロセスにおいて下部電極25が倒れるのを確実に防止することができる。
【0059】
なお、第実施形態のその他の効果は、第1実施形態と同様である。
【0060】
図16〜図21は、図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。以下、図15〜図21を参照して、第実施形態の強誘電体メモリの製造方法について説明する。
【0061】
まず、図16に示すように、p型シリコン基板21の表面上に、LOCOS法を用いて、素子分離絶縁膜22を形成する。そして、素子分離絶縁膜22上に、シリコン酸化膜からなる層間絶縁膜23を形成し、層間絶縁膜23上に、シリコン窒化膜24を形成する。
【0062】
次に、CVD法を用いて、全面にシリコン酸化膜(図示せず)を約500nmの厚みで形成した後、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、そのシリコン酸化膜を所定の形状にパターニングする。これにより、図17に示すような形状を有するシリコン酸化膜28が得られる。
【0063】
次に、図18に示すように、全面を覆うように、IrSiN膜25aを約50nmの厚みで形成した後、Pt膜25bを約200nmの厚みで形成する。さらに、CVD法を用いて、シリコン酸化膜29aを約500nmの厚みで形成する。その後、シリコン酸化膜29aを異方性エッチングすることによって、図19に示すような形状を有するサイドウォール絶縁膜29が得られる。
【0064】
さらに、サイドウォール絶縁膜29をマスクとして、Cl/Ar系ガスを用いて、IrSiN膜25aと、Pt膜25とを異方性エッチングする。その後、第実施形態では、上記した参考例と異なり、Oガスを用いたプラズマモードドライエッチングでエッチング時間を調節することによって、サイドウォール絶縁膜29と、シリコン酸化膜28の一部とを同時に除去する。これにより、図20に示すようなサイドウォール形状を有する下部電極25と、隣接する2つの下部電極25間に、下部電極25の垂直部分の一方の表面の一部と接触するシリコン酸化物28とが形成される。
【0065】
次に、図21に示すように、CVD法またはLSMCD法を用いて、強誘電体膜であるSBT膜26を形成する。
【0066】
この後、SBT膜26上に、Pt膜からなる上部電極27を形成する。そして、フォトリソグラフィ技術と、ドライエッチング技術とを用いて、上部電極27およびSBT膜26を所定の形状にパターニングする。最後に、上記エッチング工程で、SBT膜26に入った欠陥を回復するとともに、強誘電体キャパシタ特性を向上させるために、600℃〜800℃で30分程度のOアニールを行う。このようにして、第実施形態の強誘電体メモリが完成される。
【0067】
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0068】
たとえば、上記実施形態では、単純マトリックス型の強誘電体メモリを例にとって説明したが、本発明はこれに限らず、1つのトランジスタと、1つの強誘電体キャパシタとからなるメモリセルを有する1T1C型の強誘電体メモリなどにも同様に適用可能である。
【0069】
【発明の効果】
以上のように、本発明によれば、素子が微細化された場合にも、十分なキャパシタ容量を確保することが可能な強誘電体メモリを提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態による単純マトリックス型の強誘電体メモリのメモリセル部分の断面図である。
【図2】 図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図3】 図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図4】 図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図5】 図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図6】 図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図7】 図1に示した第1実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図8】 本発明の参考例による単純マトリックス型の強誘電体メモリのメモリセル部分の断面図である。
【図9】 図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図10】 図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図11】 図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図12】 図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図13】 図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図14】 図8に示した参考例による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図15】 本発明の第実施形態による単純マトリックス型の強誘電体メモリのメモリセル部分の断面図である。
【図16】 図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図17】 図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図18】 図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図19】 図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図20】 図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図21】 図15に示した第実施形態による単純マトリックス型の強誘電体メモリの製造プロセスを説明するための断面図である。
【図22】 従来の単純マトリックス型の強誘電体メモリのメモリセルアレイを示した等価回路である。
【図23】 図22に示した従来の単純マトリックス型の強誘電体メモリのメモリセル部分の断面図である。
【符号の説明】
5、15、25 下部電極
6、16、26 SBT膜(強誘電体膜)
7、17、27 上部電極
4 シリコン窒化膜(絶縁膜)
18、28 シリコン酸化膜(絶縁膜)

Claims (3)

  1. 半導体基板上に形成され、実質的にL字形状の断面を有する下部電極と、
    前記下部電極上に形成された酸化物系誘電体膜を含む強誘電体膜と、
    前記強誘電体膜上に形成された上部電極と、
    前記下部電極の垂直部分の一方の表面の少なくとも一部に接触するように形成された絶縁膜とを備え、
    前記下部電極と前記上部電極とは、互いに交差するようにマトリックス状に配置されており、
    前記下部電極と前記上部電極とが交差する領域において、前記強誘電体膜が前記下部電極と前記上部電極との間に配置された単純マトリックス型に構成されている、強誘電体メモリ。
  2. 前記強誘電体膜は、少なくとも前記下部電極の垂直部分の他方の表面および水平部分の一方の表面に接触するように形成されている、請求項1に記載の強誘電体メモリ。
  3. 前記下部電極は、SiNとIrとの複合膜であるIrSiN膜を含む、請求項1または2に記載の強誘電体メモリ。
JP2001357239A 2001-11-22 2001-11-22 強誘電体メモリ Expired - Fee Related JP4148674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357239A JP4148674B2 (ja) 2001-11-22 2001-11-22 強誘電体メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357239A JP4148674B2 (ja) 2001-11-22 2001-11-22 強誘電体メモリ

Publications (2)

Publication Number Publication Date
JP2003158248A JP2003158248A (ja) 2003-05-30
JP4148674B2 true JP4148674B2 (ja) 2008-09-10

Family

ID=19168611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357239A Expired - Fee Related JP4148674B2 (ja) 2001-11-22 2001-11-22 強誘電体メモリ

Country Status (1)

Country Link
JP (1) JP4148674B2 (ja)

Also Published As

Publication number Publication date
JP2003158248A (ja) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3113173B2 (ja) 不揮発性ランダムアクセスメモリ及びその製造方法
JP3759859B2 (ja) 半導体装置およびその製造方法
JP4887566B2 (ja) 半導体不揮発性記憶素子及びその製造方法
JP2010062329A (ja) 半導体装置及びその製造方法
JPH05343615A (ja) 半導体装置及びその製造方法
JP3630671B2 (ja) 強誘電体キャパシタ、強誘電体キャパシタを具える半導体装置、強誘電体キャパシタの製造方法及び半導体装置の製造方法
JP5168273B2 (ja) 半導体装置とその製造方法
JP2005268288A (ja) 半導体装置及びその製造方法
KR100405146B1 (ko) 구조화된 금속 산화물 함유 층의 제조 방법
JPH09162369A (ja) 半導体メモリ素子の製造方法
JP4148674B2 (ja) 強誘電体メモリ
JP2001196551A (ja) キャパシタを備えた半導体素子及びその製造方法
JP3989414B2 (ja) 強誘電体キャパシタ、強誘電体キャパシタを具える半導体装置、強誘電体キャパシタの製造方法及び半導体装置の製造方法
JP2004095866A (ja) 半導体装置及びその製造方法
US6414344B1 (en) Semiconductor device for use in a memory cell and method for the manufacture thereof
US20020109231A1 (en) Composite structure of storage node and method of fabrication thereof
JP3170254B2 (ja) キャパシタ
CN1242484C (zh) 半导体器件及其制造方法
JP3964798B2 (ja) 誘電体メモリ及びその製造方法
JP2002299572A (ja) 半導体装置およびその製造方法
JP3650005B2 (ja) 不揮発性ランダムアクセスメモリ及びその製造方法
JP2010040905A (ja) 半導体装置およびその製造方法
KR20010037840A (ko) 스페이서를 이용한 자기정렬 방식의 강유전체 커패시터 제조방법
JP2002324892A (ja) 強誘電体メモリ
KR20020006364A (ko) 이중 식각 마스크막을 이용한 반도체 소자의 고유전체커패시터 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees