JP4134025B2 - 感知装置 - Google Patents

感知装置 Download PDF

Info

Publication number
JP4134025B2
JP4134025B2 JP2004381432A JP2004381432A JP4134025B2 JP 4134025 B2 JP4134025 B2 JP 4134025B2 JP 2004381432 A JP2004381432 A JP 2004381432A JP 2004381432 A JP2004381432 A JP 2004381432A JP 4134025 B2 JP4134025 B2 JP 4134025B2
Authority
JP
Japan
Prior art keywords
oscillation
unit
measurement unit
oscillation circuit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004381432A
Other languages
English (en)
Other versions
JP2006184260A5 (ja
JP2006184260A (ja
Inventor
直樹 大西
毅 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2004381432A priority Critical patent/JP4134025B2/ja
Priority to CN2005800453585A priority patent/CN101095039B/zh
Priority to EP05824558A priority patent/EP1832862A4/en
Priority to PCT/JP2005/024272 priority patent/WO2006070940A1/ja
Priority to US11/793,985 priority patent/US7555952B2/en
Publication of JP2006184260A publication Critical patent/JP2006184260A/ja
Publication of JP2006184260A5 publication Critical patent/JP2006184260A5/ja
Application granted granted Critical
Publication of JP4134025B2 publication Critical patent/JP4134025B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Description

本発明は、感知対象物を吸着するための吸着層がその表面に形成され、感知対象物の吸着により固有振動数が変わるセンサー用振動子例えば水晶振動子を用い、このセンサー用振動子の固有振動数の変化分を検出して感知対象物を感知する感知装置に関する。
環境保全を図る上で、河川や土壌中における種々の環境汚染物質の濃度を把握する必要に迫られているが、汚染物質によっては極めて微量であっても人体への毒性が強いものもあり、このため微量な汚染物質の計測技術の確立が望まれている。最近注目を集めている汚染物質の一つとしてダイオキシンがあるが、このダイオキシンを測定する手法としては、ガスクロマトグラフ質量分析計を用いる方法及びELISA法(適用酵素免疫測定法)が知られている。ガスクロマトグラフ質量分析計によれば、10−22g/mlオーダの高精度な微量分析を行うことができるが、装置価格が極めて高く、このため分析コストも可成り高いものになっており、更に分析に長い期間を必要とするという欠点がある。またELISA法は、ガスクロマトグラフ質量分析計に比べて装置価格、分析価格が低く、分析に要する時間も短いが、分析精度が10−9g/mlオーダと低いという課題がある。
そこで本発明者は、感知対象物が水晶振動子に付着するとその固有振動数がその付着量に応じて変化することから、ダイオキシンなどの汚染物質の測定装置として水晶振動子を用いた水晶センサーに着眼している。そして最近では、ある特定の分子しか化学結合しない抗体の開発も盛んに行われており、予め水晶振動子の表面(詳しくは電極の表面)に、検体に対して抗体抗原反応を起こす抗体を吸着層として形成することで各種分野の分析、解析を行うことが可能になってきている。
一方水晶振動子を用いて溶液中の汚染物質や血液中の抗原を測定する手法においては、センサー部分を繰り返し使おうとすると洗浄が必要であるし、また抗体抗原反応に長い時間がかかる場合があることなどから、更にまた多数の検体を測定することで分布データを取得して統計的な評価も行うことがあるため、効率的な手法が望まれている。こうしたことから本発明者は、多数の水晶センサーを使って同時に測定することを検討している。多数の水晶センサーを用いる技術は、大気中における腐食性物質の種類とその濃度などを測定する技術を開示した特許文献1に記載されている。
ところで多数の水晶センサーを用いて測定を行う場合には次の問題がある。即ち、水晶振動子の発振周波数は設計値で決められてはいるが、実際の製品では互いの発振周波数が完全に同じにすることは実質不可能であり、また水晶振動子の電極表面に完全に同一の大きさ、厚さの吸着層を形成することも実質不可能であることから微少ではあるが周波数差が存在する。このため各水晶センサー間の距離が小さいと、例えば互いに隣り合う水晶センサー間の距離が小さいと、これら水晶センサー同士が空間的に結合してしまい、この結果互いの発振周波数に引っ張られて発振周波数が不安定になる。この現象はアンテナを接近させると発振周波数が不安定になることに似ており、このため正確な周波数の測定ができなくなって感知対象物の感知、即ち感知対象物の濃度測定や微量な感知対象物の有無を高精度に行うことが困難になってくる。図11に、互いに近接する水晶センサーの間で、測定に係るスペクトラムに対して測定に係るスペクトラムが重なっている様子の一例を示しておく。
このような現象を回避するためには、水晶センサーの互いの離間距離を大きく取ればよいが、装置が大型化してしまう。本発明者は、発振周波数の設計値が同じである例えば8個の水晶センサーを用い、感知対象物を含む試料溶液において8通りの希釈率で夫々希釈した8つの試料溶液について感知対象物の濃度を測定し、その濃度を統計的に評価することを検討しているが、水晶センサーの数が多くなると、できるだけ詰めて配列するように構成しないと、装置の小型化が図れず、市場の要求にそぐわなくなってしまう。
特開2001−99777号公報:図1及び図24
本発明はこのような事情の下になされたものであり、感知対象物を吸着するための吸着層がその表面に形成され、感知対象物の吸着により固有振動数が変わる水晶板などの圧電板を含むセンサー用振動子を複数用いた感知装置において、感知対象物の感知(濃度測定や感知対象物の有無の測定)を安定して行うことのできる技術を提供することにある。
本発明は、感知対象物を吸着するための吸着層がその表面に形成され、感知対象物の吸着により固有振動数が変わる圧電板を含むセンサー用振動子を用い、このセンサー用振動子の固有振動数の変化により感知対象物を感知する感知装置において、
複数のセンサー用振動子と、
前記複数のセンサー用振動子を夫々発振させるための複数の発振回路と、
これら複数の発振回路に対して共通に設けられ、発振回路の周波数に関する信号を測定するための測定部と、
前記複数の発振回路の出力端を前記測定部に順次切り替え接続するための信号切り替え部と、
前記複数の発振回路の各々と前記信号切り替え部との間に設けられ、各発振回路の出力側を、前記信号切り替え部と、一端が接地されている終端負荷の他端と、の間で切り替えるための負荷切り替え部と、
前記複数の発振回路の各々を前記測定部に順次接続するように信号切り替え部に制御信号を出力すると共に、測定部に接続される発振回路についてはその出力側を前記信号切り替え部に接続するように、また測定部に接続されない発振回路の中から選択された発振回路についてはその出力側を前記終端負荷に接続するように、前記負荷切り替え部に制御信号を出力する切り替え制御部と、を備え、
前記終端負荷は、前記測定部に接続されている発振回路と測定部に接続されていない発振回路との各発振周波数を強制的に互に離して互いのスペクトラムの重なりを避けるために設けられていることを特徴とする。
またより具体的には、前記複数の発振回路と信号切り替え部との間に夫々バッファ回路を設け、前記負荷切り替え部は、各発振回路と各バッファ回路との間に設けられている構成を挙げることができる。測定部に接続されていない発振回路の中から選択された発振回路は、測定部に接続されていない全部の発振回路であってもよいし、あるいは一部の発振回路としてもよい。また本発明は、各センサー用振動子を保持する保持部材と当該センサー用振動子の電極の接続端子とを含むセンサー部と、複数のセンサー部の接続端子が直接着脱されると共に各発振回路と測定部とを含む測定器本体と、を備えた構成としてもよい。
他の発明は、感知対象物を吸着するための吸着層がその表面に形成され、感知対象物の吸着により固有振動数が変わる圧電板を含むセンサー用振動子を用い、このセンサー用振動子の固有振動数の変化により感知対象物を感知する感知装置において、
複数のセンサー用振動子と、
前記複数のセンサー用振動子を夫々発振させるための複数の発振回路と、
これら複数の発振回路に対して共通に設けられ、発振回路の周波数に関する信号を測定するための測定部と、
前記複数の発振回路と前記測定部との間に設けられ、各発振回路の出力側を、前記測定部に接続される接点Aと、一端が接地されている終端負荷の他端側の接点Bとの間で切り替えるための負荷切り替え部と、
前記複数の発振回路の中から1個ずつ順番に発振回路の出力端を前記接点A側に接続すると共に前記接点A側に接続される発振回路以外の全ての発振回路の出力端を前記接点B側に接続するように前記負荷切り替え部に制御信号を出力する切り替え制御部と、を備え、
前記終端負荷は、前記測定部に接続されている発振回路と測定部に接続されていない発振回路との各発振周波数を強制的に互に離して互いのスペクトラムの重なりを避けるために設けられていることを特徴とする。
本発明によれば、感知対象物の吸着により固有振動数が変わるセンサー用振動子例えば水晶振動子を複数用いるにあたって、各センサー用振動子に対応する各発振回路に対して周波数の変化を測定するための共通の測定部を設けて順次切り替え接続するようにし、測定部に接続されている発振回路についてはその終端負荷が第1の値となるように、また測定部に接続されていない発振回路の中から選択された発振回路例えば測定部に接続されていない全部の発振回路についてはその終端負荷が第2の値となるように構成しているので、センサー用振動子の互いの発振周波数を強制的に離して互いのスペクトラムの重なりを避けることができる。従って感知対象物の感知(濃度測定や感知対象物の有無の測定)を安定して行うことができる。また複数のセンサー振動子に対して測定部を共通化しているので、回路構成がシンプルであり、コストの低減を図れる。
以下に本発明に係る感知装置の実施の形態を説明する。この実施の形態は、発振回路の後段の回路に要部があるが、初めに全体構造について簡単に説明しておく。この感知装置は図1に示すように、複数例えば8個のセンサー部である水晶センサー1と、これら水晶センサー1が着脱自在に装着される測定器本体100とを備えている。水晶センサー1は、図1及び図2に示すように配線基板であるプリント基板21の上にゴムシート22を重ね、このゴムシート22に設けられた凹部23を塞ぐように水晶振動子24が設けられ、更にゴムシート22の上から上蓋ケース25を装着して構成されている。プリント基板21及びゴムシート22は保持部材をなすものであり、水晶振動子24はセンサー用振動子に相当するものである。上蓋ケース25には、試料溶液の注入口25aと試料溶液の観察口25bとが形成され、注入口25aから試料溶液が注入され、水晶振動子24の上面側の空間に試料溶液が満たされることになる。水晶振動子24の下面側は前記凹部23により気密空間とされ、これによってランジュバン型の水晶センサーが構成されることになる。
水晶振動子24は、図3に示すように例えば円形の水晶板20の両面に電極24a、24a(裏面側の電極は見えない)が設けられ、これら電極24a、24aは導電性接着剤26を介してプリント基板21に設けられている接続端子27に電気的に接続されている。また水晶振動子24の一面例えば電極24aの表面には、感知対象物を吸着するための吸着層(図示せず)が形成されている。また各水晶センサー1の接続端子27は測定器本体100の接続端子側に直接着脱され、接続されたときに各水晶センサー1は横一列に並びかつ注入口25aが上に向いた状態とな。なおこの例では、水晶板20は、感知対象物の吸着により固有振動数が変わる圧電板に相当する。
測定器本体100は、水晶センサー1を発振させるための発振回路と、発振回路からの周波数信号の周波数を測定するための測定部とを内蔵している。測定器本体100の内部回路について図4を参照しながら説明する。この例では8個の水晶センサー1が取り付けられるように発振出力部が8チャンネル用意されており、これら8チャンネルの発振出力部を31〜38の符号で示す。発振出力部31〜38の後段には、信号切り替え部4を介して、発振回路の周波数に関する信号を測定するための測定部200が接続されている。信号切り替え部4は、SW1〜SW7を組み合わせて、発振出力部31〜38のいずれか一つが、つまり検出端側の8つのチャンネルの一つが測定部200に接続されるように構成されている。
この測定部200は、例えば発振回路の周波数を測定しその測定結果に基づいてその変化分を求める手段であってもよいが、後述のように発振回路の周波数の変化分を直接求める手段であってもよい。この例では、測定部200は発振出力部31〜38の何れか一つから送られる周波数信号(アナログ信号)をディジタル信号に変換するアナログ/ディジタル(A/D)コンバータ201及びA/Dコンバータ201からのディジタル信号を処理して周波数の計測あるいは周波数の変化分を直接計測する計測回路部202を備えている。
ここで図5を参照しながら発振出力部31〜38を代表して発振出力部31の構成について説明しておくと、発振出力部31は、水晶振動子24を発振させる例えばコルピッツ回路などからなる発振回路51と、この発振回路51の出力側に接続された負荷切り替え部をなすスイッチ52と、このスイッチ52の一方の切り替え接点A側に接続されたバッファ回路53と、スイッチ52の他方の切り替え接点B側に接続された、例えばコンデンサC1及び抵抗R1の並列回路からなる終端負荷54と、を備えている。C2〜C5はコンデンサである。
発振回路51は、出力側の負荷の値により発振周波数と出力レベルとが左右されるので、負荷の値が変動しないようにバッファ回路53を介して測定部200側に接続するようにしている。本発明は、このように発振回路51の発振周波数と出力レベルとが出力側の負荷の大きさにより敏感に変わることを利用し、発振回路51を測定部200に接続しないときには、スイッチ52の切り替えにより発振回路51の出力側を終端負荷54に接続して、バッファ回路53に接続したときの発振周波数とは異なる発振周波数となるようにしている。即ち、発振回路51をバッファ回路53に接続したときの出力側の負荷を第1の値とすると、終端負荷54側に切り替えたときには出力側の負荷が第2の値となる。そしてこの第2の値は、8つのチャンネルのうち、測定部200に接続されているチャンネルにおける発振回路51と測定部200に接続されていないチャンネルにおける発振回路51との発振周波数を強制的に離して互いのスペクトラムの重なりを避けることができるような大きさに設定されている。更に出力レベルを小さくすることで結合する絶対量も併せて低くなるようにする。具体的には、例えばスイッチ52をバッファ回路53側に切り替えたときの発振周波数に対して、スイッチ52を終端負荷54側に切り替えたときの発振周波数が数百ppm程度ずれるように終端負荷54の値(第2の値)が設定される。より具体例を挙げると、例えば31、1MHzの発振回路であれば、25kHzずれるように設定される。
既述のように互いの発振回路51の出力についてスペクトラムの重なりを避けるためには、即ちお互いの発振周波数に引っ張られて発振周波数が不安定になるという現象を避けるためには、発振周波数のずれ分が大きいほど好ましいが、あまり大きくすると、測定部200から切り離されていたチャンネルを測定部200に接続したときに、発振周波数が本来の大きさに戻って安定するまでに長い時間がかかり、そうするとチャンネルの切り替え速度が遅くなって、測定に長い時間がかかることから、両者の兼ね合いで決定されることになる。
図6は、8チャンネルの各々において発振回路51と、負荷切り替え部をなすスイッチ52と、切り替え制御部40とを関連づけて示す回路図であり、切り替え制御部40は、発振回路51の各々を前記測定部に順次一個づつ接続するように、即ち8つのチャンネルが順番に1個ずつ接続された状態となるように信号切り替え部4に制御信号を出力すると共に、測定部200に接続されているチャンネルの発振回路51以外の発振回路については終端負荷54に夫々接続するようにスイッチ52に制御信号を出力する機能を備えている。
次に上述実施の形態の作用について説明する。先ず水晶センサー1を測定器本体100に差込み、例えば水晶振動子1を空の状態で発振回路51を含む各チャンネルを信号切り替え部4により順次測定部200に接続する。測定部200においては、各発振回路51からの発振周波数をA/Dコンバータ201を介して計測回路部202に取り込み、例えばこのときの各発振周波数(ブランク値)を求める。なおブランク値を求めるためには、純水あるいはその他の溶液を水晶センサー1内に注入しておいてもよい。次いで検体である試料溶液の希釈率を互いに変えた8通りの測定用の試料溶液を用意し、これらを夫々8個の水晶センサー1に注入し、各チャンネルを信号切り替え部4により順次測定部200に接続し、各発振周波数求め、各チャンネル毎に試料溶液を入れたことによる発振周波数の変化分を求める。なおこの場合、水晶振動子24の吸着層に感知対象物質が吸着されたことの他に水晶振動子24が液体に接触したことによる変化分が加わるので、例えば純水を水晶センサー1に注入したときの発振周波数の変化分を予め求めておいて、その変化分をキャンセルした値を周波数の変化分の計測値として取り扱うなどとすることができる。また試料溶液を水晶センサー1に注入する前に純水を注入して発振周波数の測定を行い、次いで純水の代わりに試料溶液を水晶センサー1に注入するなどの操作を行ってもよい。
そして上述のチャンネルの切り替え接続動作に同期して、負荷切り替え部であるスイッチ52による発振回路51の切り替えが行われる。即ち、スイッチSW1、SW5及びSW7が接点A側に切り替わることにより、発振出力部31が測定部200に接続されているときには、発振出力部31におけるスイッチ52が接点A側に切り替わっていて、その他のチャンネルである発振出力部32〜38におけるスイッチ52は接点B側に切り替わっており、これらの発振回路51の出力側は終端負荷54に接続される。こうして順次発振出力部32と測定部200との切り替え接続及び発振回路51の出力側の負荷の切り替え接続が同期して行われる。
図7は、上述のようにして8チャンネルについて測定した測定結果を基に、試料溶液の希釈率と周波数の変化分(周波数差)との関係を示したものであり、例えばこの関係から試料溶液中の感知対象物質の濃度の評価を行う。なお感知装置の使用方法としては、元の試料溶液が同じで希釈率を種々変えた試料溶液を各水晶センサー1に注入することに限らず、検体自体が異なる試料溶液を水晶センサー1内に注入する場合にも適用できる。
上述の実施の形態によれば、各水晶センサー1に対応する各発振回路51に対して周波数の変化を測定するための共通の測定部200を設けて順次切り替え接続するようにし、負荷切り替え部をなすスイッチ52により測定部200に接続される発振回路51以外の発振回路51については終端負荷54に接続することにより、測定部200に接続されているチャンネルに含まれる(測定に係る)発振回路51の出力側の負荷の値と待機中の発振回路51の出力側の負荷の値とを異ならせて互いの発振周波数を強制的に離しているので、互いのスペクトラムの重なりを避けることができる。従って両者の発振周波数が互いに引っ張り合って発振周波数が不安定になるという事態を避けることができ、この結果感知対象物の感知(濃度測定や感知対象物の有無の測定)を安定して行うことができる。
なおこの例では、測定部200に接続されているチャンネル以外の全てのチャンネルについて発振回路51の出力側を終端負荷54に接続しているが、測定に係るチャンネルの水晶センサー1からある程度離れていて空間的な結合のおそれがないチャンネルについては、終端負荷54側に接続しなくてもよく、例えば測定に係る水晶センサー1に隣接している水晶センサー1が含まれるチャンネルについてだけ終端負荷54側に接続するようにスイッチ52の切り替え制御をしてもよい。
以上において、測定部200は、各水晶センサー1における発振周波数を測定し、例えばブランク値と試料溶液を注入したときの発振周波数とをカウントし、それらのカウント値を記憶しておいて両者の差、つまり周波数の変化分を求めるものであってもよいし、あるいは更にその変化分に基づいて予め取得された検量線に基づいて感知対象物の濃度を求めて表示するものであってもよいし、あるいは周波数の変化分に対する閾値を決めておき、感知対象物の有無を判定するものであってもよい。そして測定部200は、発振回路51の発振周波数をカウントするものに限られず、発振周波数の変化分を直接的に求めるものであってもよい。
発振周波数の変化分を直接的に求める手法としては、発振回路51からの周波数信号を基準クロック信号によりサンプリングし、そのサンプリング値をA/Dコンバータによりディジタル信号とし、このディジタル信号に対応する周波数信号に対してディジタル信号による直交検波を行い、当該周波数信号における周波数の変化分に相当する速度で回転する回転ベクトルを複素表示したときの実数部分及び虚数部分を取り出すと共に、その実数部分及び虚数部分の各時系列データに基づいて周波数信号の周波数の変化量を求める手法を挙げることができる。
このような手法を実現する例について述べておく。図8において、6は基準クロック発生部であり、発振回路51からの高周波信号をサンプリングするために周波数の安定性が極めて高い周波数信号であるクロック信号を出力する。61はA/D(アナログ/ディジタル)変換器であり、発振回路51からの高周波信号を基準クロック発生部6からのクロック信号によりサンプリングしてそのサンプリング値をディジタル信号として出力する。このディジタル信号で特定される高周波信号は基本波の他に高調波も含まれている。即ち高調波ひずみを有する正弦波をサンプリングする場合、その高調波成分が折り返しの影響を受けて、場合によっては周波数スペクトルにおける周波数軸上で基本波周波数と高調波の周波数とが重なる場合が想定される。そこでこのような重なりを避けて正しい感知動作が得られるようにする必要がある。
一般に周波数f1の正弦波信号を周波数fsのクロック信号でサンプリングした場合、その取り込み結果の周波数f2は(1)式で表される。ただしmod(,)はmodulo関数を表している。
f2=|mod(f1+fs/2,fs)−fs/2| ……(1)
この取り込み結果において、基本波周波数に対してn次の高調波の周波数はn×(基本波周波数)として表されるので、これをf2と置いて上記の(1)式に代入すれば、高調波がどのような周波数として取り込まれるかを計算することができる。この計算を用いることにより基本波の周波数と高調波の周波数とが重ならないように、発振回路51からの高周波信号の周波数をfcとサンプリング周波数(クロック信号の周波数)fsとを設定することができ、例えばfcを11MHz、fsを12MHzに設定する。この場合、A/D変換器61からのディジタル信号である出力信号で特定される周波数信号の基本波は1MHzの正弦波となる。なおfc/fsを11/12にすれば、基本波の周波数と高調波の周波数とが重ならないが、fc/fsはこの値に限られるものではない。
A/D変換器61の後段には、キャリアリムーブ7及びローパスフィルタ8がこの順に設けられている。キャリアリムーブ7及びローパスフィルタ8は、A/D変換器61からのディジタル信号により特定される1MHzの正弦波信号をAcos(ω0t+θ)としたとき、この正弦波信号の周波数の変化分に対応する回転ベクトルを取り出す手段、より詳しくはこの回転ベクトルを複素表示したときの実数部分及び虚数部分を取り出す手段に相当する。
即ちキャリアリムーブ7は、図9に示すように前記正弦波信号に対してcos(ω0t)を掛け算する掛け算部71aと前記正弦波信号に対して−sin(ω0t)を掛け算する掛け算部71bとを備えている。掛け算部71aの出力及び掛け算部71bの出力は夫々(2)式及び(3)式により表される。
Acos(ω0t+θ)・cos(ω0t)=1/2・Acosθ+1/2{cos(2ω0t)・cosθ+sin(2ω0t)・sinθ}……(2)
Acos(ω0t+θ)・−sin(ω0t)=1/2・Asinθ−1/2{sin(2ω0t)・cosθ+cos(2ω0t)・sinθ}……(3)
従って掛け算部71aの出力及び掛け算部71bの出力を夫々ローパスフィルタ72a及び72bを通すことにより、2ω0tの周波数信号は除去されるので、結局ローパスフィルタ72からは1/2・Acosθと1/2・Asinθとが取り出される。なおローパスフィルタ72は、ローパスフィルタ72a及び72bから構成されるものとして記載してある。ローパスフィルタ72における実際のディジタル処理は、キャリアリムーブ71から出力される時系列データについて連続する複数個のデータ例えば6個のデータの移動平均を演算している。
そしてAcos(ω0t+θ)で表される正弦波信号の周波数が変化すると、Acos(ω0t+θ)はAcos(ω0t+θ+ω1t)となる。従って1/2・Acosθは1/2・Acos(θ+ω1t)となり、1/2・Asinθは1/2・Asin(θ+ω1t)となる。即ち、ローパスフィルタ72から得られた出力は、正弦波信号[Acos(ω0t+θ)]の周波数の変化分(ω1t)に対応する信号であり、詳しくはその周波数の変化分の速度で回転するベクトルを複素表示したときの実数部分(I)及び虚数部分(Q)である。
図10はこの回転ベクトルを表した図であり、この回転ベクトルは長さがAであり、回転速度がω1tである。従って前記正弦波信号の周波数が変化しなければ、ω1tはゼロであるからこの回転ベクトルの回転速度はゼロであるが、水晶振動子24に感知対象物質が吸着されて水晶振動子24の周波数が変化し、これにより前記正弦波信号の周波数が変化すると、その変化分に応じた回転速度で回転することになる。従ってローパスフィルタ72から出力された、回転ベクトルを複素表示したときの実数部分(I)及び虚数部分(Q)に基づいて周波数差演算部9により、その速度を演算することにより、周波数差つまり周波数の変化分を捉えることができる。なおこの演算は、例えばあるタイミングにおける回転ベクトルの位相と、次のクロックできまるタイミングにおける当該回転ベクトルの位相とを求め、その位相差を求めるといった手法が採用できる。
本発明に係る感知装置の実施の形態の外観及び水晶センサーを示す斜視図である。 上記実施の形態に用いられる水晶センサーを示す縦断面図である。 水晶センサーに用いられる水晶振動子と接続端子とを示す斜視図である。 上記実施の形態の全体の回路構成を示すブロック回路図である。 上記実施の形態の回路に用いられる発振出力部を示す回路図である。 上記実施の形態の全体の回路を簡略化しかつ終端負荷切り替え部の切り替えの状態を示すブロック回路図である。 上記実施の形態において8個の水晶センサーの各周波数変化分と試料溶液の希釈率との関係を示す特性図である。 互いに近接する水晶センサーの間で、測定に係るスペクトラムに対して測定に係るスペクトラムが重なっている様子を示す特性図である。 図8に示す回路ブロックの一部を示す構成図である。 図8に示すブロック図により取り出された回転ベクトルを示す説明図である。 本発明の適用例であるを示すブロック図である。
符号の説明
1(11〜18) 水晶センサー
20 水晶板
24 水晶振動子
27 接続端子
31〜38 発振回路部
4 信号切り替え部
51 発振回路
52 負荷切り替え部をなすスイッチ
53 バッファ回路
54 終端負荷
100 測定器本体
200 測定部


Claims (5)

  1. 感知対象物を吸着するための吸着層がその表面に形成され、感知対象物の吸着により固有振動数が変わる圧電板を含むセンサー用振動子を用い、このセンサー用振動子の固有振動数の変化により感知対象物を感知する感知装置において、
    複数のセンサー用振動子と、
    前記複数のセンサー用振動子を夫々発振させるための複数の発振回路と、
    これら複数の発振回路に対して共通に設けられ、発振回路の周波数に関する信号を測定するための測定部と、
    前記複数の発振回路の出力端を前記測定部に順次切り替え接続するための信号切り替え部と、
    前記複数の発振回路の各々と前記信号切り替え部との間に設けられ、各発振回路の出力側を、前記信号切り替え部と、一端が接地されている終端負荷の他端と、の間で切り替えるための負荷切り替え部と、
    前記複数の発振回路の各々を前記測定部に順次接続するように信号切り替え部に制御信号を出力すると共に、測定部に接続される発振回路についてはその出力側を前記信号切り替え部に接続するように、また測定部に接続されない発振回路の中から選択された発振回路についてはその出力側を前記終端負荷に接続するように、前記負荷切り替え部に制御信号を出力する切り替え制御部と、を備え、
    前記終端負荷は、前記測定部に接続されている発振回路と測定部に接続されていない発振回路との各発振周波数を強制的に互に離して互いのスペクトラムの重なりを避けるために設けられていることを特徴とする感知装置。
  2. 前記複数の発振回路と信号切り替え部との間に夫々バッファ回路を設け、前記負荷切り替え部は、各発振回路と各バッファ回路との間に設けられていることを特徴とする請求項1に記載の感知装置。
  3. 測定部に接続されていない発振回路の中から選択された発振回路は、測定部に接続されていない全部の発振回路であることを特徴とする請求項1に記載の感知装置。
  4. 各センサー用振動子を保持する保持部材と当該センサー用振動子の電極の接続端子とを含むセンサー部と、複数のセンサー部の接続端子が直接着脱されると共に各発振回路と測定部とを含む測定器本体と、を備えたことを特徴とする請求項1に記載の感知装置。
  5. 感知対象物を吸着するための吸着層がその表面に形成され、感知対象物の吸着により固有振動数が変わる圧電板を含むセンサー用振動子を用い、このセンサー用振動子の固有振動数の変化により感知対象物を感知する感知装置において、
    複数のセンサー用振動子と、
    前記複数のセンサー用振動子を夫々発振させるための複数の発振回路と、
    これら複数の発振回路に対して共通に設けられ、発振回路の周波数に関する信号を測定するための測定部と、
    前記複数の発振回路と前記測定部との間に設けられ、各発振回路の出力側を、前記測定部に接続される接点Aと、一端が接地されている終端負荷の他端側の接点Bとの間で切り替えるための負荷切り替え部と、
    前記複数の発振回路の中から1個ずつ順番に発振回路の出力端を前記接点A側に接続すると共に前記接点A側に接続される発振回路以外の全ての発振回路の出力端を前記接点B側に接続するように前記負荷切り替え部に制御信号を出力する切り替え制御部と、を備え、
    前記終端負荷は、前記測定部に接続されている発振回路と測定部に接続されていない発振回路との各発振周波数を強制的に互に離して互いのスペクトラムの重なりを避けるために設けられていることを特徴とする感知装置。
JP2004381432A 2004-12-28 2004-12-28 感知装置 Active JP4134025B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004381432A JP4134025B2 (ja) 2004-12-28 2004-12-28 感知装置
CN2005800453585A CN101095039B (zh) 2004-12-28 2005-12-28 感知装置
EP05824558A EP1832862A4 (en) 2004-12-28 2005-12-28 MEASURING DEVICE
PCT/JP2005/024272 WO2006070940A1 (ja) 2004-12-28 2005-12-28 感知装置
US11/793,985 US7555952B2 (en) 2004-12-28 2005-12-28 Sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381432A JP4134025B2 (ja) 2004-12-28 2004-12-28 感知装置

Publications (3)

Publication Number Publication Date
JP2006184260A JP2006184260A (ja) 2006-07-13
JP2006184260A5 JP2006184260A5 (ja) 2008-05-15
JP4134025B2 true JP4134025B2 (ja) 2008-08-13

Family

ID=36615039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381432A Active JP4134025B2 (ja) 2004-12-28 2004-12-28 感知装置

Country Status (5)

Country Link
US (1) US7555952B2 (ja)
EP (1) EP1832862A4 (ja)
JP (1) JP4134025B2 (ja)
CN (1) CN101095039B (ja)
WO (1) WO2006070940A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830170A4 (en) * 2004-12-15 2012-04-11 Nihon Dempa Kogyo Co COMPONENTS MEASURING DEVICE
US7677087B2 (en) * 2004-12-15 2010-03-16 Nihon Dempa Kogyo Co., Ltd. Quartz sensor and sensing device
WO2006064951A1 (ja) * 2004-12-15 2006-06-22 Nihon Dempa Kogyo Co., Ltd 水晶センサ及び感知装置
JP4134025B2 (ja) 2004-12-28 2008-08-13 日本電波工業株式会社 感知装置
WO2007015575A1 (ja) 2005-08-03 2007-02-08 Nihon Dempa Kogyo Co., Ltd. 濃度センサー及び濃度検出装置
DE102006015512B4 (de) * 2006-03-31 2010-01-21 Andreas Hettich Gmbh & Co. Kg Vorrichtung aus einer Messkammer und einem über einen Schnellverschluss in die Messkammer integrierbaren Resonator für die Flüssigkeitssensorik
JP5060749B2 (ja) * 2006-07-31 2012-10-31 日本電波工業株式会社 感知装置
JP4611954B2 (ja) * 2006-09-29 2011-01-12 日本電波工業株式会社 感知装置
JP4376258B2 (ja) 2006-09-29 2009-12-02 日本電波工業株式会社 感知装置
JP4611959B2 (ja) 2006-10-24 2011-01-12 日本電波工業株式会社 感知方法
JP4713459B2 (ja) * 2006-12-25 2011-06-29 日本電波工業株式会社 感知装置
EP2120035A1 (en) * 2007-03-06 2009-11-18 Nihon Dempa Kogyo Co., Ltd. Sensing device
JP4960171B2 (ja) * 2007-08-08 2012-06-27 日本電波工業株式会社 感知装置
JP5218761B2 (ja) * 2008-12-10 2013-06-26 国立大学法人大阪大学 検出素子、それを備えた検出装置、検出素子に用いられる振動子、および検出装置における検出対象物の検知方法
ES2804799T3 (es) 2010-10-20 2021-02-09 Qorvo Us Inc Aparato y método para medir la cinética de unión y concentración con un sensor resonador
JP5771444B2 (ja) * 2011-05-18 2015-08-26 株式会社アルバック 分析装置
CH713460A2 (de) * 2017-02-15 2018-08-15 Digi Sens Ag Schwingsaitensensor und Schwingsaite für einen Schwingsaitensensor.
CN108760593A (zh) * 2018-05-14 2018-11-06 南开大学 一种振荡天平测量pm2.5的放射性补偿装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196347A (en) 1986-07-03 1993-03-23 Terumo Kabushiki Kaisha Method for measuring oxygen concentration
JP2669848B2 (ja) 1988-03-25 1997-10-29 豊栄 森泉 匂検出用の化学センサ
US4991283A (en) 1989-11-27 1991-02-12 Johnson Gary W Sensor elements in multilayer ceramic tape structures
JPH03257346A (ja) 1990-03-08 1991-11-15 Seiko Instr Inc 反応計測装置
JP3041361B2 (ja) 1990-04-17 2000-05-15 セイコーインスツルメンツ株式会社 反応計測装置
JPH049744A (ja) 1990-04-27 1992-01-14 Seiko Instr Inc 水晶振動子セル
JP2555002B2 (ja) 1991-06-27 1996-11-20 株式会社イナックス フローインジェクション方式による尿中成分の連続定量分析方法
DE4334834A1 (de) 1993-10-13 1995-04-20 Andrzej Dr Ing Grzegorzewski Biosensor zum Messen von Viskositäts- und/oder Dichteänderungen
JP3499277B2 (ja) 1993-12-27 2004-02-23 東京電波株式会社 匂い物質センサと匂い測定装置
JP2748246B2 (ja) 1995-11-14 1998-05-06 デベロップメント センター フォー バイオテクノロジー カートリッジ状の圧電センサチップ
JPH09250936A (ja) 1996-01-10 1997-09-22 Ngk Insulators Ltd 包囲空間が形成されたセラミック基体
JP3343030B2 (ja) 1996-05-22 2002-11-11 日本碍子株式会社 センサ素子
JPH10142134A (ja) 1996-11-06 1998-05-29 Yokogawa Electric Corp 匂い測定装置
JPH10332463A (ja) 1997-03-31 1998-12-18 Nippon Paint Co Ltd 水晶発振子を用いた塗膜評価装置及び塗膜の消耗性の評価方法
JPH11183479A (ja) 1997-10-16 1999-07-09 Fuji Electric Co Ltd 溶液測定用センサ及び溶液成分測定方法
US6321588B1 (en) 1998-09-11 2001-11-27 Femtometrics, Inc. Chemical sensor array
JP2000338022A (ja) 1999-05-25 2000-12-08 Hokuto Denko Kk マルチチャンネルqcmセンサデバイス及びマルチチャンネルqcm測定システム
JP3643521B2 (ja) * 1999-07-29 2005-04-27 株式会社日立製作所 腐食環境監視装置
DE19936693A1 (de) 1999-08-04 2001-02-08 Lre Technology Partner Gmbh Verfahren zur ampereometrischen Bestimmung der Konzentration einer Substanz in einer Flüssigkeit
JP2001083154A (ja) 1999-09-13 2001-03-30 Agency Of Ind Science & Technol 疾病マーカー物質簡易小型検出装置
DE29918177U1 (de) 1999-10-14 2000-01-05 Kan Chin Mao Chassis zur Drahtverbindung in zwei Ebenen
JP2001201436A (ja) 2000-01-18 2001-07-27 Shimadzu Corp ガス測定装置
EP1811292A1 (en) 2000-08-08 2007-07-25 Akubio Limited Quartz crystal sensor cell
JP2002148295A (ja) 2000-11-10 2002-05-22 Ulvac Japan Ltd 周波数測定方法、周波数測定装置及び分析装置
JP4387603B2 (ja) 2001-02-16 2009-12-16 株式会社アルバック 測定装置及び測定方法
DE10203475A1 (de) 2002-01-18 2003-07-31 Bosch Gmbh Robert Vorrichtung zur Messung der Viskosität und/oder der Dichte
SE0203772D0 (sv) 2002-12-19 2002-12-19 Attana Ab Piezoelectric sensor arrangement
JP2004205392A (ja) 2002-12-26 2004-07-22 Japan Science & Technology Agency Qcm装置及び試料測定方法
JP3876842B2 (ja) 2003-03-04 2007-02-07 セイコーエプソン株式会社 質量測定チップおよび質量測定装置
US20050052813A1 (en) 2003-03-25 2005-03-10 Yoshihiro Kobayashi Mass measurement method, circuit for exciting piezoelectric vibration reed for mass measurement, and mass measurement apparatus
JP4213061B2 (ja) * 2003-03-28 2009-01-21 シチズンホールディングス株式会社 Qcmセンサーおよびqcmセンサー装置
JP2004340766A (ja) 2003-05-16 2004-12-02 Hitachi Ltd 化学物質検出装置
US7331232B2 (en) * 2003-09-25 2008-02-19 Ulvac, Inc. Measurement method and biosensor apparatus using resonator
EP1830170A4 (en) * 2004-12-15 2012-04-11 Nihon Dempa Kogyo Co COMPONENTS MEASURING DEVICE
US7677087B2 (en) * 2004-12-15 2010-03-16 Nihon Dempa Kogyo Co., Ltd. Quartz sensor and sensing device
WO2006064951A1 (ja) * 2004-12-15 2006-06-22 Nihon Dempa Kogyo Co., Ltd 水晶センサ及び感知装置
JP4134025B2 (ja) 2004-12-28 2008-08-13 日本電波工業株式会社 感知装置

Also Published As

Publication number Publication date
US20080156097A1 (en) 2008-07-03
US7555952B2 (en) 2009-07-07
EP1832862A1 (en) 2007-09-12
CN101095039B (zh) 2011-06-08
CN101095039A (zh) 2007-12-26
WO2006070940A1 (ja) 2006-07-06
JP2006184260A (ja) 2006-07-13
EP1832862A4 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4134025B2 (ja) 感知装置
JP4611959B2 (ja) 感知方法
US7398163B2 (en) Sensing apparatus
TWI443338B (zh) And a sensing means for sensing the sensing object in the liquid
JP5066551B2 (ja) 圧電センサ及び感知装置
JP6043061B2 (ja) 弾性表面波センサ
JP4177361B2 (ja) 感知装置
JP5100454B2 (ja) 感知装置
JP4594162B2 (ja) 感知装置
JP4611954B2 (ja) 感知装置
JP4376258B2 (ja) 感知装置
JP4960171B2 (ja) 感知装置
Wohltjen et al. Surface Acoustic Wave Devices as Chemical Vapor Microsensors
JP2009156798A (ja) 水晶振動子を用いた物理/化学量測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080402

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4134025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250