JP4082147B2 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
JP4082147B2
JP4082147B2 JP2002272997A JP2002272997A JP4082147B2 JP 4082147 B2 JP4082147 B2 JP 4082147B2 JP 2002272997 A JP2002272997 A JP 2002272997A JP 2002272997 A JP2002272997 A JP 2002272997A JP 4082147 B2 JP4082147 B2 JP 4082147B2
Authority
JP
Japan
Prior art keywords
secondary battery
battery
type secondary
density type
open circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002272997A
Other languages
English (en)
Other versions
JP2004111242A (ja
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002272997A priority Critical patent/JP4082147B2/ja
Publication of JP2004111242A publication Critical patent/JP2004111242A/ja
Application granted granted Critical
Publication of JP4082147B2 publication Critical patent/JP4082147B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、電気自動車やハイブリッド車両に用いられる二次電池としての組電池に関し、特に、高出力密度型二次電池と高エネルギ密度型二次電池とを並列接続して組み合わせた組電池に関するものである。
【0002】
【従来の技術】
従来から電気自動車やハイブリッド車両に負荷との間で電力を充放電する二次電池として、高出力密度型二次電池と高エネルギ密度型二次電池とをセル数を同一にしたうえで、並列に接続した組電池が提案されている(例えば、特許文献1参照)。
【0003】
これは、高出力密度型二次電池によって負荷との間で充放電を行ない、高出力密度型二次電池の充電状態SOCが50%を超えている場合には、高出力密度型二次電池の電力によって高エネルギ密度型二次電池を充電すると共に、高出力密度型二次電池の充電状態SOCが50%以下の場合には、高エネルギ密度型二次電池の電力によって高出力密度型二次電池を充電するようにしている。
【0004】
この結果、一般に充電状態SOCが50%を下回ると出力が急激に低下する高出力密度型二次電池の充電状態SOCを常に50%以上に保つことができ、高出力で且つ高エネルギーな二次電池を提供することができる。
【0005】
【特許文献1】
特開平11−332023号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来例では、高出力密度型二次電池と高エネルギ密度型二次電池のそれぞれの端子電圧を同じにして、高出力且つ高エネルギーな電池を得るようにしているが、電池に要求される性能として、一定以上の高出力密度を維持しつつ高エネルギ密度を得たい場合や一定以上の高エネルギ密度を維持しつつ高出力密度を得たい場合があり、このような場合には従来の技術では対応することができない可能性があった。
【0007】
そこで本発明は、上記問題点に鑑みてなされたもので、様々な要求される特性に応じた組電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、直列接続された複数のセルからなる高出力密度型二次電池と直列接続された複数のセルからなる高エネルギ密度型二次電池を並列に接続して構成した組電池であって、前記両二次電池の開回路電圧を両二次電池の放電深度DODの値が同一の状態で比較した場合に、ほぼ全域の放電深度DODで前記高エネルギ密度型二次電池の開回路電圧を前記高出力密度型二次電池の開回路電圧よりも高くした。
【0009】
【発明の効果】
したがって、本発明では、開回路電圧が異なる高出力密度型二次電池と高エネルギ密度型二次電池を並列に接続して組電池を構成したため、開回路電圧が等しい電池の組み合わせに比較して、一定以上の高出力密度を維持しつつ高エネルギ密度を得たい場合や一定以上の高エネルギ密度を維持しつつ高出力密度を得たい場合等の様々な要求される特性に応じた入出力特性を改善する高性能な電池を実現できる。
【0010】
【発明の実施の形態】
以下、本発明の組電池を各実施形態に基づいて説明する。
【0011】
(第1実施形態)
図1〜図5は、本発明を適用した組電池の第1実施形態を示し、図1は適用例を示すハイブリッド車両のシステム構成図、図2は組電池の構成を示す接続図、図3は並列接続する各電池のDODと開放電圧との関係および並列接続された組電池の放電深度DODと開放電圧との関係を示すグラフ、図4は組電池における放電深度DODと出力電力との関係を示すグラフ、図5は各電池および組電池の容量と開回路電圧との関係を示すグラフである。
【0012】
図1により、本発明をハイブリッド車両に適用した実施の形態を説明する。なお、本発明はハイブリッド車両に限定されず、一般の電気自動車を始め、電気自動車以外の各種装置に適用することができる。
【0013】
図1において、太い実線は機械力の伝達経路を示し、太い破線は電力線を示す。また、細い実線は制御線を示し、二重線は油圧系統を示す。この車両のパワートレインは、モータ1、エンジン2、クラッチ3、モータ4、無段変速機5、減速装置6、差動装置7および駆動輪8から構成される。モータ1の出力軸、エンジン2の出力軸およびクラッチ3の入力軸は互いに連結されており、また、クラッチ3の出力軸、モータ4の出力軸および無段変速機5の入力軸は互いに連結されている。
【0014】
クラッチ3締結時はエンジン2とモータ4が車両の推進源となり、クラッチ3解放時はモータ4のみが車両の推進源となる。エンジン2および/またはモータ4の駆動力は、無段変速機5、減速装置6および差動装置7を介して駆動輪8へ伝達される。無段変速機5には油圧装置9から圧油が供給され、ベルトのクランプと潤滑がなされる。油圧装置9のオイルポンプ(不図示)はモータ10により駆動される。
【0015】
モータ1,4,10は三相同期電動機または三相誘導電動機などの交流機であり、モータ1は主としてエンジン始動と発電に用いられ、モータ4は主として車両の推進と制動に用いられる。また、モータ10は油圧装置9のオイルポンプ駆動用である。なお、モータ1,4,10には交流機に限らず直流電動機を用いることもできる。また、クラッチ3締結時に、モータ1を車両の推進と制動に用いることもでき、モータ4をエンジン始動や発電に用いることもできる。
【0016】
クラッチ3はパウダークラッチであり、伝達トルクを調節することができる。なお、このクラッチ3に乾式単板クラッチや湿式多板クラッチを用いることもできる。無段変速機5はベルト式やトロイダル式などの無段変速機であり、変速比を無段階に調節することができる。
【0017】
モータ1,4,10はそれぞれ、インバータ11,12,13により駆動される。なお、モータ1,4,10に直流電動機を用いる場合には、インバータの代わりにDC/DCコンバータを用いる。インバータ11〜13は共通のDCリンク14を介してメインバッテリ15に接続されており、メインバッテリ15の直流充電電力を交流電力に変換してモータ1,4,10へ供給するとともに、モータ1,4の交流発電電力を直流電力に変換してメインバッテリ15を充電する。インバータ11〜13は互いにDCリンク14を介して接続されているので、回生運転中のモータにより発電された電力をメインバッテリ15を介さずに直接、力行運転中のモータへ供給することができる。なお、この明細書では電池とバッテリとを同義として用いる。
【0018】
コントローラ16は、マイクロコンピュータとその周辺部品や各種アクチュエータなどを備え、エンジン2の回転速度、出力およびトルク、クラッチ3の伝達トルク、モータ1,4,10の回転速度およびトルク、無段変速機5の変速比、メインバッテリ15の充放電などを制御する。
【0019】
図2はメインバッテリ15の詳細な構成を示す図である。メインバッテリ15は、高エネルギ密度型二次電池15Aと、高出力密度型二次電池15Bとを並列に接続した組電池に構成している。以下、組電池に符号15を付して詳細に説明する。
【0020】
図2において、組電池15は、図中右側にあって112セルを直列接続した高エネルギ密度型二次電池15Aと、図中左側にあって96セルを直列接続した高出力密度型二次電池15Bと、を並列接続して構成している。
【0021】
前記高エネルギ密度型二次電池15Aのセルは、リチウム金属リン酸化合物(LiFePO4やLiMnPO4等)を正極材料として用いるもの、およびまたは、黒鉛系(グラファイト)炭素材料を負極材料として用いる。例えば、正極材料としてオリビン型リチウム鉄リン酸化合物(LiFePO4)を、また、負極材料としてグラファイトを用いて、リチウムイオン二次電池セルとし、このセルを直列に112個接続して容量が12Ahとなる高エネルギ密度型二次電池15Aとする。高エネルギ密度型二次電池15Aは、前記した正極材料もしくは負極材料を選択することにより、開回路電圧(開放電圧、無負荷電圧)が放電深度DODの増加に対して一定となる特性を持つ電池とすることが出来る。
【0022】
前記高出力密度型二次電池15Bのセルは、リチウム金属酸化物(LiMn24、LiNiO2、LiCoO2等)を正極材料として用いるもの、およびまたは、非晶質系炭素材料(ハードカーボン)を負極材料として用いる。例えば、正極材料としてスピネル型リチウムマンガン酸化物(LiMn24)を、また、負極材料としてハードカーボンを用いて、リチウムイオン二次電池セルとし、このセルを直列に96個接続して容量が3Ahとなる高出力密度型二次電池15Bとする。高出力密度型二次電池15Bは、前記した正極材料もしくは負極材料を選択することにより、開回路電圧(開放電圧、無負荷電圧)を放電深度DODの増加に対して徐々に低下する傾きを持つ特性の電池とすることが出来る。
【0023】
図3は、上記高エネルギ密度型二次電池15A、高出力密度型二次電池15B、および、両者を並列に接続した組電池15の特性を示す図であり、各電池の放電深度DODに対する開回路電圧(開放電圧)の関係を表している。ただし、高エネルギ密度型二次電池15Aは112セルを直列接続した状態の特性であり、高出力密度型二次電池15Bは96セルを直列接続した状態の特性である。
【0024】
図3に示すように、高エネルギ密度型二次電池15Aは、特性Aに示すように、放電深度DODが90%以上となるまで一定の開回路電圧特性を備える一方、高出力密度型二次電池15Bは、特性Bに示すように、放電深度DODが増加するに連れて徐々に低下する開回路電圧特性を備える。このため、両電池を並列接続した組電池15は、特性Cに示すように、放電深度DODが約80%となるまでは、高エネルギ密度型二次電池15Aの容量が使われ、残り20%の放電深度DODの増加時に高出力密度型二次電池15Bの容量が使われる。
【0025】
一般的に、電池15から負荷に対して電力を供給している場合には、内部抵抗の小さい高出力密度型二次電池15Bから電力が供給され、高出力密度型二次電池15B単体で見ると高出力密度型二次電池15Bの容量が低下する、すなわち高出力密度型二次電池15B単体の電圧が低下することになる。そして、負荷への電力供給を停止すると、並列接続された電池15A、15B間で電圧を合わそうとするために、高エネルギ密度型二次電池15Aから高出力密度型二次電池15Bに対して充電が行なわれる。ここで、高エネルギ密度型二次電池15Aは、図3に示す特性のように放電深度DODが77%までは、開回路電圧が変化しないことになるので、高エネルギ密度型二次電池15Aの放電深度DODが0〜77%の範囲では、両方の電池15A、15B単体および組電池15としての開回路電圧が所望の値(400V)を維持できる。そして、高エネルギ密度型二次電池15Aの放電深度DODが77%を超えると、高エネルギ密度型二次電池15Aの電圧もドロップしてしまう、言い換えると、高エネルギ密度型二次電池15Aの容量が空になってしまうので、その後は高出力密度型二次電池15Bの持っている能力でしか電力を供給することができなくなる。従って、組電池15としての開回路電圧が低下することになる。
【0026】
図4は電池の使用可能容量(Ah)を横軸とし開回路電圧Vを縦軸としたグラフであり、図4(A)は高エネルギ密度型二次電池15Aの開回路電圧の変化を示し、図4(B)は高出力密度型二次電池15Bの開回路電圧の変化を示し、図4(C)は組電池15の開回路電圧の変化を示したものである。
【0027】
そして、並列接続された組電池15は、高エネルギ密度型二次電池15Aの使用可能容量が12Ahであり(図4(A)参照)、高出力密度型二次電池15Bの使用可能容量が3Ahであり(図4(B)参照)、組電池15全体の使用可能容量としては、15Ah(=12Ah+3Ah)の容量を持っている(図4(C)参照)。
【0028】
そして、図4(A)に示すように、高エネルギ密度型二次電池15Aの使用可能容量は12Ahであり、消費容量11.5Ahまで(組電池のDODとしては77%に相当)は、開回路電圧がある一定の値を維持でき、その後急速に開回路電圧が低下する。
【0029】
一方、図4(B)に示すように、高出力密度型二次電池15Bの使用可能容量は3Ahであり、消費容量(消費容量=使用可能容量−残存容量)の増加に従って、開回路電圧も低下する特性を示す。
【0030】
従って、高エネルギ密度型二次電池15Aの残存容量があるうち(消費容量が11.5Ahまでの領域Dの範囲)は、高出力密度型二次電池15Bで消費した容量分を高エネルギ密度型二次電池15Aからの充電により補うことができ、消費容量が11.5Ahを超えて使用すると、高エネルギ密度型二次電池15Aで高出力密度型二次電池15Bの消費使用分を補えなくなり、開回路電圧が低下する(領域E参照)ことになる。
【0031】
この結果、この組電池の放電深度DODと出力の関係は、図5に示すように、放電深度DODが約80%(77%)までは、高出力密度型二次電池15Bの放電深度DODが0%に維持されるため、高出力密度型二次電池15Bの出力特性(40kW)の高出力を組電池15から出力でき、組電池15の出力特性が向上するという効果が得られることになる。
【0032】
図6、7は、比較例の特性を示すものである。この比較例においては、図示しないが、高エネルギ密度型二次電池を、正極にオリビン型リチウム鉄リン酸化合物(LiFePO4)、負極にハードカーボンを用いた12Ahの二次電池とし、高出力密度型二次電池を、正極にスピネル型リチウムマンガン酸化物(LiMn24)、負極にグラファイトを用いた3Ahの二次電池としている。そして、上記実施形態と同様に、高エネルギ密度型二次電池を112セル、高出力密度型二次電池を96セル直列に接続し、それぞれを並列に接続して組電池とした。負極の材料を交換して開放電圧を変化させた以外は、全て上記実施形態と同じ仕様としてある。
【0033】
図6に高エネルギ密度型二次電池、高出力密度型二次電池の放電深度DODと開放電圧F、Gの関係、および、組電池の放電深度DODと開放電圧Hの関係を示す。図より明らかなように、この比較例では放電深度DODの20%までは高出力密度型二次電池が使われ、残り80%で高エネルギ密度型二次電池の容量が使われることが分かる。
【0034】
図7に比較例の放電深度DODと出力の関係を示す。この比較例においては、放電深度DODが20%までは高出力密度型二次電池がもっぱら使用されるため高出力密度型二次電池の出力特性となる(図中特性J参照)。DOD20%以降は高出力密度型二次電池のDODが100%近くになってしまうため出力特性が低下する(図中特性K参照)。
【0035】
これらの結果より、本実施形態のように、高出力密度型二次電池15Bの開回路電圧を高エネルギ密度型二次電池15Aの開回路電圧よりも低くすることにより、高出力密度型二次電池15Bの放電深度DODが高エネルギ密度型二次電池15Aの放電深度DODより小さくなり、図5に示すように、出力特性が向上することが理解できる。
【0036】
本実施形態においては、以下に記載する効果を奏することができる。
【0037】
(ア)開回路電圧が異なる高出力密度型二次電池15Bと高エネルギ密度型二次電池15Aを並列に接続して組電池15を構成しているため、開回路電圧が等しい電池の組み合わせに比較して、様々な要求される特性に応じた組電池を実現可能である。
【0038】
(イ)高エネルギ密度型二次電池15Aの開回路電圧を高出力密度型二次電池15Bの開回路電圧より高くしたため、高出力密度型二次電池15Bの放電深度DODが高エネルギ密度型二次電池15Aの放電深度DODより小さくでき、電池の出力特性が向上できる。
【0039】
(ウ)高出力密度型二次電池15Bの開回路電圧を放電深度DODに対して徐々に低下する特性とし、高エネルギ密度型二次電池15Aの開回路電圧が放電深度DODに対して一定で変化しない特性としたため、高出力密度型二次電池15Bの開回路電圧を高エネルギ密度型二次電池15Aの開回路電圧より低くすることができる。
【0040】
(エ)高エネルギ密度型二次電池15Aの開回路電圧が高出力密度型二次電池15Bの開回路電圧より高い開回路電圧で放電深度DODに対して一定で変化しない特性としたため、高出力密度型二次電池15Bの放電深度DODを0%付近の一定に保つことができ、組電池15の放電深度DODによらず一定の出力特性を確保できる。
【0041】
(オ)高出力密度型二次電池15Bの開回路電圧を放電深度DODに対して徐々に低下する特性とし、高エネルギ密度型二次電池15Aの開回路電圧が放電深度DODに対して一定で変化しない特性としたため、開回路電圧が放電深度DODに対して一定の高エネルギ密度型二次電池15Aのみを用いた場合における残存容量の算出が電圧測定のみでは困難であったが、開回路電圧が放電深度DODに対して傾きを持つ高出力密度型二次電池15Bを並列に接続していることから、充放電末期時は高出力密度型二次電池15Bの開回路電圧が変化し、電圧を測定するだけで組電池15の充放電末期を正確に知ることが可能である。
【0042】
(カ)高出力密度型二次電池15Bは負極材料に非晶質系炭素材料(ハードカーボン)を用い、高エネルギ密度型二次電池15Aは負極に黒鉛系(グラファイト)炭素材料を用いるため、高出力密度型二次電池15Bの開回路電圧を、高エネルギ密度型二次電池15Aの開回路電圧よりも低くすることができる。
【0043】
(キ)また、高出力密度型二次電池15Bは負極材料に非晶質系炭素材料(ハードカーボン)を用い、高エネルギ密度型二次電池15Aは負極に黒鉛系(グラファイト)炭素材料を用いるため、高出力密度型二次電池15Bをその開回路電圧が放電深度DODに対して傾きを持つ電池とでき、高エネルギ密度型二次電池15Aをその開回路電圧が放電深度DODに対して一定の電池とできる。
【0044】
(ク)高出力密度型二次電池15Bは正極材料にリチウム金属酸化物(LiMn24、LiNiO2、LiCoO2等)を用い、高エネルギ密度型二次電池15Aは正極材料にリチウム金属リン酸化合物(LiFePO4、LiMnO4等)を用いるため、高出力密度型二次電池15Bをその開回路電圧が放電深度DODに対して傾きを持つ電池とでき、高エネルギ密度型二次電池15Aをその開回路電圧が放電深度DODに対して一定の電池とできる。
【0045】
(ケ)また、高出力密度型二次電池15Bは正極材料にリチウム金属酸化物(LiMn24、LiNiO2、LiCoO2等)を用い、前記高エネルギ密度型二次電池15Aは正極材料にリチウム金属リン酸化合物(LiFePO4、LiMnO4等)を用いるため、出力が要求される用途にも、出力特性の劣るリチウム金属リン酸化合物を正極に用いた電池を使用することが可能となる。
【0046】
(第2実施形態)
図8〜図11は、本発明を適用した組電池の第2実施形態を示し、図8は組電池の構成を示す接続図、図9は高出力密度型二次電池と高エネルギ密度型二次電池の開回路電圧(開放電圧)特性を示すグラフ、図10は組電池と組電池を構成する各電池との放電深度DODの特性を示すグラフ、図11は組電池の入出力特性を示すグラフである。本実施形態においては、前実施形態のように電池の出しうる最大出力の特性を得ることに代えて最低入力の範囲を広げるようにしたものである。なお、前実施形態と同一部品には同一符号を付して説明を簡略化若しくは省略する。
【0047】
図8において、ハイブリッド車両のメインバッテリとしての組電池16は、図中右側にあって130セルを直列接続した高エネルギ密度型二次電池16Aと、図中左側にあって96セルを直列接続した高出力密度型二次電池16Bと、を並列接続して構成する。なお、各電池のセル数は、放電深度DODが0%のときの各単一のセルの開回路電圧が異なるため、96セルが直列接続された高出力密度型二次電池全体(16B)の放電深度0%時の開回路電圧と、130セルが直列接続された高エネルギ密度型二次電池全体(16A)の放電深度0%時の開回路電圧とが、同じL[V]という値を示すことを意味している。
【0048】
前記高エネルギ密度型二次電池16Aのセルには、負極に金属リチウム、正極にバナジウム酸化物を用いるリチウムイオン電池とし、前記高出力密度型二次電池16Bのセルは、例えば、負極に炭素材料、正極にリチウムマンガン酸化物を用いるリチウムイオン電池とする。高エネルギ密度型二次電池16Aと高出力密度型二次電池16Bの電極材料は上記例に限られるものではない。要するに、開回路電圧(開放電圧)の高い方を高出力密度型二次電池16Bとしている。従って、セルの直列接続数を調整することによっても高出力密度型二次電池16Bの開回路電圧を高エネルギ密度型二次電池16Aの開回路電圧より高くすることができる。
【0049】
電池の高出力化は、電極を薄くし、電極面積を大きくとることによっても可能である。また、開回路電圧の高い正極若しくは負極を用いることによっても電池の高出力化が可能である。また、高出力密度型二次電池16Bに電解液を、高エネルギ密度型二次電池16Aに固体電解質を用いることによっても、高出力密度型二次電池16Bと高エネルギ密度型二次電池16Aを作ることが可能であり、高出力密度型二次電池16Bと高エネルギ密度型二次電池16Aとの差が明確となる。また、高エネルギ密度型二次電池16Aは正負電極の活物質を厚くした高容量仕様のリチウムイオン電池を用い、高出力密度型二次電池16Bは正負電極の活物質を薄くして電池の内部抵抗を下げたリチウムイオン電池を用いることで、両者は比較的容易に製作できる。
【0050】
図9は、上記組電池16で使用する高出力密度型二次電池16Bと高エネルギ密度型二次電池16Aの特性を示す図であり、各電池の放電深度DODに対する開回路電圧(開放電圧)の関係を表している。ただし、高出力密度型二次電池16Bは96セルを直列接続した状態の特性であり、高エネルギ密度型二次電池16Aは130セルを直列接続した状態の特性である。
【0051】
図9に示すように、並列接続される2つの電池は、放電深度DODが0[%]のときの開回路電圧がともにL[V]であり、放電深度DODが70[%]のときの開回路電圧がともにN[V]であるが、それ以外の放電深度DODのときには異なる開回路電圧となっている。即ち、放電深度DODが0〜70[%]の範囲では高出力密度型二次電池16Bの開回路電圧が高エネルギ密度型二次電池16Aの開回路電圧より高くなっており、放電深度DODが70[%]より大きい範囲では高出力密度型二次電池16Bの開回路電圧と高エネルギ密度型二次電池16Aの開回路電圧の大小関係が逆転する。
【0052】
このような2つの電池を並列接続した組電池16では、組電池16全体としての放電深度DODが0[%]のとき開回路電圧がL[V]となり、2つの電池の放電深度DODも0[%]となる。同様にして、組電池16全体としての放電深度DODが70[%]のとき開回路電圧がN[V]となり、2つの電池の放電深度DODも70[%]となる。しかしながら、組電池16全体としての放電深度DODが0あるいは70[%]以外のときは組電池16全体としての放電深度DODと各電池16A、16Bの放電深度DODが等しくならない。例えば、組電池16の開回路電圧(=各電池の電圧)がM[V]であるときの高出力密度型二次電池16Bの放電深度DODは約44[%]であり、高エネルギ密度型二次電池16Aの放電深度DODは約16[%]である。
【0053】
図10は、組電池16全体としての放電深度DODと各電池16A、16Bの放電深度DODとの関係を示したものである。図10において、例えば、組電池16の放電深度DODが30[%]であるときの高出力密度型二次電池16Bの放電深度DODは約44[%]であり、高エネルギ密度型二次電池16Aの放電深度DODは約16[%]である。このように、高出力密度型二次電池16Bの開回路電圧が高エネルギ密度型二次電池16Aの開回路電圧より高くなる放電深度DODの範囲では、高出力密度型二次電池16Bの放電深度DODが組電池16の放電深度DODより高くなり、高エネルギ密度型二次電池16Aの放電深度DODが組電池16の放電深度DODより低くなる。
【0054】
なお、図中に一点鎖線で示したのは放電深度DODに対する開回路電圧の特性が等しい2つの電池を並列接続した組電池(以下、比較例)の特性であり、この場合は組電池の放電深度DODと各電池の放電深度DODとが常に等しくなる。
【0055】
図11は、本実施形態の組電池1の放電深度DODとその入出力電力との関係を示す図である。ただし、組電池16の入出力電力は高出力密度型二次電池16Bの入出力電力でほぼ決まるため、組電池16の放電深度DODと高出力密度型二次電池16Bの入出力電力との関係を示す図であると見て差し支えない。図11から明らかなように、高出力密度型二次電池16Bの開回路電圧が高エネルギ密度型二次電池16Aの開回路電圧より高くなる放電深度DODの範囲の入力電力(図中の実線)は、比較例の入力電力(図中の一点鎖線)より大きくなる。これは、入力電力即ち充電パワーは放電深度DODの増加に対応して増加するものであり、この範囲における組電池16の一方である高出力密度型二次電池16Bの放電深度DODが比較例の放電深度DODより高いためである。
【0056】
一般に、ハイブリッド車両の電源として二次電池を使用する場合、一定以上の出力電力と一定以上の入力電力とが常に確保できるよう電池の放電深度DODを制御する必要がある。例えば、常に確保すべき最低出力電力PominがP[kW]であり、常に確保すべき最低入力電力PiminがR[kW]である場合、鎖線図示の比較例の組電池では放電深度DODを35〜70[%]の範囲に制御する必要がある。これに対し本実施形態の組電池16では、同じ入出力電力を確保するための放電深度DODの範囲を25〜70[%]に拡大することができる。これは、入出力制御(充放電制御)がより柔軟に行えることを意味しており、ハイブリッド車両の電源として非常に有利な特性である。
【0057】
なお、上記の効果を確実に得るため、開回路電圧の大小関係が逆転する放電深度DOD(この例では70[%])における組電池16の出力(この例ではP[kW])が最低出力Pomin以上であり、かつ、開回路電圧の大小関係が逆転する放電深度DODにおける組電池16の入力(この例ではQ[kW])が最低入力Pimin以上である組電池を使用する。
【0058】
本実施形態においては、以下に記載する効果を奏することができる。
【0059】
(コ)開回路電圧が異なる高出力密度型二次電池16Bと高エネルギ密度型二次電池16Aを並列に接続して組電池16を構成しているため、開回路電圧が等しい電池の組み合わせに比較して、入出力特性を改善する高性能な電池を実現可能である。
【0060】
(サ)組電池16の高出力密度型二次電池16Bの開回路電圧を高エネルギ密度型二次電池16Aの開回路電圧よりも高くしたため、高出力密度型二次電池16Bの放電深度(DOD)を組電池16の放電深度DODに比べ大きくでき、電池の入力特性を向上できる。
【0061】
(シ)高出力密度型二次電池16Bの開回路電圧と高エネルギ密度型二次電池16Aの開回路電圧が等しくなる組電池16の放電深度(DOD)が存在し、この放電深度の前後で夫々の電池16A、16Bの放電深度と組電池16の放電深度との大小関係が逆転するため、入出力特性等の特性が得られる組電池16の放電深度(DOD)範囲を設定することができる。
【0062】
(ス)高出力密度型二次電池16Bの開回路電圧と高エネルギ密度型二次電池16Aの開回路電圧が等しくなる組電池16の放電深度(DOD)の前後で夫々の電池の放電深度と組電池16の放電深度との大小関係を逆転させる場合において、高出力密度型二次電池16Bの開回路電圧を高エネルギ密度型二次電池16Aの開回路電圧よりも高くすると、充電時には高出力密度型二次電池16Bの放電深度を組電池16の放電深度より大きくなり組電池16への入力特性を向上でき、放電状態では高出力密度型二次電池16Bの放電深度を組電池16の放電深度より小さくでき組電池16からの出力特性を向上できる。
【0063】
(セ)高出力密度型二次電池16Bの正極または負極に高エネルギ密度型二次電池16Aより電池として開回路電圧の高いの正極または負極を用いるため、高出力密度型二次電池16Bの開回路電圧を高エネルギ密度型二次電池16Aより大きくすることが可能となる。
【0064】
(ソ)高出力密度型二次電池16Bおよびまたは高エネルギ密度型二次電池16Aのセルの直列接続数を調整することでも、高出力密度型二次電池16Bの開回路電圧を高エネルギ密度型二次電池16Aの開回路電圧より高くすることが可能となる。
【0065】
(タ)組電池16の使用する放電深度DOD範囲を高出力密度型二次電池16Bの開回路電圧が高エネルギ密度型二次電池16Aの開回路電圧より高くなる放電深度DOD範囲とすることにより、高出力密度型二次電池16Bの放電深度(DOD)を組電池16の放電深度DODに比べ大きくでき、電池の入力特性を向上できる。
【0066】
(チ)高出力密度型二次電池16Bには電解液を用いた電池とし、高エネルギ密度型二次電池16Aには全固体電池とすることにより、高出力密度型二次電池16Bと高エネルギ密度型二次電池16Aの特性差が明確となり、上記した効果を寄り発揮させることができる。
【図面の簡単な説明】
【図1】本発明の組電池の適用例を示すハイブリッド車両のシステム構成図。
【図2】本発明の第1実施形態の組電池の構成を示す接続図。
【図3】並列接続する各電池のDODと開放電圧との関係および並列接続された組電池の放電深度DODと開放電圧との関係を示すグラフ。
【図4】組電池における放電深度DODと出力電力との関係を示すグラフ。
【図5】各電池および組電池の容量と開回路電圧との関係を示すグラフ。
【図6】比較例の並列接続する各電池のDODと開放電圧との関係および並列接続された組電池の放電深度DODと開放電圧との関係を示すグラフ。
【図7】比較例の各電池および組電池の容量と開回路電圧との関係を示すグラフ。
【図8】本発明の第2実施形態を示す組電池の概略構成図。
【図9】同じく高出力密度型二次電池と高エネルギ密度型二次電池の開回路電圧(開放電圧)特性を示すグラフ。
【図10】同じく組電池と組電池を構成する各電池との放電深度DODの特性を示すグラフ。
【図11】組電池の入出力特性を示すグラフ。
【符号の説明】
1、4、10 モータ
2 エンジン
3 クラッチ
5 無段変速機
6 減速装置
7 差動装置
8 駆動輪
9 油圧装置
11〜13 インバータ
14 DCリンク
15、16 メインバッテリ、組電池
15A、16A 高エネルギ密度型二次電池
15B、16B 高出力密度型二次電池

Claims (9)

  1. 直列接続された複数のセルからなる高出力密度型二次電池と直列接続された複数のセルからなる高エネルギ密度型二次電池を並列に接続して構成した組電池であって、前記両二次電池の開回路電圧を両二次電池の放電深度DODの値が同一の状態で比較した場合に、ほぼ全域の放電深度DODで前記高エネルギ密度型二次電池の開回路電圧を前記高出力密度型二次電池の開回路電圧よりも高くしたことを特徴とする組電池。
  2. 前記高出力密度型二次電池は開回路電圧が前記放電深度DODに対して徐々に低下する特性をもち、前記高エネルギ密度型二次電池は開回路電圧が前記放電深度DODに対して一定で変化しない特性をもつことを特徴とする請求項1に記載の組電池。
  3. 前記高出力密度型二次電池は負極材料に非晶質系炭素材料(ハードカーボン)を用い、高エネルギ密度型二次電池は負極に黒鉛系(グラファイト)炭素材料を用いることを特徴とする請求項1または請求項2に記載の組電池。
  4. 前記高出力密度型二次電池は正極材料にリチウム金属酸化物(LiMn24、LiNiO2、LiCoO2等)を用い、前記高エネルギ密度型二次電池は正極材料にリチウム金属リン酸化合物(LiFePO4、LiMnO4等)を用いることを特徴とする請求項1ないし請求項3のいずれか一つに記載の組電池。
  5. 前記高出力密度型二次電池は電解液を用いた電池とし、前記高エネルギ密度型二次電池は全固体電池とすることを特徴とする請求項1ないし請求項4のいずれか一つに記載の組電池。
  6. 直列接続された複数のセルからなる高出力密度型二次電池と直列接続された複数のセルからなる高エネルギ密度型二次電池を並列に接続して構成した組電池であって、電源として使用する際に常に確保すべき最低入力電力及び最低出力電力を確保できる組電池の放電深度DOD範囲における前記高出力密度型二次電池の開回路電圧前記高エネルギ密度型二次電池の開回路電圧よりも高くなるように前記両二次電池のセル数を設定したことを特徴とする組電池。
  7. 前記高出力密度型二次電池の正極は、高エネルギ密度型二次電池の正極より電池として開回路電圧の高い正極を用いることを特徴とする請求項6に記載の組電池。
  8. 前記高出力密度型二次電池の負極は、前記高エネルギ密度型二次電池の負極より電池として開回路電圧の高い負極を用いることを特徴とする請求項6に記載の組電池。
  9. 前記高出力密度型二次電池は電解液を用いた電池とし、前記高エネルギ密度型二次電池は全固体電池とすることを特徴とする請求項6ないし請求項8のいずれか一つに記載の組電池。
JP2002272997A 2002-09-19 2002-09-19 組電池 Expired - Fee Related JP4082147B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272997A JP4082147B2 (ja) 2002-09-19 2002-09-19 組電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272997A JP4082147B2 (ja) 2002-09-19 2002-09-19 組電池

Publications (2)

Publication Number Publication Date
JP2004111242A JP2004111242A (ja) 2004-04-08
JP4082147B2 true JP4082147B2 (ja) 2008-04-30

Family

ID=32269874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272997A Expired - Fee Related JP4082147B2 (ja) 2002-09-19 2002-09-19 組電池

Country Status (1)

Country Link
JP (1) JP4082147B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074561A1 (ja) 2021-10-25 2023-05-04 Connexx Systems株式会社 複合電池、およびそれを備えた複合電池システム

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250928B2 (ja) * 2005-10-24 2013-07-31 日産自動車株式会社 電池システムの充電状態バランス回復方法
JP2007220658A (ja) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd 組電池、電源システム及び組電池の製造方法
WO2007097522A1 (en) 2006-02-20 2007-08-30 Lg Chem, Ltd. Hybrid-typed battery pack operated in high efficiency
JP5085235B2 (ja) * 2006-09-15 2012-11-28 株式会社東芝 電源システムおよび電動車
JP5100143B2 (ja) * 2007-02-05 2012-12-19 三洋電機株式会社 電池ユニット
US8018204B2 (en) * 2007-03-26 2011-09-13 The Gillette Company Compact ultra fast battery charger
JP2009048981A (ja) 2007-08-23 2009-03-05 Sony Corp 非水電解液二次電池
JP2009195081A (ja) * 2008-02-18 2009-08-27 Panasonic Corp 充電制御回路、及びこれを備える充電装置、電池パック
JP5075741B2 (ja) * 2008-06-02 2012-11-21 パナソニック株式会社 不均衡判定回路、電源装置、及び不均衡判定方法
AU2011222506B8 (en) 2010-03-05 2014-04-24 Minnetronix Inc. Portable controller with integral power source for mechanical circulation support systems
KR101097272B1 (ko) 2010-07-27 2011-12-21 삼성에스디아이 주식회사 배터리 팩 및 이를 구비하는 전기 이동수단
JP2012079523A (ja) * 2010-09-30 2012-04-19 Gs Yuasa Corp 非水電解質二次電池及び組電池
JP2014112463A (ja) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd パック電池
CN102738497A (zh) * 2011-04-15 2012-10-17 动能科技股份有限公司 复合式动力电池模组
CN102934314B (zh) 2011-04-25 2015-12-02 丰田自动车株式会社 电池包
JP2013041749A (ja) * 2011-08-16 2013-02-28 Toyota Motor Corp 電池システム
CN103222148B (zh) 2011-09-13 2014-06-18 丰田自动车株式会社 车辆的电池系统及其控制方法
JP5790767B2 (ja) 2011-09-21 2015-10-07 トヨタ自動車株式会社 車両用バッテリの制御装置及び車両用バッテリの制御方法
JP6066255B2 (ja) * 2011-09-30 2017-01-25 株式会社Gsユアサ 蓄電素子
KR101370859B1 (ko) * 2011-10-10 2014-03-07 주식회사 엘지화학 리튬이온 하이브리드 전지팩
JP5772476B2 (ja) * 2011-10-12 2015-09-02 トヨタ自動車株式会社 電気自動車
US9979053B2 (en) 2011-12-15 2018-05-22 A123 Systems, LLC Hybrid battery system
JP5532089B2 (ja) * 2012-08-22 2014-06-25 日産自動車株式会社 電池システムの充電状態バランス回復方法
JP6393976B2 (ja) * 2012-12-04 2018-09-26 株式会社Gsユアサ 蓄電素子及び蓄電装置
WO2014162686A1 (ja) * 2013-04-03 2014-10-09 パナソニック株式会社 バッテリーシステム
JP6119516B2 (ja) 2013-09-02 2017-04-26 ソニー株式会社 組電池および電動車両
JP6341209B2 (ja) 2013-09-30 2018-06-13 日本電気株式会社 リチウムイオン二次電池システム
JP2015088255A (ja) * 2013-10-29 2015-05-07 株式会社豊田自動織機 バッテリ
EP3138180A4 (fr) * 2014-04-29 2018-05-02 Hydro-Québec Système de recharge bidirectionnelle pour véhicule électrique
JP6327175B2 (ja) * 2015-02-23 2018-05-23 株式会社デンソー 蓄電装置
JPWO2017158960A1 (ja) 2016-03-16 2018-11-08 オートモーティブエナジーサプライ株式会社 ハイブリッド型電気自動車およびハイブリッド型電気自動車用のリチウムイオン二次電池の選定方法
WO2017158959A1 (ja) * 2016-03-16 2017-09-21 オートモーティブエナジーサプライ株式会社 ハイブリッド型電気自動車
JP2018078059A (ja) * 2016-11-11 2018-05-17 株式会社リコー 蓄電システム
US10153636B1 (en) * 2017-05-26 2018-12-11 Kitty Hawk Corporation Electric vehicle hybrid battery system
JP2019003803A (ja) * 2017-06-14 2019-01-10 株式会社Gsユアサ 蓄電装置
JP7016628B2 (ja) * 2017-07-11 2022-02-07 ビークルエナジージャパン株式会社 複合蓄電システム
JP7016946B2 (ja) * 2018-03-20 2022-02-07 株式会社日立製作所 複合蓄電システム
JP7311304B2 (ja) * 2019-04-24 2023-07-19 株式会社Soken 蓄電装置
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
CN114274841B (zh) * 2021-08-09 2023-05-23 中车资阳机车有限公司 一种多支路动力电池系统并联直挂控制方法
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074561A1 (ja) 2021-10-25 2023-05-04 Connexx Systems株式会社 複合電池、およびそれを備えた複合電池システム

Also Published As

Publication number Publication date
JP2004111242A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4082147B2 (ja) 組電池
US9960458B2 (en) Battery systems having multiple independently controlled sets of battery cells
JP5003257B2 (ja) ハイブリッド電動車両用電源システムおよびその制御装置
JP4461114B2 (ja) 組電池システム、組電池の充電方法及び充電式掃除機
JP5250928B2 (ja) 電池システムの充電状態バランス回復方法
JPH11332023A (ja) 電気自動車用バッテリー
US20140265554A1 (en) Dual Lithium-Ion Battery System for Electric Vehicles
JP3716618B2 (ja) 組電池の制御装置
WO2011074483A1 (ja) ハイブリッド車両及びその制御方法
US20140186659A1 (en) Hybrid battery system for electric and hybrid electric vehicles
JP2015095281A (ja) 全固体電池の充電システム
JP2010539635A (ja) 車両ハイブリッドエネルギーシステム
JP2011018547A (ja) リチウムイオン二次電池、及び、電池システム
US20210152010A1 (en) Method for charging battery and charging system
JP7016628B2 (ja) 複合蓄電システム
WO2000037278A1 (fr) Systeme d'entrainement hybride
JP2002280076A (ja) リチウム二次電池、リチウム二次電池を用いたモジュール及びこれらを用いた装置
US20110269021A1 (en) Lithium ion battery
JP6879136B2 (ja) 二次電池の充放電制御装置
US11495981B2 (en) Method for charging battery and charging system
JP5532089B2 (ja) 電池システムの充電状態バランス回復方法
JP2008199767A (ja) 電池パックの制御装置
JP2016031879A (ja) 車両のバッテリ制御装置
WO2016080222A1 (ja) 車載用電池及び車載用電源装置
JP6483915B2 (ja) ハイブリッド型電気自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees