WO2023074561A1 - 複合電池、およびそれを備えた複合電池システム - Google Patents

複合電池、およびそれを備えた複合電池システム Download PDF

Info

Publication number
WO2023074561A1
WO2023074561A1 PCT/JP2022/039276 JP2022039276W WO2023074561A1 WO 2023074561 A1 WO2023074561 A1 WO 2023074561A1 JP 2022039276 W JP2022039276 W JP 2022039276W WO 2023074561 A1 WO2023074561 A1 WO 2023074561A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
secondary battery
battery
operating voltage
composite
Prior art date
Application number
PCT/JP2022/039276
Other languages
English (en)
French (fr)
Inventor
壽 塚本
Original Assignee
Connexx Systems株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Connexx Systems株式会社 filed Critical Connexx Systems株式会社
Priority to JP2022579659A priority Critical patent/JP7285608B1/ja
Priority to EP22886888.1A priority patent/EP4333180A1/en
Publication of WO2023074561A1 publication Critical patent/WO2023074561A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/253Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a composite battery in which different types of batteries are connected in parallel and a composite battery system including the same, and more particularly to a composite battery comprising an all-solid secondary battery and a lithium ion secondary battery and a composite battery system including the same. Regarding.
  • Patent Literature 1 discloses a composite battery in which a large-capacity secondary battery and a high-power secondary battery with different open-circuit voltages are connected in parallel.
  • a fuel cell is a means of generating electric power in a power generator by supplying fuel gas.
  • a solid oxide fuel cell (SOFC) using an oxygen ion conductive inorganic solid electrolyte is known to be an excellent power generation device that is clean and has high power generation efficiency.
  • a fuel cell system has been developed which has a mechanism for restoring the fuel gas consumed by the discharge of the fuel cell and which can be used as a secondary battery.
  • Patent Literature 2 describes a solid oxide fuel cell system that is simple and compact, and has sufficiently high cell capacity and energy density.
  • the operating temperature of the large-capacity secondary battery and the high-power secondary battery constituting the composite battery of Patent Document 1 are substantially the same at room temperature, whereas the operating temperature of the fuel cell system of Patent Document 2 is the same. High temperature. Therefore, when a composite battery is formed by combining the high-power secondary battery of Patent Document 1 and the fuel cell system of Patent Document 2, each is placed in a different temperature environment and the temperature of each secondary battery is different from each other. There is a problem that the need to maintain the operating temperature is not considered.
  • the present invention has been made in view of such conventional problems, and an object of the present invention is to keep the operating temperatures of the secondary batteries different from each other, and to provide a fuel cell system, that is, an all-solid-state battery of the present application. It is an object of the present invention to provide a composite battery capable of absorbing fluctuations in operating voltage caused by environmental temperature fluctuations that occur in secondary batteries. Further, in addition to the above objects, other objects of the present invention are to continuously operate an all-solid-state secondary battery for a certain period of time equivalent to or longer than the conventional one, to simply configure a composite battery, and to apply the composite battery.
  • another object of the present invention is to improve the thermal efficiency, the power self-sufficiency rate, and the operation rate of the entire system to a level equal to or greater than that of the conventional composite battery system, and to increase the battery capacity of the entire system. is to provide
  • the present inventors have made intensive studies, and as a result, first placed a fuel cell system, that is, the all-solid secondary battery of the present application, inside a housing formed of a member having heat insulation properties.
  • a fuel cell system that is, the all-solid secondary battery of the present application
  • the present inventors have found that by disposing the high-output secondary battery, that is, the lithium-ion secondary battery of the present application, outside the casing, the secondary batteries can be maintained at different operating temperatures.
  • the present inventor provides, for example, a voltage control device, a temperature control device, an air flow control device, etc. as an operating voltage holding device for holding the operating voltage of the all-solid secondary battery within a predetermined range,
  • a voltage control device for example, a temperature control device, an air flow control device, etc.
  • an operating voltage holding device for holding the operating voltage of the all-solid secondary battery within a predetermined range
  • the first embodiment of the present invention includes an all-solid secondary battery that operates under a predetermined temperature condition, a high-output lithium-ion secondary battery connected in parallel to the all-solid secondary battery, and an all-solid secondary An operating voltage holding device for holding the operating voltage of the battery within a predetermined range;
  • a solid secondary battery is placed inside a housing, and when charging power is supplied from the outside, a reduction reaction of iron occurs and oxygen is discharged to the outside. An oxidation reaction occurs to supply power to the outside, and the lithium-ion secondary battery and operating voltage holding device provide a composite battery that is placed outside the housing.
  • the operating voltage holding device is a voltage control device connected in series with the all-solid secondary battery, and the voltage control device adjusts the operating voltage of the all-solid secondary battery to the operating voltage of the lithium ion secondary battery. It is preferable to control to keep it inside the voltage range.
  • the operating voltage holding device is a temperature control device that controls the temperature of the all-solid secondary battery within the range of predetermined temperature conditions. It is preferable to control to keep it inside the operating voltage range.
  • the operating voltage holding device is an air flow control device that controls the flow rate of air supplied to the all-solid secondary battery. It is preferable to control to keep it inside the range.
  • the all-solid secondary battery includes a flat electrode assembly provided with a fuel electrode that oxidizes hydrogen gas to water vapor during discharge, and a flat electrode assembly that reacts with water vapor to generate hydrogen gas, and itself is an oxide
  • the electrode assembly is heated and maintained at 450 to 1000 ° C.
  • the negative electrode fuel material is heated and maintained at 300 to 1000 ° C. preferable.
  • Lithium ion secondary batteries use lithium metal oxide as the positive electrode material and lithium titanate as the negative electrode material, or lithium metal oxide as the positive electrode material and graphite as the negative electrode material.
  • a lithium ion secondary battery using a carbon material is preferred.
  • the second embodiment of the present invention includes a power generator that converts energy into DC power and outputs it, and a power generator that is directly connected to the output line of the power generator and charges the DC power generated by the power generator.
  • a composite battery of one embodiment a power control system that converts the DC power generated by the power generator and the DC power discharged from the composite battery into AC power and supplies it to the load, the power generation amount of the power generator and the load demand and a control device for controlling charging and discharging of the composite battery according to the amount, wherein the power generator, the power control system and the control device provide a composite battery system arranged outside the housing.
  • the power generation device is one selected from the group consisting of an internal combustion engine power generation device, a boiler type power generation device, and a fuel cell power generation device, and the all-solid secondary battery of the composite battery is used for power generation Heating is preferably maintained using the thermal energy of the fluid exiting the device.
  • the control device supplies the amount demanded by the load to the load and charges the composite battery with the surplus of the amount of power generated by the power generator.
  • the amount is less than the demand of the load, it is preferable to control so as to supply the power generated by the generator to the load and discharge the shortfall of the demand of the load from the composite battery.
  • a charger is further provided outside the housing, one of which is connected to the output line of the power generation device and the other of which is connected to the grid via a charging switch, and the composite battery is connected to the charging switch is the charging side, it is preferable to charge the output power of the charger generated by the grid power.
  • a two-way DCDC converter is provided outside the housing, one of which is connected to the output line of the power generator, and the other of which is connectable to an on-board secondary battery mounted on the electric vehicle, and the on-board secondary battery is It preferably has a function of charging the output power of the charger generated by the DC power generated by the generator and the power of the grid, and a function of discharging the power charged in itself to the power control system.
  • an uncoordinated switch is provided between the grid and the load to cut off the linkage with the grid. Power is preferably controlled to meet the demand of the load.
  • the composite battery of the first embodiment of the present invention it is possible to keep the operating temperatures of the secondary batteries different from each other and absorb the fluctuations in the operating voltage caused by the fluctuations in the environmental temperature that occur in the all-solid secondary battery. can. Further, according to the composite battery of the first embodiment of the present invention, in addition to the above effects, the all-solid secondary battery can be operated continuously for a certain period of time equal to or more than the conventional one, the composite battery can be simply configured, And the application range of the composite battery can be extended.
  • the thermal efficiency, the power self-sufficiency rate, and the operating rate of the entire system can be improved to the same or greater than the conventional ones, and the battery capacity of the entire system can be increased. be able to.
  • FIG. 1 is a block diagram showing a composite battery of the present invention and a composite battery system including the same;
  • FIG. 2 is a cross-sectional view schematically showing an all-solid secondary battery that constitutes the composite battery of FIG. 1.
  • FIG. 1 is a block diagram showing a composite battery of the present invention and a composite battery system including the same;
  • FIG. 2 is a cross-sectional view schematically showing an all-solid secondary battery that constitutes the composite battery of FIG. 1.
  • FIG. 1 is a block diagram showing a composite battery of the present invention and a composite battery system including the same
  • FIG. 2 is a cross-sectional view schematically showing an all-solid secondary battery that constitutes the composite battery of FIG. be.
  • a composite battery 10 of the present invention includes an all-solid secondary battery 12 , a lithium ion secondary battery 14 , an operating voltage holding device 16 and a housing 18 .
  • the all-solid secondary battery 12 operates under predetermined temperature conditions.
  • the lithium-ion secondary battery 14 is a high output type connected in parallel with the all-solid secondary battery 12 .
  • the operating voltage holding device 16 is for holding the operating voltage of the all-solid secondary battery 12 within a predetermined range.
  • the housing 18 is made of a heat-insulating member so that the inside and the outside are thermally separated.
  • the all-solid secondary battery 12 when charging power is supplied from the outside, a reduction reaction of iron occurs and oxygen is discharged to the outside, and when charging power is stopped and oxygen is supplied from the outside, an oxidation reaction of iron occurs. It supplies power to the outside.
  • the all-solid secondary battery 12 is arranged inside the housing 18 , and the lithium ion secondary battery 14 and the operating voltage holding device 16 are arranged outside the housing 18 .
  • the composite battery 10 preferably further includes a bidirectional DCDC converter 20.
  • the bidirectional DCDC converter 20 is arranged outside the housing 18 and connected in series with the lithium ion secondary battery 14 .
  • the operating voltage holding device 16 is shown at a position connected in series with the all-solid secondary battery 12. This position holds the operating voltage of the all-solid secondary battery 12 within a predetermined range. It shows the functional position of doing, not the physical position.
  • the all-solid secondary battery 12 is connected to an external control device such as a control device 36, which will be described later, via a control unit (BMS) of the all-solid secondary battery 12, and this control unit is an external control device
  • the charging/discharging state of the all-solid secondary battery 12 is controlled based on the instructions from.
  • the lithium ion secondary battery 14 is connected to an external control device via a control unit (BMS) of the lithium ion secondary battery 14, and this control unit operates the lithium ion secondary battery based on instructions from the external control device. It controls the charge/discharge state of the battery 14 .
  • the operating voltage holding device 16 is connected to an external control device and controls the operating voltage of the all-solid secondary battery 12 based on instructions from the external control device.
  • the bidirectional DCDC converter 20 is connected to an external control device and controls the charge/discharge state of the lithium ion secondary battery 14 based on instructions from the external control device.
  • the composite battery of the first embodiment of the present invention can maintain operating temperatures different from each other in each secondary battery, and the operating voltage can fluctuation can be absorbed.
  • the all-solid secondary battery 60 (12) preferably has a plate-like electrode assembly 62 and a negative electrode fuel material body 64 .
  • the electrode composite 62 includes a fuel electrode 62a (also referred to as a negative electrode or anode layer).
  • the fuel electrode 62a oxidizes hydrogen gas into water vapor during discharge.
  • the negative electrode fuel material body 64 reacts with water vapor to generate hydrogen gas and itself becomes an oxide.
  • the electrode composite 62 and the anode fuel material 64 are heated and maintained at respective predetermined temperatures.
  • the electrode composite 62 may further include a solid electrolyte 62b and an air electrode 62c (also referred to as positive electrode or cathode layer).
  • the solid electrolyte body 62b is disposed on one surface of the fuel electrode 62a and conducts oxygen ions during charging and discharging.
  • the air electrode 62c is arranged on the surface of the solid electrolyte body 62b opposite to the fuel electrode 62a, and reduces oxygen in the air to oxygen ions during discharge.
  • the negative electrode fuel material body 64 is preferably in the form of pellets made of iron particles or iron powder and a shape-retaining material.
  • the shape-retaining material consists of a sintering-refractory material or a mixture thereof. Hard-to-sinter materials are, for example, aluminum oxide, silicon dioxide, magnesium oxide, and zirconium oxide.
  • At least part of the surface of the anode fuel material body 64 is covered with a shape-retaining material, and the mass ratio of the shape-retaining material to the anode fuel material body 64 is 0.1% or more and 5% or less. If this mass ratio is less than 0.1%, the surface of the negative electrode fuel material body 64 may be sintered and oxidation-reduction reaction may not occur. It is possible to limit the speed too much.
  • the pellet diameter is, for example, 2 to 10 mm.
  • the predetermined temperature of the electrode assembly 62 may be 450-1000.degree. C., and the predetermined temperature of the anode fuel material 64 may be 300-1000.degree. That is, when the temperature of the electrode assembly 62 is less than 450°C or the temperature of the negative electrode fuel material body 64 is less than 300°C, the all-solid secondary battery 60 may not operate. If the temperature of the electrode composite 62 exceeds 1000° C. or the temperature of the negative electrode fuel material 64 exceeds 1000° C., there is a possibility that the output will decrease due to aggregation of the negative electrode fuel material 64 . With such a configuration, the composite battery of the first embodiment of the present invention satisfies the temperature conditions necessary for stable operation, so that the all-solid secondary battery can be operated continuously for a certain period of time. .
  • the electrode assembly 62 and the anode fuel material body 64 may be placed in two sealed containers that are connected to each other by a gas pipe or gas channel, but in one sealed container without the gas pipe or gas channel. It is preferably located in container 66 .
  • the closed container 66 has an opening, the electrode assembly 62 is fixed to the opening via a sealing material, and the negative electrode fuel material body 64 is housed in the closed container 66 .
  • the lithium ion secondary battery 14 may be an LTO-based lithium ion secondary battery that uses lithium metal oxide as a positive electrode material and lithium titanate as a negative electrode material.
  • the lithium-ion secondary battery 14 may be an NCM-based lithium-ion secondary battery that uses lithium metal oxide as a positive electrode material and graphite-based carbon material as a negative electrode material.
  • the LTO-based lithium ion secondary battery uses any one of lithium metal oxides such as LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , and LiNiCoMnO 2 as a positive electrode material, and uses a lithium metal oxide as a negative electrode material.
  • LTO that is, lithium titanate (Li 4 Ti 5 O 12 ) is used as the material.
  • the NCM-based lithium ion secondary battery is a ternary system, that is, LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNiCoMnO 2 or the like, which uses any one lithium metal oxide as a positive electrode material, A graphite-based carbon material such as graphite is used as the negative electrode material.
  • the composite battery of the first embodiment of the present invention can meet high-output power demand, so the application range of the composite battery can be expanded.
  • the operating voltage holding device 16 may be a voltage control device.
  • the voltage control device is connected in series with the all-solid secondary battery 12 .
  • the voltage control device controls the operating voltage of the all-solid secondary battery 12 so as to keep it within the operating voltage range of the lithium-ion secondary battery 14 .
  • the voltage control device may operate, for example, a bidirectional DCDC converter so as to be within the operating voltage range.
  • the operating voltage of the all-solid secondary battery 12 can be directly controlled by using it to lower the operating voltage of the all-solid secondary battery 12 .
  • the voltage control device uses, for example, a bidirectional DCDC converter so as to be within the operating voltage range.
  • the operating voltage of the all-solid secondary battery 12 can be directly controlled by using it to boost the operating voltage of the all-solid secondary battery 12 .
  • the voltage control device directly controls the operating voltage of the all-solid secondary battery, so that the environmental temperature fluctuations that occur in the all-solid secondary battery It is possible to more reliably absorb fluctuations in the operating voltage that accompany this.
  • the operating voltage holding device 16 may be a temperature control device.
  • the temperature control device controls the temperature of the all-solid secondary battery 12 within a range of predetermined temperature conditions.
  • the temperature control device controls the operating voltage of the all-solid secondary battery 12 so as to keep it within the operating voltage range of the lithium-ion secondary battery 14 .
  • the temperature control device when the operating voltage of the all-solid secondary battery 12 is higher than the operating voltage range of the lithium-ion secondary battery 14, the temperature control device, for example, reduces the temperature of the air flowing into the all-solid secondary battery 12.
  • the temperature of the all-solid secondary battery 12 is lowered by a method such as stopping the heater that heats the all-solid secondary battery 12 . Since the operating voltage of the all-solid secondary battery 12 decreases as the temperature decreases, the temperature control device is arranged so that the operating voltage of the all-solid secondary battery 12 is within the operating voltage range of the lithium ion secondary battery 14. can indirectly control the operating voltage of the all-solid secondary battery 12 .
  • the temperature control device increases the temperature of the air flowing into the all-solid secondary battery 12, for example.
  • the temperature of the all-solid secondary battery 12 is raised by a method such as turning on a heater for heating the all-solid secondary battery 12 . Since the operating voltage of the all-solid-state secondary battery 12 rises as the temperature rises, the temperature control device is arranged so that the operating voltage of the all-solid-state secondary battery 12 is within the operating voltage range of the lithium-ion secondary battery 14. can indirectly control the operating voltage of the all-solid secondary battery 12 .
  • the temperature control device may include a function of a temperature control unit (not shown) that heats and maintains the all-solid secondary battery 12 at a predetermined temperature, which is absolutely necessary for operating the all-solid secondary battery 12. Alternatively, they may be configured separately without including this required functionality.
  • the temperature control device indirectly controls the operating voltage of the all-solid secondary battery, so that the environmental temperature generated in the all-solid secondary battery It is possible to reliably absorb the fluctuation of the operating voltage due to the fluctuation of .
  • the operating voltage holding device 16 may be an air flow control device.
  • the air flow rate control device controls the flow rate of air supplied to the all-solid secondary battery 12 .
  • the air flow controller controls the operating voltage of the all-solid secondary battery 12 so as to keep it within the operating voltage range of the lithium-ion secondary battery 14 .
  • the method differs depending on the temperature of the air supplied to the all-solid secondary battery 12 by the air flow control device. . If the temperature of the air supplied to the all-solid secondary battery 12 is higher than the temperature at which the all-solid secondary battery 12 is heated and maintained, the flow rate of the air supplied to the all-solid secondary battery 12 is reduced. If it is low, the flow rate of the air supplied to the all-solid secondary battery 12 is increased. As the air flow rate changes, the temperature of the all-solid secondary battery 12 drops, and as a result, the operating voltage of the all-solid secondary battery 12 drops.
  • the air flow controller can indirectly control the operating voltage of the all-solid secondary battery 12 so that it is within the operating voltage range of the secondary battery 14 .
  • the method differs depending on the temperature of the air supplied to the all-solid secondary battery 12 by the air flow control device. . If the temperature of the air supplied to the all-solid secondary battery 12 is higher than the temperature at which the all-solid secondary battery 12 is heated and maintained, the flow rate of the air supplied to the all-solid secondary battery 12 is increased. If it is low, the flow rate of the air supplied to the all-solid secondary battery 12 is reduced. As the air flow rate changes, the temperature of the all-solid secondary battery 12 rises, and as a result, the operating voltage of the all-solid secondary battery 12 rises.
  • the air flow controller can indirectly control the operating voltage of the all-solid secondary battery 12 so that it is within the operating voltage range of the secondary battery 14 .
  • the air flow control device indirectly controls the operating voltage of the all-solid secondary battery, so the environment generated in the all-solid secondary battery It is possible to reliably absorb fluctuations in operating voltage that accompany temperature fluctuations.
  • the composite battery of the first embodiment of the present invention is basically constructed as described above.
  • a composite battery system 30 of the present invention includes a power generator 32 , a composite battery 10 , a power control system 34 and a controller 36 .
  • the power generator 32 converts the energy into DC power and outputs the DC power.
  • the composite battery 10 is directly connected to the output line 32 a of the power generator 32 and charges the DC power generated by the power generator 32 .
  • the power control system 34 converts the DC power generated by the power generator 32 and the DC power discharged from the composite battery 10 into AC power and supplies the AC power to the load 38 .
  • the control device 36 controls charging and discharging of the composite battery 10 according to the power generation amount of the power generation device 32 and the demand amount of the load 38 .
  • a power generator 32 , a power control system 34 and a controller 36 are arranged outside the housing 18 .
  • the power generation device 32 is connected to the control device 36 via the control unit of the power generation device 32 , and this control unit controls the power generation state of the power generation device 32 based on instructions from the control device 36 .
  • the power control system 34 is connected to the control device 36 and controls the amount of power supplied to the load 38 based on instructions from the control device 36 .
  • the composite battery system of the second embodiment of the present invention can maintain different operating temperatures of the secondary batteries, and can operate in response to environmental temperature fluctuations occurring in the all-solid secondary battery.
  • the power plant 32 is preferably one selected from the group consisting of an internal combustion engine power plant, a boiler power plant and a fuel cell power plant. In that case, the all-solid secondary battery 12 of the composite battery 10 is heated and maintained using the thermal energy of the fluid discharged from the power generator 32 .
  • an internal combustion engine power generator is, for example, a power generator that operates an internal combustion engine using bioethanol as fuel and rotates the crankshaft of the engine to generate power.
  • a boiler-type power generator is, for example, a power generator that generates high-temperature steam in a boiler using exhaust heat from incineration of combustible waste (burnable waste), and the steam rotates a turbine to generate power.
  • a fuel cell power generator is, for example, a power generator that supplies hydrogen as a fuel and takes out electrical energy generated by an electrochemical reaction with oxygen.
  • the operating temperature of a molten carbonate fuel cell (MCFC) using molten carbonate as an electrolyte material is 600-700°C
  • the solid oxide fuel cell using zirconia ceramics as an electrolyte material ( SOFC) has an operating temperature of 700-1000°C.
  • the composite battery system of the second embodiment of the present invention uses the thermal energy of the fluid discharged from the power generator, so the thermal efficiency of the entire system can be improved.
  • the control device 36 supplies the demand amount of the load 38 to the load 38 and transfers the surplus power generation amount of the power generation device 32 to the composite battery 10 . It is preferable to control to charge. Conversely, when the amount of power generated by the power generation device 32 is less than the amount demanded by the load 38, the control device 36 supplies the amount of power generated by the power generation device 32 to the load 38 and combines the shortage of the amount demanded by the load 38. It is preferable to control the discharge from the battery 10 .
  • the control device 36 supplies the demand of 0.7 kW of the load 38 to the load 38 and the power generation of the power generation device 32 Control is performed to charge the composite battery 10 with a surplus of 0.3 kW of the amount of 1 kW.
  • the control device 36 supplies the power generation amount of 0.7 kW of the power generation device 32 to the load 38 and Control is performed so that the shortfall of 0.3 kW of the demand of 1 kW is discharged from the composite battery 10 .
  • Combined battery system 30 preferably further comprises a charger 40 .
  • the charger 40 is arranged outside the housing 18, one side of the charger 40 is connected to the output line 32a of the generator 32, and the other side of the charger 40 is connected to the grid 44 via the charging switch 42. It is what was done.
  • the composite battery 10 charges the output power of the charger 40 generated by the power of the system 44 when the charging switch 42 is on the charging side.
  • Charger 40 is connected to control device 36 and controls charging voltage and charging current of power in grid 44 based on instructions from control device 36 .
  • the charging switch 42 is connected to the control device 36 and opens and closes based on instructions from the control device 36 .
  • the composite battery system of the second embodiment of the present invention can charge the composite battery with not only the power generated by the power generation device but also the power of the grid, so the operating rate of the entire system can increase
  • Combined battery system 30 preferably further comprises a bi-directional DCDC converter 46 .
  • the bidirectional DCDC converter 46 is arranged outside the housing 18, one side of the bidirectional DCDC converter 46 is connected to the output line 32a of the power generation device 32, and the other side of the bidirectional DCDC converter 46 is mounted on the electric vehicle. It is connectable to the in-vehicle secondary battery 48 provided.
  • the in-vehicle secondary battery 48 has a function of charging the output power of the charger 40 generated by the DC power generated by the power generation device 32 and the power of the grid 44, and discharging the power charged in itself to the power control system 34. and a function.
  • the bidirectional DCDC converter 46 is connected to the control device 36 and controls the charging/discharging state of the in-vehicle secondary battery 48 based on instructions from the control device 36 .
  • the in-vehicle secondary battery has the same function as the composite battery, so the battery capacity of the entire system can be increased.
  • Combined battery system 30 preferably further comprises an uncoordinated switch 50 .
  • the non-coupling switch 50 is placed between the grid 44 and the load 38 to cut off the coupling with the grid 44 .
  • the control device 36 performs control so that the power generated by the power generator 32 and the power charged by the composite battery 10 meet the demand of the load 38 when the non-cooperation switch 50 is on the non-cooperation side.
  • the uncoordinated switch 50 is connected to the control device 36 and switches the supply source of output power to the load 38 between the power control system 34 and the grid 44 based on instructions from the control device 36 .
  • the control device 36 changes the demand amount of the load 38 to 0.7 kW. and charge the combined battery 10 with the surplus of 0.3 kW of the power generation of the power generation device 32, and when the power generation of the power generation device 32 is 0.7 kW and the demand of the load 38 is 1 kW, 32 is supplied to the load 38, and the shortfall of 0.3 kW for the demand of 1 kW of the load 38 is controlled to discharge from the composite battery 10.
  • the power of the grid does not flow directly to the load, so the power self-sufficiency rate of the entire system can be increased.
  • the composite battery system of the second embodiment of the invention is basically configured as described above.
  • the composite battery of the first embodiment of the present invention is said to be able to keep the operating temperatures of the secondary batteries different from each other and to absorb the fluctuations in the operating voltage caused by the environmental temperature fluctuations that occur in all-solid secondary batteries.
  • all-solid-state secondary batteries can be operated continuously for a certain period of time for a period equal to or greater than that of conventional batteries, that composite batteries can be constructed simply, and that the range of application of composite batteries can be expanded.
  • the composite battery system of the second embodiment of the present invention can improve the thermal efficiency, the power self-sufficiency rate, and the operating rate of the entire system to a level equal to or greater than that of the conventional system, and can increase the battery capacity of the entire system. Since there is also an effect that it can be done, it is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)

Abstract

各二次電池の互いに異なる動作温度を保つこと、および全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することが可能な複合電池、およびそれを備えた複合電池システムを提供する。複合電池10は、全固体二次電池12とリチウムイオン二次電池14と動作電圧保持装置16と筐体18とを備える。全固体二次電池12は、所定の温度条件で作動する。リチウムイオン二次電池14は、全固体二次電池12に並列接続された高出力型のものである。動作電圧保持装置16は、全固体二次電池12の動作電圧を所定の範囲に保持するためのものである。筐体18は、内部と外部とが熱的に分離されるように、断熱性を有する部材で形成されたものである。筐体18の内部には、全固体二次電池12が配置され、筐体18の外部には、リチウムイオン二次電池14および動作電圧保持装置16が配置される。

Description

複合電池、およびそれを備えた複合電池システム
 本発明は、異種電池が並列接続された複合電池、およびそれを備えた複合電池システムに関し、特に全固体二次電池とリチウムイオン二次電池とから成る複合電池、およびそれを備えた複合電池システムに関する。
 従来、一定以上の高出力密度を維持しつつ高エネルギ密度を得たいという要求と、一定以上の高エネルギ密度を維持しつつ高出力密度を得たいという要求に同時に応える二次電池として、性質の異なる2種類の二次電池を組み合わせた複合電池が開示されている。例えば、特許文献1には、開回路電圧が異なる大容量型二次電池と高出力型二次電池とが並列接続された複合電池が開示されている。
 一方、燃料電池は、燃料気体を供給することで発電体に電力を発生させる手段である。燃料電池の中でも酸素イオン伝導性の無機固体電解質を用いた固体酸化物形燃料電池(SOFC、Solid Oxide Fuel Cell)は、クリーンで発電効率の高い優れた発電装置であることが知られている。それに加えて、燃料電池の放電によって消費された燃料気体を復元させる仕組みを持ち、二次電池として使用できる燃料電池システムが開発されている。例えば、特許文献2には、シンプルかつコンパクトで、しかも電池容量およびエネルギ密度が十分大きい構成の固体酸化物形燃料電池システムが記載されている。
 したがって、複合電池の大容量型二次電池として燃料電池システムを使用し、高出力型二次電池として高出力型のリチウムイオン二次電池を使用すれば、従来よりもクリーンで充放電効率の高い優れた複合電池を構成することができる。
特許第4082147号 特許第6767399号
 しかしながら、特許文献1の複合電池を構成する大容量型二次電池と高出力型二次電池は動作温度がほぼ常温で同一であるのに対して、特許文献2の燃料電池システムは動作温度が高温である。したがって、特許文献1の高出力型二次電池と特許文献2の燃料電池システムとを組み合わせて複合電池を構成する場合には、それぞれを別々の温度環境に設置して各二次電池の互いに異なる動作温度を保たなければならない点が考慮されていないという問題があった。
 また、特許文献1の複合電池を構成する大容量型二次電池と高出力型二次電池は環境温度が変動しても動作電圧が比較的小さく変動するのに対して、特許文献2の燃料電池システムは環境温度が変動すると動作電圧が比較的大きく変動するので、その変動を吸収しなければならない点が考慮されていないという問題があった。
 本発明は、従来のこのような問題点に鑑みてなされたものであり、本発明の目的は、各二次電池の互いに異なる動作温度を保つこと、および燃料電池システム、すなわち本願の全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することが可能な複合電池を提供することにある。
 また、本発明の他の目的は、上記目的に加え、従来と同等以上に一定期間継続的に全固体二次電池を動作させること、複合電池をシンプルに構成すること、および複合電池の適用範囲を広げることが可能な複合電池を提供することにある。
 さらに、本発明の他の目的は、上記目的に加え、従来と同等以上にシステム全体の熱効率、電力自給率、稼働率を高めること、およびシステム全体の電池容量を増やすことが可能な複合電池システムを提供することにある。
 本発明者は、上記目的を達成するために、鋭意研究を重ねた結果、まず、断熱性を有する部材で形成された筐体の内部に燃料電池システム、すなわち本願の全固体二次電池を配置し、その筐体の外部に高出力型二次電池、すなわち本願のリチウムイオン二次電池を配置することによって、各二次電池の互いに異なる動作温度を保つことができることを見出した。
 また、本発明者は、全固体二次電池の動作電圧を所定の範囲に保持するための動作電圧保持装置として、例えば、電圧制御装置、温度制御装置、空気流量制御装置などを備えることによって、全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することができることを見出し、本発明に至ったものである。
 即ち、本発明の第1実施形態は、所定の温度条件で作動する全固体二次電池と、全固体二次電池に並列接続された高出力型のリチウムイオン二次電池と、全固体二次電池の動作電圧を所定の範囲に保持するための動作電圧保持装置と、内部と外部とが熱的に分離されるように、断熱性を有する部材で形成された筐体と、を備え、全固体二次電池は、筐体の内部に配置され、外部から充電電力を供給すると鉄の還元反応が発生して外部に酸素を排出し、充電電力を停止して外部から酸素を供給すると鉄の酸化反応が発生して外部に電力を供給するものであり、リチウムイオン二次電池および動作電圧保持装置は、筐体の外部に配置される複合電池を提供するものである。
 ここで、上記においては、動作電圧保持装置は、全固体二次電池に直列接続された電圧制御装置であり、電圧制御装置は、全固体二次電池の動作電圧をリチウムイオン二次電池の動作電圧範囲の内側に保持するように制御するのが好ましい。
 動作電圧保持装置は、全固体二次電池の温度を所定の温度条件の範囲内で制御する温度制御装置であり、温度制御装置は、全固体二次電池の動作電圧をリチウムイオン二次電池の動作電圧範囲の内側に保持するように制御するのが好ましい。
 動作電圧保持装置は、全固体二次電池に供給する空気の流量を制御する空気流量制御装置であり、空気流量制御装置は、全固体二次電池の動作電圧をリチウムイオン二次電池の動作電圧範囲の内側に保持するように制御するのが好ましい。
 さらに、上記においては、全固体二次電池は、放電時に水素ガスを水蒸気に酸化する燃料極を備えた平板状の電極複合体と、水蒸気と反応して水素ガスを生成し、自らは酸化物となる負極燃料物質体と、を有し、電極複合体は、450~1000℃に加熱維持されるものであり、負極燃料物質体は、300~1000℃に加熱維持されるものであるのが好ましい。
 リチウムイオン二次電池は、正極材料としてリチウム金属酸化物を使用し、負極材料としてチタン酸リチウムを使用したリチウムイオン二次電池、または正極材料としてリチウム金属酸化物を使用し、負極材料として黒鉛系炭素材料を使用したリチウムイオン二次電池であるのが好ましい。
 また、本発明の第2実施形態は、エネルギを直流電力に変換して出力する発電装置と、発電装置の出力ラインに直接接続され、発電装置によって発電された直流電力を充電する本発明の第1実施形態の複合電池と、発電装置によって発電された直流電力および複合電池から放電された直流電力を交流電力に変換し、負荷へ供給するパワーコントロールシステムと、発電装置の発電量および負荷の需要量に応じて複合電池の充放電を制御する制御装置と、を有し、発電装置、パワーコントロールシステムおよび制御装置は、筐体の外部に配置される複合電池システムを提供するものである。
 ここで、上記においては、発電装置は、内燃機関式発電装置、ボイラー式発電装置および燃料電池式発電装置から成る群から選択された1つであり、複合電池の全固体二次電池は、発電装置から排出される流体の熱エネルギを使用して加熱維持されるのが好ましい。
 制御装置は、発電装置の発電量が負荷の需要量よりも多い場合には、負荷の需要量を負荷に供給するとともに発電装置の発電量の余剰分を複合電池に充電し、発電装置の発電量が負荷の需要量よりも少ない場合には、発電装置の発電量を負荷に供給するとともに負荷の需要量の不足分を複合電池から放電するように制御するのが好ましい。
 さらに、上記においては、さらに、筐体の外部に配置され、一方が発電装置の出力ラインに接続され、他方が充電スイッチを介して系統に接続された充電器を備え、複合電池は、充電スイッチが充電側の場合に、系統の電力によって生じた充電器の出力電力を充電するのが好ましい。
 さらに、筐体の外部に配置され、一方が発電装置の出力ラインに接続され、他方が電気自動車に搭載された車載二次電池に接続可能な双方向DCDCコンバータを備え、車載二次電池は、発電装置によって発電された直流電力および系統の電力によって生じた充電器の出力電力を充電する機能と、自身に充電された電力をパワーコントロールシステムに放電する機能と、を有するのが好ましい。
 さらに、系統と負荷との間に配置され、系統との連携を遮断する非連携スイッチを備え、制御装置は、非連携スイッチが非連携側の場合に、発電装置による発電電力および複合電池による充電電力によって負荷の需要を満たすように制御するのが好ましい。
 本発明の第1実施形態の複合電池によれば、各二次電池の互いに異なる動作温度を保つこと、および全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することができる。
 また、本発明の第1実施形態の複合電池によれば、上記効果に加え、従来と同等以上に一定期間継続的に全固体二次電池を動作させること、複合電池をシンプルに構成すること、および複合電池の適用範囲を広げることができる。
 さらに、本発明の第2実施形態の複合電池システムによれば、上記効果に加え、従来と同等以上にシステム全体の熱効率、電力自給率、稼働率を高めること、およびシステム全体の電池容量を増やすことができる。
本発明の複合電池、およびそれを備えた複合電池システムを示すブロック図である。 図1の複合電池を構成する全固体二次電池を模式的に示す断面図である。
 以下に、本発明を添付の図面に示す好適実施形態に基づいて詳細に説明する。まず、本発明の第1実施形態の複合電池について詳細に説明する。図1は、本発明の複合電池、およびそれを備えた複合電池システムを示すブロック図であり、図2は、図1の複合電池を構成する全固体二次電池を模式的に示す断面図である。
 本発明の複合電池10は、全固体二次電池12とリチウムイオン二次電池14と動作電圧保持装置16と筐体18とを備える。全固体二次電池12は、所定の温度条件で作動する。リチウムイオン二次電池14は、全固体二次電池12に並列接続された高出力型のものである。動作電圧保持装置16は、全固体二次電池12の動作電圧を所定の範囲に保持するためのものである。筐体18は、内部と外部とが熱的に分離されるように、断熱性を有する部材で形成されたものである。全固体二次電池12は、外部から充電電力を供給すると鉄の還元反応が発生して外部に酸素を排出し、充電電力を停止して外部から酸素を供給すると鉄の酸化反応が発生して外部に電力を供給するものである。筐体18の内部には、全固体二次電池12が配置され、筐体18の外部には、リチウムイオン二次電池14および動作電圧保持装置16が配置される。
 複合電池10は、さらに、双方向DCDCコンバータ20を備えるのが好ましい。その場合、双方向DCDCコンバータ20は、筐体18の外部に配置され、リチウムイオン二次電池14に直列接続される。なお、図1において動作電圧保持装置16は、全固体二次電池12に直列接続された位置に記載されているが、この記載位置は全固体二次電池12の動作電圧を所定の範囲に保持するという機能的位置を示したものであり、物理的な位置を示したものではない。
 全固体二次電池12は、全固体二次電池12の制御部(BMS)を介して、例えば後述の制御装置36のような外部の制御装置に接続され、この制御部は、外部の制御装置からの指示に基づいて全固体二次電池12の充放電状態を制御する。リチウムイオン二次電池14は、リチウムイオン二次電池14の制御部(BMS)を介して外部の制御装置に接続され、この制御部は、外部の制御装置からの指示に基づいてリチウムイオン二次電池14の充放電状態を制御する。動作電圧保持装置16は、外部の制御装置に接続され、外部の制御装置からの指示に基づいて全固体二次電池12の動作電圧を制御する。双方向DCDCコンバータ20は、外部の制御装置に接続され、外部の制御装置からの指示に基づいてリチウムイオン二次電池14の充放電状態を制御する。
 このような構成とすることで、本発明の第1実施形態の複合電池は、各二次電池の互いに異なる動作温度を保つこと、および全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することができる。
 次に、本発明の複合電池を構成する全固体二次電池について説明する。
 全固体二次電池60(12)は、平板状の電極複合体62と負極燃料物質体64とを有するのが好ましい。その場合、電極複合体62は、燃料極62a(負極、アノード層ともいう)を備えたものである。燃料極62aは、放電時に水素ガスを水蒸気に酸化するものである。負極燃料物質体64は、水蒸気と反応して水素ガスを生成し、自らは酸化物となる。電極複合体62および負極燃料物質体64は、それぞれの所定の温度に加熱維持される。
 電極複合体62は、さらに、固体電解質体62bと空気極62c(正極、カソード層ともいう)とを備えたものであっても良い。その場合、固体電解質体62bは、燃料極62aの一方の表面に配置され、かつ充放電時に酸素イオンを伝導するものである。また、空気極62cは、固体電解質体62bの燃料極62aの反対側の表面に配置され、かつ放電時に空気中の酸素を酸素イオンに還元するものである。
 負極燃料物質体64は、鉄粒子または鉄粉末と形態保持材料とから成るペレット状のものであるのが好ましい。形態保持材料は、難焼結性材料またはその混合物から成る。難焼結性材料は、例えば、酸化アルミニウム、二酸化ケイ素、酸化マグネシウム、酸化ジルコニウムである。負極燃料物質体64の表面の少なくとも一部は、形態保持材料で覆われ、負極燃料物質体64に対する形態保持材料の質量比は、0.1%以上5%以下である。この質量比が0.1%未満の場合には、負極燃料物質体64の表面が焼結して酸化還元反応が生じない状態になる可能性があり、5%超の場合には、酸化還元速度を抑制し過ぎる可能性がある。ペレットの直径は、例えば、2~10mmである。
 電極複合体62の所定の温度は、450~1000℃であり、負極燃料物質体64の所定の温度は、300~1000℃であっても良い。即ち、電極複合体62の温度が450℃未満または負極燃料物質体64の温度が300℃未満の場合には、全固体二次電池60が作動しない可能性がある。電極複合体62の温度が1000℃超または負極燃料物質体64の温度が1000℃超の場合には、負極燃料物質体64の凝集に伴う出力低下が生じる可能性がある。
 このような構成とすることで、本発明の第1実施形態の複合電池は、安定的な作動に必要な温度条件を満たすので、一定期間継続的に全固体二次電池を動作させることができる。
 電極複合体62および負極燃料物質体64は、互いにガス配管またはガス流路で接続された2つの密閉容器のそれぞれに配置されても良いが、ガス配管またはガス流路を介さずに1つの密閉容器66に配置されるのが好ましい。その場合には、密閉容器66は、開口部を備え、電極複合体62は、その開口部にシール材を介して固定され、負極燃料物質体64は、密閉容器66の中に収納される。
 このような構成とすることで、本発明の第1実施形態の複合電池は、複合電池をシンプルに構成することができる。
 次に、本発明の複合電池を構成する高出力型のリチウムイオン二次電池について説明する。
 リチウムイオン二次電池14は、正極材料としてリチウム金属酸化物を使用し、負極材料としてチタン酸リチウムを使用したLTO系のリチウムイオン二次電池であっても良い。または、リチウムイオン二次電池14は、正極材料としてリチウム金属酸化物を使用し、負極材料として黒鉛系炭素材料を使用したNCM系のリチウムイオン二次電池であっても良い。
 具体的には、LTO系のリチウムイオン二次電池とは、正極材料としてLiNiO、LiCoO、LiMn、LiNiCoMnOなどの内のいずれか1つのリチウム金属酸化物を使用し、負極材料としてLTO、すなわちチタン酸リチウム(LiTi12)を使用したものである。また、NCM系のリチウムイオン二次電池とは、正極材料として三元系、すなわちLiNiO、LiCoO、LiMn、LiNiCoMnOなどの内のいずれか1つのリチウム金属酸化物を使用し、負極材料としてグラファイトなどの黒鉛系炭素材料を使用したものである。
 このような構成とすることで、本発明の第1実施形態の複合電池は、高出力の電力需要にも対応できるので、複合電池の適用範囲を広げることができる。
 次に、本発明の複合電池を構成する動作電圧保持装置の一例について説明する。
 動作電圧保持装置16は、電圧制御装置であっても良い。その場合、電圧制御装置は、全固体二次電池12に直列接続されたものである。電圧制御装置は、全固体二次電池12の動作電圧をリチウムイオン二次電池14の動作電圧範囲の内側に保持するように制御する。
 例えば、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲よりも高い場合には、その動作電圧範囲の内側になるように、電圧制御装置が例えば双方向DCDCコンバータを使用して全固体二次電池12の動作電圧を降圧することによって、全固体二次電池12の動作電圧を直接制御することができる。
 また、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲よりも低い場合には、その動作電圧範囲の内側になるように、電圧制御装置が例えば双方向DCDCコンバータを使用して全固体二次電池12の動作電圧を昇圧することによって、全固体二次電池12の動作電圧を直接制御することができる。
 このような構成とすることで、本発明の第1実施形態の複合電池は、電圧制御装置が全固体二次電池の動作電圧を直接制御するので、全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動をより確実に吸収することができる。
 次に、本発明の複合電池を構成する動作電圧保持装置の他の一例について説明する。
 動作電圧保持装置16は、温度制御装置であっても良い。その場合、温度制御装置は、全固体二次電池12の温度を所定の温度条件の範囲内で制御するものである。温度制御装置は、全固体二次電池12の動作電圧をリチウムイオン二次電池14の動作電圧範囲の内側に保持するように制御する。
 例えば、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲よりも高い場合には、温度制御装置が例えば全固体二次電池12に流入する空気の温度を低下させる、全固体二次電池12を加熱するヒータを停止させるなどの方法で全固体二次電池12の温度を低下させる。その温度低下に伴って全固体二次電池12の動作電圧が低下するので、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲の内側になるように、温度制御装置が全固体二次電池12の動作電圧を間接的に制御することができる。
 また、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲よりも低い場合には、温度制御装置が例えば全固体二次電池12に流入する空気の温度を上昇させる、全固体二次電池12を加熱するヒータをオンさせるなどの方法で全固体二次電池12の温度を上昇させる。その温度上昇に伴って全固体二次電池12の動作電圧が上昇するので、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲の内側になるように、温度制御装置が全固体二次電池12の動作電圧を間接的に制御することができる。なお、この温度制御装置は、全固体二次電池12を作動させるために必ず必要な、全固体二次電池12を所定の温度に加熱維持する温度管理部(図示せず)の機能を含んでも良いし、この必須の機能を含まずに別々に構成しても良い。
 このような構成とすることで、本発明の第1実施形態の複合電池は、温度制御装置が全固体二次電池の動作電圧を間接的に制御するので、全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を確実に吸収することができる。
 次に、本発明の複合電池を構成する動作電圧保持装置のさらに他の一例について説明する。
 動作電圧保持装置16は、空気流量制御装置であっても良い。その場合、空気流量制御装置は、全固体二次電池12に供給する空気の流量を制御するものである。空気流量制御装置は、全固体二次電池12の動作電圧をリチウムイオン二次電池14の動作電圧範囲の内側に保持するように制御する。
 例えば、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲よりも高い場合には、空気流量制御装置が全固体二次電池12に供給する空気の温度によって方法が異なる。もし全固体二次電池12に供給する空気の温度の方が全固体二次電池12が加熱維持される温度よりも高ければ全固体二次電池12に供給する空気の流量を減少させ、逆にもし低ければ全固体二次電池12に供給する空気の流量を増加させる。その空気流量の変化に伴って全固体二次電池12の温度が低下し、その結果として全固体二次電池12の動作電圧が低下するので、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲の内側になるように、空気流量制御装置が全固体二次電池12の動作電圧を間接的に制御することができる。
 また、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲よりも低い場合には、空気流量制御装置が全固体二次電池12に供給する空気の温度によって方法が異なる。もし全固体二次電池12に供給する空気の温度の方が全固体二次電池12が加熱維持される温度よりも高ければ全固体二次電池12に供給する空気の流量を増加させ、逆にもし低ければ全固体二次電池12に供給する空気の流量を減少させる。その空気流量の変化に伴って全固体二次電池12の温度が上昇し、その結果として全固体二次電池12の動作電圧が上昇するので、全固体二次電池12の動作電圧がリチウムイオン二次電池14の動作電圧範囲の内側になるように、空気流量制御装置が全固体二次電池12の動作電圧を間接的に制御することができる。
 このような構成とすることで、本発明の第1実施形態の複合電池は、空気流量制御装置が全固体二次電池の動作電圧を間接的に制御するので、全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を確実に吸収することができる。
 本発明の第1実施形態の複合電池は、基本的に以上のように構成される。
 次に、本発明の第2実施形態の複合電池システムについて詳細に説明する。
 本発明の複合電池システム30は、発電装置32と複合電池10とパワーコントロールシステム34と制御装置36とを有する。発電装置32は、エネルギを直流電力に変換して出力する。複合電池10は、発電装置32の出力ライン32aに直接接続され、発電装置32によって発電された直流電力を充電する。パワーコントロールシステム34は、発電装置32によって発電された直流電力および複合電池10から放電された直流電力を交流電力に変換し、負荷38へ供給する。制御装置36は、発電装置32の発電量および負荷38の需要量に応じて複合電池10の充放電を制御する。筐体18の外部には、発電装置32、パワーコントロールシステム34および制御装置36が配置される。
 発電装置32は、発電装置32の制御部を介して制御装置36に接続され、この制御部は、制御装置36からの指示に基づいて発電装置32の発電状態を制御する。パワーコントロールシステム34は、制御装置36に接続され、制御装置36からの指示に基づいて負荷38に対する供給量を制御する。
 このような構成とすることで、本発明の第2実施形態の複合電池システムは、各二次電池の互いに異なる動作温度を保つこと、および全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することができる。
 次に、本発明の複合電池システムを構成する発電装置について説明する。
 発電装置32は、内燃機関式発電装置、ボイラー式発電装置および燃料電池式発電装置から成る群から選択された1つであるのが好ましい。その場合、複合電池10の全固体二次電池12は、発電装置32から排出される流体の熱エネルギを使用して加熱維持される。
 ここで、内燃機関式発電装置とは、例えば、バイオエタノールを燃料として内燃機関を運転し、エンジンのクランクシャフトを回転させて発電する発電装置である。ボイラー式発電装置とは、例えば、可燃廃棄物(燃えるゴミ)の焼却時の排熱を利用してボイラーで高温の蒸気を発生させ、その蒸気によってタービンを回転させて発電する発電装置である。燃料電池式発電装置とは、例えば、水素を燃料として供給し、酸素との電気化学反応によって発生する電気エネルギを取り出す発電装置である。その中で、電解質材料として溶融炭酸塩を使用した溶融炭酸塩形燃料電池(MCFC)の運転温度は、600~700℃であり、電解質材料としてジルコニア系セラミックスを使用した固体酸化物形燃料電池(SOFC)の運転温度は、700~1000℃である。
 このような構成とすることで、本発明の第2実施形態の複合電池システムは、発電装置から排出される流体の熱エネルギを使用するので、システム全体の熱効率を高めることができる。
 次に、本発明の複合電池システムを構成する制御装置について説明する。
 発電装置32の発電量が負荷38の需要量よりも多い場合には、制御装置36は、負荷38の需要量を負荷38に供給するとともに発電装置32の発電量の余剰分を複合電池10に充電するように制御するのが好ましい。逆に、発電装置32の発電量が負荷38の需要量よりも少ない場合には、制御装置36は、発電装置32の発電量を負荷38に供給するとともに負荷38の需要量の不足分を複合電池10から放電するように制御するのが好ましい。
 例えば、発電装置32の発電量が1kWで負荷38の需要量が0.7kWの場合には、制御装置36は、負荷38の需要量0.7kWを負荷38に供給するとともに発電装置32の発電量1kWの余剰分0.3kWを複合電池10に充電するように制御する。逆に、発電装置32の発電量が0.7kWで負荷38の需要量が1kWの場合には、制御装置36は、発電装置32の発電量0.7kWを負荷38に供給するとともに負荷38の需要量1kWの不足分0.3kWを複合電池10から放電するように制御する。
 このような構成とすることで、本発明の第2実施形態の複合電池システムは、発電装置が発電した電力が最終的にすべて負荷に供給されるので、システム全体の電力自給率を高めることができる。
 次に、本発明の複合電池システムを構成する充電器および充電スイッチについて説明する。
 複合電池システム30は、さらに、充電器40を備えるのが好ましい。その場合、充電器40は、筐体18の外部に配置され、充電器40の一方が発電装置32の出力ライン32aに接続され、充電器40の他方が充電スイッチ42を介して系統44に接続されたものである。複合電池10は、充電スイッチ42が充電側の場合に、系統44の電力によって生じた充電器40の出力電力を充電する。充電器40は、制御装置36に接続され、制御装置36からの指示に基づいて系統44の電力の充電電圧および充電電流を制御する。充電スイッチ42は、制御装置36に接続され、制御装置36からの指示に基づいて開閉する。
 このような構成とすることで、本発明の第2実施形態の複合電池システムは、発電装置が発電した電力だけでなく系統の電力も複合電池に充電することができるので、システム全体の稼働率を高めることができる。
 次に、本発明の複合電池システムを構成する双方向DCDCコンバータおよび電気自動車の車載二次電池について説明する。
 複合電池システム30は、さらに、双方向DCDCコンバータ46を備えるのが好ましい。その場合、双方向DCDCコンバータ46は、筐体18の外部に配置され、双方向DCDCコンバータ46の一方が発電装置32の出力ライン32aに接続され、双方向DCDCコンバータ46の他方が電気自動車に搭載された車載二次電池48に接続可能である。車載二次電池48は、発電装置32によって発電された直流電力および系統44の電力によって生じた充電器40の出力電力を充電する機能と、自身に充電された電力をパワーコントロールシステム34に放電する機能と、を有する。双方向DCDCコンバータ46は、制御装置36に接続され、制御装置36からの指示に基づいて車載二次電池48の充放電状態を制御する。
 このような構成とすることで、本発明の第2実施形態の複合電池システムは、車載二次電池も複合電池と同じ機能を持つので、システム全体の電池容量を増やすことができる。
 次に、本発明の複合電池システムを構成する非連携スイッチについて説明する。
 複合電池システム30は、さらに、非連携スイッチ50を備えるのが好ましい。その場合、非連携スイッチ50は、系統44と負荷38との間に配置され、系統44との連携を遮断する。制御装置36は、非連携スイッチ50が非連携側の場合に、発電装置32による発電電力および複合電池10による充電電力によって負荷38の需要を満たすように制御する。非連携スイッチ50は、制御装置36に接続され、制御装置36からの指示に基づいて負荷38への出力電力の供給元をパワーコントロールシステム34と系統44との間で切り換える。
 具体的には前述のように、例えば、制御装置36は、発電装置32の発電量が1kWで負荷38の需要量が0.7kWの場合には、負荷38の需要量0.7kWを負荷38に供給するとともに発電装置32の発電量1kWの余剰分0.3kWを複合電池10に充電し、発電装置32の発電量が0.7kWで負荷38の需要量が1kWの場合には、発電装置32の発電量0.7kWを負荷38に供給するとともに負荷38の需要量1kWの不足分0.3kWを複合電池10から放電するように制御する。
 このような構成とすることで、本発明の第2実施形態の複合電池システムは、系統の電力が直接負荷に流れなくなるので、システム全体の電力自給率を高めることができる。
 本発明の第2実施形態の複合電池システムは、基本的に以上のように構成される。
 以上、本発明の複合電池、およびそれを備えた複合電池システムについて詳細に説明したが、本発明は上記記載に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしても良いのはもちろんである。
 本発明の第1実施形態の複合電池は、各二次電池の互いに異なる動作温度を保つこと、および全固体二次電池で生じる環境温度の変動に伴う動作電圧の変動を吸収することができるという効果に加え、従来と同等以上に一定期間継続的に全固体二次電池を動作させること、複合電池をシンプルに構成すること、および複合電池の適用範囲を広げることができるという効果もある。また、本発明の第2実施形態の複合電池システムは、上記効果に加え、従来と同等以上にシステム全体の熱効率、電力自給率、稼働率を高めること、およびシステム全体の電池容量を増やすことができるという効果もあるので、産業上有用である。
 10 複合電池
 12、60 全固体二次電池
 14 リチウムイオン二次電池
 16 動作電圧保持装置
 18 筐体
 20、46 双方向DCDCコンバータ
 30 複合電池システム
 32 発電装置
 32a 出力ライン
 34 パワーコントロールシステム
 36 制御装置
 38 負荷
 40 充電器
 42 充電スイッチ
 44 系統
 48 車載二次電池
 50 非連携スイッチ
 62 電極複合体
 62a 燃料極
 62b 固体電解質体
 62c 空気極
 64 負極燃料物質体
 66 密閉容器

Claims (12)

  1.  所定の温度条件で作動する全固体二次電池と、
     前記全固体二次電池に並列接続された高出力型のリチウムイオン二次電池と、
     前記全固体二次電池の動作電圧を所定の範囲に保持するための動作電圧保持装置と、
     内部と外部とが熱的に分離されるように、断熱性を有する部材で形成された筐体と、を備え、
     前記全固体二次電池は、前記筐体の内部に配置され、外部から充電電力を供給すると鉄の還元反応が発生して外部に酸素を排出し、前記充電電力を停止して外部から酸素を供給すると鉄の酸化反応が発生して外部に電力を供給するものであり、
     前記リチウムイオン二次電池および前記動作電圧保持装置は、前記筐体の外部に配置される複合電池。
  2.  前記動作電圧保持装置は、前記全固体二次電池に直列接続された電圧制御装置であり、前記電圧制御装置は、前記全固体二次電池の動作電圧を前記リチウムイオン二次電池の動作電圧範囲の内側に保持するように制御する請求項1に記載の複合電池。
  3.  前記動作電圧保持装置は、前記全固体二次電池の温度を前記所定の温度条件の範囲内で制御する温度制御装置であり、前記温度制御装置は、前記全固体二次電池の動作電圧を前記リチウムイオン二次電池の動作電圧範囲の内側に保持するように制御する請求項1に記載の複合電池。
  4.  前記動作電圧保持装置は、前記全固体二次電池に供給する空気の流量を制御する空気流量制御装置であり、前記空気流量制御装置は、前記全固体二次電池の動作電圧を前記リチウムイオン二次電池の動作電圧範囲の内側に保持するように制御する請求項1に記載の複合電池。
  5.  前記全固体二次電池は、放電時に水素ガスを水蒸気に酸化する燃料極を備えた平板状の電極複合体と、前記水蒸気と反応して前記水素ガスを生成し、自らは酸化物となる負極燃料物質体と、を有し、
     前記電極複合体は、450~1000℃に加熱維持されるものであり、
     前記負極燃料物質体は、300~1000℃に加熱維持されるものである請求項1~4のいずれか1項に記載の複合電池。
  6.  前記リチウムイオン二次電池は、正極材料としてリチウム金属酸化物を使用し、負極材料としてチタン酸リチウムを使用したリチウムイオン二次電池、または正極材料としてリチウム金属酸化物を使用し、負極材料として黒鉛系炭素材料を使用したリチウムイオン二次電池である請求項1~4のいずれか1項に記載の複合電池。
  7.  エネルギを直流電力に変換して出力する発電装置と、
     前記発電装置の出力ラインに直接接続され、前記発電装置によって発電された直流電力を充電する請求項1に記載の複合電池と、
     前記発電装置によって発電された直流電力および前記複合電池から放電された直流電力を交流電力に変換し、負荷へ供給するパワーコントロールシステムと、
     前記発電装置の発電量および前記負荷の需要量に応じて前記複合電池の充放電を制御する制御装置と、を有し、
     前記発電装置、前記パワーコントロールシステムおよび前記制御装置は、前記筐体の外部に配置される複合電池システム。
  8.  前記発電装置は、内燃機関式発電装置、ボイラー式発電装置および燃料電池式発電装置から成る群から選択された1つであり、
     前記複合電池の前記全固体二次電池は、前記発電装置から排出される流体の熱エネルギを使用して加熱維持される請求項7に記載の複合電池システム。
  9.  前記制御装置は、前記発電装置の発電量が前記負荷の需要量よりも多い場合には、前記負荷の需要量を前記負荷に供給するとともに前記発電装置の発電量の余剰分を前記複合電池に充電し、前記発電装置の発電量が前記負荷の需要量よりも少ない場合には、前記発電装置の発電量を前記負荷に供給するとともに前記負荷の需要量の不足分を前記複合電池から放電するように制御する請求項7または8に記載の複合電池システム。
  10.  さらに、前記筐体の外部に配置され、一方が前記発電装置の前記出力ラインに接続され、他方が充電スイッチを介して系統に接続された充電器を備え、
     前記複合電池は、前記充電スイッチが充電側の場合に、系統の電力によって生じた前記充電器の出力電力を充電する請求項7または8に記載の複合電池システム。
  11.  さらに、前記筐体の外部に配置され、一方が前記発電装置の前記出力ラインに接続され、他方が電気自動車に搭載された車載二次電池に接続可能な双方向DCDCコンバータを備え、
     前記車載二次電池は、前記発電装置によって発電された直流電力および系統の電力によって生じた前記充電器の出力電力を充電する機能と、自身に充電された電力を前記パワーコントロールシステムに放電する機能と、を有する請求項10に記載の複合電池システム。
  12.  さらに、系統と前記負荷との間に配置され、系統との連携を遮断する非連携スイッチを備え、
     前記制御装置は、前記非連携スイッチが非連携側の場合に、前記発電装置による発電電力および前記複合電池による充電電力によって前記負荷の需要を満たすように制御する請求項7または8に記載の複合電池システム。
PCT/JP2022/039276 2021-10-25 2022-10-21 複合電池、およびそれを備えた複合電池システム WO2023074561A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022579659A JP7285608B1 (ja) 2021-10-25 2022-10-21 複合電池、およびそれを備えた複合電池システム
EP22886888.1A EP4333180A1 (en) 2021-10-25 2022-10-21 Composite battery, and composite battery system provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-173562 2021-10-25
JP2021173562 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023074561A1 true WO2023074561A1 (ja) 2023-05-04

Family

ID=86159441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039276 WO2023074561A1 (ja) 2021-10-25 2022-10-21 複合電池、およびそれを備えた複合電池システム

Country Status (3)

Country Link
EP (1) EP4333180A1 (ja)
JP (1) JP7285608B1 (ja)
WO (1) WO2023074561A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082147B2 (ja) 2002-09-19 2008-04-30 日産自動車株式会社 組電池
WO2008096593A1 (ja) * 2007-02-07 2008-08-14 Sony Corporation 電源システム
JP2009094058A (ja) * 2007-09-21 2009-04-30 Casio Comput Co Ltd 燃料電池装置及び電子機器
WO2011089811A1 (ja) * 2010-01-22 2011-07-28 コニカミノルタホールディングス株式会社 燃料電池システム
WO2019176047A1 (ja) * 2018-03-15 2019-09-19 Connexx Systems株式会社 電池システム、それを備えた移動体管理システム及び太陽光発電装置管理システム、並びに複合電池
WO2020017034A1 (ja) * 2018-07-20 2020-01-23 Connexx Systems株式会社 電動移動体充電システム
JP6767399B2 (ja) 2016-02-04 2020-10-14 Connexx Systems株式会社 燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082147B2 (ja) 2002-09-19 2008-04-30 日産自動車株式会社 組電池
WO2008096593A1 (ja) * 2007-02-07 2008-08-14 Sony Corporation 電源システム
JP2009094058A (ja) * 2007-09-21 2009-04-30 Casio Comput Co Ltd 燃料電池装置及び電子機器
WO2011089811A1 (ja) * 2010-01-22 2011-07-28 コニカミノルタホールディングス株式会社 燃料電池システム
JP6767399B2 (ja) 2016-02-04 2020-10-14 Connexx Systems株式会社 燃料電池
WO2019176047A1 (ja) * 2018-03-15 2019-09-19 Connexx Systems株式会社 電池システム、それを備えた移動体管理システム及び太陽光発電装置管理システム、並びに複合電池
WO2020017034A1 (ja) * 2018-07-20 2020-01-23 Connexx Systems株式会社 電動移動体充電システム

Also Published As

Publication number Publication date
JPWO2023074561A1 (ja) 2023-05-04
EP4333180A1 (en) 2024-03-06
JP7285608B1 (ja) 2023-06-02

Similar Documents

Publication Publication Date Title
JP5314872B2 (ja) 発熱機構を備える二次電池
CN101606260B (zh) 燃料电池系统
CN108141059B (zh) 供电系统
JP5640884B2 (ja) 2次電池型燃料電池システム
CN110828882A (zh) 一种锂电池
JP5511481B2 (ja) 電源システムおよび電源運転方法
KR102387308B1 (ko) 발전 난방기 시스템
US20150283915A1 (en) Fuel cell hybrid system
CN111261904A (zh) 一种便携式sofc发电装置及其能量管理方法
JP5382142B2 (ja) 燃料電池システム
JP2001143736A (ja) 電源システム
US20110123884A1 (en) Method for controlling a fuel cell system during shutdown
JP2006318893A (ja) 大型電源装置
JP5675675B2 (ja) コンバインド発電システム、及びコンバインド発電システムの運転方法
JP7285608B1 (ja) 複合電池、およびそれを備えた複合電池システム
US20080137290A1 (en) Large-Sized Power Supply Device
KR101418422B1 (ko) 선박용 연료전지의 단독 기동 시스템
KR20110133127A (ko) 온도유지장치를 포함하는 배터리 팩 모듈
US20240351454A1 (en) Composite battery and composite battery system including the same
JP2004355860A (ja) 併合発電システム、発電プラント、二次電池の保温方法
JP2004215456A (ja) ハイブリッド電池システム
CN109193007A (zh) 便携式直接碳固体氧化物燃料电池发电装置
JP2014150055A (ja) 複合電池システム及び電気推進車両
CN208359940U (zh) 一种燃料电池充电系统
CN219457671U (zh) 固态氧化物燃料电池系统、动力总成及车辆

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022579659

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022886888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18569216

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022886888

Country of ref document: EP

Effective date: 20231201

NENP Non-entry into the national phase

Ref country code: DE