JP2014112463A - パック電池 - Google Patents

パック電池 Download PDF

Info

Publication number
JP2014112463A
JP2014112463A JP2011068440A JP2011068440A JP2014112463A JP 2014112463 A JP2014112463 A JP 2014112463A JP 2011068440 A JP2011068440 A JP 2011068440A JP 2011068440 A JP2011068440 A JP 2011068440A JP 2014112463 A JP2014112463 A JP 2014112463A
Authority
JP
Japan
Prior art keywords
battery
battery group
secondary batteries
group
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011068440A
Other languages
English (en)
Inventor
Hirofumi Fukuda
紘文 福田
Satoshi Adachi
聡 足立
Hiroyuki Suzuki
浩之 鈴木
Akifumi Yamawaki
章史 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011068440A priority Critical patent/JP2014112463A/ja
Priority to PCT/JP2012/051604 priority patent/WO2012132525A1/ja
Publication of JP2014112463A publication Critical patent/JP2014112463A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】複数の二次電池を並列に接続したパック電池において、高容量で且つ高出力特性の優れたものを得る。
【解決手段】パック電池1,2は、電池Aを複数個(3個)直列に接続した電池グループ10と、電池Bを複数個(3個)直列に接続した電池グループ20とを配列して互いに並列に接続してなる電池群に、保護回路30及びコネクタ31が接続されて構成されている。
電池A及び電池Bは、共に、リチウムイオン電池であって電池サイズも同一であるが、電池Bと比べて電池Aは、発電素体の平均動作電圧が高く、且つ内部抵抗が低く設定されている。
【選択図】図1

Description

本発明は、複数の電池を備えるパック電池に関する。
パック電池は、電動工具、電動アシスト自転車、電動バイク、さらにはハイブリッド電気自動車(HEV)や電気自動車(PEV)などの動力源としても広い範囲で使用されている。
これらのパック電池は、複数の二次電池をブロック状に配列した電池群に、リード板及び回路基板を装着し、外装ケース内に収容して構成されている。そして、電池群を構成する複数の二次電池は、直列及び並列に接続されている。
各二次電池は、外装缶内に、正極板と負極板がセパレータを介して対向配置されてなる発電素体が収納され、その開口部が封口されて構成されている。
二次電池の種類としては、比較的出力の高い二次電池であるリチウムイオン電池あるいはアルカリ二次電池が多く用いられている。
そして、並列に接続される複数の二次電池は、基本的に、容量、内部抵抗及び平均動作電圧などの電池特性が同じものが用いられている。
特開2010−40226号公報
このようなパック電池において、高容量で且つ高出力を得ることが要求されることも多い。特に、電気自動車などでは、走行距離が長く、高出力で走行できることが求められるので、それを駆動するパック電池においても、高容量であり且つ高出力特性に優れることが求められる。
また、パック電池を低温下で高出力放電すると、放電初期において電圧ドロップが発生しやすいので、この放電初期における電圧ドロップを抑えることも求められる。
そこで、パック電池の容量と高出力特性を良好にするために、二次電池自体の容量と高出力特性を良好にするための開発もなされているが、二次電池の容量と高出力特性を共に高くするにも制約があり、一方の特性をさらに高めるようとすると、他方の特性が損なわれる傾向にある。
例えば、同じサイズのリチウムイオン電池において、高容量にするために発電素体を構成する極板の厚みを大きく設定すると、高出力駆動時における発熱が大きくなってサイクル寿命が短くなったり、放電初期における電圧ドロップが大きくなりやすい。一方、高出力駆動に適するよう、内部抵抗を低くするために、発電素体を構成する極板の厚みを小さく設定すると、電池容量は低下しやすい。
本発明は、上記課題に鑑み、複数の二次電池を並列に接続したパック電池において、高容量で且つ高出力特性の優れたものを得ることを目的とする。
上記目的を達成するため、本発明に係る電池パックは、第1電池グループ及び第2電池グループが並列接続された電池群を備え、第1電池グループ及び第2電池グループを、同じ種類の二次電池で構成し、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池を、平均動作電圧が高く且つ内部抵抗が小さくなるように設定した。
一般的に二次電池は、発電素体の種類によって、リチウムイオン電池(リチウムポリマー電池を含む)、ニッケル水素電池、ニカド電池、鉛蓄電池といった種類に分けられているが、上記「同じ種類の二次電池」は、その種類が互いに同じである二次電池を指す。
上記本発明のパック電池において、第1電池グループに属する二次電池及び第2電池グループに属する二次電池の種類は、共にリチウムイオン電池であることが好ましく、この場合、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池として、発電素体を構成する正極板(正極活物質)の作動電位が高いものを用いることによって、発電素体の平均動作電圧を高く設定することができる。
上記本発明のパック電池において、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池を、発電素体を構成する正極板と負極板の対向面積が大きくなるように設定することによって、電池の内部抵抗を小さくすることができる。
上記本発明のパック電池において、第1電池グループに属する二次電池の数と、第2電池グループに属する二次電池の数を同じにして、各グループに属する二次電池同士を直列接続することも好ましい。
第1電池グループ及び第2電池グループを、電池群がブロック状になるように配列し、第1電池グループがその中央部に偏在させることも好ましい。
上記本発明に係るパック電池においては、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、発電素体の平均動作電圧が高く且つ内部抵抗が小さいので、大電流で充放電するときに、内部抵抗の小さい第2電池グループを電流が多く流れる。従って、第1電池グループに属する二次電池と同じ二次電池だけで構成したパック電池と比べると、発熱が少ないので、サイクル寿命が向上する。
また、二次電池を低抵抗となるように設計すると電池容量は低下しやすいので、本発明のパック電池は、第1電池グループに属する二次電池だけで構成したパック電池と比べると全体の容量が低下する傾向にあるが、第2電池グループに属する二次電池だけで構成したパック電池と比べると全体の容量を大きくできる。
また、本発明のパック電池に含まれる第2電池グループに属する二次電池は、第1電池グループに属する二次電池と比べて発電素体の平均動作電圧が高いので、第1電池グループに属する二次電池だけで構成したパック電池と比べると放電初期における電圧ドロップが抑えられる。
以上のように、本発明のパック電池によれば、高容量で且つ高出力に適したものが得られ、放電初期における電圧ドロップも抑えることができる。すなわち、高出力と高容量をバランスよく得ることができる。
なお、一般的に作動電圧の違う電池を並列接続するとアンバランスによる支障が生じやすいが、本発明のパック電池では、両電池グループに用いられている二次電池の種類が同じなので、第1電池グループに属する二次電池と第2電池グループに属する二次電池の電圧差はわずかであり、並列接続しても特に支障はない。
上記本発明のパック電池において、第1電池グループに属する二次電池及び第2電池グループに属する二次電池の種類としては、リチウムイオン電池をはじめとして、ニッケル水素電池、ニカド電池が挙げられるが、特に、リチウムイオン電池(リチウムポリマー電池を含む)を用いることによって、高エネルギー密度のパック電池を得ることができる。
この場合、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、発電素体を構成する正極活物質の作動電位が高いものを用いることによって、発電素体の平均動作電圧を高くすることができる。
また、第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池を、発電素体を構成する正極板と負極板の対向面積が大きくなるよう設定することによって、電池の内部抵抗を小さくすることができる。
上記本発明のパック電池において、第1電池グループに属する二次電池の数と、第2電池グループに属する二次電池の数を同じにして、各グループに属する二次電池同士を直列接続することも、高出力を得る上で好ましい。
第1電池グループ及び第2電池グループは、電池群がブロック状になるように配列することがパック電池のスペース効率をよくする上で好ましいが、このとき、第1電池グループをその中央部に偏在させることによって、高出力時の電池温度上昇を抑えることができる。
実施の形態にかかるパック電池の構成を示す図である。 実施例1,2及び比較例1,2にかかるパック電池を示す図である。 実施例及び比較例について、放電時における放電量と電圧との関係を示す特性図である。 実施例及び比較例について、放電時における放電量と電圧との関係、並びに電池温度変化を示す特性図である。 実施例及び比較例について、充放電サイクル試験の結果を示す特性図である。 実施例1,2について、高電流放電時における放電量と電圧との関係を示す特性図、並びに電池温度の変化を示す特性図である。
以下、本発明の構成及び作用効果について、実施形態に基づいて説明する。
図1(a),(b)は、実施形態にかかるパック電池1,2の構成を示す図である。
パック電池1,2は、作動電圧、内部抵抗、容量などの特性が互いに異なる電池Aと電池Bとを組み合わせて並列接続した電池群を備えている。
電池A及び電池Bは、共に、リチウムイオン電池であって電池サイズも同一であるが、電池Bと比べて電池Aは、発電素体の平均動作電圧が高く、且つ内部抵抗が低く設定されている。
そして、パック電池1,2は、電池Aを複数個(3個)直列に接続した電池グループ10と、電池Bを複数個(3個)直列に接続した電池グループ20とを、並列に接続してなる電池群に、保護回路30及びコネクタ31が接続されて構成されている。
図1(a)に示すパック電池1では、1つの電池グループ10と、3つの電池グループ20とが、並列に接続されている。一方図1(b)に示すパック電池2では、3つの電池グループ10と、1つの電池グループ20とが、並列に接続されている。
電池グループ10及び電池グループ20の配列の仕方については、電池群がブロック状となるよう配列することがスペース効率の上で好ましい。例えば、図1に示すように行列状に配列してもよいし、行列状に配列したものを複数積み重ねるように配列してもよい。
保護回路30には、過充電、過放電、過電流などから電池を保護する回路が設けられている。
コネクタ31は、充電器或いは外部負荷と接続したり分離したりするための外部端子である。
充電器については、従来から一般的に用いられているリチウムイオン電池用の充電器を用いて充電することができる。
[電池A,電池Bの構成の具体例]
電池A:
電池Aは、出力:5.6Wh、容量:1.5Ah、AC抵抗:約15mΩであって、以下のように作製することができる。
正極板:LiNi0.33Co0.34Mn0.332で表されるニッケルコバルトマンガン酸リチウムを正極活物質aとし、スピネル型マンガン酸リチウム(LiMn24)を正極活物質bとした。
正極活物質aと正極活物質bとを、質量比率が正極活物質a:正極活物質b=80:20となるように混合して、正極活物質とした。
正極活物質が94重量部、導電剤としての炭素粉末が3重量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末が3重量部となるよう混合し、これをN−メチルピロリドン(NMP)溶液と混合して正極合剤スラリーを調製した。
このスラリーを厚さ15μmのアルミニウム製の正極芯体の両面にドクターブレード法により塗布し、その後圧縮ローラーを用いて圧縮することで、正極板を作製した。
正極板の厚みは約90μmとした。
負極板:負極活物質としての黒鉛97.5質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1.0質量部と、結着剤としてのスチレンブタジエンゴム(SBR)1.5質量部と、適量の水とを混合して、負極合剤スラリーを調製した。
このスラリーを厚さ10μmの銅製の負極芯体の両面にドクターブレード法により塗布し、その後、乾燥機中を通過させて乾燥することにより、負極芯体の両面に負極活物質層を形成した。次いで圧縮ローラーを用いて圧縮することによって負極板を作成した。
負極板の厚みは、約80μmとした。
非水電解液:エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を、体積比で35:20:45(25℃)となるように混合した混合溶媒に、ビニレンカーボネート(VC)を3.0質量%となるように添加し、さらに、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lとなるように溶解させて、非水電解液とした。
電池の作製:上記のようにして得られた正極板及び負極板を、ポリプロピレン製微多孔膜からなるセパレータを介して巻回して巻回電極体を作製し、円筒形の電池外装缶内に巻回電極体と上記の非水電解液を封入して、円筒形非水電解質二次電池を作製した。
円筒形非水電解質二次電池のサイズは、高さ65mm、直径18mmであり、設計容量は1500mAhであり、正負極板の対向面サイズは、長さ約790mm×幅約56mm = 約442cm2である。
電池B:
電池Bは、出力:9.8Wh、容量:2.65Ah、AC抵抗:約40mΩであって、以下のように作製できる。
正極板:LiNi0.33Co0.34Mn0.332で表されるニッケルコバルトマンガン酸リチウムを正極活物質aとし、コバルト酸リチウム(LiCoO2)を正極活物質cとした。
正極活物質aと正極活物質cとを、質量比率が正極活物質a:正極活物質c=10:90となるように混合して、正極活物質とした。
正極活物質が94重量部、導電剤としての炭素粉末が3重量部、結着剤としてのポリフッ化ビニリデン(PVdF)粉末が3重量部となるよう混合し、これをN−メチルピロリドン(NMP)溶液と混合して正極合剤スラリーを調製した。
このスラリーを厚さ20μmのアルミニウム製の正極芯体の両面にドクターブレード法で塗布し、その後圧縮ローラーで圧縮することにより、正極板を作製した。
正極板厚みは約145μmとした。
負極板:負極活物質としての黒鉛95質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)2質量部と、結着剤としてのスチレンブタジエンゴム(SBR)3質量部と、適量の水とを混合して負極合剤スラリーを調製した。
このスラリーを、厚さ12μmの銅製の負極芯体の両面にドクターブレード法で塗布し、その後、乾燥機中を通過させて乾燥することにより、負極芯体の両面に負極活物質層を形成した。次いで圧縮ローラーを用いて圧縮することによって負極板を作成した。
負極板の厚みは約150μmとした。
非水電解液:フルオロエチレンカーボネート(FEC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)とを、体積比で20:5:75(25℃)となるように混合した混合溶媒に、ビニレンカーボネート(VC)を0.5質量%となるように添加し、さらに、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を、1mol/Lとなるように溶解させて、非水電解液とした。
電池の作製:上記のようにして得られた正極板及び負極板を、ポリプロピレン製微多孔膜からなるセパレータを介して巻回して巻回電極体を作製し、円筒形の電池外装缶内に巻回電極体と上記の非水電解液を封入して、円筒形非水電解質二次電池を作製した。
得られた円筒形非水電解質二次電池のサイズは、高さ65mm、直径18mmであり、設計容量は2650mAhであり、正負極板の対向面サイズは、長さ約630mm×幅約57mm= 約360cm2である。
以上のように、電池Aと電池Bは、サイズは同じであるが、電池Aは電池Bと比べて、正負極板が薄長であり、正負極の対向面積が大きく設定されている。それに伴って、電池Aの内部抵抗(AC抵抗約15mΩ)が、電池Bの内部抵抗(AC抵抗約40mΩ)よりも小さくなっている。
また、各電池の平均動作電圧(V)を、出力(Wh)/容量(Ah)で計算すると、電池Aの平均動作電圧(5.6÷1.5=3.73V)の方が、電池Bの平均動作電圧(9.8÷2.65=3.70V)よりも高い。
これは、主に、電池Aの正極板に用いられている正極活物質の作動電位が、電池Bの正極板に用いられている正極活物質の作動電位よりも高いためである。
なお、上記の例では、電池Aの正極活物質として、ニッケルコバルトマンガン酸リチウムと、スピネル型マンガン酸リチウムとを組み合わせて用い、電池Bの正極活物質として、ニッケルコバルトマンガン酸リチウムとコバルト酸リチウムとを組み合わせて用いたが、この他にLiNiO2なども組み合わせて用いてもよく、一般にリチウムイオン電池に用いられている正極活物質から選択して組み合わせて用いることができる。
[パック電池1,2による効果]
上記のパック電池1,2において、電池グループ20に属する電池Bと比べて、電池グループ10に属する電池Aは、内部抵抗が小さいので、電池グループ10の割合が多くなるにつれてパック電池の内部抵抗は小さくなる。従って、パック電池の電池群を電池Bだけで構成した場合と比べると、パック電池1,2は、高出力時における発熱が少なくなり、サイクル寿命が向上する。
一方、電池Aは電池Bと比べて電池容量が小さいので、電池Bからなる電池グループ20を4つ並列接続した場合と比べると、パック電池1,2の容量は小さいが、パック電池の電池群を電池Aからなる電池グループ10を4つ並列接続した場合と比べると、パック電池1,2の容量は大きくなる。
また、電池Bからなる電池グループ20だけを並列接続したパック電池においては、低温下にて大電流で放電したときに放電初期における電圧ドロップが生じやすいが、パック電池1,2においては、電池Bよりも平均動作電圧が高い電池Aからなる電池グループ10が並列接続されているので、放電初期における電圧ドロップが抑えられる。
以上のように、パック電池1,2によれば、高容量で且つ高出力に適したものとし、放電初期における電圧ドロップも抑えることができる。
次に、パック電池1とパック電池2とを比べると、パック電池1では電池Aで構成された電池グループ10の数と電池Bで構成された電池グループ20の数の比率が1:3であり、パック電池2では電池グループ10の数と電池グループ20の数の比率が3:1である。従って、電池容量についてはパック電池2よりパック電池1の方が大きくなり、高出力特性についてはパック電池1よりパック電池2の方が高くなる。
このように、並列に接続する電池グループ10の数と電池グループ20の数の比率を変えることによって、電池容量と高出力特性とのいずれに重点を置くかを調整することもできる。
なお、一般的に、電圧などの特性が異なる電池を並列に接続すると、アンバランスによる支障が生じやすいと考えられているが、パック電池1,2では、用いられている電池Aの電圧と電池Bの電圧は差がわずかであって、特に支障はない。
電池A及び電池Bを用いて、4本の電池を並べて配置し、互いに並列に接続して、実施例及び比較例にかかるパック電池を構成した。そして、各パック電池について充放電試験などを行った。
図2(a)〜(d)は、実施例1,2及び比較例1,2にかかるパック電池を示す図である。
(a)の実施例1及び(b)の実施例2は、いずれも3個の電池Bと1個の電池Aを配列して並列に接続したものであるが、実施例1では電池Aを端の位置に配置し、実施例2では電池Aを中央位置に配置している。
一方、(c)の比較例1は電池Bを4個配列して並列に接続したもの、(d)の比較例2は電池Aを4個配列して並列に接続したものである。
実施例1,2と比較例1,2とで、パック電池の内部抵抗及び容量を比較すると、比較例1、実施例1,2、比較例2の順に、内部抵抗は小さくなり、容量は大きくなる。
電池Aの内部抵抗15mΩ、容量1.5Ah、電池Bの内部抵抗40mΩ、2.65Ah、パック電池に流れる電流を10Aとして計算すると、実施例1,2、比較例1,2の内部抵抗、内部抵抗損失、容量は、表1に示す通りである。
Figure 2014112463
(実験1)高電流放電試験
実施例1、比較例1,2のパック電池について、高電流で放電試験を行った。
充電は、25℃、4.2Vで一定の電流(0.5C)で行い、充電電流が1/50Cまで低下した時点で充電を停止した。
放電は、−10℃,0℃,10℃,40℃の各温度の環境下で、一定の電流(10A)で行い、電圧が2.75Vまで低下したときに放電を停止した。そしてこの放電時における電圧の変化を測定した。
図3は、実施例1及び比較例1,2について、放電時における放電量と電圧との関係を示す特性図であって、−10℃の低温で放電したときのものである。
図3に示される放電曲線の形状において、比較例1では、放電量が少ないとき、すなわち放電初期において電圧ドロップが見られる。このように電圧ドロップが生じると、保護回路30が誤動作する原因にもなり得るが、実施例1,比較例2では、放電初期における電圧ドロップは見られず、電圧は漸次低下している。
一方、パック電池の放電容量については、実施例1は、比較例1よりも劣るが、比較例2よりも優れていることが、図3からもわかる。
(実験2)高電流放電時の温度測定
実施例1及び比較例1について、上記のように充放電を行いながら、電池温度の変化を測定した。電池温度の測定については、図2(a),(b)に示すように4つの各電池の温度t1,t2,t3,t4を測定した。
図4は、実施例1及び比較例1について、放電時における放電量と電圧との関係、並びに電池温度変化を示す特性図であって、−10℃で放電したときのものである。
なお、図4に示す温度は、温度t1〜t4の平均である。
図4に示されるように、実施例1は比較例1と比べて、温度上昇が少ない。これは、実施例1の方が高出力時における発熱が少ないことを示している。
これは、上述したように実施例1の方が、比較例1と比べて内部抵抗が小さいためと考えられる。
以上の結果から、実施例1のパック電池によれば、放電容量を確保しながら高出力時における発熱を抑えることができ、放電初期の電圧低下も抑えられることがわかる。
(実験3)充放電サイクル試験
実施例1及び比較例1,2のパック電池について、充放電サイクル試験を行った。
充電は、25℃、4.2Vで一定の電流(2.5A)で行い、充電電流が100mAまで低下した時点で充電を停止した。
放電は、25℃で、一定の電流(5.0A)で行い、電圧が2.5Vまで低下したときに放電を停止した。
上記の充放電を1サイクルとして、放電容量を測定しながら充放電を繰り返した。
図5は、充放電サイクル試験の結果を示すもので、サイクル数と放電容量との関係を示す特性図である。
図5からわかるように、実施例1は、比較例2よりもサイクル寿命が短いが、比較例1と比べると、サイクル寿命は長くなっている。
放電容量が初期の放電容量の60%に低下するサイクル数をサイクル寿命とすると、サイクル寿命は比較例1では1240サイクル、実施例1では1530サイクル、実施例2では1700サイクルであって、比較例1のサイクル寿命と比べて、実施例1ではサイクル寿命が23%増加、比較例2では37%増加している。
このように実施例1が比較例1と比べてサイクル寿命が長いのも、上記のように実施例1の方が高出力時における発熱が少ないためと考えられる。
(実験4)実施例1と実施例2について高電流放電時の温度測定
図2(a)に示す実施例1と図2(b)に示す実施例2にかかるパック電池について、上記実験2と同様に充放電を行いながら、電池温度の変化を測定した。
ただし、放電は、25℃の環境下で、一定の電流(20A)で行い、電圧が2.75Vまで低下したときに放電を停止した。また、電池の温度測定は、図2(a),(b)において符号Tで示す位置(4つの電池が配列された電池群の中央位置)で行った。
図6は、実施例1及び実施例2について、高電流放電時における放電量と電圧との関係を示す特性図、並びに電池温度の変化を示す特性図である。
図6の結果から、放電量と電圧との関係については、実施例1と実施例2との間に差はほとんどみられないが、電池温度については実施例1よりも実施例2の方が低くなっていることがわかる。
実施例1と実施例2は、パック電池の内部抵抗は同等なので、全体の発熱量はほぼ同等と考えられるが、上記図6の結果では実施例2の方が電池群の中央部分の温度上昇が少ないことから、低抵抗の電池Aを電池群の中央位置に配置する方が、温度上昇を低減することができ、サイクル特性を向上させる上で好ましいと考えられる。
このことから、電池グループAをブロック状の電池群の中央領域に偏在させることによって、高出力時の温度上昇を低減することができると考えられる。
この理由は、電池A及び電池Bに流れる電流に差があまりない場合、電池Aの発熱量は、電池Bに比べて小さくなる。このような電池Aをパック電池の中央に配置させた場合、両側の発熱量の大きな電池Bの発熱を吸収するような形でパック電池全体を均熱化することができる。これに対して、電池Aをパック電池の端に配置させた場合、電池Bからの発熱を電池Aで十分に吸収することができず、パック電池の全体の均熱化が図れず、パック電池全体の温度が上昇すると考えられる。
また、電池Aに流れる電流が非常に大きい場合、電池Aのほうが電池Bに対して発熱量が大きくなることがある。この場合でも、電池Aをパック電池の中央に配置させることにより、電池Aの両側に電池Bが隣接するため放熱性が向上して、パック電池全体の均熱効果が高くなり、温度上昇を抑制することができる。これに対して、電池Aがパック電池の端に配置している場合、電池Aに隣接する電池Bが片側だけなので放熱性が低下し、パック電池全体を均熱化できず温度が上昇すると考えられる。
(変形例など)
パック電池1及びパック電池2においては、3つの二次電池を直列に接続した電池ブロックを4つ並列接続して電池群を構成しているが、4つの二次電池を並列に接続した並列ブロックを3つ直列に接続しても、同様のパック電池を構成することができ、同様の効果を奏する。
また、パック電池1及びパック電池2においては、平均動作電圧及び内部抵抗が異なる2つの電池グループ10,20を組み合わせて並列接続したが、平均動作電圧及び内部抵抗が異なる3つ以上の電池グループを組み合わせて並列接続することによってパック電池を構成することもできる。
上記実施形態においては、電池Bと比べて電池Aにおいて、正極板と負極板の対向面積を広く設定することによって内部低抵を低くしたが、用いる活物質の種類によっても極板の抵抗が変わるので、より低抵抗となる活物質を選択して用いることによって電池の内部抵抗を低く設定することもできる。
上記パック電池1,2においては、電池A、電池Bともに電池の種類がリチウムイオン電池であったが、本発明のパック電池は、必ずしもリチウムイオン電池に限られず、例えば、作動電位が異なる電極活物質を用いたニッケル水素電池を組み合わせたパック電池、あるいは作動電位が異なる電極活物質を用いたニカド電池を組み合わせたパック電池にも適用できる。
本発明にかかるパック電池は、高出力と高容量をバランスよく得ることができるので、電動工具、電動アシスト自転車、電動バイク、HEVやPEVなどの動力源として適している。
1,2 パック電池
10,20 電池グループ
30 保護回路
31 コネクタ

Claims (5)

  1. 第1電池グループ及び第2電池グループが並列接続された電池群を備えるパック電池であって、
    前記第1電池グループ及び第2電池グループは、同じ種類の二次電池によって構成され、
    第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、
    平均動作電圧が高く且つ電池の内部抵抗が小さく設定されていることを特徴とするパック電池。
  2. 第1電池グループに属する二次電池及び第2電池グループに属する二次電池の種類は、
    共にリチウムイオン電池であり、
    第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、
    正極板を構成する正極活物質の作動電位が高いことを特徴とする請求項1記載のパック電池。
  3. 第1電池グループに属する二次電池と比べて、第2電池グループに属する二次電池は、
    発電素体を構成する正極板と負極板の対向面積が大きいことを特徴とする請求項1又は2記載のパック電池。
  4. 各第1電池グループに属する二次電池の数と、各第2電池グループに属する二次電池の数が同じで、各グループ内で二次電池同士が直列接続されていることを特徴とする請求項1〜3のいずれか記載のパック電池。
  5. 第1電池グループ及び第2電池グループは、電池群がブロック状になるように配列され、
    第1電池グループがその中央部に偏在していることを特徴とする請求項1〜4のいずれか記載のパック電池。
JP2011068440A 2011-03-25 2011-03-25 パック電池 Withdrawn JP2014112463A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011068440A JP2014112463A (ja) 2011-03-25 2011-03-25 パック電池
PCT/JP2012/051604 WO2012132525A1 (ja) 2011-03-25 2012-01-26 パック電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068440A JP2014112463A (ja) 2011-03-25 2011-03-25 パック電池

Publications (1)

Publication Number Publication Date
JP2014112463A true JP2014112463A (ja) 2014-06-19

Family

ID=46930293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068440A Withdrawn JP2014112463A (ja) 2011-03-25 2011-03-25 パック電池

Country Status (2)

Country Link
JP (1) JP2014112463A (ja)
WO (1) WO2012132525A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077529A (ja) * 2011-09-30 2013-04-25 Gs Yuasa Corp 蓄電素子
JP2015088255A (ja) * 2013-10-29 2015-05-07 株式会社豊田自動織機 バッテリ
CN113809414A (zh) * 2020-06-15 2021-12-17 三星Sdi株式会社 电池组、具有其的电池模块以及具有电池模块的电源装置
US11901555B2 (en) 2021-07-30 2024-02-13 Contemporary Amperex Technology Co., Limited Battery module, battery pack, and electric apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087214A1 (zh) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 一种电池包及其用电装置
WO2024011454A1 (zh) * 2022-07-13 2024-01-18 宁德时代新能源科技股份有限公司 电池包和用电装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429528A (ja) * 1990-05-25 1992-01-31 Hitachi Koki Co Ltd 直流電源装置
JPH11332023A (ja) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電気自動車用バッテリー
JP2001268814A (ja) * 2000-03-17 2001-09-28 Internatl Business Mach Corp <Ibm> 電源供給装置、電気機器および電力供給方法
JP4082147B2 (ja) * 2002-09-19 2008-04-30 日産自動車株式会社 組電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077529A (ja) * 2011-09-30 2013-04-25 Gs Yuasa Corp 蓄電素子
JP2015088255A (ja) * 2013-10-29 2015-05-07 株式会社豊田自動織機 バッテリ
CN113809414A (zh) * 2020-06-15 2021-12-17 三星Sdi株式会社 电池组、具有其的电池模块以及具有电池模块的电源装置
JP2021197369A (ja) * 2020-06-15 2021-12-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置
JP7081025B2 (ja) 2020-06-15 2022-06-06 三星エスディアイ株式会社 バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置
US11901555B2 (en) 2021-07-30 2024-02-13 Contemporary Amperex Technology Co., Limited Battery module, battery pack, and electric apparatus

Also Published As

Publication number Publication date
WO2012132525A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5849234B2 (ja) 非水電解質二次電池
KR101763055B1 (ko) 비수전해질 이차 전지
JP6056125B2 (ja) 組電池及び蓄電装置
JP2016195044A (ja) リチウムイオン二次電池およびそれを用いたシステム
WO2012132525A1 (ja) パック電池
JP2013089523A (ja) 組電池、それを用いた蓄電装置
KR20180118241A (ko) 전기 디바이스
US20220399607A1 (en) Battery module, battery pack, power consumption apparatus, and manufacturing method and manufacturing device of battery module
JP2005108477A (ja) 組電池及び電気自動車
US20200127278A1 (en) Negative electrode plate and secondary battery
CN116075955A (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
JP4824450B2 (ja) 非水電解質二次電池
JP2013044701A (ja) 電池システム
US10186693B2 (en) Flat secondary battery
JP2013197052A (ja) リチウムイオン蓄電デバイス
CN110137577B (zh) 一种可大电流充放电的磷酸铁锂聚合物锂电池
JP2014049388A (ja) 蓄電装置
US10431852B2 (en) Flat secondary battery
JP2013197051A (ja) リチウムイオン蓄電デバイス
JP7483910B2 (ja) 電極組立体、二次電池、電池モジュール、電池パック及び電力消費装置
WO2022226974A1 (zh) 电池组、电池包、用电装置以及电池组的制造方法及制造设备
JP2012209026A (ja) 組電池の製造方法
JP4576891B2 (ja) 非水電解質二次電池
US20230207938A1 (en) Battery pack, and power consuming device thereof
WO2023105600A1 (ja) 蓄電セル、および、蓄電モジュール

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701