JP2021197369A - バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置 - Google Patents

バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置 Download PDF

Info

Publication number
JP2021197369A
JP2021197369A JP2021099372A JP2021099372A JP2021197369A JP 2021197369 A JP2021197369 A JP 2021197369A JP 2021099372 A JP2021099372 A JP 2021099372A JP 2021099372 A JP2021099372 A JP 2021099372A JP 2021197369 A JP2021197369 A JP 2021197369A
Authority
JP
Japan
Prior art keywords
battery cell
class
battery
class battery
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021099372A
Other languages
English (en)
Other versions
JP7081025B2 (ja
Inventor
錫均 張
Seok-Gyun Chang
漢浩 李
Hanho Lee
東龜 ▲呉▼
Dongku Oh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2021197369A publication Critical patent/JP2021197369A/ja
Application granted granted Critical
Publication of JP7081025B2 publication Critical patent/JP7081025B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/267Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders having means for adapting to batteries or cells of different types or different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置を提供する。【解決手段】第1種バッテリーセルと、第1種バッテリーセルと出力及び容量が相異なる第2種バッテリーセルであって、第1種バッテリーセルの周りに沿って第1種バッテリーセルを取り囲むように配列され、第1種バッテリーセルと並列に連結された複数の第2種バッテリーセルとを含むバッテリーパックである。これにより、瞬時に高出力の発生が可能であり、かつ長期的に寿命短縮を防止することが可能な、高出力かつ高容量のバッテリーパック、それを含むバッテリーモジュール及び電源供給装置が提供される。【選択図】図2

Description

本発明は、バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置に関する。
通常、二次電池は、充電が不可能な一次電池とは異なり、充電及び放電が可能な電池である。二次電池は、モバイル機器、電気自動車、ハイブリッド自動車、電気自転車、無停電電源供給装置(uninterruptible power supply)などのエネルギー源として使われ、適用される外部機器の種類によって、単一のバッテリーセルの形態で使われたり、複数のバッテリーセルを連結して一つの単位としてまとめたバッテリーパックの形態で使われたりする。
携帯電話のような小型モバイル機器は、単一電池の出力及び容量で所定時間作動が可能であるが、電力消耗の多い電気自動車及びハイブリッド自動車のように、長時間駆動及び高電力駆動が必要な場合には、出力及び容量の問題により、バッテリーパックが好まれ、バッテリーパックは、内蔵されたバッテリーセルの個数によって、出力電圧や出力電流が高められる。
本発明の一実施形態は、瞬時に高出力の発生が可能であり、かつ長期的に寿命短縮を防止することが可能な、高出力かつ高容量のバッテリーパックを含む。
本発明の一実施形態は、相異なる出力特性によって製造コストが異なる、高出力のバッテリーセルと高容量のバッテリーセルの両方が適用されたハイブリッド構造により、相対的に低いコストで提供される、高出力かつ高容量のバッテリーパックを含む。
本発明の一実施形態は、発熱特性が異なるバッテリーセルを隣接した位置に配置することにより、相対的に高い発熱特性を有する第1種バッテリーセルから、低い発熱特性を有する第2種バッテリーセルに向かって熱拡散が促進されるバッテリーパックを含む。
前記課題及びその他の課題を解決するために、本発明のバッテリーパックは、第1種バッテリーセルと、前記第1種バッテリーセルと出力及び容量が異なる第2種バッテリーセルであって、第1種バッテリーセルの周りに沿って第1種バッテリーセルを取り囲むように配列され、第1種バッテリーセルと並列に連結された複数の第2種バッテリーセルと、を含む。
例えば、前記第1種バッテリーセルの出力は、前記第2種バッテリーセルの出力よりも高く、前記第1種バッテリーセルの容量は、前記第2種バッテリーセルの容量よりも低い。
例えば、前記第1種バッテリーセルの出力密度は、前記第2種バッテリーセルの出力密度よりも高く、前記第1種バッテリーセルのエネルギー密度は、前記第2種バッテリーセルのエネルギー密度よりも低い。
例えば、前記第1種バッテリーセルの内部抵抗は、前記第2種バッテリーセルの内部抵抗よりも低い。
例えば、前記第1種バッテリーセル及び第2種バッテリーセルは、同じ第1放電条件で互いに異なる電圧降下を表す。
例えば、前記第1種バッテリーセル及び第2種バッテリーセルは、同じ第2放電条件で互いに異なる容量を表す。
例えば、前記第1種バッテリーセル及び第2種バッテリーセルは、同じ第1放電条件で互いに異なる電圧降下を表し、前記第1種バッテリーセル及び第2種バッテリーセルは、同じ第2放電条件で互いに異なる容量を表し、前記第1放電条件及び第2放電条件は、それぞれ相対的に高率放電及び低率放電に該当する。
例えば、前記第1種バッテリーセルは、互いに対向して配置された第1極板及び第2極板、並びに前記第1極板と第2極板との間に介在された第1セパレータを備える第1電極組立体を含み、前記第2種バッテリーセルは、互いに対向して配置された第3及び第4極板、並びに前記第3極板と第4極板との間に介在された第2セパレータを備える第2電極組立体を含む。
例えば、前記第1極板は、第1正極基材上に形成された第1正極活物質層を含み、前記第2極板は、第1負極基材上に形成された第1負極活物質層を含み、前記第3極板は、第2正極基材上に形成された第2正極活物質層を含み、前記第4極板は、第2負極基材上に形成された第2負極活物質層を含む。
例えば、前記第1正極活物質層の厚さは、前記第2正極活物質層の厚さよりも薄く形成され、前記第1負極活物質層の厚さは、前記第2負極活物質層の厚さよりも薄く形成される。
例えば、前記第1正極活物質層の長さは、前記第2正極活物質層の長さよりも長く形成され、前記第1負極活物質層の長さは、前記第2負極活物質層の長さよりも長く形成される。
例えば、前記第1正極活物質層の長さ及び前記第1負極活物質層の長さは、前記第1電極組立体の巻取方向に沿う長さに該当し、前記第2正極活物質層の長さ及び前記第2負極活物質層の長さは、前記第2電極組立体の巻取方向に沿う長さに該当する。
例えば、前記第1種バッテリーセルの周りに沿って配置される前記第2種バッテリーセルの配列個数は、最小6個以上から最大9個以下に設定される。
例えば、前記第1種バッテリーセルの周りに沿って配置される前記第2種バッテリーセルの配列個数は、最小7個以上から最大9個以下に設定される。
例えば、前記第1種バッテリーセルの周りに沿って配置される前記第2種バッテリーセルの配列個数は、最小7個以上から最大8個以下に設定される。
例えば、前記第1種バッテリーセルの外周面に沿って互いに隣接した第2種バッテリーセルは互いに離隔される。
例えば、前記第1種バッテリーセルの周りに沿って隣接した第2種バッテリーセルの互いに対向する外周面の間に、ギャップが形成される。
例えば、前記第1種バッテリーセルと、前記第1種バッテリーセルを取り囲む第2種バッテリーセルとの間にも、他のギャップが形成される。
例えば、前記第1種バッテリーセルの外周面上かつ互いに隣接した第2種バッテリーセルの間には、互いに隣接した二つの第2種バッテリーセル間のギャップ、及び前記第1種バッテリーセルとの他のギャップに向かって凹状に収斂する三つの部分を含み、第1種バッテリーセルの長手方向に沿って延びる柱状の余裕空間が形成される。
例えば、前記第1種バッテリーセル及び前記第2種バッテリーセルは、それぞれ第1直径及び第2直径の円形断面を有する円形バッテリーセルを含む。
例えば、前記第1直径は、第2直径と同じであるか、またはそれよりも大きい。
例えば、前記バッテリーパックは、前記第1種バッテリーセルと第2種バッテリーセルを互いに電気的に連結する連結配線をさらに含む。
例えば、前記連結配線は、第1種バッテリーセルの周りに沿って配置された第2種バッテリーセルの配列個数と同数に設けられた複数の連結配線を含む。
例えば、前記複数の連結配線それぞれは、前記第1種バッテリーセルと、複数の第2種バッテリーセルそれぞれとの電気的連結を形成する。
例えば、前記複数の連結配線は、前記第1種バッテリーセルの電極上で共通接点を形成し、第1種バッテリーセルの電極から放射状に延びつつ、複数の第2種バッテリーセルの電極にそれぞれ連結される。
例えば、前記バッテリーパックは、前記第1種バッテリーセルに連結され、外部負荷に向かう充放電経路を形成するための入出力配線をさらに含む。
例えば、前記入出力配線は、前記第1種バッテリーセルと外部負荷との間、及び前記第2種バッテリーセルと外部負荷との間で共通した充放電経路を形成する。
例えば、前記第1種バッテリーセルの充放電経路は、前記入出力配線を含み、前記第2種バッテリーセルの充放電経路は、前記入出力配線に加えて、前記連結配線をさらに含む。
例えば、前記第1種バッテリーセルの充放電経路よりも、前記第2種バッテリーセルの充放電経路が相対的にさらに長く形成される。
例えば、前記入出力配線よりも、前記連結配線が相対的に高い抵抗を有するように形成される。
例えば、前記入出力配線の断面積は、前記連結配線の断面積よりも広い。
例えば、前記入出力配線及び連結配線は、それぞれ相異なる第1金属素材及び第2金属素材を含み、前記第1金属素材は、第2金属素材よりも高い電気伝導度を有する。
例えば、前記連結配線は、追加抵抗を含む。
例えば、前記第1種バッテリーセル及び第2種バッテリーセルは、第1種バッテリーセルの周りに沿って配列された複数の第2種バッテリーセルの外周面と連続して接しつつ、複数の第2種バッテリーセルを連続して取り囲む円形の包絡線内に包囲される。
例えば、前記バッテリーパックは、前記第1種バッテリーセルと第2種バッテリーセルの両方を収容するものであり、第1種バッテリーセルと第2種バッテリーセルとの長手方向に沿って延び、かつ円形断面を有する円柱状のセル収容空間を提供するパックケースをさらに含む。
一方、本発明の他の側面によるバッテリーモジュールは、第1バッテリーパックと、前記第1バッテリーパックの周りに沿って第1バッテリーパックを取り囲むように配列された複数の第2バッテリーパックと、を含むバッテリーモジュールであって、それぞれの第1及び第2バッテリーパックは、第1種バッテリーセルと、前記第1種バッテリーセルと出力及び容量が相異なる第2種バッテリーセルであって、第1種バッテリーセルの周りに沿って第1種バッテリーセルを取り囲むように配列され、第1種バッテリーセルと並列に連結された複数の第2種バッテリーセルと、を含む。
例えば、前記第1バッテリーパック及び前記第2バッテリーパックはそれぞれ、第3直径及び第4直径の円形断面を有する。
例えば、前記第3直径及び第4直径は同じであり、前記第1バッテリーパックの周りに沿って配置された第2バッテリーパックの配列個数は6個である。
一方、本発明のさらに他の側面による電源供給装置は、前記バッテリーモジュールを複数含む電源供給装置であって、前記バッテリーモジュールは、第1列及び第2列をなして配列され、前記第1列及び第2列のバッテリーモジュールは、互い違いに配置され、前記第1列及び第2列のバッテリーモジュールは、互いの間に嵌め込まれて稠密に配列される。
本発明の一実施形態によるバッテリーパックの分解斜視図である。 図1に示されたバッテリーパックの断面図である。 第1種バッテリーセルに備えられる第1電極組立体を説明するための図面であって、第1電極組立体の斜視図である。 図3Aに示された第1電極組立体を展開して示す分解斜視図である。 図3Bに示された第1電極組立体のC−C′線に沿って取った断面図である。 第2種バッテリーセルに備えられる第2電極組立体を説明するための図面であって、第2電極組立体の斜視図である。 図4Aに示された第2電極組立体の断面図である。 本発明の一実施形態において、第1種バッテリーセルと第2種バッテリーセルの配置関係を説明するための図面である。 本発明の他の実施形態において、第1種バッテリーセルと第2種バッテリーセルの配置関係を説明するための図面である。 本発明の多様な実施形態によるバッテリーパックの構造を示す図面である。 本発明の多様な実施形態によるバッテリーパックの構造を示す図面である。 本発明の多様な実施形態によるバッテリーパックの構造を示す図面である。 本発明の多様な実施形態によるバッテリーパックの構造を示す図面である。 第1種バッテリーセルと第2種バッテリーセルとの個数の割合によって、バッテリーパックの出力密度及びエネルギー密度が変化する様相を示す図面である。 第1種バッテリーセルと第2種バッテリーセルとの個数の割合によって、第1種バッテリーセルと第2種バッテリーセルとの発熱量の割合が変化する様相を示す図面である。 第1種バッテリーセルの周りに沿って第2種バッテリーセルの配列個数によって、面積利用率の増加(%)が変化する様相を示す図面である。 本発明の多様な実施形態において、第1種バッテリーセルと第2種バッテリーセルの電気的な連結構造を説明するための図面である。 本発明の多様な実施形態において、第1種バッテリーセルと第2種バッテリーセルの電気的な連結構造を説明するための図面である。 本発明の多様な実施形態において、第1種バッテリーセルと第2種バッテリーセルの電気的な連結構造を説明するための図面である。 本発明の他の側面によるバッテリーモジュールを説明するための図面である。 本発明のさらに他の側面による電源供給装置を説明するための図面である。
以下、添付された図面を参照して、本発明の望ましい実施形態に係るバッテリーパック、バッテリーモジュール及び電源供給装置について説明する。
図1は、本発明の一実施形態によるバッテリーパックの分解斜視図である。図2は、図1に示されたバッテリーパックの断面図である。
図1及び図2を参照すれば、本発明の一実施形態によるバッテリーパックPは、第1種バッテリーセルC1と、第1種バッテリーセルC1の周りに沿って第1種バッテリーセルC1を取り囲むように配列される複数の第2種バッテリーセルC2とを含む。
本発明の一実施形態において、前記第1種バッテリーセルC1は、瞬時の出力機能を行う高出力バッテリーセルであり、一つのバッテリーパックPは、単数の第1種バッテリーセルC1を含む。前記第1種バッテリーセルC1と異なり、前記第2種バッテリーセルC2は、長期的な出力機能を行う高容量バッテリーセルであり、高容量を具現するために、一つのバッテリーパックPは、複数の第2種バッテリーセルC2を含む。
本発明の一実施形態において、前記第1種バッテリーセルC1は、第2種バッテリーセルC2よりも高出力を発生させるように、第2種バッテリーセルC2よりも相対的に高い出力密度で形成される。ここで、出力密度(watt/liter)とは、バッテリーから提供可能な出力を比較するためのものであり、所定の体積(liter)当たり具現可能な出力(watt)を意味する。例えば、前記出力密度は、バッテリーの寿命特性の低下がない状態で、バッテリーの単位体積(liter)当たり最大出力(watt)を意味してもよく、所定のサイクルの間にバッテリーの寿命を維持できる状態で、バッテリーから取り出せる単位体積(liter)当たり最大出力(watt)を意味してもよい。
本発明の一実施形態において、前記第2種バッテリーセルC2は、第1種バッテリーセルC1よりも高容量を提供するように、第1種バッテリーセルC1よりも相対的に高いエネルギー密度で形成される。ここで、エネルギー密度とは、バッテリーの容量を比較するためのものであり、標準充放電条件(例えば、0.5C充電/0.2C放電)下でバッテリーの単位体積(liter)当たり得られるバッテリーのエネルギー(Wh)を意味する。
本発明の一実施形態において、前記第1種バッテリーセルC1は、ピークロードに対応して瞬時に迅速に高出力を発生させることにより、第2種バッテリーセルC2の劣化を防止することができ、前記第2種バッテリーセルC2は、長期的に全体のバッテリーパックPの高容量を受け持つことになる。
前記第1種バッテリーセルC1及び第2種バッテリーセルC2は、電気的に互いに連結され、後述するように、第1種バッテリーセルC1及び第2種バッテリーセルC2は、互いに並列に連結されるので、第1種バッテリーセルC1の第1電極C11及び第2電極CC12はそれぞれ、第2種バッテリーセルC2の第1電極C21及び第2電極CC22と連結され、それによって、前記第1種バッテリーセルC1及び第2種バッテリーセルC2は、内部的に互いに電流を補充して相互作用が可能である。例えば、前記第1種バッテリーセルC1及び第2種バッテリーセルC2は、互いに協力して、外部負荷の出力要求に対応することができる。例えば、外部負荷のベースロードにおいて、前記第1種バッテリーセルC1と第2種バッテリーセルC2の両方は出力を発生させ、外部負荷のピークロードにおいて、前記第1種バッテリーセルC1は、瞬時の高出力を発生させ、第2種バッテリーセルC2は、第1種バッテリーセルC1の容量低下を補充するように電流を発生させる。そのように、本発明の一実施形態においては、第1種バッテリーセルC1を介してピークロードで高出力を迅速に発生させつつも、第1種バッテリーセルC1の低下した容量を第2種バッテリーセルC2が補充することにより、全体のバッテリーパックPの容量を向上させることができる。本発明と異なり、高容量の第2種バッテリーセルC2が高出力を発生させるためには、寿命短縮が引き起こされるため、瞬時の高出力を発生させる高出力の第1種バッテリーセルC1と、第1種バッテリーセルC1の容量低下を補充する高容量の第2種バッテリーセルC2との並列連結により、高出力及び高容量の要求に対応することができる。
本発明の一実施形態において、前記第1種バッテリーセルC1は、随時の出力機能を行う高出力バッテリーセルであり、前記第2種バッテリーセルC2は、長期的な出力機能を行う高容量バッテリーセルであり、前記第1種バッテリーセルC1及び第2種バッテリーセルC2は、出力特性が相異なるバッテリーセルとして設けられる。本発明の一実施形態において、相対的に高出力の第1種バッテリーセルC1、及び相対的に高容量の第2種バッテリーセルC2は、相異なる内部抵抗を有し、同じ第1放電条件で互いに異なる電圧降下を表すことができる。より具体的には、同じOCV(open circuit voltage)から1.5Cないし2.0Cの第1放電条件で、内部抵抗が相対的に低い高出力の第1種バッテリーセルC1の放電電圧は、相対的に緩やかに下降するのに対し、内部抵抗が相対的に高い高容量の第2種バッテリーセルC2の放電電圧は、相対的に急激に下降する。すなわち、同じ第1放電条件で、高出力の第1種バッテリーセルC1の電圧降下が、高容量の第2種バッテリーセルC2の電圧降下よりも小さい。そのように、高出力の第1種バッテリーセルC1及び高容量の第2種バッテリーセルC2は、同じ第1放電条件の高率放電(1.5Cないし2.0C)で互いに異なる電圧降下を表すことができ、かつ、同じ第2放電条件の低率放電で互いに異なる容量を表すことができる。例えば、前記第2放電条件で、同じOCV(open circuit voltage)から完全放電までの容量は、高出力の第1種バッテリーセルC1の容量が、高容量の第2種バッテリーセルC2の容量よりも低い。ここで、前記第1放電条件と第2放電条件は、それぞれ相対的に高率放電と低率放電に該当し、例えば、第1種バッテリーセルC1と第2種バッテリーセルC2との容量の比較のための第2放電条件は、第1種バッテリーセルC1と第2種バッテリーセルC2との電圧降下の比較のための第1放電条件よりも相対的に低率放電に該当し、低率放電下で第1種バッテリーセルC1と第2種バッテリーセルC2との容量の測定がより正確に行われる。
図3Aないし図3Cは、第1種バッテリーセルに備えられる第1電極組立体を説明するための図面であって、それぞれ第1電極組立体の斜視図、図3Aに示された第1電極組立体を展開して示す分解斜視図、及び図3Bに示された第1電極組立体のC−C′線に沿って取った断面図である。
図3Aないし図3Cを参照すれば、第1種バッテリーセルC1は、互いに対向して配置された第1極板11及び第2極板12、並びに前記第1極板11と第2極板12との間に介在された第1セパレータ15を含む。互いに対向して配置された第1極板11及び第2極板12は、互いに逆極性を有する正極板及び負極板に該当する。より具体的には、前記第1極板11は、第1正極基材11a上に形成された第1正極活物質層11bを含み、前記第2極板12は、第1負極基材12a上に形成された第1負極活物質層12bを含む。
本発明の一実施形態において、前記第1種バッテリーセルC1は、第1極板11と第2極板12との間に第1セパレータ15を介在して、ロール状に巻き取られた第1電極組立体A1を含む。但し、前記第1電極組立体A1は、ロール状に巻き取られた巻取型に限定されず、本発明の他の実施形態において、前記第1電極組立体A1は、第1極板11と第2極板12との間に第1セパレータ15を介在して、互いに積層された複数の第1極板11及び第2極板12を含む積層型にも設けられる。一方、図3A及び図3Bにおいて、11c及び12cは、第1極板11及び第2極板12の正極基材11a及び負極基材12aに形成された電極タブを意味し、それぞれ第1正極電極タブ及び第1負極電極タブを意味する。
図4A及び図4Bは、第2種バッテリーセルに備えられる第2電極組立体を説明するための図面であって、それぞれ第2電極組立体の斜視図及び第2電極組立体の断面図である。
図4A及び図4Bを参照すれば、前記第2種バッテリーセルC2は、互いに対向して配置された第3極板21及び第4極板22、並びに前記第3極板21と第4極板22との間に介在された第2セパレータ25を含む。互いに対向して配置された第3極板21及び第4極板22は、互いに逆極性を有する正極板及び負極板に該当する。より具体的には、前記第3極板21は、第2正極基材21a上に形成された第2正極活物質層21bを含み、前記第4極板22は、第2負極基材22a上に形成された第2負極活物質層22bを含む。
本発明の一実施形態において、前記第2種バッテリーセルC2は、第3極板21と第4極板22との間に第2セパレータ25を介在して、ロール状に巻き取られた第2電極組立体A2を含む。但し、前記第2電極組立体A2は、ロール状に巻き取られた巻取型に限定されず、本発明の他の実施形態において、前記第2電極組立体A2は、第3極板21と第4極板22との間に第2セパレータ25を介在して、互いに積層された複数の第3極板21及び第4極板22を含む積層型にも設けられる。一方、図4Aにおいて、21c及び22cは、第3極板21及び第4極板22の正極基材21a及び負極基材22aに形成された電極タブを意味し、それぞれ第2正極電極タブ及び第2負極電極タブを意味する。
本発明の一実施形態において、前記第1電極組立体A1は、第2電極組立体A2よりも高出力を発生させるように、前記第1電極組立体A1は、第2電極組立体A2に比べて、相対的に高い出力密度で形成される。より具体的には、第1電極組立体A1に備えられた第1正極活物質層11b及び第1負極活物質層12bの塗布量は、第1電極組立体A1の出力密度と関係があり、第1電極組立体A1の出力密度を高くするために、前記第1正極活物質層11b及び第1負極活物質層12bの厚さt11、t12は、相対的に薄く形成される。本発明の一実施形態において、第1電極組立体A1に備えられた第1正極活物質層11bの厚さt11は、第2電極組立体A2に備えられた第2正極活物質層21bの厚さt21よりも薄く形成され、第1電極組立体A1に備えられた第1負極活物質層12bの厚さt12は、第2電極組立体A2に備えられた第2負極活物質層22bの厚さt22よりも薄く形成される。
そのように、第1正極活物質層11b及び第1負極活物質層12bの厚さt11、t12は、相対的に薄く形成するが、第1電極組立体A1の容量は同一に維持されるように、第1正極活物質層11b及び第1負極活物質層12bの体積は同一に維持することができ、そのために、第1正極活物質層11b及び第1負極活物質層12bの長さL11、L12は、相対的に長く形成する。例えば、第1電極組立体A1に備えられる第1正極活物質層11b及び第1負極活物質層12bの厚さt11、t12を、以前に比べて1/3レベルに薄く形成しつつ、全体の第1正極活物質層11b及び第1負極活物質層12bの体積は同一に維持するように、第1正極活物質層11b及び第1負極活物質層12bの長さL11、L12は3倍に長く形成する。ここで、前記第1正極活物質層11b及び第1負極活物質層12bの長さL11、L12とは、第1電極組立体A1の巻取方向に沿う長さを意味し、後述するように、前記第2正極活物質層21b及び第2負極活物質層22bの長さL21、L22とは、第2電極組立体A2の巻取方向に沿う長さを意味する。
本発明の一実施形態において、第1電極組立体A1に備えられる第1正極活物質層11b及び第1負極活物質層12bの厚さt11、t12は、第2電極組立体A2に備えられる第2正極活物質層21b及び第2負極活物質層22bの厚さt21、t22の1/3レベルで薄く形成し、第1電極組立体A1に備えられる第1正極活物質層11b及び第1負極活物質層12bの長さL11、L12は、第2電極組立体A2に備えられる第2正極活物質層21b及び第2負極活物質層22bの長さL21、L22の3倍レベルで長く形成する。
本発明の一実施形態においては、第1電極組立体A1の出力密度を高くするための構成として、第1電極組立体A1に備えられた第1正極活物質層11b及び第1負極活物質層12bの厚さt11、t12を相対的に薄く形成しているが、本発明の他の実施形態においては、第1電極組立体A1の出力密度を高くするための他の構成として、前記第1正極活物質層11b及び第1負極活物質層12bの合剤密度を低く形成することもできる。例えば、本発明の他の実施形態において、第1電極組立体A1に備えられた第1正極活物質層11b及び第1負極活物質層12bの合剤密度は、第2電極組立体A2に備えられた第2正極活物質層21b及び第2負極活物質層22bの合剤密度よりも低く形成される。その場合も、第1電極組立体A1の容量は同一に維持されるように、第1電極組立体A1に備えられる第1正極活物質層11b及び第1負極活物質層12bの合剤密度は、第2電極組立体A2に備えられる第2正極活物質層21b及び第2負極活物質層22bの合剤密度よりも低く形成しつつ、第1電極組立体A1に備えられる第1正極活物質層11b及び第1負極活物質層12bの長さL11、L12は、第2電極組立体A2に備えられる第2正極活物質層21b及び第2負極活物質層22bの長さL21、L22よりも長く形成する。
図1及び図2を参照すれば、前記第1種バッテリーセルC1及び第2種バッテリーセルC2はそれぞれ、第1D1及び第2直径D2の円形断面を有する円形バッテリーセルとして設けられる。すなわち、前記第1種バッテリーセルC1は、第1直径D1の円形断面に沿って外周面を形成し、第1種バッテリーセルC1の外周面に沿って、第2直径D2の円形断面を有する第2種バッテリーセルC2が配列される。
図5Aは、本発明の一実施形態において、第1種バッテリーセルと第2種バッテリーセルの配置関係を説明するための図面である。図1、図2、及び図5Aを共に参照すれば、本発明の一実施形態において、前記第1種バッテリーセルC1の周りに沿って配置される第2種バッテリーセルC2の配列個数は、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2によって決定され、第1直径D1及び第2直径D2と共に、第1種バッテリーセルC1の周りに沿って配列された互いに隣接した第2種バッテリーセルC2の間のギャップgによっても決定される。すなわち、第1種バッテリーセルC1の第1直径D1によって、第1種バッテリーセルC1の周囲方向に、第1種バッテリーセルC1の外周面の長さが決定され、第1種バッテリーセルC1の外周面の長さ上に、第2直径D2の第2種バッテリーセルC2が、互いに隣接した第2種バッテリーセルC2の間のギャップgを有して配列される。ここで、互いに隣接した第2種バッテリーセルC2の間のギャップgとは、第1種バッテリーセルC1の周囲方向に沿うギャップgの大きさを意味するものであり、例えば、互いに隣接した第2種バッテリーセルC2の互いに対向する外周面の間のギャップgを意味してもよい。例えば、第1種バッテリーセルC1の弧上に、複数の第2種バッテリーセルC2が配列される場合、第1種バッテリーセルC1の弧と接し、かつ互いに隣接した第2種バッテリーセルC2の間には、余裕空間あるいは死空間TSが形成されるが、本明細書を通じて、互いに隣接した第2種バッテリーセルC2の間のギャップgとは、互いに隣接した第2種バッテリーセルC2が互いに対向する外周面、すなわち、互いに隣接した第2種バッテリーセルC2が互いに対向する方向(第1種バッテリーセルC1の周囲方向に該当する)に沿って互いに隣接した第2種バッテリーセルC2が互いに対向する外周面の間のギャップgを意味する。そのように、本発明の多様な実施形態において、前記ギャップgは、第1種バッテリーセルC1の周囲方向に沿って互いに隣接した第2種バッテリーセルC2の互いに対向する外周面の間に存在するギャップgを意味するが、前記ギャップgは、第2種バッテリーセルC2と、第2種バッテリーセルC2により取り囲まれた第1種バッテリーセルC1との間にも存在する。その場合、第1種バッテリーセルC1の弧と接し、かつ隣接した第2種バッテリーセルC2の間に存在する死空間TSは、第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgを含む。例えば、前記第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgを含む死空間TSは、第1種バッテリーセルC1の弧と接し、かつ互いに隣接した第2種バッテリーセルC2の間に存在することができ、前記死空間TSは、第1種バッテリーセルC1と、互いに隣接した二つの第2種バッテリーセルC2とのギャップgに向かって凹状に収斂する三つの部分を含み、第1種バッテリーセルC1の長手方向に沿って柱状に形成された空間を含む。
本発明の多様な実施形態において、前記ギャップgとは、互いに隣接したバッテリーセルC1、C2の間に存在する最小限の空間を意味し、より具体的には、前記ギャップgは、第1種バッテリーセルC1の周囲方向に沿って互いに隣接した第2種バッテリーセルC2の間に存在するギャップg(第2種バッテリーセルC2の間のギャップ)を含んでもよく、第2種バッテリーセルC2と、第2種バッテリーセルC2により取り囲まれた第1種バッテリーセルC1との間に存在するギャップg(第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップ)を含んでもよく、かかる意味で、前記ギャップgは、バッテリーパックPを形成する互いに隣接したバッテリーセルC1、C2の間に存在する最小限の空間を意味する。前記ギャップgと関連し、バッテリーパックPを形成する互いに隣接したバッテリーセルC1、C2の間に存在する最小限の空間とは、相異なるバッテリーセルC1、C2の間の熱的及び電気的干渉を遮断するために、互いに隣接したバッテリーセルC1、C2の間に確保された最小限の空間を意味する。言い換えれば、前記ギャップgにより、互いに隣接したバッテリーセルC1、C2の間の熱的及び電気的干渉が遮断され、例えば、第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgにより、相対的に高い発熱特性を有する第1種バッテリーセルC1から、相対的に低い発熱特性を有する第2種バッテリーセルC2に向かう熱的干渉が遮断される。後述するように、本発明の一実施形態においては、相対的に高い発熱特性を有する第1種バッテリーセルC1の周りに沿って、相対的に低い発熱特性を有する第2種バッテリーセルC2を配置することにより、相対的に高い発熱特性の第1種バッテリーセルC1から、相対的に低い発熱特性の第2種バッテリーセルC2に向かう熱伝播を促進することができる。このとき、前記第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgにより、第1種バッテリーセルC1からの過度な熱伝播によって第2種バッテリーセルC2が劣化することを遮断することができる。
本発明の一実施形態において、互いに隣接した第2種バッテリーセルC2の間のギャップg、及び第1種バッテリーセルC2と第2種バッテリーセルC2とのギャップgは、同じ寸法に形成される。後述するように、下記の数式1において、ギャップgとは、第2種バッテリーセルC2の間のギャップg、及び第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgをいずれも意味する。より具体的には、前記ギャップgは、第2種バッテリーセルC2の間のギャップgであると共に、第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgを意味する。このとき、前記第2種バッテリーセルC2の間のギャップg、及び第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgは、下記の数式1で表現された関係により、同じ寸法に設定される。本明細書に添付された図面において、第2種バッテリーセルC2の間のギャップg、及び第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップgには、同じ符号が付与されているが、それは、理解の便宜のためのものであり、本発明の多様な実施形態において、例えば、図5Bに示された実施形態において、第2種バッテリーセルC2の間のギャップg1、及び第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップg2は、相異なる寸法に設定することもできる。
互いに隣接した第2種バッテリーセルC2の間のギャップgは、第1種バッテリーセルC1の周りに沿って配置された第2種バッテリーセルC2の配列個数と関連があり、第1種バッテリーセルC1及び第2種バッテリーセルC2の第1直径D1及び第2直径D2と、第2種バッテリーセルC2の配列個数から設定される。以下、別途の特別な断りのない限り、ギャップgとは、第1種バッテリーセルC1の周りに沿って配置された第2種バッテリーセルC2の配列個数と関連のある第2種バッテリーセルC2の間のギャップgを意味する。
本発明の多様な実施形態において、互いに隣接した第2種バッテリーセルC2の間のギャップgは、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2、並びに第1種バッテリーセルC1の周りに沿って配列される第2種バッテリーセルC2の個数によって存在することもあり、存在しないこともある。後述するように、第1及び第2直径D1、D2が同じ寸法に設計されつつ、第1種バッテリーセルC1の周りに沿って6個の第2種バッテリーセルC2が配列される場合、互いに隣接した第2種バッテリーセルC2の間のギャップgは存在しないこともある(図6A参照)。
図5Aを参照すれば、前記第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数n、第1種バッテリーセルC1、及び第2種バッテリーセルC2の第1D1及び第2直径D2、並びに互いに隣接した第2種バッテリーセルC2の間のギャップgは、下記の数式1の関係を満足する。ここで、図5A及び数式1において、第1半径R1及び第2半径R2は、それぞれ第1種バッテリーセルC1及び第2種バッテリーセルC2の第1D1及び第2直径D2の半分に該当する値を有する。
Figure 2021197369
図5Aを参照すれば、前記の数式1は、第1種バッテリーセルC1の中心と、第1種バッテリーセルC1の周りに沿って互いに隣接して配列される第2種バッテリーセルC2の二つの中心とを連結する三角形を二分する直角三角形に対して、三角関数を適用することによって得られる。
図5Bは、本発明の他の実施形態において、第1種バッテリーセルと第2種バッテリーセルの配置関係を説明するための図面である。図5Bを参照すれば、互いに隣接した第2種バッテリーセルC2の間のギャップg1、及び第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップg2は、相異なる寸法に形成される。例えば、第2種バッテリーセルC2の間のギャップg1、及び第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップg2は、前記第1種バッテリーセルC1と第2種バッテリーセルC2との相異なる発熱特性を考慮して、相異なる値に設定可能である。
図5Bを参照すれば、前記第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数n、第1種バッテリーセルC1及び第2種バッテリーセルC2の第1直径D1及び第2直径D2、互いに隣接した第2種バッテリーセルC2の間のギャップg1、並びに第1種バッテリーセルC1と第2種バッテリーセルC2とのギャップg2は、下記の数式2の関係を満足する。ここで、図5B及び下記の数式2において、第1及び第2半径R1、R2は、それぞれ第1種バッテリーセルC1及び第2種バッテリーセルC2の第1及び第2直径D1、D2の半分に該当する値を有する。
Figure 2021197369
図5Bを参照すれば、前記の数式2は、第1種バッテリーセルC1の中心と、第1種バッテリーセルC1の周りに沿って互いに隣接して配列される第2種バッテリーセルC2の二つの中心とを連結する三角形を二分する直角三角形に対して、三角関数を適用することによって得られる。
図6Aないし図6Dは、本発明の多様な実施形態によるバッテリーパックの構造を示す図面である。
図6Aないし図6Dを参照すれば、本発明の多様な実施形態において、第1種バッテリーセルC1の周囲方向に沿って第2種バッテリーセルC2の配列個数は多様に変形可能であり、配列個数によって、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2が多様に変化する。ここで、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は多様に変化するが、前記第1直径D1及び第2直径D2は、任意に選択された寸法というよりは、商用化されたバッテリーセルの寸法に該当する。すなわち、図6Aないし図6Dに示された多様なサイズの第1種バッテリーセルC1と第2種バッテリーセルC2は、商用化されたサイズを有するバッテリーセルに該当する。
図6Aに示されたように、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が6個である場合、第1種バッテリーセルC1の周囲方向に沿って互いに隣接した第2種バッテリーセルC2の間のギャップgは存在せず、互いに隣接した第2種バッテリーセルC2の互いに対向する外周面は互いに当接する。ここで、互いに隣接した第2種バッテリーセルC2の外周面は、第1種バッテリーセルC1の周囲方向に沿って互いに対向する外周面を意味する。より具体的には、第2種バッテリーセルC2の配列個数が6個である場合、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は同じであり、互いに隣接した第2種バッテリーセルC2の外周面は互いに当接する。
図6Bないし図6Dに示されたように、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が7個ないし9個である場合、互いに隣接した第2種バッテリーセルC2の外周面の間にはギャップgが形成され、互いに隣接した第2種バッテリーセルC2の外周面は互いに当接しないのである。本発明の多様な実施形態において、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数は、最小7個以上から最大9個以下に設定される。図6Aに示されたように、第2種バッテリーセルC2の配列個数が6個である場合は、第1種バッテリーセルC1の周りに沿って互いに隣接した第2種バッテリーセルC2の外周面が互いに当接することになるので、互いに隣接した第2種バッテリーセルC2の間の当接により熱伝播が行われ、例えば、第1種バッテリーセルC1の周りに沿って互いに当接して配列された第2種バッテリーセルC2のいずれか一つの第2種バッテリーセルC2が高温劣化する場合、第1種バッテリーセルC1の周りに沿って熱暴走(thermal runaway)が発生しうる。また、第2種バッテリーセルC2の外周面は、第2種バッテリーセルC2のいずれか一つの極性を有し、互いに隣接した第2種バッテリーセルC2の外周面同士の当接により、電気的な短絡が発生しうる。本発明の一実施形態において、第2種バッテリーセルC2同士は互いに並列に連結されているが、第2種バッテリーセルC2の外周面同士の当接により短絡が発生する場合、制御されない充放電経路を通じて、充放電電流の漏れが引き起こされる危険があり得る。一方、図6Aに示されたように、第2種バッテリーセルC2の配列個数が6個である場合、第1種バッテリーセルC1と第2種バッテリーセルC2は互いに当接し、第1種バッテリーセルC1の外周面に沿って第2種バッテリーセルC2が当接しつつ、第1種バッテリーセルC1と第2種バッテリーセルC2との間にはギャップが存在しないのである。そのような実施形態において、相対的に高温発熱特性の第1バッテリーセルC1から、相対的に低温発熱特性の第2バッテリーセルC2に向かって過度な熱伝播が行われ、制御されない充放電経路を通じて、充放電電流の漏れや互いの電気的な干渉が引き起こされてしまう。
本発明の多様な実施形態においては、第2種バッテリーセルC2同士および/または第1種バッテリーセルC1と第2種バッテリーセルC2との熱的接触や電気的接触を回避することにより、熱的接触による熱伝播や熱暴走を遮断し、電気的接触による短絡を防止するために、第2種バッテリーセルC2の配列個数は、最小7個以上から最大9個以下に設計される。
図6Aないし図6Dを参照すれば、概ね第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が増加するにつれて、第1種バッテリーセルC1の第1直径D1が、第2種バッテリーセルC2の第2直径D2よりも増加する傾向を有する。例えば、より増加した第1直径D1の外周面上に、さらに多い個数の第2種バッテリーセルC2が配列される。例えば、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が増加するにつれて、第1種バッテリーセルC1の断面積の比重が、第2種バッテリーセルC2の断面積の比重よりも大きく増加し、それは、相対的に高い出力密度で形成された第1種バッテリーセルC1の比重が増加し、相対的に高いエネルギー密度で形成された第2種バッテリーセルC2の比重が減少することを意味するものであり、第2種バッテリーセルC2の配列個数が増減するにつれて、バッテリーパックPの出力及び容量が変化することになるということを意味する。
本発明の多様な実施形態において、第1種バッテリーセルC1の周りに沿って、同じ個数の第2種バッテリーセルC2が配列されても、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は、相異なる寸法に設計され、図7に示すように、第2種バッテリーセルC2の配列個数がそれぞれ同一な7個、8個、9個でも、それぞれ第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は、相異なる寸法に設計され、例えば、配列個数が同一な8個でも、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は、それぞれ33.5mmと21mmの組み合わせ、それぞれ41mmと26mmの組み合わせと相異なって設計される。そのように、それぞれ相異なる第1D1及び第2直径D2によって、第1種バッテリーセルC1の断面積の比重及び第2種バッテリーセルC2の断面積の比重が異なり、例えば、第2種バッテリーセルC2の配列個数が8個と同じであるとしても、バッテリーパックPの出力及び容量は相異なって設計されるのである。
図7は、第1種バッテリーセルと第2種バッテリーセルとの個数の割合によって、バッテリーパックの出力密度及びエネルギー密度が変化する様相を示す図面である。
図7を参照すれば、第1種バッテリーセルC1と第2種バッテリーセルC2との個数の割合は、第1種バッテリーセルC1の周りに沿って配置される第2種バッテリーセルC2の配列個数を意味する。また、図7には、第1種バッテリーセルC1と第2種バッテリーセルC2との個数の割合と共に、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2も表示されている。前述のように、第1種バッテリーセルC1と第2種バッテリーセルC2との個数の割合が同じであるとしても、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は、相異なる組み合わせで設計されることもあり、それによって、出力密度及びエネルギー密度が変化するという点を考慮して、図7では第1直径D1及び第2直径D2を共に示している。
図7を参照すれば、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が増加するにつれて、概ね出力密度は向上する傾向を見せ、エネルギー密度は低下する傾向を見せる。ここで、出力密度及びエネルギー密度は、それぞれ第1種バッテリーセルC1と第2種バッテリーセルC2を含む全体のバッテリーパックPの出力密度及びエネルギー密度を表すものである。
第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が増加し、かつ出力密度が向上する傾向は、瞬時に高出力を発生させるように、相対的に高い出力密度で形成された第1種バッテリーセルC1の比重が増加するので、全体のバッテリーパックPの出力密度が向上する傾向を有するものと解される。
第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が増加し、かつエネルギー密度が低下する傾向は、長期的に高容量を受け持つように、相対的に高いエネルギー密度で形成された第2種バッテリーセルC2の比重が相対的に減少するので、全体のバッテリーパックPのエネルギー密度が低下する傾向を有するものと解される。
図7を参照すれば、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が同じ場合でも、具体的な実施形態によって、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2が相異なる場合には、第1種バッテリーセルC1及び第2種バッテリーセルC2の相対的な比重が相異なり、それによって、第2種バッテリーセルC2の配列個数が同じ場合にも、バッテリーパックPの出力密度及びエネルギー密度が相異なるのである。
図7を参照すれば、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が6個から7個に増加するにつれて、出力密度が向上することはいうまでもなく、エネルギー密度も共に向上することを確認することができる。そのように、第2種バッテリーセルC2の配列個数が増加するにもかかわらず、エネルギー密度が向上することは、本発明の多様な実施形態において、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は、商用化されたバッテリーセルのサイズに合わせて選択可能であり、それによって、第2種バッテリーセルC2の配列個数が6個及び7個である場合、第2種バッテリーセルC2の第2直径D2が同一に維持されうる。例えば、第2種バッテリーセルC2の配列個数が6個及び7個である場合、第2種バッテリーセルC2の第2直径D2は、21mmと同一に維持され、それによって、第2種バッテリーセルC2の配列個数が7個である場合に、配列個数が6個である場合よりも相対的に高いエネルギー密度を有することができる。すなわち、前述のように、第2種バッテリーセルC2の配列個数が増加するにもかかわらず、第2種バッテリーセルC2の第2直径D2が減少せずに同一に維持されるので、第2種バッテリーセルC2の配列個数が6個である場合よりも、配列個数が7個である場合に、相対的に高いエネルギー密度を有することができる。
前記第2種バッテリーセルC2の配列個数が6個である場合よりも、配列個数が7個である場合に、出力密度はいうまでもなく、エネルギー密度も共に向上するので、本発明の一実施形態において、第2種バッテリーセルC2の配列個数は、最小7個以上に選択されることが好ましい。より具体的には、本発明の多様な実施形態において、第2種バッテリーセルC2の配列個数は、最小7個以上から最大9個以下に設定可能である。
図7を参照すれば、第2種バッテリーセルC2の配列個数が8個である場合よりも、配列個数が9個である場合に、エネルギー密度が急激に低下するので、本発明の一実施形態において、第2種バッテリーセルC2の配列個数は、最大8個以下に選択される。例えば、第2種バッテリーセルC2の配列個数が8個である場合よりも、配列個数が9個である場合に、出力密度は向上する一方、エネルギー密度は低下するが、このとき、出力密度の増加分に比べて、エネルギー密度の減少分が著しく表されるので、本発明の一実施形態において、第2種バッテリーセルC2の配列個数は、最大8個以下に選択される。より具体的には、本発明の多様な実施形態において、第2種バッテリーセルC2の配列個数は、最小7個以上から最大8個以下に設定可能である。
図8は、第1種バッテリーセルと第2種バッテリーセルとの個数の割合によって、第1種バッテリーセルと第2種バッテリーセルとの発熱量の割合が変化する様相を示す図面である。ここで、発熱量の割合は、第2種バッテリーセルC2の発熱に対する、第1種バッテリーセルC1の発熱の相対的な割合を表すものであり、第2種バッテリーセルC2に対する第1種バッテリーセルC1の発熱の倍数、すなわち、第1種バッテリーセルC1の発熱が、第2種バッテリーセルC2の発熱の何倍に該当するかを表す。
図8を参照すれば、第1種バッテリーセルC1と第2種バッテリーセルC2との個数の割合は、第1種バッテリーセルC1の周りに沿って配置される第2種バッテリーセルC2の配列個数を意味する。また、図8には、第1種バッテリーセルC1と第2種バッテリーセルC2との個数の割合と共に、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2も表示されている。前述のように、第1種バッテリーセルC1と第2種バッテリーセルC2との個数の割合が同じであるとしても、第1種バッテリーセルC1の第1直径D1及び第2種バッテリーセルC2の第2直径D2は、相異なる組み合わせで設計され、それによって、発熱量の割合が変化するという点を考慮して、図8では第1直径D1及び第2直径D2を共に示している。
前記第1種バッテリーセルC1は、ピークロードに対応して瞬時に迅速に高出力を発生させるので、大量の熱を発生する。それに対し、前記第2種バッテリーセルC2は、長期的に第1種バッテリーセルC1の容量を補充するか、またはベースロードに対応するので、第1種バッテリーセルC1よりは相対的に低い発熱を起こす。本発明の一実施形態においては、第1種バッテリーセルC1により、迅速に高出力を発生させつつも、第2種バッテリーセルC2により、第1種バッテリーセルC1の容量を補充することができ、例えば、相対的に高い発熱特性を有する第1種バッテリーセルC1の周りに沿って、相対的に低い発熱特性を有する第2種バッテリーセルC2を配列することにより、第1種バッテリーセルC1の高い発熱が局部的に蓄積されず、第1種バッテリーセルC1を取り囲む第2種バッテリーセルC2を通じて、熱拡散が行われるようにする。すなわち、高い発熱特性を有する第1種バッテリーセルC1の周辺に、低い発熱特性を有する第2種バッテリーセルC2を配列することにより、第1種バッテリーセルC1と第2種バッテリーセルC2との温度偏差(または、発熱量の割合)によって、第1種バッテリーセルC1から第2種バッテリーセルC2に向かう熱拡散が行われる。例えば、第1種バッテリーセルC1と第2種バッテリーセルC2との温度偏差(または、発熱量の割合)が大きくなるほど、第1種バッテリーセルC1から第2種バッテリーセルC2に向かう熱拡散が促進される。
図8を参照すれば、第1種バッテリーセルC1の周りに沿って配列される第2種バッテリーセルC2の配列個数が増加するにつれて、第1種バッテリーセルC1の発熱量の割合が増加することを確認することができる。すなわち、第2種バッテリーセルC2の配列個数が6個から9個に増加するにつれて、第1種バッテリーセルC1の断面積の比重が、第2種バッテリーセルC2の断面積の比重よりも増加し、かつ第1種バッテリーセルC1の発熱が相対的に著しくなり、第1種バッテリーセルC1の発熱が、第2種バッテリーセルC2の発熱よりも1.6倍から4.2倍まで増加することが分かる。
例えば、第1種バッテリーセルC1の周りに沿って配列される第2種バッテリーセルC2の配列個数が増加するにつれて、第1種バッテリーセルC1の第1直径D1が、第2種バッテリーセルC2の第2直径D2に比べて相対的に増加し、かつ第1種バッテリーセルC1の断面積の比重が増加し、相対的に高い発熱の第1種バッテリーセルC1の断面積の比重が増加し、かつ第1種バッテリーセルC1の発熱量の割合が増加するものと解される。このとき、第1種バッテリーセルC1の発熱量の割合が増加することは、第1種バッテリーセルC1と第2種バッテリーセルC2との発熱量の差が増加するというものであり、第1種バッテリーセルC1と第2種バッテリーセルC2との温度偏差が増加し、かつ高い発熱の第1種バッテリーセルC1から、低い発熱の第2種バッテリーセルC2に向かう熱拡散が促進されうる。言い換えれば、第1種バッテリーセルC1の周りに沿って第2種バッテリーセルC2の配列個数が増加するにつれて、相対的に高い発熱特性を有する第1種バッテリーセルC1の発熱量が増加するが、高い発熱特性を有する第1種バッテリーセルC1の周りに沿って、低い発熱特性を有する第2種バッテリーセルC2を配列することにより、第1種バッテリーセルC1から第2種バッテリーセルC2に向かう熱拡散が促進されうる。本発明の多様な実施形態において、第2種バッテリーセルC2の配列個数は、最小7個以上に設計されてもよい。図8に示すように、第2種バッテリーセルC2の配列個数が6個である場合、第1種バッテリーセルC1の発熱量は、第2種バッテリーセルC2の発熱量の1.6倍のレベルであり、第1種バッテリーセルC1から第2種バッテリーセルC2に向かう熱拡散を促進するのには、第1種バッテリーセルC1と第2種バッテリーセルC2との発熱量の割合あるいは温度偏差が十分に大きくないので、本発明の多様な実施形態において、第2種バッテリーセルC2の配列個数は、最小7個以上に設計されてもよい。
図9は、第1種バッテリーセルの周りに沿って第2種バッテリーセルの配列個数によって、面積利用率の増加(%)が変化する様相を示す図面である。ここで、面積利用率は、第1種バッテリーセルC1と第2種バッテリーセルC2を取り囲むセル領域S(図1及び図2)の断面積に対して、第1種バッテリーセルC1と第2種バッテリーセルC2が占める断面積の相対的な割合を意味する。また、面積利用率の増加は、第1種バッテリーセルC1と第2種バッテリーセルC2を取り囲むセル領域S(図1及び図2)の断面積に対して、第1種バッテリーセルC1と第2種バッテリーセルC2が占める断面積が増加する相対的な割合(%)を表す。
本発明の一実施形態において、バッテリーパックPの容量と関連した単位体積当たりエネルギー密度は、エネルギー生産や変換に寄与しない死空間TS(図1及び図2)を取り除くことによって向上する。例えば、第1種バッテリーセルC1の周りに沿って複数の第2種バッテリーセルC2が配列され、このとき、第1種バッテリーセルC1の弧と接し、かつ隣接した第2種バッテリーセルC2の間には、第1種バッテリーセルC1の長手方向に沿って柱状に形成された死空間TSが形成される。例えば、前記死空間TSは、第1種バッテリーセルC1と、互いに隣接した第2種バッテリーセルC2とのギャップgを含み、第1種バッテリーセルC1と、互いに隣接した第2種バッテリーセルC2とのギャップgに沿って収斂する凹状の三つの部分を含み、第1種バッテリーセルC1の長手方向に沿って延びる柱状の空間を含むのである。
本発明の一実施形態においては、前記死空間TSを減らすための構成として、第1種バッテリーセルC1の周りに沿って配置される第2種バッテリーセルC2の配列個数を増加させることができる。例えば、第1種バッテリーセルC1の大きさ(第1直径D1)を、第2種バッテリーセルC2の大きさ(第2直径D2)よりも増加させつつ、第1種バッテリーセルC1の周りに沿って、相対的に多くの個数の第2種バッテリーセルC2を配列することにより、第1種バッテリーセルC1の弧と接し、かつ隣接した第2種バッテリーセルC2の間に形成される死空間TSを減らすことができる。
図9を参照すれば、第1種バッテリーセルC1の周りに沿って配置される第2種バッテリーセルC2の配列個数が増加するにつれて、面積利用率は増加する一方、死空間TSは減少する。例えば、面積利用率とは、第1種バッテリーセルC1と第2種バッテリーセルC2を取り囲むセル領域Sの断面積に対して、第1種バッテリーセルC1と第2種バッテリーセルC2が占める断面積の相対的な割合を意味し、全体のセル領域Sのうち、第1種バッテリーセルC1と第2種バッテリーセルC2が占める断面積の比重が増加するほど、また、全体のセル領域Sのうち、第1種バッテリーセルC1と第2種バッテリーセルC2を除いた死空間TSに該当する断面積の比重が減少するほど、増加することができる。前記セル領域Sについてのより具体的な技術的内容は後述する。
図9を参照すれば、第2種バッテリーセルC2の配列個数が少ない場合は、面積利用率の増加が相対的に大きく、第2種バッテリーセルC2の配列個数が増加するにつれて、面積利用率の増加が急激に減少することを確認することができる。より具体的には、第2種バッテリーセルC2の配列個数が9個以上である場合は、面積利用率の増加がほぼ一定の値に収斂し、第2種バッテリーセルC2の個数を9個以上に増加させることは、面積利用率の増加あるいは死空間TSの減少にほとんど影響を与えないということが分かる。以上のような考慮から、本発明の一実施形態において、第1種バッテリーセルC1の周りに沿って配列される第2種バッテリーセルC2の個数は、最大8個以下に設定される。
図1及び図2を参照すれば、本発明の一実施形態において、バッテリーパックPを形成する複数のバッテリーセル、すなわち、第1種バッテリーセルC1及び第2種バッテリーセルC2は、第1種バッテリーセルC1の周りに沿って配列された複数の第2種バッテリーセルC2を連続して取り囲む包絡線により定義されるセル領域S内に配置可能である。例えば、本発明の一実施形態において、セル領域Sを定義する包絡線は、第1種バッテリーセルC1の周りに沿って配列された複数の第2種バッテリーセルC2の外周面と連続して接し、かつ複数の第2種バッテリーセルC2を連続して取り囲む曲線状に形成される。本発明の一実施形態において、前記第1種バッテリーセルC1は、第1直径D1の断面を有する円形バッテリーセルとして設けられ、前記第2種バッテリーセルC2は、第2直径D2の断面を有する円形バッテリーセルとして設けられる。このとき、前記セル領域Sは、円弧状の包絡線により定義される円形に形成される。
本発明の一実施形態において、前記第1種バッテリーセルC1は、セル領域Sの中央位置に配置され、第2種バッテリーセルC2は、セル領域Sのエッジに沿って配列される。すなわち、本発明の一実施形態において、前記第1種バッテリーセルC1の中心は、セル領域Sの中央位置に整列され、前記第2種バッテリーセルC2の中心は、セル領域Sの中央位置を取り囲む円弧に沿って配列される。
本発明の一実施形態によるバッテリーパックPは、前記第1種バッテリーセルC1と第2種バッテリーセルC2の両方を収容するパックケースPCをさらに含んでもよい。前記パックケースPCは、第1種バッテリーセルC1と第2種バッテリーセルC2との長手方向に沿って延び、かつ円形断面を有する円柱状のセル収容空間CAを有することができる。
図10Aないし図10Cは、本発明の多様な実施形態において、第1種バッテリーセルと第2種バッテリーセルの電気的な連結構造を説明するための相異なる図面である。
図10Aを参照すれば、前記第1種バッテリーセルC1と、第1種バッテリーセルC1の周りに沿って配列された複数の第2種バッテリーセルC2とは、互いに並列に連結可能である。第1種バッテリーセルC1と第2種バッテリーセルC2は、複数の連結配線W1を介して互いに並列に連結される。前記連結配線W1は、第1種バッテリーセルC1の周りに沿って配置された第2種バッテリーセルC2の配列個数に該当する複数の連結配線W1を含んでもよい。このとき、それぞれの連結配線W1は、第1種バッテリーセルC1と、いずれか一つの第2種バッテリーセルC2との電気的連結を形成することができる。例えば、前記複数の連結配線W1は、第1種バッテリーセルC1の電極から放射状に延びつつ、それぞれ該当する第2種バッテリーセルC2の電極に連結される。複数の連結配線W1は、第1種バッテリーセルC1の電極上で共通接点を形成しつつ、第1種バッテリーセルC1と複数の第2種バッテリーセルC2とを並列に連結することができる。前記連結配線W1は、第1種バッテリーセルC1と第2種バッテリーセルC2を互いに電気的に連結しつつ、第1種バッテリーセルC1と第2種バッテリーセルC2との容量を互いに補充することができ、例えば、第1種バッテリーセルC1は、ピークロードに対応して迅速に高出力を発生させ、第2種バッテリーセルC2は、連結配線W1を介して第1種バッテリーセルC1の容量の低下を補充することができる。
前記第1種バッテリーセルC1と第2種バッテリーセルC2は、互いに協力して外部負荷の出力要求に対応することが可能であり、第1種バッテリーセルC1に連結された抵抗と、第2種バッテリーセルC2に連結された抵抗との相対的な割合によって割り当てられた電流を発生させることができる。ここで、第1種バッテリーセルC1及び第2種バッテリーセルC2に連結された抵抗とは、第1種バッテリーセルC1及び第2種バッテリーセルC2の内部抵抗と外部抵抗を包括した全体抵抗を意味する。前記第1種バッテリーセルC1及び第2種バッテリーセルC2は、それぞれ相対的に高い出力密度及びエネルギー密度で形成されるので、相異なる内部抵抗を有することができ、第1種バッテリーセルC1の内部抵抗よりも、第2種バッテリーセルC2の内部抵抗がさらに高い値を有するように形成される。そして、かかる内部抵抗の設計によって、第2種バッテリーセルC2よりも、第1種バッテリーセルC1が相対的に多くの電流を発生させることができる。例えば、前記内部抵抗は、リアクタンス成分を有し、ピークロードでは、第1種バッテリーセルC1が電流のほとんどを発生させ、ベースロードでは、第1種バッテリーセルC1と第2種バッテリーセルC2が互いに協力して電流を発生させる。本発明の一実施形態において、前記バッテリーパックPは、電気車両の駆動電源を供給することが可能であり、車両の加速時、ピークロードに対応して、第1種バッテリーセルC1が電流のほとんどを発生させ、車両の定速走行時、ベースロードに対応して、第1種バッテリーセルC1と第2種バッテリーセルC2が互いに協力して電流を発生させる。
本発明の一実施形態においては、車両の減速時に発生する再生電流を利用してバッテリーパックPを充電することが可能であり、第1種バッテリーセルC1に瞬時に発生する再生電流のほとんどを充電し、第1種バッテリーセルC1と第2種バッテリーセルC2とを連結する連結配線W1を介して、第2種バッテリーセルC2の容量を補充することができる。第2種バッテリーセルC2を介して瞬時に高出力の電流を発生させるか、または瞬時に高出力の電流を充電する場合、第2種バッテリーセルC2の寿命短縮が引き起こされるので、瞬時に要求される高出力の電流や瞬時に発生する高出力の電流は、第1種バッテリーセルC1を介して放電または充電し、連結配線W1を介して第2種バッテリーセルC2との容量のバランスを取ることができる。
前記第1種バッテリーセルC1には、外部負荷と連結され、バッテリーパックPの充放電経路を形成するための入出力配線W2が連結されてもよい。前記入出力配線W2は、第1種バッテリーセルC1と外部負荷との間、及び第2種バッテリーセルC2と外部負荷との間で共通した充放電経路を形成することができる。例えば、前記入出力配線W2は、第1種バッテリーセルC1の電極上に連結されて、第1種バッテリーセルC1から外部負荷に向かって連結され、第1種バッテリーセルC1の充放電経路は、前記入出力配線W2を含む。また、前記入出力配線W2は、第1種バッテリーセルC1の電極上で連結配線W1と共通接点を形成し、第2種バッテリーセルC2の充放電経路は、第2種バッテリーセルC2の電極と第1種バッテリーセルC1の電極とを連結する連結配線W1と、第1種バッテリーセルC1の電極から外部負荷に向かって連結される入出力配線W2とを含む。
第1種バッテリーセルC1と第2種バッテリーセルC2との充放電経路は、それらに共通した充放電経路を形成する入出力配線W2を含み、前記第2種バッテリーセルC2の充放電経路は、入出力配線W2に加えて、連結配線W1をさらに含んでもよい。言い換えれば、第1種バッテリーセルC1の充放電経路よりも、第2種バッテリーセルC2の充放電経路が相対的にさらに長く形成される。そのような第1種バッテリーセルC1と第2種バッテリーセルC2との配線構造上の差によって、第1種バッテリーセルC1と第2種バッテリーセルC2から外部負荷に連結される外部抵抗を比較すると、第1種バッテリーセルC1の外部抵抗よりも、第2種バッテリーセルC2の外部抵抗が相対的に高い。
一方、前記第1種バッテリーセルC1と第2種バッテリーセルC2は、外部負荷の出力要求に対して、抵抗の相対的な割合によって割り当てられた電流を発生させ、前記のような外部抵抗の設計によって、第1種バッテリーセルC1が第2種バッテリーセルC2よりもさらに多くの電流を発生させる。前述のように、高出力の第1種バッテリーセルC1の内部抵抗は、高容量の第2種バッテリーセルC2の内部抵抗よりも低く形成され、内部抵抗に加えて、外部抵抗に対しても、第1種バッテリーセルC1に連結された外部抵抗が、第2種バッテリーセルC2に連結された外部抵抗よりも低く形成されるので、内部抵抗と外部抵抗を含む抵抗の割合によって、第1種バッテリーセルC1が第2種バッテリーセルC2よりもさらに多くの電流を分担することになる。
本発明では、第1種バッテリーセルC1に連結された抵抗と、第2種バッテリーセルC2に連結された抵抗(外部抵抗)とを異なるように設計することにより、第1種バッテリーセルC1でより多くの電流を分担するようにし、瞬時に要求されるピークロードでほとんどの電流を分担するようにすることにより、第2種バッテリーセルC2の寿命短縮を防止することができ、瞬時に高出力の発生が可能であり、かつ長期的に寿命短縮を防止することが可能な、高出力かつ高容量のバッテリーパックPが提供される。
前記第1種バッテリーセルC1及び第2種バッテリーセルC2に連結される抵抗(外部抵抗)を異なるように形成することは、第1種バッテリーセルC1に連結された入出力配線W2と、第2種バッテリーセルC2に連結された連結配線W1との抵抗を異なるように設計することによって具現可能である。
図10Aを参照すれば、前記入出力配線W2の断面積(例えば、厚さtw2)は、前記連結配線W1の断面積(例えば、厚さtw1)よりも大きく形成され、それによって、入出力配線W2の抵抗よりも、連結配線W1の抵抗がより高く形成される。前述のように、第1種バッテリーセルC1の充放電経路よりも、第2種バッテリーセルC2の充放電経路が相対的に長く形成されることにより、第1種バッテリーセルC1の電流負担を増やすことができ、さらに、入出力配線W2と連結配線W1との異なる断面積により、第1種バッテリーセルC1の電流負担をさらに増やすことができる。
図10Bを参照すれば、入出力配線W2′及び連結配線W1′に対して異なる素材を適用することができる。例えば、入出力配線W2′には第1金属素材を適用し、連結配線W1′には第2金属素材を適用し、このとき、第1金属素材及び第2金属素材は、相異なる電気伝導度あるいは抵抗値を有する相異なる素材を含んでもよい。例えば、前記入出力配線W2′と連結配線W1′の両方は、電気伝導度に優れた金属素材で形成されるが、前記入出力配線W2′を形成する第1金属素材は、連結配線W1′を形成する第2金属素材よりも電気伝導度が高い素材を含んでもよい。より具体的には、本発明の一実施形態において、前記入出力配線W2′は、電気伝導度により優れた銅素材を含み、前記連結配線W1′は、電気伝導度が多少低いアルミニウムやニッケル素材を含む。例えば、前記入出力配線W2′は、銅や銅合金を含み、前記連結配線W1′は、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金を含む。
図10Cを参照すれば、前記連結配線W1は、追加抵抗ARを含むことが可能であり、追加抵抗ARにより、連結配線W1の抵抗が、入出力配線W2の抵抗よりも増加する。ここで、追加抵抗ARとは、配線自体の線間抵抗以外に、電流の疎通を遅延させる構成であって、例えば、連結配線W1に追加抵抗ARをさらに付加するか、または連結配線W1自体の一部の形状を屈曲して形成することにより、追加抵抗ARを具現可能である。
本発明の一実施形態において、前記入出力配線W2及び連結配線W1は、異なる抵抗を有する以外に、電気的な連結が可能ないかなる構造や素材によっても形成可能であり、例えば、前記入出力配線W2及び連結配線W1は、金属バーのような剛性材料で形成されてもよく、金属ワイヤーのような可撓性材料で形成されてもよい。例えば、前記入出力配線W2及び連結配線W1は、第1種バッテリーセルC1の電極及び第2種バッテリーセルC2の電極上で、溶接、半田付け、ワイヤーボンディングなどにより、第1種バッテリーセルC1の電極及び第2種バッテリーセルC2の電極上に結合される。
本発明の一実施形態において、第1種バッテリーセルC1と第2種バッテリーセルC2を含むバッテリーパックPは、バスバーBを介して外部負荷に連結される。このとき、前記第1種バッテリーセルC1と第2種バッテリーセルC2の共通した充放電経路を形成するための入出力配線W2は、第1種バッテリーセルC1の電極とバスバーBとを連結する。
本発明の一実施形態において、前記バッテリーパックPは、電気車両の駆動電源を供給することが可能であり、前記バッテリーパックPは、互いに電気的に連結された他のバッテリーパックPと共にモジュール単位を形成しつつ、複数のバッテリーパックPにより、電気車両の駆動電源を供給するための高出力かつ高容量の駆動電源を供給することが可能である。このとき、複数のバッテリーパックPは、バスバーBを介して互いに電気的に連結される。すなわち、前記バスバーBは、複数のバッテリーパックPからの充放電電流を取り集めるためのものであり、それぞれのバッテリーパックPから延びる入出力配線W2よりも低い抵抗あるいは優れた電気伝導度を有することができる。例えば、前記バスバーBの断面積は、入出力配線W2の断面積よりも大きく、前記バスバーBの第3金属素材は、入出力配線W2の第1金属素材よりも優れた電気伝導度を有する素材を含む。
図11は、本発明の他の側面によるバッテリーモジュールを説明するための図面である。
図11を参照すれば、本発明の一実施形態によるバッテリーモジュールMは、複数のバッテリーパックP1、P2を含む。より具体的には、前記バッテリーモジュールMは、第1バッテリーパックP1と、前記第1バッテリーパックP1の周りに沿って前記第1バッテリーパックP1を取り囲むように配列される複数の第2バッテリーパックP2とを含む。そして、それぞれの第1及び第2バッテリーパックP1、P2は、第1種バッテリーセルC1と、前記第1種バッテリーセルC1と出力及び容量が相異なる第2種バッテリーセルC2として、第1種バッテリーセルC1の周りに沿って第1種バッテリーセルC1を取り囲むように配列され、第1種バッテリーセルC1と並列に連結される複数の第2種バッテリーセルC2とを含む。
本発明の一実施形態によるバッテリーモジュールMは、第1バッテリーパックP1と、第1バッテリーパックP1の周りに沿って第1バッテリーパックP1を取り囲む第2バッテリーパックP2とを含む。このとき、前記第1バッテリーパックP1及び第2バッテリーパックP2は、同じ構造で形成されてもよく、より具体的には、第1バッテリーパックP1と第2バッテリーパックP2は、それぞれ第1種バッテリーセルC1と、第1種バッテリーセルC1を取り囲む第2種バッテリーセルC2とを含む。また、前記第1バッテリーパックP1と第2バッテリーパックP2は、第1種バッテリーセルC1と第2種バッテリーセルC2を取り囲む円形断面を有し、それぞれ第3直径D3及び第4直径D4を有する円形断面を有する。本発明の一実施形態において、前記第1バッテリーパックP1と第2バッテリーパックP2は、同じ構造に形成され、かつ同じサイズに形成されてもよい。
例えば、前記第1バッテリーパックP1の第3直径D3及び第2バッテリーパックP2の第4直径D4は、同じ寸法に設計される。そのように、前記第1バッテリーパックP1と第2バッテリーパックP2は、同じ構造及び同じ形状、さらに同じサイズに形成可能であり、但し、その配置構造において、前記第2バッテリーパックP2は、第1バッテリーパックP1の周りに沿って第1バッテリーパックP1を取り囲むように形成される。例えば、前記第1バッテリーパックP1が中央位置に配置されれば、第2バッテリーパックP2は、第1バッテリーパックP1を取り囲む周辺位置に配置される。前記第1バッテリーパックP1及び第2バッテリーパックP2の構造は、図1及び図2を参照して述べられたバッテリーパックPと実質的に同様であるので、ここでの反復説明は省略する。
図11を参照すれば、第1バッテリーパックP1の周りに沿って複数の第2バッテリーパックP2が配列可能であり、本発明の一実施形態において、第1バッテリーパックP1の周りに沿って配置される第2バッテリーパックP2の配列個数は6個である。このとき、前記第1バッテリーパックP1の第3直径D3及び第2バッテリーパックP2の第4直径D4は、同じ数値に設計される。本発明の一実施形態においては、第1バッテリーパックP1の周りに沿って第2バッテリーパックP2を稠密に配列し、第1バッテリーパックP1の周囲方向に沿って互いに隣接した第2バッテリーパックP2の外周面が当接するように、第2バッテリーパックP2が稠密に配列される。参考として、それぞれの第1及び第2バッテリーパックP1、P2に備えられた第1種バッテリーセルC1及び第2種バッテリーセルC2の配置構造において、第1種バッテリーセルC1の周りに沿って配置された第2種バッテリーセルC2の配列個数は、最小7個以上に設計され、それによって、第1種バッテリーセルC1の周囲方向に沿って互いに隣接した第2種バッテリーセルC2の間にはギャップgが形成され、ギャップgを介在して互いに隣接した第2バッテリーセルの間の熱伝播及び電気的短絡を遮断することができる(図6Bないし図6D参照)。前記第1種バッテリーセルC1及び第2種バッテリーセルC2の配置構造と異なり、第1バッテリーパックP1及び第2バッテリーパックP2の配置構造においては、第1バッテリーパックP1の周囲方向に沿って互いに隣接した第2バッテリーパックP2の間にはギャップgが形成されず、互いに隣接した第2バッテリーパックP2の外周面は当接する。また、第1バッテリーパックP1と、前記第1バッテリーパックP1の周りに沿って配列された第2バッテリーパックP2との間にもギャップgが存在せず、第1バッテリーパックP1と第2バッテリーパックP2との外周面は当接する。
前記第1バッテリーパックP1と、第1バッテリーパックP1の周囲方向に沿って互いに隣接した第2バッテリーパックP2とは、それぞれパックケースPCにより取り囲まれて、相互間の熱伝播及び電気的短絡がある程度防止されるので、第1バッテリーパックP1及び第2バッテリーパックP2と、互いに隣接した第2バッテリーパックP2との間にはギャップgが介在されず、第1バッテリーパックP1及び第2バッテリーパックP2同士の外周面及び第2バッテリーパックP2同士の外周面は当接する。すなわち、第1バッテリーパックP1の周りに沿って第2バッテリーパックP2が当接するように稠密に配列されることにより、バッテリーモジュールMの出力及び容量を向上させることができる。一方、図11に示していないが、相異なる第1バッテリーパックP1及び第2バッテリーパックP2は、バスバーBを介して互いに電気的に連結可能であり、互いに並列に連結されてもよく、直列に連結されてもよい。
図12は、本発明のさらに他の側面による電源供給装置を説明するための図面である。
図12を参照すれば、本発明の一実施形態による電源供給装置は、図11に示したようなバッテリーモジュールMを複数含み、複数のバッテリーモジュールMを含むことにより、電気車両の駆動電源を供給することが可能な、高出力かつ高容量の電源供給装置を提供することができる。
図12を参照すれば、前記第1バッテリーパックP1の周りに沿って複数に配列された第2バッテリーパックP2を含むバッテリーモジュールMは、互い違いの位置に配置されることにより、稠密な配列を形成することができる。例えば、前記バッテリーモジュールMが第1列L1及び第2列L2に沿って配列されれば、第1列L1のバッテリーモジュールM及び第2列L2のバッテリーモジュールMは、互いの間に嵌め込まれつつ稠密に配列され、空間の無駄なくコンパクト化に有利な構造を提供することができる。本発明の一実施形態において、第1列L1のバッテリーモジュールM及び第2列L2のバッテリーモジュールMは、互いに隣接する境界で、第1列L1のバッテリーモジュールMの外郭を形成する第2バッテリーパックP2と、第2列L2のバッテリーモジュールMの外郭を形成する第2バッテリーパックP2とが噛み合う形態に互いに挟まれつつ、複数の第1列L1のバッテリーモジュールMと、複数の第2列L2のバッテリーモジュールMとが互いに隣接するように稠密に配列される。
本発明の一実施形態においては、第1種バッテリーセルにより、迅速に高出力を発生させつつも、第2種バッテリーセルにより、全体のバッテリーパックの容量を向上させることができる。
本発明の一実施形態において、第1種バッテリーセルと第2種バッテリーセルは、互いに協力して外部負荷の出力要求に対応することが可能であり、第1種バッテリーセルに連結された抵抗と、第2種バッテリーセルに連結された抵抗との相対的な割合によって割り当てられた電流を発生させるが、特に、第1種バッテリーセルに連結された抵抗と、第2種バッテリーセルに連結された抵抗とが異なるように形成されることにより、第1種バッテリーセルにより、瞬時に要求されるピークロードでほとんどの電流を分担するようにし、それによって、第2種バッテリーセルの寿命短縮を防止することができ、瞬時に高出力の発生が可能であり、かつ長期的に寿命短縮を防止することが可能な、高出力かつ高容量のバッテリーパックが提供されうる。
本発明の一実施形態においては、相異なる出力特性によって製造コストが相異なる、高出力の第1種バッテリーセルと高容量の第2種バッテリーセルの両方が適用されるハイブリッド構造により、相対的に低いコストで高出力かつ高容量のバッテリーパックが提供されることができる。
本発明の一実施形態においては、相対的に高い発熱特性を有する高出力の第1種バッテリーセルの周りに沿って、相対的に低い発熱特性を有する高容量の第2種バッテリーセルを配列することにより、第1種バッテリーセルの高い発熱が局部的に蓄積されず、第1種バッテリーセルを取り囲む第2種バッテリーセルを通じて熱拡散が促進されるようにする。
本発明は、添付された図面に示した実施形態を参考として述べられたが、それは、例示的なものに過ぎず、本発明の属する技術分野における通常の知識を持つ者ならば、それから多様な変形及び均等な他の実施形態が可能であるという点を理解できるであろう。
本発明は、例えば、電源供給装置関連の技術分野に適用可能である。
C1 第1種バッテリーセル
C2 第2種バッテリーセル
C11 第1種バッテリーセルの第1電極
C12 第1種バッテリーセルの第2電極
C21 第2種バッテリーセル第1電極
C22 第2種バッテリーセル第2電極
D1 第1直径
D2 第2直径
CA セル収容空間
g ギャップ
P バッテリーパック
PC パックケース
S セル領域
TS 死空間

Claims (39)

  1. 第1種バッテリーセルと、
    前記第1種バッテリーセルと出力及び容量が相異なる第2種バッテリーセルであって、前記第1種バッテリーセルの周りに沿って前記第1種バッテリーセルを取り囲むように配列され、前記第1種バッテリーセルと並列に連結された複数の第2種バッテリーセルと、
    を含むバッテリーパック。
  2. 前記第1種バッテリーセルの出力は、前記第2種バッテリーセルの出力よりも高く、
    前記第1種バッテリーセルの容量は、前記第2種バッテリーセルの容量よりも低いことを特徴とする請求項1に記載のバッテリーパック。
  3. 前記第1種バッテリーセルの出力密度は、前記第2種バッテリーセルの出力密度よりも高く、
    前記第1種バッテリーセルのエネルギー密度は、前記第2種バッテリーセルのエネルギー密度よりも低いことを特徴とする請求項1に記載のバッテリーパック。
  4. 前記第1種バッテリーセルの内部抵抗は、前記第2種バッテリーセルの内部抵抗よりも低いことを特徴とする請求項1に記載のバッテリーパック。
  5. 前記第1種バッテリーセル及び前記第2種バッテリーセルは、同じ第1放電条件で互いに異なる電圧降下を表すことを特徴とする請求項1に記載のバッテリーパック。
  6. 前記第1種バッテリーセル及び前記第2種バッテリーセルは、同じ第2放電条件で互いに異なる容量を表すことを特徴とする請求項1に記載のバッテリーパック。
  7. 前記第1種バッテリーセル及び前記第2種バッテリーセルは、同じ第1放電条件で互いに異なる電圧降下を表し、
    前記第1種バッテリーセル及び前記第2種バッテリーセルは、同じ第2放電条件で互いに異なる容量を表し、
    前記第1放電条件及び前記第2放電条件はそれぞれ、相対的に高率放電及び低率放電に該当することを特徴とする請求項1に記載のバッテリーパック。
  8. 前記第1種バッテリーセルは、互いに対向して配置された第1極板及び第2極板、並びに前記第1極板と前記第2極板との間に介在された第1セパレータを備える第1電極組立体を含み、
    前記第2種バッテリーセルは、互いに対向して配置された第3極板及び第4極板、並びに前記第3極板と前記第4極板との間に介在された第2セパレータを備える第2電極組立体を含むことを特徴とする請求項1に記載のバッテリーパック。
  9. 前記第1極板は、第1正極基材上に形成された第1正極活物質層を含み、
    前記第2極板は、第1負極基材上に形成された第1負極活物質層を含み、
    前記第3極板は、第2正極基材上に形成された第2正極活物質層を含み、
    前記第4極板は、第2負極基材上に形成された第2負極活物質層を含むことを特徴とする請求項8に記載のバッテリーパック。
  10. 前記第1正極活物質層の厚さは、前記第2正極活物質層の厚さよりも薄く形成され、
    前記第1負極活物質層の厚さは、前記第2負極活物質層の厚さよりも薄く形成されることを特徴とする請求項9に記載のバッテリーパック。
  11. 前記第1正極活物質層の長さは、前記第2正極活物質層の長さよりも長く形成され、
    前記第1負極活物質層の長さは、前記第2負極活物質層の長さよりも長く形成されることを特徴とする請求項9に記載のバッテリーパック。
  12. 前記第1正極活物質層の長さ及び前記第1負極活物質層の長さは、前記第1電極組立体の巻取方向に沿う長さに該当し、
    前記第2正極活物質層の長さ及び前記第2負極活物質層の長さは、前記第2電極組立体の巻取方向に沿う長さに該当することを特徴とする請求項11に記載のバッテリーパック。
  13. 前記第1種バッテリーセルの周りに沿って配置される前記第2種バッテリーセルの配列個数は、最小6個以上から最大9個以下に設定されることを特徴とする請求項1に記載のバッテリーパック。
  14. 前記第1種バッテリーセルの周りに沿って配置される前記第2種バッテリーセルの配列個数は、最小7個以上から最大9個以下に設定されることを特徴とする請求項13に記載のバッテリーパック。
  15. 前記第1種バッテリーセルの周りに沿って配置される前記第2種バッテリーセルの配列個数は、最小7個以上から最大8個以下に設定されることを特徴とする請求項14に記載のバッテリーパック。
  16. 前記第1種バッテリーセルの外周面に沿って互いに隣接した前記第2種バッテリーセルは、互いに離隔されることを特徴とする請求項1に記載のバッテリーパック。
  17. 前記第1種バッテリーセルの周りに沿って隣接した前記第2種バッテリーセルの互いに対向する外周面の間に、ギャップが形成されることを特徴とする請求項16に記載のバッテリーパック。
  18. 前記第1種バッテリーセルと、前記第1種バッテリーセルを取り囲む前記第2種バッテリーセルとの間にも、他のギャップが形成されることを特徴とする請求項17に記載のバッテリーパック。
  19. 前記第1種バッテリーセルの外周面上かつ互いに隣接した前記第2種バッテリーセルの間には、互いに隣接した二つの第2種バッテリーセル間のギャップ、及び前記第1種バッテリーセルとの他のギャップに向かって凹状に収斂する三つの部分を含み、前記第1種バッテリーセルの長手方向に沿って延びる柱状の余裕空間が形成されることを特徴とする請求項18に記載のバッテリーパック。
  20. 前記第1種バッテリーセル及び前記第2種バッテリーセルはそれぞれ、第1直径及び第2直径の円形断面を有する円形バッテリーセルを含むことを特徴とする請求項1に記載のバッテリーパック。
  21. 前記第1直径は、前記第2直径と同じであるか、または前記第2直径よりも大きいことを特徴とする請求項20に記載のバッテリーパック。
  22. 前記第1種バッテリーセルと前記第2種バッテリーセルとを互いに電気的に連結する連結配線をさらに含むことを特徴とする請求項1に記載のバッテリーパック。
  23. 前記連結配線は、前記第1種バッテリーセルの周りに沿って配置された前記第2種バッテリーセルの配列個数と同数に設けられた複数の連結配線を含むことを特徴とする請求項22に記載のバッテリーパック。
  24. 前記複数の連結配線それぞれは、前記第1種バッテリーセルと、複数の前記第2種バッテリーセルそれぞれとの電気的連結を形成することを特徴とする請求項23に記載のバッテリーパック。
  25. 前記複数の連結配線は、前記第1種バッテリーセルの電極上で共通接点を形成し、前記第1種バッテリーセルの電極から放射状に延びつつ、複数の前記第2種バッテリーセルの電極にそれぞれ連結されることを特徴とする請求項24に記載のバッテリーパック。
  26. 前記第1種バッテリーセルに連結され、外部負荷に向かう充放電経路を形成するための入出力配線をさらに含むことを特徴とする請求項22に記載のバッテリーパック。
  27. 前記入出力配線は、前記第1種バッテリーセルと外部負荷との間、及び前記第2種バッテリーセルと外部負荷との間で共通的な充放電経路を形成することを特徴とする請求項26に記載のバッテリーパック。
  28. 前記第1種バッテリーセルの充放電経路は、前記入出力配線を含み、
    前記第2種バッテリーセルの充放電経路は、前記入出力配線に加えて、前記連結配線をさらに含むことを特徴とする請求項26に記載のバッテリーパック。
  29. 前記第1種バッテリーセルの充放電経路よりも、前記第2種バッテリーセルの充放電経路が相対的にさらに長く形成されることを特徴とする請求項28に記載のバッテリーパック。
  30. 前記入出力配線よりも、前記連結配線が相対的に高い抵抗を有するように形成されることを特徴とする請求項26に記載のバッテリーパック。
  31. 前記入出力配線の断面積は、前記連結配線の断面積よりも広いことを特徴とする請求項30に記載のバッテリーパック。
  32. 前記入出力配線及び前記連結配線はそれぞれ、相異なる第1金属素材及び第2金属素材を含み、
    前記第1金属素材は、前記第2金属素材よりも高い電気伝導度を有することを特徴とする請求項30に記載のバッテリーパック。
  33. 前記連結配線は、追加抵抗を含むことを特徴とする請求項30に記載のバッテリーパック。
  34. 前記第1種バッテリーセル及び前記第2種バッテリーセルは、前記第1種バッテリーセルの周りに沿って配列された複数の前記第2種バッテリーセルの外周面と連続して接しつつ、複数の前記第2種バッテリーセルを連続して取り囲む円形の包絡線内に包囲されることを特徴とする請求項1に記載のバッテリーパック。
  35. 前記第1種バッテリーセルと前記第2種バッテリーセルの両方を収容するパックケースであって、前記第1種バッテリーセルと前記第2種バッテリーセルとの長手方向に沿って延び、かつ円形断面を有する円柱状のセル収容空間を提供するパックケースをさらに含むことを特徴とする請求項1に記載のバッテリーパック。
  36. 第1バッテリーパックと、
    前記第1バッテリーパックの周りに沿って前記第1バッテリーパックを取り囲むように配列された複数の第2バッテリーパックと、
    を含むバッテリーモジュールであって、
    それぞれの前記第1バッテリーパック及び前記第2バッテリーパックは、
    第1種バッテリーセルと、
    前記第1種バッテリーセルと出力及び容量が相異なる第2種バッテリーセルであって、前記第1種バッテリーセルの周りに沿って前記第1種バッテリーセルを取り囲むように配列され、前記第1種バッテリーセルと並列に連結された複数の第2種バッテリーセルと、
    を含むバッテリーモジュール。
  37. 前記第1バッテリーパック及び前記第2バッテリーパックはそれぞれ、第3直径及び第4直径の円形断面を有することを特徴とする請求項36に記載のバッテリーモジュール。
  38. 前記第3直径及び前記第4直径は同じであり、
    前記第1バッテリーパックの周りに沿って配置された前記第2バッテリーパックの配列個数は6個であることを特徴とする請求項37に記載のバッテリーモジュール。
  39. 請求項36に記載のバッテリーモジュールを複数含む電源供給装置であって、
    前記バッテリーモジュールは、第1列及び第2列をなして配列され、
    前記第1列のバッテリーモジュール及び前記第2列のバッテリーモジュールは、互い違いに配置され、前記第1列のバッテリーモジュール及び前記第2列のバッテリーモジュールは、互いの間に嵌め込まれて稠密に配列されることを特徴とする電源供給装置。
JP2021099372A 2020-06-15 2021-06-15 バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置 Active JP7081025B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0072607 2020-06-15
KR1020200072607A KR102547068B1 (ko) 2020-06-15 2020-06-15 배터리 팩과, 배터리 팩을 포함하는 배터리 모듈과, 배터리 모듈을 포함하는 전원 공급 장치

Publications (2)

Publication Number Publication Date
JP2021197369A true JP2021197369A (ja) 2021-12-27
JP7081025B2 JP7081025B2 (ja) 2022-06-06

Family

ID=76483143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021099372A Active JP7081025B2 (ja) 2020-06-15 2021-06-15 バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置

Country Status (6)

Country Link
US (1) US20210391619A1 (ja)
EP (2) EP3926724B1 (ja)
JP (1) JP7081025B2 (ja)
KR (1) KR102547068B1 (ja)
CN (1) CN113809414A (ja)
PL (1) PL3926724T3 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594637A (zh) 2020-04-30 2021-11-02 宁德时代新能源科技股份有限公司 电池模组、装置、电池包以及电池模组的制造方法和设备
CN114342173B (zh) 2020-07-29 2023-12-22 宁德时代新能源科技股份有限公司 电池模组、电池包、装置以及电池模组的制造方法和制造设备
EP4064436A4 (en) 2020-09-30 2023-05-03 Contemporary Amperex Technology Co., Limited BATTERY, DEVICE AND METHOD OF MANUFACTURE AND DEVICE FOR A BATTERY
EP4225606A4 (en) * 2020-10-09 2024-05-15 Our Next Energy, Inc. POWER SUPPLY OF AN ELECTRIC VEHICLE
WO2022104547A1 (zh) 2020-11-17 2022-05-27 宁德时代新能源科技股份有限公司 电池、使用电池的装置、电池的制备方法和制备设备
WO2022133959A1 (zh) 2020-12-24 2022-06-30 宁德时代新能源科技股份有限公司 电池模组及其制造方法和设备、电池包及用电装置
CN116438697A (zh) * 2021-07-30 2023-07-14 宁德时代新能源科技股份有限公司 一种电池组、电池包和用电装置
CA3212117A1 (en) 2021-11-12 2023-05-19 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
KR20230099102A (ko) * 2021-12-27 2023-07-04 주식회사 일렉트린 리브 타입 셀 벤트 플레이트 및 배터리 모듈
CN115020877B (zh) * 2022-08-09 2022-11-18 时代广汽动力电池有限公司 一种提高储能能力的新能源电池制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099307A (ja) * 2010-11-01 2012-05-24 Sony Corp 組電池及び電力消費機器
WO2012147137A1 (ja) * 2011-04-28 2012-11-01 トヨタ自動車株式会社 電池パック
KR20130038795A (ko) * 2011-10-10 2013-04-18 주식회사 엘지화학 리튬이온 하이브리드 전지팩
JP2014112463A (ja) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd パック電池
WO2016103658A1 (ja) * 2014-12-26 2016-06-30 三洋電機株式会社 電池パック
US20180351151A1 (en) * 2014-12-18 2018-12-06 Renault S.A.S. Module of primary cells and device for storing electrical energy

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607207A (en) * 1984-10-01 1986-08-19 Bruneau Louis O Battery powering
JP3649983B2 (ja) * 2000-01-31 2005-05-18 三洋電機株式会社 パック電池
US7014949B2 (en) * 2001-12-28 2006-03-21 Kabushiki Kaisha Toshiba Battery pack and rechargeable vacuum cleaner
US20060113965A1 (en) * 2004-11-30 2006-06-01 Yoon-Cheol Jeon Secondary battery module
JP4788311B2 (ja) * 2005-11-22 2011-10-05 トヨタ自動車株式会社 組電池
JP5414962B2 (ja) * 2006-01-16 2014-02-12 パナソニック株式会社 ハイブリッド電源装置
JP2010040226A (ja) * 2008-08-01 2010-02-18 Hitachi Koki Co Ltd 電動工具用電池パック
KR101097268B1 (ko) * 2010-03-03 2011-12-21 삼성에스디아이 주식회사 방열효율 및 장착구조가 개선된 배터리 팩 및 이를 포함하는 배터리 팩 조립체
US9040187B2 (en) * 2010-07-13 2015-05-26 Apple, Inc. Battery pack with cells of different capacities electrically coupled in parallel
KR101233509B1 (ko) * 2011-01-13 2013-02-14 삼성에스디아이 주식회사 배터리 팩 및 배터리 팩 모듈
TWI462380B (zh) * 2011-12-20 2014-11-21 Au Optronics Corp 電芯及其製造方法
US10714980B2 (en) * 2013-03-15 2020-07-14 Christopher V. Beckman System for Monetizing Wireless Power Sharing
KR20140132132A (ko) * 2013-05-07 2014-11-17 주식회사 엘지화학 서로 다른 지름을 가진 원통형 이차전지 셀을 포함하는 이차전지 팩
KR101678537B1 (ko) * 2013-07-31 2016-11-22 삼성에스디아이 주식회사 이차 전지
US9917291B2 (en) * 2015-05-05 2018-03-13 Johnson Controls Technology Company Welding process for a battery module
US20200194742A1 (en) * 2018-12-17 2020-06-18 Robert Bosch Battery Systems, Llc Cap Assembly for Electrochemical Cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099307A (ja) * 2010-11-01 2012-05-24 Sony Corp 組電池及び電力消費機器
JP2014112463A (ja) * 2011-03-25 2014-06-19 Sanyo Electric Co Ltd パック電池
WO2012147137A1 (ja) * 2011-04-28 2012-11-01 トヨタ自動車株式会社 電池パック
KR20130038795A (ko) * 2011-10-10 2013-04-18 주식회사 엘지화학 리튬이온 하이브리드 전지팩
US20180351151A1 (en) * 2014-12-18 2018-12-06 Renault S.A.S. Module of primary cells and device for storing electrical energy
WO2016103658A1 (ja) * 2014-12-26 2016-06-30 三洋電機株式会社 電池パック

Also Published As

Publication number Publication date
PL3926724T3 (pl) 2024-10-07
EP3926724B1 (en) 2024-06-26
EP4421951A2 (en) 2024-08-28
EP3926724A3 (en) 2021-12-29
EP3926724A2 (en) 2021-12-22
CN113809414A (zh) 2021-12-17
US20210391619A1 (en) 2021-12-16
JP7081025B2 (ja) 2022-06-06
KR102547068B1 (ko) 2023-06-23
KR20210155285A (ko) 2021-12-22

Similar Documents

Publication Publication Date Title
JP7081025B2 (ja) バッテリーパック、バッテリーパックを含むバッテリーモジュール、及びバッテリーモジュールを含む電源供給装置
JP5621111B2 (ja) 熱的安定性を改良したバッテリーセル及びそれを使用する中型または大型バッテリーモジュール
US10749226B2 (en) Battery module, and battery pack and vehicle comprising the same
KR101325354B1 (ko) 전지 팩
JP5143909B2 (ja) 放熱特性が優れたバッテリーモジュール及び熱交換部材
JP5601739B2 (ja) 高出力及び大容量のバッテリーパック
JP5242697B2 (ja) 放熱特性が優れたバッテリーセル及びそれを使用する中または大型バッテリーモジュール
EP3346517A1 (en) Battery system
JP6626577B2 (ja) バッテリーモジュール及びこれを含むバッテリーパック、自動車
EP2983239B1 (en) Vehicle battery pack with improved cooling efficiency
US11923523B2 (en) Battery module
US20110189526A1 (en) Energy storage unit
JP6636638B2 (ja) バッテリーモジュール及びこれを含むバッテリーパック、自動車
KR20060125603A (ko) 배터리 팩
JP2012160283A (ja) 電池パック及び電池モジュール
CN113113692A (zh) 电池、电池模组、电池包及电动车
JP2013008649A (ja) リチウムイオン電池及びモジュール
JP2011204584A (ja) 電池モジュール
JP2018170180A (ja) 蓄電デバイス
US9437898B2 (en) Secondary battery including plurality of electrode assemblies
US11342633B2 (en) Current collecting system for battery module, battery module, and vehicle
CN112119524A (zh) 电极组件
JP7439034B2 (ja) 電池スタック
KR102260389B1 (ko) 냉각 성능이 향상된 이차전지셀 및 복수의 이차전지셀로 구성되는 이차전지 모듈
JP2011134549A (ja) 電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220525

R150 Certificate of patent or registration of utility model

Ref document number: 7081025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150