WO2022226974A1 - 电池组、电池包、用电装置以及电池组的制造方法及制造设备 - Google Patents

电池组、电池包、用电装置以及电池组的制造方法及制造设备 Download PDF

Info

Publication number
WO2022226974A1
WO2022226974A1 PCT/CN2021/091384 CN2021091384W WO2022226974A1 WO 2022226974 A1 WO2022226974 A1 WO 2022226974A1 CN 2021091384 W CN2021091384 W CN 2021091384W WO 2022226974 A1 WO2022226974 A1 WO 2022226974A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
cells
unit
type
Prior art date
Application number
PCT/CN2021/091384
Other languages
English (en)
French (fr)
Inventor
徐晓富
胡霞
叶永煌
徐广玉
金海族
梁成都
李全国
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21912313.0A priority Critical patent/EP4106097A1/en
Priority to CN202180032325.6A priority patent/CN115552712A/zh
Priority to PCT/CN2021/091384 priority patent/WO2022226974A1/zh
Priority to US17/963,368 priority patent/US20230048691A1/en
Publication of WO2022226974A1 publication Critical patent/WO2022226974A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage devices, and in particular, to a battery pack, a battery pack, an electrical device, a battery pack manufacturing method, and a battery pack manufacturing device.
  • Secondary battery is a clean and renewable resource, which can be used as driving energy or storage unit in automobile, energy storage and other fields. With the improvement of energy and environmental protection requirements, the application of secondary batteries has become increasingly popular and widespread. In order to meet the needs of different environments and application scenarios, the industry puts forward new requirements for the performance of secondary batteries.
  • a plurality of single cells of the same chemical system are usually connected in series and parallel to form a battery pack or battery pack with a higher capacity to output electric energy.
  • a large amount of heat is released instantaneously, causing other cells to be greatly affected, resulting in thermal runaway of the entire battery pack or battery pack.
  • the present application is made in view of the above problems in the prior art, and its purpose is to provide a battery pack, which includes a first type of battery cell and a second type of battery cell with different chemical systems, the first type of battery cell and The second type of cells are at least electrically connected in series.
  • a first aspect of the present application provides a battery pack, comprising at least first type cells and second type cells electrically connected in series, wherein the first type cells and the second type cells are of different chemistries
  • the battery cell of the system the first type battery cell includes N first battery cells, the second type battery cell includes M second battery cells, and N and M are integers greater than or equal to 1; and the first battery cell
  • the core and the second battery at least satisfy the following relationship: (1) S1 ⁇ CD1 ⁇ S2 ⁇ CD2; (2) 4.5 ⁇ 10 3 ⁇ S1 ⁇ C1 ⁇ 3.6 ⁇ 10 4 , unit: Ah ⁇ W ⁇ °C/( g ⁇ L); (3) 3 ⁇ 10 4 ⁇ S2 ⁇ CD2 ⁇ 8.5 ⁇ 10 5 , unit: Ah ⁇ W ⁇ °C/(g ⁇ L); wherein, S1 is the positive electrode of the first battery cell per unit mass
  • the DSC exothermic heat of the pole piece in the nitrogen atmosphere in the range of 50°C ⁇ 500°C, unit: W ⁇ °C/g; S2 is the unit mass
  • the battery pack includes m second cells adjacent to at least one of the first cells and continuously arranged, and satisfies: 1.33m ⁇ m ⁇ S2 ⁇ CD2/( S1 ⁇ CD1) ⁇ 113, 1 ⁇ m ⁇ 50.
  • the battery pack includes m second cells adjacent to at least one of the first cells and consecutively arranged, and satisfies: T1 ⁇ 0.05 ⁇ m ⁇ T2, m ⁇ 1.
  • T1 is the thickness of the first cell
  • T2 is the thickness of the second cell, in mm; optionally, T1 ⁇ 0.33 ⁇ m ⁇ T2.
  • the battery pack is composed of one or more repeating units, the repeating units include P first cells and Q second cells, and P and Q are integers of 1 or more, The following relationship is satisfied: 15167 ⁇ (P ⁇ S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/(P+Q) ⁇ 109909; optionally, 31200 ⁇ (P ⁇ S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/(P +Q) ⁇ 102600.
  • the positive active material of the first battery cell includes at least one of the lithium-containing phosphate represented by formula (I) or the lithium manganese-based oxide represented by formula (II),
  • M' is selected from one or more of transition metal elements and non-transition metal elements except Fe and Mn;
  • the positive active material of the first cell includes LiFePO 4 , LiMnPO 4 , LiMn 1-x3 Fe x3 PO 4 , LiV 1-x3 Fe x3 PO 4 , LiMn 2 O 4 , LiMn 1.9 One or more of Al 0.1 O 4 , wherein x3 independently satisfies 0 ⁇ x3 ⁇ 1.
  • the lithium-containing phosphate represented by the formula (I) or the lithium-containing phosphate represented by the formula (II) is 100% by weight of the positive active material of the first battery
  • the weight percentage of at least one of the lithium manganese-based oxides is not less than 30%.
  • the positive electrode active material of the second battery cell includes a lithium transition metal oxide represented by formula (III),
  • M is selected from Mn, Fe, Cr, Ti, Zn, V, One or more of Al, Zr and Ce, A is selected from one or more of S, F, Cl and I; optionally, 0.5 ⁇ a ⁇ 0.95, 0 ⁇ b ⁇ 0.15.
  • the weight percentage of the lithium transition metal oxide represented by the formula (III) is not less than 70% based on the weight of the positive electrode active material of the second battery cell as 100%.
  • a second aspect of the present application provides a battery pack, including the battery pack described in the first aspect.
  • a third aspect of the present application provides an electrical device, comprising the battery pack described in the first aspect or the battery pack described in the second aspect, wherein the battery pack or the battery pack serves as a power source of the electrical device. Power supply or energy storage unit.
  • a fourth aspect of the present application provides a method for manufacturing a battery pack, comprising the following steps:
  • the first-type battery cell and the second-type battery cell are batteries of different chemical systems, and the first-type battery cell includes N first-type battery cells ,
  • the second type of battery cell includes M second battery cells, where N and M are integers greater than or equal to 1, and
  • the first cell and the second cell at least satisfy the following relationship:
  • S1 is the DSC heat release per unit mass of the positive pole piece of the first battery cell in a nitrogen atmosphere in the range of 50°C to 500°C, unit: W ⁇ °C/g
  • S2 is the unit mass of the second battery cell.
  • CD1 and CD2 are the unit volume capacity of the first cell and the second cell, respectively, in unit : Ah/L; and
  • the first type of cells and the second type of cells are electrically connected in a manner including series connection to form the battery pack described in the first aspect of the present application.
  • a fifth aspect of the present application provides a manufacturing equipment for a battery pack, including:
  • a clamping arm unit is used to obtain a first type of battery cell and a second type of battery cell
  • the first type of battery cell and the second type of battery cell are batteries of different chemical systems
  • the first type of battery cells One type of cell includes N first cells
  • the second type of cell includes M second cells
  • N and M are integers greater than 1
  • the first cell and the second cell at least satisfy the following relationship:
  • S1 is the DSC heat release per unit mass of the positive pole piece of the first cell in a nitrogen atmosphere in the range of 50°C to 500°C, unit: W ⁇ °C/g
  • S2 is the unit mass of the second cell
  • CD1 and CD2 are the unit volume capacity of the first cell and the second cell, respectively, in unit : Ah/L;
  • an assembling unit the assembling unit is used to connect the first type battery cells and the second type battery cells at least in series to form the battery pack according to the first aspect;
  • control unit which is used for controlling the clamping arm unit and the assembling unit.
  • the battery pack contains the first type of cells and the second type of cells with different chemical systems, and the product of the total area of the DSC exothermic peak of the positive electrode in the cell and the cell capacity is used to characterize the abnormality of the single cell.
  • the maximum heat release that may be released under the condition by matching the heat release of the first type of cells and the second type of cells, to avoid the heat spread to other single cells when a single cell in the battery pack is thermally out of control. , thereby improving the safety performance of the battery pack.
  • the battery pack and the electrical device in the present application include the battery pack, it has at least the same technical advantages as the battery pack.
  • FIG. 1 is a schematic diagram showing one example of a cell of the present application.
  • FIG. 2 is an exploded view showing one example of the cell of the present application shown in FIG. 1 .
  • FIG. 3 is a schematic diagram showing one example of the battery pack of the present application.
  • FIG. 4 is a schematic diagram showing one example of the battery pack of the present application.
  • FIG. 5 is an exploded view showing one example of the battery pack of the present application shown in FIG. 4 .
  • FIG. 6 is a schematic diagram showing an example of a power consumption device using the battery pack of the present application as a power source.
  • FIG. 7 is a schematic diagram showing the DSC curves of the positive electrode plates of cells of different chemical systems obtained by DSC testing.
  • a “range” disclosed herein is defined in the form of a lower limit and an upper limit, a given range being defined by the selection of a lower limit and an upper limit, the selected lower limit and the upper limit defining the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive, and may be arbitrarily combined, ie, any lower limit may be combined with any upper limit to form a range. For example, if the ranges of 60-120 and 80-110 are listed for a particular parameter, it is to be understood that the ranges of 60-110 and 80-120 are also contemplated.
  • the numerical range "a-b" represents an abbreviated representation of any combination of real numbers between a and b, where both a and b are real numbers.
  • the numerical range "0-5" means that all real numbers between "0-5" have been listed in the text, and "0-5" is just an abbreviated representation of the combination of these numerical values.
  • a parameter is expressed as an integer greater than or equal to 2, it is equivalent to disclose that the parameter is, for example, an integer of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and the like.
  • the method includes steps (a) and (b), indicating that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • reference to the method may further include step (c), indicating that step (c) may be added to the method in any order, eg, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • the "comprising” and “comprising” mentioned in this document indicate an open type, and can also be a closed type.
  • the terms “comprising” and “comprising” can mean that other components not listed may also be included or included, or only the listed components may be included or included.
  • the term "or” is inclusive.
  • the phrase “A or B” means “A, B, or both A and B.” More specifically, the condition “A or B” is satisfied by either of the following: A is true (or present) and B is false (or absent); A is false (or absent) and B is true (or present) ; or both A and B are true (or present).
  • cell refers to a battery cell that can be independently charged and discharged.
  • the battery cell includes a positive pole piece, a negative pole piece, a separator, an electrolyte, and an outer package for encapsulating the positive pole piece, the negative pole piece, the separator and the electrolyte.
  • the application does not have any special restrictions on the type and shape of the cells, which may be soft-wrapped cells, cylindrical cells, or square cells and other types of cells.
  • the batteries in this application can be lithium-ion batteries, potassium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, etc., and are particularly preferably lithium-ion batteries.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive electrode and the negative electrode.
  • cell refers to a battery cell that can be independently charged and discharged.
  • the components of the battery cell may include positive pole pieces, negative pole pieces, separators, electrolytes, and outer packaging for encapsulating the positive pole pieces, negative pole pieces, separators, and electrolytes.
  • the application does not have any special restrictions on the type and shape of the cells, which may be soft-wrapped cells, cylindrical cells, or square cells and other types of cells.
  • the batteries in this application can be lithium-ion batteries, potassium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, etc., and are particularly preferably lithium-ion batteries.
  • active ions are inserted and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive electrode and the negative electrode.
  • the "chemical system" of the battery cell is divided according to the composition of the positive electrode active material used in the positive electrode sheet in the battery cell, and the elements or substances that are doped or coated with the positive electrode active material are not limited.
  • a battery cell whose positive active material is lithium iron phosphate (including doped with Mn or V element) can be defined as a lithium iron phosphate chemical system battery cell.
  • a cell whose positive active material is nickel cobalt lithium manganate (generally referred to as NCM) can be defined as an NCM chemical system cell.
  • the chemical system of the battery cell can be further limited according to the relative content of nickel , cobalt , and manganese elements in the positive electrode active material.
  • the positive active material is LiNi 0.6 Co 0.2 Mn 0.2 O 2 (generally referred to as NCM622) battery can be defined as NCM622 chemical system battery, the positive active material is LiNi 0.8 Co 0.1 Mn 0.1 O 2 ( Generally referred to as NCM811) cells can be defined as NCM811 chemical system cells.
  • the nickel-cobalt-aluminate lithium system battery (commonly referred to as NCA) as the positive electrode material can be defined as the NCA chemical system battery.
  • NCA nickel-cobalt-aluminate lithium system battery
  • a hybrid system cell can also be used, for example, a hybrid system cell including NCM and NCA.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector and comprising a positive electrode active material.
  • the positive electrode current collector has two opposite surfaces in its thickness direction, and the positive electrode film layer is disposed on either or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector, for example, the metal foil may be an aluminum foil, and the composite current collector may include a polymer material base layer and a layer formed on the polymer material. A metal layer on at least one surface of the material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) Glycol ester PET, polybutylene terephthalate PBT, polystyrene PS, polyethylene PE and its copolymers etc.
  • metal materials aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.
  • Glycol ester PET polybutylene terephthalate PBT, polystyrene PS, polyethylene PE and its copolymers etc.
  • the positive electrode active material can be a known positive electrode active material for battery cells in the art.
  • the positive active material may include one or more of the following: an olivine-structured lithium-containing phosphate, a lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials for battery cells can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include but are not limited to lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM333), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (NCM211), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), lithium nickel cobalt aluminum oxide (such as LiNi 0.85 Co 0.15 Al 0.05 O 2 ) and one or more of its modified compounds, etc.
  • lithium cobalt oxides such as LiCoO 2
  • lithium nickel oxides such as Li
  • olivine-structured lithium-containing phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (LFP)), phosphoric acid One or more of composite materials of lithium iron and carbon, lithium manganese phosphate (such as LiMnPO 4 ), composite materials of lithium manganese phosphate and carbon, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (LFP)
  • phosphoric acid One or more of composite materials of lithium iron and carbon, lithium manganese phosphate (such as LiMnPO 4 ), composite materials of lithium manganese phosphate and carbon, lithium iron manganese phosphate, and composite materials of lithium iron manganese phosphate and carbon.
  • the positive electrode film layer also optionally includes a binder.
  • binders that can be used in the positive film layer may include one or more of the following: polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene tri- Element copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene-propylene tri- Element copolymer
  • vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer vinyliden
  • the positive electrode film layer may also optionally contain a conductive agent.
  • the conductive agent used in the positive electrode film layer may include one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode can be prepared by dispersing the above-mentioned components for preparing the positive electrode, such as positive electrode active material, conductive agent, binder and any other components, in a solvent (such as N- Methylpyrrolidone), a uniform positive electrode slurry is formed; the positive electrode slurry is coated on the positive electrode current collector, and the positive electrode sheet can be obtained after drying, cold pressing and other processes.
  • a solvent such as N- Methylpyrrolidone
  • the battery cell of the present application includes a negative electrode plate, the negative electrode plate includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, and the negative electrode film layer contains a negative electrode active material.
  • the negative electrode active material in the negative electrode film layer can be a negative electrode active material commonly used in the art, for example, natural graphite, artificial graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, One or more of lithium titanate.
  • the silicon-based material may be selected from one or more of elemental silicon, silicon oxide, and silicon-carbon composite.
  • the tin-based material can be selected from one or more of elemental tin, tin oxide compounds, and tin alloys.
  • the negative electrode membrane in addition to the negative electrode active material, may further comprise an optional binder, an optional conductive agent and other optional auxiliary agents.
  • the negative electrode membrane of the present application is usually formed by coating and drying the negative electrode slurry.
  • the negative electrode slurry is usually formed by dispersing the negative electrode active material and optional conductive agent and binder in a solvent and stirring uniformly.
  • the above solvent may be N-methylpyrrolidone (NMP) or deionized water.
  • the conductive agent may include one or more of superconducting carbon, carbon black (eg, acetylene black, ketjen black), carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • carbon black eg, acetylene black, ketjen black
  • carbon dots carbon nanotubes, graphene, and carbon nanofibers.
  • the binder may include styrene-butadiene rubber (SBR), water-soluble unsaturated resin SR-1B, polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA) , one or more of sodium alginate (SA) and carboxymethyl chitosan (CMCS).
  • the binder may include one of styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), sodium alginate (SA), polymethacrylic acid (PMAA), and carboxymethyl chitosan (CMCS) or several.
  • Other optional auxiliary agents are, for example, thickeners (such as sodium carboxymethyl cellulose CMC-Na), PTC thermistor materials, and the like.
  • the negative electrode sheet does not exclude other additional functional layers other than the negative electrode film layer.
  • the negative electrode sheet of the present application may further include a conductive primer layer (eg, a conductive agent and a bonding agent) disposed on the surface of the negative electrode current collector sandwiched between the negative electrode current collector and the first negative electrode film layer. composition).
  • the negative electrode sheet of the present application may further include a protective cover layer covering the surface of the second negative electrode film layer.
  • the negative electrode current collector may be a metal foil or a composite current collector, for example, the metal foil may be a foil composed of copper foil, silver foil, iron foil, or an alloy of the above metals.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer. ) formed on the base layer of polymer materials (such as polypropylene PP, polyethylene terephthalate PET, polybutylene terephthalate PBT, polystyrene PS, polyethylene PE and its copolymers, etc.). formed on the base layer).
  • polymer materials such as polypropylene PP, polyethylene terephthalate PET, polybutylene terephthalate PBT, polystyrene PS, polyethylene PE and its copolymers, etc.
  • the electrolyte plays the role of conducting ions between the positive electrode and the negative electrode.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), bisfluorosulfonylidene Lithium Amide (LiFSI), Lithium Bistrifluoromethanesulfonimide (LiTFSI), Lithium Trifluoromethanesulfonate (LiTFS), Lithium Difluorooxalate Borate (LiDFOB), Lithium Dioxalate Borate (LiBOB), Lithium Difluorophosphate One or more of (LiPO 2 F 2 ), lithium difluorodioxalate phosphat
  • the solvent may be selected from one or more of the following: ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate ( DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), butylene carbonate (BC), fluoroethylene carbonate (FEC) ), methyl formate (MF), methyl acetate (MA), ethyl acetate (EA), propyl acetate (PA), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl butyrate (MB), ethyl butyrate (EB), 1,4-butyrolactone (GBL), sulfolane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and Eth
  • the content of the solvent is 60-99 wt %, for example, 65-95 wt %, or 70-90 wt %, or 75- 89% by weight, or 80-85% by weight. In an embodiment of the present application, based on the total weight of the electrolyte, the content of the electrolyte is 1-40 wt %, for example 5-35 wt %, or 10-30 wt %, or 11- 25% by weight, or 15-20% by weight.
  • the electrolyte may optionally contain additives.
  • the additives may include one or more of the following: negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performance of the battery, such as additives to improve battery overcharge performance, additives to improve battery high temperature performance, Additives to improve low temperature performance of batteries, etc.
  • the battery cell further includes a separator, which separates the positive electrode piece and the negative electrode piece of the battery cell, and provides selective permeation to substances of different types, sizes and charges in the system. Or blocking, for example, the separator can insulate the electrons, physically isolate the positive and negative active materials of the cell, prevent the internal short circuit and form an electric field in a certain direction, and at the same time enable the ions in the battery to pass through the separator between the positive and negative electrodes. move between.
  • a separator which separates the positive electrode piece and the negative electrode piece of the battery cell, and provides selective permeation to substances of different types, sizes and charges in the system. Or blocking, for example, the separator can insulate the electrons, physically isolate the positive and negative active materials of the cell, prevent the internal short circuit and form an electric field in a certain direction, and at the same time enable the ions in the battery to pass through the separator between the positive and negative electrodes. move between.
  • the material used to prepare the separator may include one or more of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film. When the separator is a multi-layer composite film, the materials of each layer can be the same or different.
  • the above-mentioned positive electrode sheet, negative electrode sheet and separator can be made into electrode assemblies/bare cell cores through a winding process or a lamination process.
  • the battery cell further includes an outer package, and the outer package can be used to encapsulate the above-mentioned electrode assembly and the electrolyte.
  • the outer packaging of the cell may be a hard case, such as a hard plastic case, an aluminum case, a steel case, and the like.
  • the outer package of the battery cell may be a soft package, such as a bag-type soft package.
  • the material of the soft bag may be plastic, such as one or more of polypropylene (PP), polybutylene terephthalate (PBT), polybutylene succinate (PBS), and the like.
  • FIG. 1 is a schematic diagram showing one example of the battery cell 5 of the present application.
  • FIG. 2 is an exploded view showing one example of the battery cell 5 of the present application shown in FIG. 1 .
  • the outer package may include a casing 51 and a cover plate 53 , the casing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate are enclosed to form a receiving cavity.
  • the housing 51 has an opening that communicates with the accommodating cavity, and a cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be rolled or laminated to form the electrode assembly 52 , the electrode assembly is packaged in the accommodating cavity, and the electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 included in the battery cell 5 may be one or more.
  • a “battery pack” is formed by electrically connecting a certain number of cells together and putting them into a frame in order to protect the cells from external impact, heat, vibration, etc.
  • the shape of the battery cell of the present application can be cylindrical, square or any other shape.
  • the battery pack contains two or more cells, the specific number of which depends on the application of the battery pack and the parameters of a single battery pack.
  • FIG. 3 is a schematic diagram showing one example of the battery pack of the present application.
  • a plurality of cells 5a, 5b may be arranged in sequence along the length direction of the battery pack 4 (5a may be the first cell, 5b may be the second cell). Of course, it can also be arranged in any other manner. Further, the plurality of battery cells 5a and 5b can be fixed by fasteners.
  • the battery pack 4 may further include a housing having an accommodating space, and the plurality of packs 5a, 5b are accommodated in the accommodating space.
  • a first aspect of the present application provides a battery pack, comprising at least first type cells and second type cells electrically connected in series, wherein the first type cells and the second type cells are of different chemistries
  • the battery cell of the system the first type battery cell includes N first battery cells, the second type battery cell includes M second battery cells, and N and M are integers greater than or equal to 1; and the first battery cell
  • the core and the second battery at least satisfy the following relationship: (1) S1 ⁇ CD1 ⁇ S2 ⁇ CD2; (2) 4.5 ⁇ 10 3 ⁇ S1 ⁇ C1 ⁇ 3.6 ⁇ 10 4 , unit: Ah ⁇ W ⁇ °C/( g ⁇ L); (3) 3 ⁇ 10 4 ⁇ S2 ⁇ CD2 ⁇ 8.5 ⁇ 10 5 , unit: Ah ⁇ W ⁇ °C/(g ⁇ L); wherein, S1 is the positive electrode of the first battery cell per unit mass
  • the total amount of DSC exothermic heat of the pole piece in the nitrogen atmosphere in the range of 50°C ⁇ 500°C, unit: W ⁇ °C/g;
  • the inventors have found through extensive research that the product of the total area of the DSC exothermic peak of the positive pole piece in a single cell and the cell capacity can more accurately and objectively reflect that the single cell is under abnormal conditions (such as , internal short circuit, etc.) the maximum heat that may be released.
  • abnormal conditions such as , internal short circuit, etc.
  • the first type of cells and the second type of cells with different heat release and different chemical chemical systems into groups, on the basis of forming a large-capacity battery pack with high energy density, it can effectively improve the performance of the battery pack.
  • thermal runaway of a single cell the heat spread to the adjacent single cells in the battery pack, thereby improving the safety performance of the battery pack.
  • the DSC exothermic peak amount per unit mass of the positive electrode piece of the first cell or the second cell under nitrogen atmosphere at 50°C to 500°C can be measured by a method known in the art.
  • Test conditions Test equipment model: NETZSCH STA 449F3; Sample: The positive pole piece is punched into a small disc with a diameter of 5mm (including the current collector, when calculating the heat release per unit mass, the mass of the current collector needs to be deducted); the start of the test Temperature: room temperature; heating rate: 10K/min; test atmosphere: nitrogen; sample preparation environment: glove box sample preparation;
  • the sample of the positive electrode piece can be the positive electrode piece that has not been put into the battery cell, or the positive electrode piece that has been disassembled from the battery cell that has participated in the charging and discharging process.
  • the sample of the positive pole piece is the positive pole piece obtained by disassembling the cell that has participated in the charging and discharging process, the following steps can be used to obtain the positive pole piece sample:
  • FIG. 7 is a schematic diagram showing the DSC curves of the positive electrode plates of cells of different chemical systems obtained by DSC testing.
  • the ordinate is the heat flow
  • the unit is mW/mg
  • the abscissa is the temperature
  • the unit is °C.
  • the DSC curve can reflect the endothermic and exothermic characteristics at a certain peak position.
  • the integral area is a parameter obtained by integrating the DSC curve in FIG. 7 in the range of 50°C to 500°C, and the integral area can reflect the thermal stability of the positive electrode active material.
  • the cells are not limited to being square-shell cells, but can also be other types of cells such as cylindrical cells.
  • the unit volume capacity of the first battery cell or the second battery cell can be measured by a method known in the art.
  • the method can be measured to obtain:
  • Test method of battery capacity select the battery to be tested, use the battery charger and discharge machine and the high and low temperature box, and test the standard rate full charge capacity and discharge capacity of the battery at 25°C.
  • the discharge capacity is the battery. core capacity value.
  • the charging and discharging rate is 0.33C (C represents the rated capacity of the battery cell.
  • the charging/discharging current is the rate multiplied by the rated capacity of the battery cell, and the rated capacity is based on the battery cell capacity identified in the GBT certification document of the battery cell. );
  • Test method for cell volume If the cell is a square shell cell, the cell volume is the product of the length, height and thickness of the cell shell, and the height direction does not include the height of the pole, unit: liter ( L). If the cell is a soft-wrapped cell, the volume of the cell is: the product of (length+2 ⁇ R) and (height+2 ⁇ R) and thickness of the soft-wrapped cell, where R is the aluminum-plastic film package Chamfer radius, the height is the height of the tab/pole without the cell, unit: liter (L). If the cell is a cylindrical cell, the volume of the cell is: the product of the bottom area of the cylinder and the height of the cell, where the height direction does not include the height of the pole, unit: liter (L).
  • cells of different chemical systems are classified by the thermal stability of the positive active material in the cells and the capacity characteristics of the cells per unit volume, and cells with different safety characteristics and capacity characteristics are assembled to form batteries.
  • the battery pack/battery pack can ensure that the battery pack and battery pack have high capacity density and high safety at the same time.
  • S1 ⁇ CD1 can be 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 10500, 11000 ⁇ 11500 ⁇ 12000 ⁇ 12500 ⁇ 13000 ⁇ 13500 ⁇ 14000 ⁇ 14500 ⁇ 15000 ⁇ 15500 ⁇ 16000 ⁇ 16500 ⁇ 17000 ⁇ 17500 ⁇ 18000 ⁇ 18500 ⁇ 19000 ⁇ 19500 ⁇ 20000 ⁇ 20500 ⁇ 21000 ⁇ 21500 ⁇ 22000 ⁇ 22500 ⁇ 23000 ⁇ 23500, 24000, 24500, 25000, or a value within the range obtained by combining any two of the above values.
  • the maximum heat release that the first type of battery cell may release can be maintained at a lower range, which is conducive to further improving the heat spread and further improving the battery pack’s performance. safety performance.
  • 4.03 ⁇ 10 4 ⁇ S2 ⁇ CD2 ⁇ 2.7 ⁇ 10 5 can be 40300, 41000, 42000, 43000, 44000, 45000, 46000, 47000, 48000, 49000, 50000, 51000, 52000, 53000, 54000, 55000, 56000, 57000, 50000, 59000, 600 62000, 63000, 64000, 65000, 66000, 67000, 68000, 69000, 70000, 71000, 72000, 73000, 74000, 75000, 76000, 78000, 79000, 81000, 83000, 84000, 85000, 86000, 86000, 86000 87000 ⁇ 88000 ⁇ 89000 ⁇ 90000 ⁇ 91000 ⁇ 92000 ⁇ 93000 ⁇ 94000 ⁇ 95000 ⁇ 96000 ⁇ 97000 ⁇ 98000 ⁇ 99000 ⁇ 100000 ⁇ 101000 ⁇ 102000 ⁇ 103000 ⁇ 104000 ⁇ 105000 ⁇ 106000 ⁇ 107000 ⁇ 108000 ⁇ 109000 ⁇ 110000 ⁇ 111000 ⁇ 112000, 113000
  • the maximum heat release that the second type of battery cell may release can be maintained within a controllable range, and when thermal runaway occurs, the single cell can release
  • the heat output is limited, which is also conducive to further improving the heat spread and further improving the safety performance of the battery pack.
  • the battery pack includes m second cells that are adjacent to and consecutively arranged with at least one of the first cells, and satisfy: 1.33m ⁇ m ⁇ S2 ⁇ CD2/ (S1 ⁇ CD1) ⁇ 113, 1 ⁇ m ⁇ 50.
  • m ⁇ S2 ⁇ CD2/(S1 ⁇ CD1) can be 1.33, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 113, or a numerical value thereof within the range obtained by combining any two of the above numerical values.
  • the number of the second battery cells adjacent to one side of the first battery cell is limited, so as to guide the arrangement method in specific use.
  • the number of the second battery cells adjacent to the first battery cell and continuously arranged can be further controlled.
  • the number of second cells with adjacent and consecutively arranged cells is m (m ⁇ 1), and when m ⁇ S2 ⁇ CD2/(S1 ⁇ CD1) is within the above range, it can effectively prevent too many second cells from accumulating continuously. It is avoided that when the failed cell is the second cell, the energy and temperature released by the common failure of consecutive second cells are too high, thereby causing the thermal runaway of the entire battery pack.
  • the battery pack includes m second battery cells that are adjacent to at least one of the first battery cells and are continuously arranged, and satisfy: T1 ⁇ 0.05 ⁇ m ⁇ T2, m ⁇ 1, where T1 is the thickness of the first cell, and T2 is the thickness of the second cell, in mm.
  • the thickness of the cell refers to the length in the direction perpendicular to the adjacent veneer.
  • the thickness of the cell can be flexibly designed. The thickness relationship of the two cells is adjusted.
  • the length of the battery pack is generally limited by the thickness of each cell, and the thickness of the cell is an important factor in preventing the spread of heat.
  • the thickness of the second cell When a single second cell fails, the greater the thickness of the second cell, the more The more the number of adjacent second cells, the higher the total energy that can be released when it fails. Therefore, it is necessary to adjust the thickness of the first cell to effectively absorb the above heat release without fire, and at the same time prolong the thermal barrier. time, so as to achieve the effect of blocking the heat spread of the overall battery pack/battery pack.
  • the battery pack is composed of one or more repeating units, the repeating units include P first cells and Q second cells, and P and Q are integers greater than 1 , satisfying the following relationship: 15167 ⁇ (P ⁇ S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/(P+Q) ⁇ 109909; optionally, 31200 ⁇ (P ⁇ S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/( P+Q) ⁇ 102600.
  • (P ⁇ S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/(P+Q) can be 75000, 80000, 85000, 90000, 95000, 100000, 102600, 109909, or a value within the range obtained by combining any two of the above.
  • the repeating unit in order to ensure the heat spread barrier effect of the overall battery pack/battery pack during assembly, the repeating unit can also be optimized for parameters.
  • the (P ⁇ When S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/(P+Q) is within the above range, it can ensure that when multiple battery packs are assembled arbitrarily, the overall energy can be controlled when they fail.
  • the interval or continuous arrangement of the second type of cells can be satisfied under the condition of the spreading barrier effect, which can make the safety performance and capacity density of the entire battery pack/battery pack average, and balance the safety performance and capacity of the battery pack/battery pack. density.
  • the principles for identifying repeating units in a battery pack are as follows: take a complete column in the battery pack along the thickness direction of the cells, and according to the repetition law of the first cell and the second cell, if the When the unit formed by the first cell and the second cell can be completely repeated, the smallest unit can be defined as the repeating unit in the battery pack. If the unit formed by the first cell and the second cell in this row cannot be completely repeated, the row itself only constitutes one repeating unit.
  • the positive active material of the first battery cell includes at least one of the lithium-containing phosphate represented by formula (I) or the lithium manganese-based oxide represented by formula (II) ,
  • M' is selected from one or more of transition metal elements and non-transition metal elements except Fe and Mn;
  • the positive active material of the first cell includes LiFePO 4 , LiMnPO 4 , LiMn 1-x3 Fe x3 PO 4 , LiV 1-x3 Fe x3 PO 4 , LiMn 2 O 4 , LiMn 1.9 One or more of Al 0.1 O 4 , wherein x3 independently satisfies 0 ⁇ x3 ⁇ 1.
  • the lithium-containing phosphate represented by the formula (I) or the lithium-containing phosphate represented by the formula (II) is 100% by weight of the positive electrode active material of the first battery cell.
  • the weight percentage of at least one of the lithium manganese-based oxides is not less than 30%.
  • the positive active material of the second battery cell includes a lithium transition metal oxide represented by formula (III),
  • M is selected from Mn, Fe, Cr, Ti, Zn, V, One or more of Al, Zr and Ce, A is selected from one or more of S, F, Cl and I; optionally, 0.5 ⁇ a ⁇ 0.95, 0 ⁇ b ⁇ 0.15.
  • the weight percentage of the lithium transition metal oxide represented by the formula (III) is not less than 70% based on the weight of the positive electrode active material of the second cell as 100%.
  • two or more of the above-described battery packs may be assembled into a battery pack, and the number of battery packs contained in the battery pack depends on the application of the battery pack and the parameters of the individual battery packs.
  • the battery pack may include a battery box and a plurality of battery packs arranged in the battery box, the battery box includes an upper box body and a lower box body, the upper box body can be covered on the lower box body and is well matched with it, and is formed for accommodating batteries Group of enclosed spaces.
  • Two or more battery packs can be arranged in the battery box in a desired manner.
  • a "battery pack" is made by further assembling various control and protection systems such as a battery management system and a thermal management system for one or more battery packs (or a combination directly formed by a plurality of cells).
  • FIG. 4 is a schematic diagram showing one example of the battery pack 1 of the present application.
  • FIG. 5 is an exploded view showing one example of the battery pack 1 of the present application shown in FIG. 4 .
  • the battery pack 1 may include a battery case and a plurality of battery packs 4 provided in the battery case.
  • the battery box includes an upper box body 2 and a lower box body 3 .
  • the upper box body 2 is used to cover the lower box body 3 and form a closed space for accommodating the battery pack 4 .
  • the plurality of battery packs 4 can be arranged in the battery case in any manner.
  • the electrical device of the present application includes at least one of a battery pack or a battery pack of the present application, and the battery pack or battery pack can be used as a power source of the electrical device, It can also be used as an energy storage unit for the electrical consumer.
  • the electrical devices include but are not limited to mobile digital devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric Golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • FIG. 6 is a schematic diagram showing an example of a power consumption device using the battery pack of the present application as a power source.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or battery pack can be used.
  • the present application proposes a method for manufacturing a battery pack, comprising the following steps:
  • the first type of batteries and the second type of batteries are batteries of different chemical systems
  • the first type of battery cell includes N first battery cells,
  • the second type of battery cell includes M second battery cells, where N and M are integers greater than or equal to 1, and
  • the first cell and the second cell at least satisfy the following relationship: (1) S1 ⁇ CD1 ⁇ S2 ⁇ CD2; (2) 4.5 ⁇ 10 3 ⁇ S1 ⁇ C1 ⁇ 3.6 ⁇ 10 4 , unit: Ah ⁇ W ⁇ °C/(g ⁇ L); (3) 3 ⁇ 10 4 ⁇ S2 ⁇ CD2 ⁇ 8.5 ⁇ 10 5 , unit: Ah ⁇ W ⁇ °C/(g ⁇ L); wherein, S1 is the unit mass of the The DSC exothermic heat of the positive pole piece of one cell in a nitrogen atmosphere in the range of 50°C to 500°C, unit: W ⁇ °C/g; S2 is the unit mass of the positive pole piece of the second cell in a nitrogen atmosphere, 50°C DSC exothermic heat in the range of ⁇ 500°C, unit: W ⁇ °C/g; CD1 and CD2 are the unit volume capacity of the first cell and the second cell, respectively, unit: Ah/L; and
  • the cells of the first type and the cells of the second type are electrically connected at least in series to form the battery pack according to the first aspect of the present application.
  • the present application proposes a manufacturing equipment for a battery pack, including:
  • the clamping arm unit is used to obtain the first type of cells and the second type of cells,
  • the first type of batteries and the second type of batteries are batteries of different chemical systems
  • the first type of battery cell includes N first battery cells,
  • the second type of battery cell includes M second battery cells, where N and M are integers greater than or equal to 1, and
  • the first cell and the second cell at least satisfy the following relationship: (1) S1 ⁇ CD1 ⁇ S2 ⁇ CD2; (2) 4.5 ⁇ 10 3 ⁇ S1 ⁇ C1 ⁇ 3.6 ⁇ 10 4 , unit: Ah ⁇ W ⁇ °C/(g ⁇ L); (3) 3 ⁇ 10 4 ⁇ S2 ⁇ CD2 ⁇ 8.5 ⁇ 10 5 , unit: Ah ⁇ W ⁇ °C/(g ⁇ L); wherein, S1 is the unit mass of the The DSC exothermic heat of the positive pole piece of one cell in a nitrogen atmosphere in the range of 50°C to 500°C, unit: W ⁇ °C/g; S2 is the unit mass of the positive pole piece of the second cell in a nitrogen atmosphere, 50°C DSC exothermic heat in the range of ⁇ 500°C, unit: W ⁇ °C/g; CD1 and CD2 are the unit volume capacity of the first cell and the second cell, respectively, unit: Ah/L;
  • an assembling unit for electrically connecting the first type of cells and the second type of cells at least in series to form the battery pack according to the first aspect of the present application;
  • control unit which is used for controlling the clamping arm unit and the assembling unit.
  • the positive active material (see Table 1 for the type of positive active material and its relative mass ratio in each embodiment), the conductive carbon Super P, and the binder polyvinylidene fluoride (PVDF) are in a weight ratio of 95:3:2. , fully stir and mix in an appropriate amount of N-methylpyrrolidone (abbreviated as NMP) solvent to form a uniform and stable slurry with a viscosity of 10000mPa ⁇ s. layers or subsidence.
  • NMP N-methylpyrrolidone
  • the positive electrode material slurry is uniformly coated on the Al foil of the positive electrode current collector, and after drying, the polar piece is cold-pressed to a design compaction, and divided into strips for use to obtain a positive electrode polar piece. See Table 1 for the exothermic heat S of the positive electrode sheet in each embodiment in the range of 50°C to 500°C under nitrogen atmosphere.
  • Negative active materials such as graphite and conductive carbon, binder polystyrene butadiene copolymer (SBR), thickener sodium carboxymethyl cellulose (CMC) in an appropriate weight ratio of 95:2:2:1.
  • SBR binder polystyrene butadiene copolymer
  • CMC thickener sodium carboxymethyl cellulose
  • PP is selected as the isolation film.
  • Test conditions Test equipment model: NETZSCH STA 449F3; sample: the pole piece is punched into a small disc with a diameter of 5mm (including the current collector, so the mass of the current collector needs to be deducted when calculating the heat release of the positive pole piece per unit mass); the start of the test Temperature: room temperature; heating rate: 10K/min; test atmosphere: nitrogen; sample preparation environment: glove box sample preparation;
  • Test standard refer to the national standard document GB/T 13464-2008
  • test data needs to deduct the benchmark line of the test result of the empty crucible; adjust the level from 50°C to the end temperature.
  • Test method of battery capacity select the battery to be tested, use the battery charger and discharge machine and the high and low temperature box, and test the standard rate full charge capacity and discharge capacity of the battery at 25°C.
  • the discharge capacity is the battery. core capacity value.
  • the charging and discharging rate is 0.33C (C represents the rated capacity of the battery cell.
  • the charging/discharging current is the rate multiplied by the rated capacity of the battery cell, and the rated capacity is based on the battery cell capacity identified in the GBT certification document of the battery cell. );
  • Test method for cell volume If the cell is a square shell cell, the cell volume is the product of the length, width and height of the cell shell, and the height direction does not include the height of the pole.
  • FIG. 7 is a schematic diagram showing DSC curves obtained using Differential Scanning Calorimetry (DSC) tests B1 (Example 1), A1 (Example 2), A2 (Example 3).
  • DSC Differential Scanning Calorimetry
  • the ordinate is the heat flow
  • the unit is mW/mg
  • the abscissa is the temperature
  • the unit is °C.
  • the DSC curve can reflect the endothermic and exothermic characteristics at a certain peak position.
  • N first cells and M second cells are obtained, the first cells and the second cells are arranged in a certain order, and are electrically connected in series.
  • the battery packs were assembled in the following manner: three first cells and two second cells were obtained, and the first cells and the second cells were arranged at intervals Arrange them in the way (the first cell is marked as A, the second cell is marked as B, and the arrangement order is ABABA), and they are electrically connected in series.
  • Examples 6 to 23 the order of arrangement of the first cells and the second cells in the battery pack, the number M of the first cells, the number N of the second cells, and the adjacent at least one first cell and The number m of consecutively arranged second cells, the number P of the first cells in the repeating unit, and the number Q of the second cells in the repeating unit are all different, as shown in Table 4 and Table 6 for details.
  • the thermal spread test of the battery pack can refer to the thermal spread test in Appendix C of the National Standard (GB 38031-2020). The specific steps are as follows:
  • All test cells are fully charged (using 0.33C rate current as constant current and constant voltage charging to the nominal voltage), arrange and electrically connect the cells in the arrangement of each embodiment, and use the module end plate + side Plate or steel belt to fix the battery pack; choose the appropriate steel needle size (generally 3mm or 4mm in diameter) or heating plate (generally 500W, the power and size of the heating plate can be adjusted according to the capacity of the battery and the size of the shell);
  • Verification of heat spread by heating plate select the first second cell in the battery pack that is closely adjacent to the first first cell from left to right as the target cell, and heat it closely on the end plate board, the heating board is plugged in for heating until the target cell fails, and the heat spread is observed;
  • Judgment criteria for heat spread Confirm whether the first cell adjacent to the target cell and the cell with a further distance from the target cell have any open flames. If there is no open flame, no heat spread occurs. thermal spread occurs;
  • Cell failure standard If two of the following three conditions are met, it is considered to be invalid; 1The temperature reaches ⁇ 280°C; 2The temperature rise rate of the battery reaches: dT/dt ⁇ 1°C/s, and lasts for 3s above; 3 the voltage of the cell drops more than 25% of the initial voltage; 4 the cell produces an open flame.
  • the battery packs of Examples 1-23 and Comparative Examples 1-2 were obtained by assembling the first-type cells and the second-type cells with different positive electrode sheet heat release and capacity characteristics through the above-mentioned battery pack preparation method.
  • the above-mentioned heat spread test was performed on the battery packs of each embodiment and the comparative example, wherein the target cell was the second cell marked in bold in the "battery pack arrangement" in Table 3, Table 5, and Table 7, and each battery cell was See Table 3, Table 5, and Table 7 for the design parameters of the group and the test results of heat spread performance.
  • 31200 ⁇ (P ⁇ S1 ⁇ CD1+Q ⁇ S2 ⁇ CD2)/(P+Q) ⁇ 102600 so as to have more selectivity in capacity density and arrangement.
  • Table 6 and Table 7 it can be seen that by adjusting the relationship between the thickness of the first cell and the second cell, and the number m of the second cell adjacent to the first cell, it satisfies T1 ⁇ 0.05 (m*T2), further matching the thickness of cells in different chemical systems, so that the arrangement of multiple cells in the battery pack also satisfies the effect of preventing thermal spread.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电池组(4),包括至少以串联形式电连接的第一类电芯和第二类电芯,第一类电芯和第二类电芯为不同化学体系的电芯,第一类电芯包括N个第一电芯(5a),第二类电芯包括M个第二电芯(5b),N和M为1以上的整数;且第一电芯(5a)与第二电芯(5b)至少满足如下关系:(1)S1×CD1≤S2×CD2;(2)4.5×10 3≤S1×CD1≤3.6×10 4,单位:Ah·W·℃/(g·L);(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);其中,S1为单位质量第一电芯(5a)的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量第二电芯(5b)的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为第一电芯(5a)及第二电芯(5b)的单位体积容量,单位:Ah/L。

Description

电池组、电池包、用电装置以及电池组的制造方法及制造设备 技术领域
本申请涉及储能器件技术领域,尤其涉及一种电池组、电池包、用电装置以及电池组的制造方法和电池组的制造设备。
背景技术
二次电池是一种清洁、可再生资源,其可作为驱动能源或存储单元被应用于汽车、储能等领域。随着对能源环保要求提升,二次电池应用日益普及和广泛。而为了适应不同的环境和应用场景需要,业内对二次电池的性能提出新的要求。
现阶段,为了提高二次电池的可发挥总能量,通常是将多个相同化学体系的单体电芯,经串、并联电连接组成容量较高的电池组或电池包对外输出电能。然而,对于大容量的电池组、电池包,当其中某个电芯热失控时,瞬间放出大量热,导致其它电芯也受到极大影响,引发整个电池组或电池包发生热失控。
因此,如何改善大容量电池组或电池包中的热蔓延,提升电池组、电池包的安全性,是目前二次电池领域急需解决的一个技术问题。
发明内容
本申请是鉴于现有技术中存在的上述问题而完成的,其目的在于,提供一种电池组,其包括化学体系不同的第一类电芯和第二类电芯,第一类电芯和第二类电芯至少以串联形式电连接,通过对不同化学体系电芯的正极极片以及单位体积的电芯容量特性进行匹配组成电池组或电池包,从大容量电池组的热失控机理出发,实现在保证电池组、电池包具有较高能量密度的同时,提升电池组的安全性能。
本申请的第一方面提供一种电池组,包括至少以串联形式电连接的第一 类电芯和第二类电芯,所述第一类电芯和所述第二类电芯为不同化学体系的电芯,所述第一类电芯包括N个第一电芯,所述第二类电芯包括M个第二电芯,N和M为1以上的整数;且所述第一电芯与所述第二电芯至少满足如下关系:(1)S1×CD1≤S2×CD2;(2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L。
在本申请任意实施方式中,9×10 3≤S1×CD1≤2.5×10 4,和/或,4.03×10 4≤S2×CD2≤2.7×10 5
在本申请任意实施方式中,所述电池组中,包括与至少一个所述第一电芯相邻且连续排列的m个第二电芯,且满足:1.33m≤m×S2×CD2/(S1×CD1)<113,1≤m≤50。
在本申请任意实施方式中,所述电池组中,包括与至少一个所述第一电芯相邻且连续排列的m个第二电芯,且满足:T1≥0.05×m×T2,m≥1,其中,T1为所述第一电芯的厚度,T2为所述第二电芯的厚度,单位为:mm;可选地,T1≥0.33×m×T2。
在本申请任意实施方式中,所述电池组由1个及以上的重复单元组成,所述重复单元包括P个第一电芯以及Q个第二电芯,P和Q为1以上的整数,满足如下关系:15167≤(P×S1×CD1+Q×S2×CD2)/(P+Q)<109909;可选地,31200≤(P×S1×CD1+Q×S2×CD2)/(P+Q)≤102600。
在本申请任意实施方式中,所述第一电芯的正极活性物质包括式(I)所示的含锂磷酸盐、或式(II)所示的锂锰基氧化物中的至少一种,
LiFe 1-x2-y2Mn x2M’ y2PO 4          式(I)
Li 1+x3Mn eN 2-eO 4-dB d          式(II)
其中,式(I)中,0≤x2≤1,0≤y2≤0.1,M’选自除Fe、Mn外的过渡金属元素以及非过渡金属元素中的一种或几种;式(II)中,-0.1≤x3≤ 0.2,0<e≤2,0≤d<1,N为Ni、Fe、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B为S、N、F、Cl、Br及I中的一种或多种。
在本申请任意实施方式中,所述第一电芯的正极活性物质包括LiFePO 4、LiMnPO 4、LiMn 1-x3Fe x3PO 4、LiV 1-x3Fe x3PO 4、LiMn 2O 4、LiMn 1.9Al 0.1O 4中的一种或几种,其中x3独立地满足0<x3<1。
在本申请任意实施方式中,以所述第一电芯的正极活性物质的重量计为100%,所述式(I)所示的含锂磷酸盐、或所述式(II)所示的锂锰基氧化物中的至少一种的重量百分比不低于30%。
在本申请任意实施方式中,所述第二电芯的正极活性物质包括式(III)所示的锂过渡金属氧化物,
Li 1+x1Ni aCo bM 1-a-bO 2-y1A y1        式(III)
其中,-0.1≤x1≤0.2,0.3≤a<0.95,0<b<0.2,0<a+b<1,0≤y1<0.2,M选自Mn、Fe、Cr、Ti、Zn、V、Al、Zr和Ce中的一种或几种,A选自S、F、Cl和I中的一种或几种;可选地,0.5≤a<0.95,0<b<0.15。
在本申请任意实施方式中,以所述第二电芯的正极活性物质的重量计为100%,所述式(III)所示的锂过渡金属氧化物的重量百分比不低于70%。
本申请的第二方面提供一种电池包,包括上述第一方面所述的电池组。
本申请的第三方面提供一种用电装置,包括上述第一方面所述的电池组或上述第二方面所述的电池包,所述电池组或所述电池包作为所述用电装置的电源或能量存储单元。
本申请的第四方面提供一种电池组的制造方法,包括如下步骤:
获取第一类电芯和第二类电芯,所述第一类电芯和所述第二类电芯为不同化学体系的电芯,所述第一类电芯包括N个第一电芯,
所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
所述第一电芯与所述第二电芯至少满足如下关系:
(1)S1×CD1≤S2×CD2;
(2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);
(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);
其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500 ℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L;以及
将所述第一类电芯和第二类电芯以包括串联的方式电连接,以形成本申请第一方面所述的电池组。
本申请的第五方面提供一种电池组的制造设备,包括:
夹臂单元,所述夹臂单元用于获取第一类电芯和第二类电芯,所述第一类电芯和所述第二类电芯为不同化学体系的电芯,所述第一类电芯包括N个第一电芯,所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
所述第一电芯与所述第二电芯至少满足如下关系:
(1)S1×CD1≤S2×CD2;
(2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);
(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);
其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L;
组装单元,所述组装单元用于将所述第一类电芯和所述第二类电芯至少以串联连接,以形成上述第一方面所述的电池组;
以及控制单元,所述控制单元用于控制所述夹臂单元和所述组装单元。
[技术效果]
本申请中,电池组中含有不同化学体系的第一类电芯和第二类电芯,以电芯中正极极片DSC放热峰总面积与电芯容量的乘积表征单体电芯在异常状况下可能放出的最大释热量,通过对第一类电芯及第二类电芯的释热量进行匹配,避免在电池组中单个电芯热失控情况下,对其他单体电芯的热蔓延,从而提升电池组的安全性能。
由于本申请中的电池包和用电装置包括所述电池组,因而至少具有与所述 电池组相同的技术优势。
附图说明
图1是示出本申请的电芯的一个示例的示意图。
图2是示出图1所示的本申请的电芯的一个示例的分解图。
图3是示出本申请的电池组的一个示例的示意图。
图4是示出本申请的电池包的一个示例的示意图。
图5是示出图4所示的本申请的电池包的一个示例的分解图。
图6是示出将本申请的电池组用作电源的用电装置的一个示例的示意图。
图7是示出利用DSC测试得到的不同化学体系电芯正极极片DSC曲线的示意图。
其中,附图标记说明如下:
5、5a、5b  电芯
51  壳体
52  电极组件
53  盖板
4  电池组
1  电池包
2  上箱体
3  下箱体
具体实施方式
本文所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4 和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
在本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。
在本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
在本申请中,如果没有特别的说明,本文所提到的所有步骤可以顺序进行,也可以随机进行,但是优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
在本申请中,如果没有特别的说明,本文所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种及两种以上。
在本文的描述中,除非另有说明,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[电芯]
本申请中,“电芯”是指能够独立进行充放电的电池单体。电芯包括正极极片、负极极片、隔膜、电解液以及用于封装正极极片、负极极片、隔膜和电 解液的外包装等。本申请对电芯的类型、形状没有特别的限制,其可以是软包电芯,也可以是柱形电芯、或是方形电芯等各类电芯。本申请中的电芯可以是锂离子电芯、钾离子电芯、钠离子电芯、锂硫电芯等,特别优选是锂离子电芯。在电池单体的充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解液在正极极片和负极极片之间起到传导离子的作用。
本申请中,“电芯”是指能够独立进行充放电的电池单体。电芯的组成构件可以包括正极极片、负极极片、隔膜、电解液以及用于封装正极极片、负极极片、隔膜和电解液的外包装等。本申请对电芯的类型、形状没有特别的限制,其可以是软包电芯,也可以是柱形电芯、或是方形电芯等各类电芯。本申请中的电芯可以是锂离子电芯、钾离子电芯、钠离子电芯、锂硫电芯等,特别优选是锂离子电芯。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解液在正极极片和负极极片之间起到传导离子的作用。
本申请中,电芯的“化学体系”是按照电芯中正极极片所使用的正极活性材料的组分进行划分,对正极活性材料的掺杂或包覆的元素或物质不作限定。例如,正极活性材料为磷酸铁锂(包括经Mn或V元素掺杂)的电芯均可以定义为磷酸铁锂化学体系电芯。正极活性材料为镍钴锰酸锂(一般简称NCM)的电芯可以定义为NCM化学体系电芯。进一步地,可以依据正极活性材料中镍、钴、锰元素的相对含量,对电芯化学体系进一步限定,如,正极活性材料为LiNi 0.5Co 0.2Mn 0.3O 2(一般简称NCM523)的电芯可以定义为NCM523化学体系电芯,正极活性材料为LiNi 0.6Co 0.2Mn 0.2O 2(一般简称NCM622)的电芯可以定义为NCM622化学体系电芯,正极活性材料为LiNi 0.8Co 0.1Mn 0.1O 2(一般简称NCM811)的电芯可以定义为NCM811化学体系电芯。镍钴铝酸锂体系电芯(一般称NCA)为正极材料的电芯可以定义为NCA化学体系电芯。此外,本申请中,也可采用混合体系电芯,例如包括NCM和NCA的混合体系电芯。
下面,首先对本申请中的电芯所具备的负极极片、正极极片、电解液、隔膜的基本结构进行说明。
<正极极片>
本申请的电芯中,正极极片包括正极集流体以及设置在正极集流体至少一 个表面且包括正极活性材料的正极膜层。例如,正极集流体具有在自身厚度方向相背的两个表面,正极膜层设置于正极集流体的两个相背表面中的任意一者或两者上。本申请的电芯中,所述正极集流体可以是金属箔片或复合集流体,例如所述金属箔片可以是铝箔,而所述复合集流体可包括高分子材料基层和形成于该高分子材料基层至少一个表面上的金属层。所述复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯PP、聚对苯二甲酸乙二醇酯PET、聚对苯二甲酸丁二醇酯PBT、聚苯乙烯PS、聚乙烯PE及其共聚物等的基材)上而形成。
在本申请的电芯中,所述正极活性材料可采用本领域公知的用于电芯的正极活性材料。例如,该正极活性材料可包括以下的一种或多种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电芯正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(NCM333)、LiNi 0.5Co 0.2Mn 0.3O 2(NCM523)、LiNi 0.5Co 0.25Mn 0.25O 2(NCM211)、LiNi 0.6Co 0.2Mn 0.2O 2(NCM622)、LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的一种或几种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的一种或几种。
在一些实施方式中,正极膜层还可选地包括粘结剂。可用于正极膜层的粘结剂的非限制性例子可以包括以下的一种或多种:聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂。
在一些实施方式中,正极膜层还可任选地包含导电剂。用于正极膜层的导电剂的例子可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨 烯及碳纳米纤维中的一种或几种。
在本申请的一个实施方式中,可以通过以下方式制备正极:将上述用于制备正极的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成均匀的正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
<负极极片>
本申请的电芯中包括负极极片,所述负极极片包括负极集流体以及设置在所述负极集流体至少一个表面上的负极膜层,所述负极膜层包含负极活性材料。
在本申请的一个实施方式中,负极膜层中的负极活性材料,可以是本领域常用的负极活性材料,例如,天然石墨、人造石墨、软炭、硬炭、硅基材料、锡基材料、钛酸锂中的一种或几种。所述硅基材料可选自单质硅、硅氧化物、硅碳复合物中的一种或几种。所述锡基材料可选自单质锡、锡氧化合物、锡合金中的一种或几种。
本申请的电芯中,所述负极膜片中除包含负极活性材料外,还可以进一步包含可选的粘结剂、可选的导电剂和其他可选助剂。本申请的负极膜片,通常是由负极浆料涂布干燥而成的。负极浆料通常是将负极活性材料以及可选的导电剂和粘结剂等分散于溶剂中并搅拌均匀而形成的。上述溶剂可以是N-甲基吡咯烷酮(NMP)或去离子水。
作为示例,导电剂可包括超导碳、炭黑(例如乙炔黑、科琴黑)、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或几种。
作为示例,粘结剂可包括丁苯橡胶(SBR)、水溶性不饱和树脂SR-1B、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)和羧甲基壳聚糖(CMCS)中的一种或几种。作为示例,粘结剂可包括丁苯橡胶(SBR)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的一种或几种。其他可选助剂例如是增稠剂(如羧甲基纤维素钠CMC-Na)、PTC热敏电阻材料等。
另外,本申请的电芯中,负极极片并不排除除了负极膜层之外的其他附加 功能层。例如在某些实施方式中,本申请的负极极片还可包括夹在负极集流体和第一负极膜层之间、设置于负极集流体表面的导电底涂层(例如由导电剂和粘结剂组成)。在另外一些实施方式中,本申请的负极极片还可包括覆盖在第二负极膜层表面的覆盖保护层。
本申请的电芯中,所述负极集流体可以是金属箔片或复合集流体,例如金属箔片可以是铜箔、银箔、铁箔、或者上述金属的合金构成的箔片。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层,可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基层(如聚丙烯PP、聚对苯二甲酸乙二醇酯PET、聚对苯二甲酸丁二醇酯PBT、聚苯乙烯PS、聚乙烯PE及其共聚物等材料制成的基层)上而形成。
<电解液>
电解液在正极极片和负极极片之间起到传导离子的作用。所述电解液包括电解质盐和溶剂。在一些实施方式中,电解质盐可选自六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、高氯酸锂(LiClO 4)、六氟砷酸锂(LiAsF 6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiTFS)、二氟草酸硼酸锂(LiDFOB)、二草酸硼酸锂(LiBOB)、二氟磷酸锂(LiPO 2F 2)、二氟二草酸磷酸锂(LiDFOP)及四氟草酸磷酸锂(LiTFOP)中的一种或几种。
在本申请的一个实施方式中,溶剂可选自以下的一种或多种:碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)。
在本申请的一个实施方式中,以所述电解液的总重量为基准计,所述溶剂的含量为60-99重量%,例如65-95重量%,或者70-90重量%,或者75-89重 量%,或者80-85重量%。在本申请的一个实施方式中,以所述电解液的总重量为基准计,所述电解质的含量为1-40重量%,例如5-35重量%,或者10-30重量%,或者11-25重量%,或者15-20重量%。
在本申请的一个实施方式中,所述电解液中还可任选地包含添加剂。例如添加剂可以包括以下的一种或多种:负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
<隔离膜>
在本申请的一个实施方式中,所述电芯还包括隔离膜,隔离膜将电芯的正极极片与负极极片隔开,对体系内不同种类、尺寸和电荷的物质提供选择性透过或阻隔,例如隔离膜可以对电子绝缘,将电芯的正负极活性物质物理隔离,防止内部发生短路并形成一定方向的电场,同时使得电池中的离子能够穿过隔离膜在正负极之间移动。
在本申请的一个实施方式中,用来制备隔离膜的材料可包括玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或几种。隔离膜可以是单层薄膜,也可以是多层复合薄膜。隔离膜为多层复合薄膜时,各层的材料可以相同或不同。
在本申请的一个实施方式中,上述正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件/裸电芯。
在本申请的一个实施方式中,电芯还包括外包装,该外包装可用于封装上述电极组件及电解液。在一些实施方式中,电芯的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。在另一些实施方式中,所述电芯的外包装可以是软包,例如袋式软包。软包的材质可以是塑料,如聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)等中的一种或几种。
图1是示出本申请的电芯5的一个示例的示意图。图2是示出图1所示的本申请的电芯5的一个示例的分解图。
所述外包装可包括壳体51和盖板53,壳体51可包括底板和连接于底板上的侧板,所述底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开 口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52,该电极组件封装于所述容纳腔中,所述电解液浸润于电极组件52中。电芯5所含电极组件52的数量可以为一个或多个。
[电池组]
本申请中,“电池组”是为了保护电芯免受外部冲击、热、振动等影响,将一定数目的电芯电连接在一起并放入一个框架中而形成的。本申请的电芯的形状可以是圆柱形、方形或其他任意的形状。
本申请中,可以将若干个电芯组装在一起以构成电池组,电池组中包含两个或更多个电芯,具体数量取决于电池组的应用和单个电池组的参数。
图3是示出本申请的电池组的一个示例的示意图。参照图3,在电池组4中,多个电芯5a、5b可以是沿电池组4的长度方向依次排列设置(其中5a可以为第一电芯,5b可以为第二电芯)。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个电芯5a、5b进行固定。可选地,电池组4还可以包括具有容纳空间的外壳,多个组5a、5b容纳于该容纳空间。
<关于第一电芯和第二电芯的设计>
本申请的第一方面提供一种电池组,包括至少以串联形式电连接的第一类电芯和第二类电芯,所述第一类电芯和所述第二类电芯为不同化学体系的电芯,所述第一类电芯包括N个第一电芯,所述第二类电芯包括M个第二电芯,N和M为1以上的整数;且所述第一电芯与所述第二电芯至少满足如下关系:(1)S1×CD1≤S2×CD2;(2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热总量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L。
本申请中,发明人经大量研究发现:单体电芯中正极极片DSC放热峰总面积与电芯容量的乘积可以较为准确和客观的反映出该单体电芯在异常状况下(如,发生内部短路等)可能释放出的最大热量。通过将具有不同释热量的、不同化学化学体系的第一类电芯及第二类电芯匹配成组,在形成能量密度较高的大容量电池组的基础上,可以有效改善在电池组中单个电芯热失控情况下,对电池组中相邻单体电芯的热蔓延,从而提升电池组的安全性能。
本申请中,第一电芯或第二电芯的单位质量正极极片在氮气气氛下、50℃~500℃的DSC放热峰量,可以采用本领域公知的方法进行测定。作为示例的,可以参考国标文件GB/T 13464-2008进行测量,其中:
1)测试条件:测试设备型号:NETZSCH STA 449F3;样品:正极极片冲成直径5mm小圆片(含集流体,在计算单位质量的放热量时,需要扣除集流体的质量);测试起始温度:室温;升温速率:10K/min;测试气氛:氮气;制样环境:手套箱制样;
2)测试后数据标准处理:DSC测试结果中纵坐标为热流量,单位为mW/mg,横坐标为温度,单位为℃。测试数据需要扣除空坩埚测试结果基准线;将50℃到结束温度做水平调整。经拟合计算,得到该测试样品在氮气气氛下、50℃~500℃的范围的DSC放热量。
上述测试方法中,正极极片样品可以是直接制得、尚未放入电芯内的正极极片,也可以是从已参与充放电过程的电芯中拆解得到的正极极片。当正极极片样品为从已参与充放电过程的电芯中拆解得到的正极极片时,可以采用如下步骤获得正极极片样品:
1)将上述电芯以小电流满放处理(如:正极活性物质为镍钴锰酸锂氧化物的电芯时,采用0.1C放电至2.8V;正极活性物质为磷酸铁锂电芯时,采用0.1C放电至2.5V);
2)将满放电芯在干燥房或者手套箱进行拆解,取出对应的正极极片;
3)将拆解取回的正极极片在干燥房中用铝塑膜密封保存,转移至手套箱中或直接在手套箱中进行如下操作;
4)取正极极片剪成3cm×3cm的极片(扣电极片则不需要裁剪,直接使 用),将极片放置在合适大小的表面皿中,加入适量的碳酸二甲酯(DMC)漫过极片,浸泡12h后取出极片放入新的表面皿中,再加入适量新鲜的DMC溶剂,重复清洗2次;
5)将正极极片从表面皿中取出,在手套箱中晾干6h以上,用铝塑膜装样密封后备用。
图7是示出利用DSC测试得到的不同化学体系电芯正极极片DSC曲线的示意图。其中DSC测试结果中纵坐标为热流量,单位为mW/mg,横坐标为温度,单位为℃。如图7所示,DSC曲线能够体现出在某一峰位下所具有的吸热和放热特征。
本申请中,积分面积是对于图7中的DSC曲线在50℃500℃的范围内进行积分而得到的参数,所述积分面积能够体现出正极活性材料的热稳定性。
本申请中,电芯的单位体积的电芯容量设为CD。即,CD=电芯容量/电芯体积,单位为安时每升(Ah/L)。电芯并不局限于为方壳电芯,例如也可为圆柱电芯等其他类型的电芯。
本申请中,第一电芯或第二电芯的单位体积容量,可以采用本领域公知的方法进行测定。作为示例的,可以采用方法测量得到:
1)电芯容量的测试方法:挑选待测电芯,使用电芯充放电机及高低温箱,测试电芯在25℃下的标准倍率满充充电容量和放电容量,该放电容量即是电芯的容量值。其中,充放电倍率为0.33C(C代表电芯额定容量。其中,充/放电电流为倍率乘以电芯额定容量,额定容量以该电芯的GBT认证文件中所认定的电芯容量为准);
2)电芯体积的测试方法:若电芯为方壳电芯,则电芯体积为电芯壳体的长度、高度、厚度的乘积,其中高度方向不包含极柱的高度,单位:升(L)。若电芯为软包电芯,则电芯体积为:软包电芯的(长度+2×R)与(高度+2×R)与厚度三者的乘积,其中,R为铝塑膜封装倒角半径,高度为不含电芯极耳/极柱的高度,单位:升(L)。若电芯为圆柱电芯,则电芯体积为:圆柱底面积与电芯高度的乘积,其中高度方向不包含极柱的高度,单位:升(L)。
本申请中,利用电芯中正极活性物质的热稳定性以及单位体积的电芯容量特性对不同化学体系的电芯进行分类,通过将不同安全特性及容量特性的电芯进行组配,形成电池组/电池包,从而能够在保证电池组、电池包具有较高容量密度的同时,还兼具有高安全性。
在本申请的一些实施方式中,0<S1×CD1≤3×10 4。可选地,9×10 3≤S1×CD1≤2.5×10 4。具体地,S1×CD1可以为500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、6500、7000、7500、8000、8500、9000、9500、10000、10500、11000、11500、12000、12500、13000、13500、14000、14500、15000、15500、16000、16500、17000、17500、18000、18500、19000、19500、20000、20500、21000、21500、22000、22500、23000、23500、24000、24500、25000,或者其数值在上述任意两个数值合并所获得的范围之内。本申请中,当第一类电芯的S1×CD1在上述范围内时,第一类电芯可能释放的最大放热量能够维持在较低范围,有利于进一步改善热蔓延,进一步提升电池组的安全性能。
在本申请的一些实施方式中,4.03×10 4≤S2×CD2≤2.7×10 5。具体地,可以为,40300、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000、63000、64000、65000、66000、67000、68000、69000、70000、71000、72000、73000、74000、75000、76000、77000、78000、79000、80000、81000、82000、83000、84000、85000、86000、87000、88000、89000、90000、91000、92000、93000、94000、95000、96000、97000、98000、99000、100000、101000、102000、103000、104000、105000、106000、107000、108000、109000、110000、111000、112000、113000、114000、115000、116000、117000、118000、119000、120000、121000、122000、123000、124000、125000、126000、127000、128000、129000、130000、131000、132000、133000、134000、135000、136000、137000、138000、139000、140000、141000、142000、143000、144000、145000、146000、147000、148000、149000、150000、151000、152000、153000、154000、155000、156000、157000、158000、159000、160000、161000、162000、 163000、164000、165000、166000、167000、168000、169000、170000、171000、172000、173000、174000、175000、176000、177000、178000、179000、180000、181000、182000、183000、184000、185000、186000、187000、188000、189000、190000、191000、192000、193000、194000、195000、196000、197000、198000、199000、200000、201000、202000、203000、204000、205000、206000、207000、208000、209000、210000、211000、212000、213000、214000、215000、216000、217000、218000、219000、220000、221000、222000、223000、224000、225000、226000、227000、228000、229000、230000、231000、232000、233000、234000、235000、236000、237000、238000、239000、240000、241000、242000、243000、244000、245000、246000、247000、248000、249000、250000、251000、252000、253000、254000、255000、256000、257000、258000、259000、260000、261000、262000、263000、264000、265000、266000、267000、268000、269000、270000,或者其数值在上述任意两个数值合并所获得的范围之内。本申请中,当第二类电芯的S2×CD2在上述范围内时,第二类电芯可能释放的最大放热量能够维持在可控范围,当发生热失控时,单电芯中可以释放出的热量有限,也有利于进一步改善热蔓延,进一步提升电池组的安全性能。
在本申请的一些实施方式中,所述电池组中,包括与至少一个所述第一电芯相邻且连续排列的m个第二电芯,且满足:1.33m≤m×S2×CD2/(S1×CD1)<113,1≤m≤50。具体地,m×S2×CD2/(S1×CD1)可以为1.33、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、113,或者其数值在上述任意两个数值合并所获得的范围之内。本申请中,对第一电芯的单侧相邻第二电芯个数进行限定,从而对具体使用时的排布方式进行指导。为保证第一电芯改善热蔓延的阻隔效果,可进一步控制与第一电芯相邻且连续排列的第二电芯的个数,当所述电池组中包括与至少一个所述第一电芯相邻且连续排列的第二电芯为m个(m≥1),且m×S2×CD2/(S1×CD1)在上述范围内时,能够有效防止过多第二电芯连续聚集,避免失效电芯为第二电芯时,连续的第二电芯共 同失效引发释放的能量和温度过高,从而引发整体电池组的热失控。
在本申请的一些实施方式中,所述电池组中,包括与至少一个所述第一电芯相邻且连续排列的m个第二电芯,且满足:T1≥0.05×m×T2,m≥1,其中,T1为所述第一电芯的厚度,T2为所述第二电芯的厚度,单位为:mm。可选地,T1≥0.33×m×T2。本申请中,电芯的厚度是指与相邻贴面垂直的方向的长度。为满足部分电池包的特殊设计以及寿命匹配差异导致的容量设计差异,电芯厚度可灵活设计,为使电芯在不同排布下仍可满足阻隔热蔓延的效果,需对第一电芯、第二电芯的厚度关系进行调整。电池组的长度一般受限于每个电芯的厚度,而电芯厚度又是阻隔热蔓延的一个重要因素,当单独一个第二电芯发生失效时,第二电芯的厚度越大、相邻的第二电芯个数越多,失效时可释放出的总能量越高,因此需要适应性调整第一电芯的厚度,以达到有效吸收上述放热量且不起明火,同时延长热阻隔的时间,从而达到阻隔整体电池组/电池包热蔓延的效果。
在本申请的一些实施方式中,所述电池组由1个及以上的重复单元组成,所述重复单元包括P个第一电芯以及Q个第二电芯,P和Q为1以上的整数,满足如下关系:15167≤(P×S1×CD1+Q×S2×CD2)/(P+Q)<109909;可选地,31200≤(P×S1×CD1+Q×S2×CD2)/(P+Q)≤102600。具体地,(P×S1×CD1+Q×S2×CD2)/(P+Q)可以为15167、20000、25000、30000、31200、35000、40000、45000、50000、55000、60000、65000、70000、75000、80000、85000、90000、95000、100000、102600、109909,或者其数值在上述任意两个数值合并所获得的范围之内。本申请中,为确保整体电池组/电池包在组装时的热蔓延阻隔效果,还可以对其中的重复单元进行参数优化设计,当重复单元中第一电芯与第二电芯的(P×S1×CD1+Q×S2×CD2)/(P+Q)在上述范围内时,可以保证在多个电池组任意组装时,失效时整体的能量可控,通过在第一类电芯保证热蔓延阻隔效果的情况下可以满足多少第二类电芯的间隔或连续排布,能够使得整个电池组/电池包的安全性能和容量密度平均化,可平衡电池组/电池包的安全性能和容量密度。
本申请中,对于电池组中重复单元的认定原则为:以电池组中沿电芯厚度排列方向的完整的一列为对象,根据第一电芯与第二电芯的重复规律,如果该 列中第一电芯与第二电芯构成的单元可以完全重复时,此最小单元可定义为电池组中的重复单元。如果该列中,第一电芯与第二电芯构成的单元无法完全重复时,则此列自身仅构成一个重复单元。
在本申请的一些实施方式中,所述第一电芯的正极活性物质包括式(I)所示的含锂磷酸盐、或式(II)所示的锂锰基氧化物中的至少一种,
LiFe 1-x2-y2Mn x2M’ y2PO 4         式(I)
Li 1+x3Mn eN 2-eO 4-dB d           式(II)
其中,式(I)中,0≤x2≤1,0≤y2≤0.1,M’选自除Fe、Mn外的过渡金属元素以及非过渡金属元素中的一种或几种;式(II)中,-0.1≤x3≤0.2,0<e≤2,0≤d<1,N为Ni、Fe、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B为S、N、F、Cl、Br及I中的一种或多种。
在本申请的一些实施方式中,所述第一电芯的正极活性物质包括LiFePO 4、LiMnPO 4、LiMn 1-x3Fe x3PO 4、LiV 1-x3Fe x3PO 4、LiMn 2O 4、LiMn 1.9Al 0.1O 4中的一种或几种,其中x3独立地满足0<x3<1。
在本申请的一些实施方式中,以所述第一电芯的正极活性物质的重量计为100%,所述式(I)所示的含锂磷酸盐、或所述式(II)所示的锂锰基氧化物中的至少一种的重量百分比不低于30%。
在本申请的一些实施方式中,所述第二电芯的正极活性物质包括式(III)所示的锂过渡金属氧化物,
Li 1+x1Ni aCo bM 1-a-bO 2-y1A y1        式(III)
其中,-0.1≤x1≤0.2,0.3≤a<0.95,0<b<0.2,0<a+b<1,0≤y1<0.2,M选自Mn、Fe、Cr、Ti、Zn、V、Al、Zr和Ce中的一种或几种,A选自S、F、Cl和I中的一种或几种;可选地,0.5≤a<0.95,0<b<0.15。
在本申请的一些实施方式中,以所述第二电芯的正极活性物质的重量计为100%,所述式(III)所示的锂过渡金属氧化物的重量百分比不低于70%。
[电池包]
在本申请的一些实施方式中,可以将两个或更多个上述电池组组装成电池 包,电池包所含电池组的数量取决于电池包的应用和单个电池组的参数。电池包可以包括电池箱和设置于电池箱中的多个电池组,该电池箱包括上箱体和下箱体,上箱体能够盖在下箱体上并与之良好匹配,形成用于容纳电池组的封闭空间。两个或更多个电池组可以按照所需的方式排布于该电池箱中。本申请中,“电池包”是对于一个或多个电池组(或者由多个电芯直接形成的组合)进一步装配电池管理系统、热管理系统等各种控制和保护系统而制成的。
图4是示出本申请的电池包1的一个示例的示意图。图5是示出图4所示的本申请的电池包1的一个示例的分解图。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池组4。电池箱包括上箱体2和下箱体3,上箱体2用于盖设下箱体3,并形成用于容纳电池组4的封闭空间。多个电池组4可以按照任意的方式排布于电池箱中。
[用电装置]
在本申请的一些实施方式中,本申请的用电装置包括本申请的电池组、或电池包中的至少一种,所述电池组、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置包括但不限于移动数字装置(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
图6是示出将本申请的电池组用作电源的用电装置的一个示例的示意图。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对高功率和高能量密度的需求,可以采用电池包或电池组。
[电池组的制造方法]
本申请提出一种电池组的制造方法,包括如下步骤:
获取第一类电芯和第二类电芯,
所述第一类电芯和所述第二类电芯为不同化学体系的电芯,
所述第一类电芯包括N个第一电芯,
所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
所述第一电芯与所述第二电芯至少满足如下关系:(1)S1×CD1≤S2×CD2;(2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L;以及
将所述第一类电芯和所述第二类电芯至少以串联的形式电连接,以形成如本申请第一方面所述的电池组。
[电池组的制造设备]
本申请提出一种电池组的制造设备,包括:
夹臂单元,所述夹臂单元用于获取第一类电芯和第二类电芯,
所述第一类电芯和第二类电芯为不同的化学体系电芯,
所述第一类电芯包括N个第一电芯,
所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
所述第一电芯与所述第二电芯至少满足如下关系:(1)S1×CD1≤S2×CD2;(2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);(3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L;
组装单元,所述组装单元用于将所述第一类电芯和所述第二类电芯至少以串联形式电连接,以形成如本申请第一方面所述的电池组;以及
控制单元,所述控制单元用于控制所述夹臂单元和所述组装单元。
实施例
下面,通过具体实施例详细描述本申请的技术方案及其优点。
《电芯制备》
参考GB/T 31484-2015《电动汽车用动力蓄电池循环寿命要求及试验方法》,各实施例和对比例中的电芯的制备方法如下。
1、正极浆料的制备
将正极活性材料(各实施例中正极活性材料的种类、及其相对质量占比参见表1)与导电炭Super P、粘结剂聚偏二氟乙烯(PVDF)按95∶3∶2重量比,在适量的N-甲基吡咯烷酮(简写为NMP)溶剂中充分搅拌混合,使其形成均匀的、粘度为10000mPa·s的稳定浆料,浆料静置24小时内,不发生凝胶、分层或者沉降等现象。
2、正极极片的制备
将正极材料浆料均匀涂覆于正极集流体Al箔上,干燥后把极片冷压到设计压密,分条备用,得到正极极片。各实施例中正极极片在氮气气氛下、50℃~500℃范围内的放热量S参见表1。
3、电解液的制备
将等量体积的碳酸乙烯酯溶解在碳酸丙烯酯中,然后将六氟磷酸锂盐均匀溶解在该混合溶剂中备用(六氟磷酸锂的浓度为1.1M/L),得到电解液。
4、负极极片的制备
将负极活性物质例如石墨与导电炭、粘结剂聚苯乙烯丁二烯共聚物(SBR)、增稠剂羧甲基纤维素钠(CMC)按95∶2∶2∶1重量比在适量的水溶剂中充分搅拌混合,使其形成均匀的负极稳定浆料;将此浆料均匀涂覆于负极集流体Cu箔上,干燥后把极片冷压到设计压密,分条备用。
5、隔离膜
选用PP作为隔离膜。
6、电芯的制备
采用常规的电芯制作工艺,将上述正极极片、隔离膜和负极极片一起卷绕成裸电芯,然后置入电池壳体中,注入上述电解液,随之进行化成、密封等工序,最终得到可充电动力电芯。其中,各实施例的电芯单位体积容量CD、厚 度T、以及S×CD值参见表1。
以下,对于电芯参数测试方法进行说明。
《关于DSC测试流程》
1)测试条件:测试设备型号:NETZSCH STA 449F3;样品:极片冲成直径5mm小圆片(含集流体,因此计算单位质量正极极片的放热量时需要扣除集流体质量);测试起始温度:室温;升温速率:10K/min;测试气氛:氮气;制样环境:手套箱制样;
2)测试标准:参考国标文件GB/T 13464-2008;
3)测试后数据标准处理:测试数据需要扣除空坩埚测试结果基准线;将50℃到结束温度做水平调整。
《电芯单位体积容量的测试》
1)电芯容量的测试方法:挑选待测电芯,使用电芯充放电机及高低温箱,测试电芯在25℃下的标准倍率满充充电容量和放电容量,该放电容量即是电芯的容量值。其中,充放电倍率为0.33C(C代表电芯额定容量。其中,充/放电电流为倍率乘以电芯额定容量,额定容量以该电芯的GBT认证文件中所认定的电芯容量为准);
2)电芯体积的测试方法:电芯为方壳电芯,则电芯体积为电芯壳体的长、宽、高的乘积,其中高度方向不包含极柱的高度。电芯的单位体积的电芯容量设为CD=电芯容量/电芯体积,单位为Ah/L。
通过上述电芯制备,制备得到具有不同放热量及容量特性的第一类电芯和第二类电芯,各电芯的具体参数,参见表1。
图7是示出利用差示扫描量热法(DSC)测试B1(示例1)、A1(示例2)、A2(示例3)得到的DSC曲线的示意图。其中DSC测试结果中纵坐标为热流量,单位为mW/mg,横坐标为温度,单位为℃。如图7所示,DSC曲线能够体现出在某一峰位下所具有的吸热和放热特征。
Figure PCTCN2021091384-appb-000001
《电池组的组配》
获取N个第一电芯和M个第二电芯,将第一电芯与第二电芯以一定的次序进行排列,并通过串联的方式电连接。其中:
实施例1~5以及对比例1~2,电池组的组配方式均为:获取3个第一电芯和2个第二电芯,将第一电芯与第二电芯以间隔排布的方式进行排列(以第一电芯记为A,第二电芯记为B,排列顺序为ABABA),并通过串联的方式电连接。
实施例6~23,电池组中第一电芯与第二电芯的排列顺序、第一电芯的个数M、第二电芯的个数N、与至少一个第一电芯相邻且连续排列的第二电芯的个数m、重复单元中第一电芯的个数P、以及重复单元中第二电芯个数Q均不同,具体内容见表4及表6。
《电池组的热蔓延测试》
本申请中,电池组的热蔓延测试可参考国标(GB 38031-2020)附录C部分的热扩散测试,具体步骤如下:
1)所有测试电芯满充(采用0.33C倍率电流做恒流恒压充电至标称电压),将电芯以各实施例的排布方式排布并电连接,使用模组端板+侧板或钢带固定电池组;选择合适的钢针尺寸(一般直径为3mm或4mm)或加热板(一般为500W,可以根据电芯容量以及壳体尺寸调整加热板功率和大小);
2)将电芯组件放置在Pack模拟密封箱(密封箱具有防爆功能),并监控每个电芯的电压和温度;
3)加热板验证热蔓延:挑选电池组中与从左往右的第一个第一电芯紧密相邻的第一个第二电芯作为目标电芯,并对其在端板紧贴加热板,加热板插电进行加热,直至目标电芯失效,观察热蔓延;
4)观测电池组两小时,确认电芯组中其他第一电芯及其非触发侧的其他第二类电芯是否发生热蔓延(失效判定相同);冷却24h后对电芯进行外观确认、容量测试;
5)热蔓延判定标准:确认与目标电芯相邻的最近的第一电芯、以及与该 目标电芯距离更远的电芯,是否有明火,无明火则未发生热蔓延,若有明火则发生热蔓延;
6)备注:电芯失效标准:如下三个条件需满足两个,则认为失效;①温度温度达到≥280℃;②电芯温升速率达到:dT/dt≥1℃/s,且持续3s以上;③电芯电压下降超过初始电压的25%;④电芯产生明火。
通过上述电池组制备方法,将具有不同正极极片放热量及容量特性的第一类电芯和第二类电芯进行组配,得到实施例1~23及对比例1~2的电池组。对各实施例及对比例的电池组进行上述热蔓延测试,其中,目标电芯为表3、表5、表7中“电池组排布”中的加粗标记的第二电芯,各电池组的设计参数及热蔓延性能测试结果,参见表3、表5、表7。
Figure PCTCN2021091384-appb-000002
Figure PCTCN2021091384-appb-000003
表5
Figure PCTCN2021091384-appb-000004
Figure PCTCN2021091384-appb-000005
表7
Figure PCTCN2021091384-appb-000006
根据上述的表2、表3可知,对比例1、2相比,本申请的实施例1~5中,以电芯中正极极片的可释放热量及电芯单位体积容量的乘积反映电芯在热失控条件下的可释放最大热量,通过将不同化学体系、不同最大可释放热量的第一类电芯与第二类电芯进行串联匹配,并调控第一电芯与第二电芯的S×CD在适当的范围内,能够实现由第一类电芯与第二类电芯组成的电池组的体积容量密度较高、同时电池组在热失控下热蔓延的改善效果显著提升。
根据上述的表4、表5可知,当m×S2×CD2/(S1×CD1)与(P×S1×CD1+Q×S2×CD2)/(P+Q)公式范围在上述范围内时,可满足模组排布仍具有阻隔热蔓延的效果。①应控制第一电芯相邻单侧相邻的第二电芯个数,使其满足1.33m≤m×S2×CD2/(S1×CD1)≤113的关系;②应控制重复单元中第一电芯和第二电芯的总能量比值关系,使其满足15167≤(P×S1×CD1+Q×S2×CD2)/(P+Q)<109909。可选地,31200≤(P×S1×CD1+Q×S2×CD2)/(P+Q) ≤102600,使容量密度和排布方式下具有更加的选择性。根据上述的表6、表7可知,通过调整第一电芯和第二电芯的厚度、以及与第一电芯相邻第二电芯个数m之间的关系,使其满足T1≥0.05(m*T2),对不同化学体系电芯的厚度进一步匹配,使电池组中多个电芯的排布同样满足具有阻隔热蔓延的效果。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (11)

  1. 一种电池组,包括至少以串联形式电连接的第一类电芯和第二类电芯,所述第一类电芯和所述第二类电芯为不同化学体系的电芯,
    所述第一类电芯包括N个第一电芯,
    所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
    所述第一电芯与所述第二电芯至少满足如下关系:
    (1)S1×CD1≤S2×CD2;
    (2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);
    (3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);
    其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L。
  2. 如权利要求1所述的电池组,其中,
    9×10 3≤S1×CD1≤2.5×10 4,和/或,4.03×10 4≤S2×CD2≤2.7×10 5
  3. 如权利要求1或2所述的电池组,其中,
    所述电池组中,包括与至少一个所述第一电芯相邻且连续排列的m个第二电芯,且满足:1.33m≤m×S2×CD2/(S1×CD1)<113,1≤m≤50。
  4. 如权利要求1至3中任一项所述的电池组,其中,
    所述电池组中,包括与至少一个所述第一电芯相邻且连续排列的m个第二电芯,且满足:T1≥0.05×m×T2,m≥1,其中,T1为所述第一电芯的厚度,T2为所述第二电芯的厚度,单位为:mm;可选地,T1≥0.33×m×T2;进一步可选地,T1≥m×T2。
  5. 如权利要求1至4中任一项所述的电池组,其中,
    所述电池组由1个及以上的重复单元组成,所述重复单元包括P个第一电芯以及Q个第二电芯,P和Q为1以上的整数,满足如下关系:
    15167≤(P×S1×CD1+Q×S2×CD2)/(P+Q)<109909;可选地,31200≤(P×S1×CD1+Q×S2×CD2)/(P+Q)≤102600。
  6. 根据权利要求1至5任一项所述的电池组,其中,
    所述第一电芯的正极活性物质包括式(I)所示的含锂磷酸盐、或式(II)所示的锂锰基氧化物中的至少一种,
    LiFe 1-x2-y2Mn x2M’ y2PO 4  式(I)
    Li 1+x3Mn eN 2-eO 4-dB d  式(II)
    其中,式(I)中,0≤x2≤1,0≤y2≤0.1,M’选自除Fe、Mn外的过渡金属元素以及非过渡金属元素中的一种或几种;式(II)中,-0.1≤x3≤0.2,0<e≤2,0≤d<1,N为Ni、Fe、Cr、Ti、Zn、V、Al、Mg、Zr及Ce中的一种或多种,B为S、N、F、Cl、Br及I中的一种或多种;
    可选地,所述第一电芯的正极活性物质包括LiFePO 4、LiMnPO 4、LiMn 1-x3Fe x3PO 4、LiV 1-x3Fe x3PO 4、LiMn 2O 4、LiMn 1.9Al 0.1O 4中的一种或几种,其中x3独立地满足0<x3<1;
    可选地,以所述第一电芯的正极活性物质的重量计为100%,所述式(I)所示的含锂磷酸盐、或所述式(II)所示的锂锰基氧化物中的至少一种的重量百分比不低于30%。
  7. 根据权利要求1至6任一项所述的电池组,其中,
    所述第二电芯的正极活性物质包括式(III)所示的锂过渡金属氧化物,
    Li 1+x1Ni aCo bM 1-a-bO 2-y1A y1  式(III)
    其中,-0.1≤x1≤0.2,0.3≤a<0.95,0<b<0.2,0<a+b<1,0≤y1<0.2,M选自Mn、Fe、Cr、Ti、Zn、V、Al、Zr和Ce中的一种或几种,A选自S、F、Cl和I中的一种或几种;可选地,0.5≤a<0.95,0<b<0.15;
    可选地,以所述第二电芯的正极活性物质的重量计为100%,所述式 (III)所示的锂过渡金属氧化物的重量百分比不低于70%。
  8. 一种电池包,其中,包括权利要求1至7中任一项所述的电池组。
  9. 一种用电装置,其中,包括权利要求1至7中任一项所述的电池组或权利要求8所述的电池包,所述电池组或所述电池包可以作为所述用电装置的电源或者能量存储单元。
  10. 一种电池组的制造方法,其中,包括如下步骤:
    获取第一类电芯和第二类电芯,所述第一类电芯和所述第二类电芯为不同化学体系的电芯,
    所述第一类电芯包括N个第一电芯,
    所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
    所述第一电芯与所述第二电芯至少满足如下关系:
    (1)S1×CD1≤S2×CD2;
    (2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);
    (3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);
    其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L;以及
    将所述第一类电芯和第二类电芯以包括串联的方式电连接,以形成权利要求1至7中任一项所述的电池组。
  11. 一种电池组的制造设备,其中,包括:
    夹臂单元,所述夹臂单元用于获取第一类电芯和第二类电芯,所述第一类电芯和第二类电芯为不同的化学体系电芯,
    所述第一类电芯包括N个第一电芯,
    所述第二类电芯包括M个第二电芯,N和M为1以上的整数,且
    所述第一电芯与所述第二电芯至少满足如下关系:
    (1)S1×CD1≤S2×CD2;
    (2)4.5×10 3≤S1×C1≤3.6×10 4,单位:Ah·W·℃/(g·L);
    (3)3×10 4≤S2×CD2≤8.5×10 5,单位:Ah·W·℃/(g·L);
    其中,S1为单位质量所述第一电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;S2为单位质量所述第二电芯的正极极片在氮气气氛、50℃~500℃范围的DSC放热量,单位:W·℃/g;CD1、CD2分别为所述第一电芯及所述第二电芯的单位体积容量,单位:Ah/L;
    组装单元,所述组装单元用于将所述第一类电芯和所述第二类电芯以包括串联的方式电连接,以形成权利要求1至7中任一项所述的电池组;以及
    控制单元,所述控制单元用于控制所述夹臂单元和所述组装单元。
PCT/CN2021/091384 2021-04-30 2021-04-30 电池组、电池包、用电装置以及电池组的制造方法及制造设备 WO2022226974A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21912313.0A EP4106097A1 (en) 2021-04-30 2021-04-30 Battery module, battery pack, electrical apparatus, and manufacturing method and device for battery module
CN202180032325.6A CN115552712A (zh) 2021-04-30 2021-04-30 电池组、电池包、用电装置以及电池组的制造方法及制造设备
PCT/CN2021/091384 WO2022226974A1 (zh) 2021-04-30 2021-04-30 电池组、电池包、用电装置以及电池组的制造方法及制造设备
US17/963,368 US20230048691A1 (en) 2021-04-30 2022-10-11 Battery module, battery pack, electric apparatus, and method and device for manufacturing battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091384 WO2022226974A1 (zh) 2021-04-30 2021-04-30 电池组、电池包、用电装置以及电池组的制造方法及制造设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/963,368 Continuation US20230048691A1 (en) 2021-04-30 2022-10-11 Battery module, battery pack, electric apparatus, and method and device for manufacturing battery module

Publications (1)

Publication Number Publication Date
WO2022226974A1 true WO2022226974A1 (zh) 2022-11-03

Family

ID=83846726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091384 WO2022226974A1 (zh) 2021-04-30 2021-04-30 电池组、电池包、用电装置以及电池组的制造方法及制造设备

Country Status (4)

Country Link
US (1) US20230048691A1 (zh)
EP (1) EP4106097A1 (zh)
CN (1) CN115552712A (zh)
WO (1) WO2022226974A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027617A (zh) * 2008-06-04 2011-04-20 松下电器产业株式会社 组电池
JP2013037862A (ja) * 2011-08-06 2013-02-21 Denso Corp 組電池
JP2015170591A (ja) * 2014-03-07 2015-09-28 永浦 千恵子 集合電池
CN208674305U (zh) * 2018-09-04 2019-03-29 东莞塔菲尔新能源科技有限公司 一种电池模组
CN112599932A (zh) * 2021-01-08 2021-04-02 蔚来汽车科技(安徽)有限公司 电池包、方法和车辆

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101426913B1 (ko) * 2012-11-27 2014-08-07 아이쓰리시스템 주식회사 배터리 셀전압 센서
KR101645470B1 (ko) * 2013-12-18 2016-08-04 주식회사 엘지화학 저온 특성이 향상된 전극조립체 및 이를 포함하는 이차전지
KR20150089225A (ko) * 2014-01-27 2015-08-05 주식회사 엘지화학 안전성이 향상된 전지팩 및 전지팩의 안전성을 향상시키는 방법
KR101758992B1 (ko) * 2014-10-02 2017-07-17 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20180130149A (ko) * 2017-05-29 2018-12-07 현대자동차주식회사 하이브리드 전고체 전지
JP7131124B2 (ja) * 2018-06-25 2022-09-06 トヨタ自動車株式会社 組電池、車両、および組電池の製造方法
CN108878770B (zh) * 2018-07-02 2019-06-25 宁德时代新能源科技股份有限公司 电芯及包括该电芯的二次电池
CN112909319B (zh) * 2018-09-19 2022-04-22 宁德时代新能源科技股份有限公司 锂离子二次电池与包含其的电子产品、电动交通工具及机械设备
CN112582596B (zh) * 2019-09-27 2021-10-15 宁德时代新能源科技股份有限公司 二次电池及含有该二次电池的电池模组、电池包、装置
CN111416086B (zh) * 2020-03-04 2021-09-14 华为技术有限公司 电池隔膜及其制备方法、电池和终端
KR20210029121A (ko) * 2020-09-04 2021-03-15 삼성에스디아이 주식회사 에너지 저장 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027617A (zh) * 2008-06-04 2011-04-20 松下电器产业株式会社 组电池
JP2013037862A (ja) * 2011-08-06 2013-02-21 Denso Corp 組電池
JP2015170591A (ja) * 2014-03-07 2015-09-28 永浦 千恵子 集合電池
CN208674305U (zh) * 2018-09-04 2019-03-29 东莞塔菲尔新能源科技有限公司 一种电池模组
CN112599932A (zh) * 2021-01-08 2021-04-02 蔚来汽车科技(安徽)有限公司 电池包、方法和车辆

Also Published As

Publication number Publication date
EP4106097A1 (en) 2022-12-21
US20230048691A1 (en) 2023-02-16
CN115552712A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2022133962A1 (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
WO2022133963A1 (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
WO2022133960A1 (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
US20230231249A1 (en) Battery module, battery pack, apparatus, and method and device for manufacturing battery module
CN115810797A (zh) 锂离子电池、电池模块、电池包及用电装置
US20230378546A1 (en) Secondary battery, battery module, battery pack, and electrical device
US20230395778A1 (en) Positive electrode plate and lithium-ion battery containing same
US20230361403A1 (en) Battery cell, battery module, battery pack, and electrical apparatus
US20230343958A1 (en) Negative electrode plate and preparation method therefor, secondary battery, battery module, battery pack and power consuming device
US20230246157A1 (en) Anode plate of lithium-ion battery and application thereof
US11901555B2 (en) Battery module, battery pack, and electric apparatus
WO2023087241A1 (zh) 电池组、电池包、电学装置、电池组的制造方法及制造设备、电池组的控制方法
WO2022226974A1 (zh) 电池组、电池包、用电装置以及电池组的制造方法及制造设备
CN116417685A (zh) 电极组件及其制备方法、二次电池、电池模块、电池包及用电装置
WO2022205221A1 (zh) 电池组、电池包、用电装置以及电池组的制造方法及制造设备
US11901575B2 (en) Battery pack and power consuming device
US11799161B2 (en) Battery pack and power consuming device
EP4376182A1 (en) Battery pack and electric device
US20230112421A1 (en) Electrode assembly, secondary battery, battery module, battery pack and electrical device
WO2024077476A1 (zh) 电极极片及其制备方法、二次电池及其制备方法、电池模块、电池包及用电装置
US20230117186A1 (en) Negative electrode plate, secondary battery, battery module, battery pack and power consuming device
WO2024092684A1 (zh) 正极极片、二次电池及用电装置
WO2023060493A1 (zh) 电极组件、二次电池、电池模块、电池包及用电装置
CN117256070A (zh) 电池模组、电池包和用电装置
KR20240021293A (ko) 전해액, 이차전지, 배터리모듈, 배터리팩 및 전기기기

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021912313

Country of ref document: EP

Effective date: 20220706

NENP Non-entry into the national phase

Ref country code: DE