CN102934314B - 电池包 - Google Patents

电池包 Download PDF

Info

Publication number
CN102934314B
CN102934314B CN201180005325.3A CN201180005325A CN102934314B CN 102934314 B CN102934314 B CN 102934314B CN 201180005325 A CN201180005325 A CN 201180005325A CN 102934314 B CN102934314 B CN 102934314B
Authority
CN
China
Prior art keywords
battery pack
monocell
power brick
sigma
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180005325.3A
Other languages
English (en)
Other versions
CN102934314A (zh
Inventor
石下晃生
西勇二
海田启司
高木优
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102934314A publication Critical patent/CN102934314A/zh
Application granted granted Critical
Publication of CN102934314B publication Critical patent/CN102934314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • Y10T29/4978Assisting assembly or disassembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

抑制在并联了多个电池组时循环电流超过电池组的容许电流的情况。包含并联的多个电池组(10-1~10-X)的电池包(100),各个电池组具有电连接的多个单电池(11)。各个电池组的循环电流,根据如下要素计算:根据串联的单电池的数量(N1~Nx)而变化的电池组的开路电压、表示根据并联的单电池的数量(M1~Mx)而变化的电池组的充电状态的值、和电池组的内部电阻。各个电池组中,并联的单电池的数量和串联的单电池的数量,是在循环电流不超过电池组的容许电流值的条件下决定的数量。

Description

电池包
技术领域
本发明关于电并联有多个电池组的电池包。
背景技术
存在电并联有多个电池组的电池包。例如,在专利文献1中,公开了电并联有特性相互不同的两种电池组的电池包。此处,作为电池组的特性,存在示出相对于SOC(StateOfCharge:充电状态)的减少、开路电压降低倾向的特性。
现有技术文献
专利文献1:日本特开2008-260346号公报
专利文献2:日本特开2004-328902号公报
专利文献3:日本特开2004-111242号公报
专利文献4:日本特开平05-240890号公报
专利文献5:日本特开2001-297801号公报
专利文献6:日本特开2009-004349号公报
发明内容
发明解决的问题
在电并联多个电池组时,存在在电池组中流动循环电流的情况。此处,由于电池包的结构,存在着在电池组中会流动超过电池组的容许电流值的循环电流的担忧。
用于解决问题的技术方案
本申请的第一发明,是包含并联的多个电池组的电池包,各个电池组,具有电连接的多个单电池。各个电池组的循环电流,根据如下要素计算:根据串联的单电池的数量而变化的电池组的开路电压、表示根据并联的单电池的数量而变化的电池组的充电状态的值、和电池组的内部电阻。各个电池组中,并联的单电池的数量和串联的单电池的数量,是在循环电流不超过电池组的容许电流值的条件下决定的数量。
电池包的电力,能够用于循环电流的计算。此处,电池包的电力,能够设为比要求电力高的电力。在使用电池包的输出使电子设备工作的系统中,要求电力是为了使电子设备进行期望的工作所需要的电池包的电力。
作为电子设备,例如,能够使用电动发电机。此处,电动发电机,能够将从电池包输出的电能量变换为用于使车辆行驶的运动能量。并且,作为要求电力,能够设为对应于预先设定的车辆的行驶模式的电力。
表示充电状态的值,可以设定为在用于电池组的充放电控制的上限值以及下限值之间。表示充电状态的值即SOC(StateOfCharge)(%)是剩余容量(Ah)相对于满充电容量(Ah)的比例。
本申请的第二发明,是电池包的制造方法,该电池包具有分别包含多个单电池,相互并联的多个电池组,该制造方法包含:第一步骤到第三步骤。第一步骤中,根据如下要素计算各个电池组的循环电流:根据串联的单电池的数量而变化的电池组的开路电压、表示根据并联的单电池的数量而变化的电池组的充电状态的值、和电池组的内部电阻。第二步骤中,在循环电流不超过电池组的容许电流值的条件下,确定各个电池组中并联的单电池的数量和串联的单电池的数量。第三步骤中,使用在第二步骤中确定的数量的单电池,安装各个电池组。
发明效果
根据本申请的第一发明以及第二发明,即使并联多个电池组,也能够抑制在电池组流动超过容许电流值的循环电流。
附图说明
图1是表示电池系统的结构的图。
图2是表示电池包的结构的图。
图3是表示电池组的结构的图。
具体实施方式
以下,关于本发明的实施例进行说明。
实施例一
关于作为本发明的实施例一的电池系统,使用图1进行说明。本发明的电池系统,能够搭载于车辆。
电池包100,经由继电器21、22,和变换器30连接。继电器21、22,接受来自控制器(未图示)的控制信号,在接通状态以及断开状态之间切换。继电器21、22为接通状态时,将从电池包100输出的电力供给到变换器30,或将从变换器30输出的电力供给到电池包100。
本实施例中,虽然是将电池包100的电力供给到变换器30,但是不限于此。例如,在电池包100以及变换器30之间,能够配置升压电路。可以是:升压电路将电池包100的输出电压升压,将升压后的电力供给到变换器30。并且,可以是:升压电路将变换器30的输出电压降压,将降压后的电力供给到电池包100。
变换器30,将从电池包100输出的直流电力变换为交流电力,向电动发电机40输出。作为电动发电机40,能够使用三相交流马达。电动发电机40,接受来自变换器30的交流电力,生成用于使车辆行驶的运动能量。由电动发电机40生成的运动能量被传递到车轮。
在使车辆减速,或者使车辆停止时,电动发电机40将车辆制动时产生的运动能量变换为电能量。由电动发电机40生成的交流电力,供给到变换器30,变换器30将交流电力变换为直流电力。电池包100能够接受来自变换器30的直流电力,并储存再生能量。
图2是表示电池包的结构的图。电池包100包含X个的电池组10-1~10-X,这些电池组10-1~10-X电并联。电池组的数量X是2个以上的整数。图3是表示电池组的结构的图。
第一电池组10-1能够由电串联的单电池11和电并联的单电池11构成。作为单电池11,能够使用镍氢电池和/或锂离子电池这样的二次电池。单电池11的形式能够适当设定。
在所谓的圆筒型的单电池11中,在形成为圆筒状的电池壳的内部,容纳发电要素。所谓方形的单电池11中,在沿着长方体形成的电池壳的内部,容纳发电要素。发电要素是进行充放电的要素。发电要素,能够由正极板、负极板、在正极板以及负极板之间配置的间隔体(包含电解液)构成。正极板包含集电板和在集电板的表面形成的正极活性物质层。负极板包含集电板和在集电板的表面形成的负极活性物质层。
第一电池组10-1中,将并联的单电池11的数量设为M1,将串联的单电池11的数量设为N1。M1、N1是1以上的整数。如果M1为1,则第一电池组10-1仅仅由串联的单电池11构成。并且,如果N1为1,则第一电池组10-1仅仅由并联的单电池11构成。如果M1以及N1都为1,则第一电池组10-1由1个单电池11构成。
与第一电池组10-1同样地,第二电池组10-2能够由电串联的单电池11和电并联的单电池11构成。第二电池组10-2中,将并联的单电池11的数量设为M2,将串联的单电池11的数量设为N2。M2、N2是1以上的整数。
与第一电池组10-1同样地,第X电池组10-X能够由电串联的单电池11和电并联的单电池11构成。第X电池组10-X中,将并联的单电池11的数量设为Mx,将串联的单电池11的数量设为Nx。Mx、Nx是1以上的整数。
各电池组10-1~10-X中的单电池11的数量M1~Mx、N1~Nx,可以由后述的方法确定。
在图2所示的结构中,电池包100的电力W(kW),由下述式(1)表示。此处,将电池包100的放电(输出)设为正值,将电池包100的充电(输入)设为负值。
【式1】
W(t)=V(t)×I(t)
=V(t)×(I1(t)+I2(t)+…+Ix(t))...(1)
式(1)中,W(t)是时刻t的电池包100的电力。V(t)是时刻t的电池包100的端子间电压,I(t)是在时刻t在电池包100中流动的电流值。I1(t)~Ix(t)分别表示在时刻t各电池组10-1~10-X中流动的电流值。
电池包100的电压V(t),由下述式(2)表示。
【数2】
V(t)=Vol(t)-I1(t)×R1(TB1(t),t)
=Vo2(t)-I2(t)×R2(TB2(t),t)
=Vox(t)-Ix(t)×Rx(TBx(t),t)...(2)
式(2)中,Vo1(t)~Cox(t)分别表示时刻t的各电池组10-1~10-X的电动势(开路电压)。各电池组10-1~10-X的电动势Vo1(t)~Vox(t),根据串联的单电池11的数量N1~Nx和串联的各个单电池11的电动势(开路电压)之积来求出。
R1~Rx分别表示时刻t的电池组10-1~10-X的内部电阻。内部电阻R1~Rx能够表示为时刻t以及温度TB1(t)~TBx(t)的函数。温度TB1(t)~TBx(t)分别表示时刻t的电池组10-1~10-X的的温度。通过确定时刻t以及温度TB1(t)~TBx(t),能够确定内部电阻R1~Rx。内部电阻R1~Rx以及温度TB1~TBx的关系,能够预先确定。
将式(2)变形,代入式(1),能够得到下述式(3)。
【数3】
W = ( VO 1 - I 1 × × R 1 ) × { I 1 + ( Vo 2 - Vo 1 + I 1 × R 1 ) R 2 + ( Vox - Vo 1 + I 1 × R 1 ) Rx } . . . ( 3 )
在式(3)中,省略了时刻t的变量。以下说明的式中,也省略了时刻t的变量。
式(3)可以由下述式(4)表示。
【数4】
W = ( Vo 1 - I 1 × R 1 ) × [ R 1 × ( 1 R 1 + 1 R 2 + · · · + 1 Rx ) × I 1 + { ( Vo 2 - Vo 1 ) R 2 + · · · ( Vox - Vo 1 ) Rx } ]
= ( Vo 1 - I 1 × R 1 ) × { R 1 × Σ 1 Ri × I 1 + ( Σ Voi Ri - Vo 1 × Σ 1 Ri ) } . . . ( 4 )
在式(4)中,下标i是1~x的值,对应于电池组10-1~10-X。将式(4)作为I1的函数表示时,得到下述式(5)。
【数5】
R 1 ^ 2 × ( Σ 1 Ri ) × I 1 ^ 2
- R 1 × { Vo 1 × Σ 1 Ri - ( Σ Voi Ri - Vo 1 × Σ 1 Ri ) } × I 1
+ { W - Vo 1 × ( Σ Voi Ri - Vo 1 × Σ 1 Ri ) } = 0 . . . ( 5 )
此处,如下述式(6)所示,设定α、β以及γ。
【数6】
α = R 1 ^ 2 × Σ 1 Ri
β = - R 1 × { Vo 1 × Σ 1 Ri - ( Σ Voi Ri - Vo 1 × Σ 1 Ri ) }
γ = W - Vo 1 × ( Σ Voi Ri - Voi × Σ 1 Ri ) . . . ( 6 )
将式(6)代入式(5),得到下述式(7)。
【数7】
α×I1^2+β×I1+γ=0...(7)
根据式(7),求解I1的解时,得到式(8)。
【数8】
I 1 = { β - ( β ^ 2 - 4 αγ ) ^ 0.5 } 2 α . . . ( 8 )
将式(2)表示的关系式代入式(8)时,得到下述式(9)。
【数9】
Ix = [ Vox - Vo 1 + { β - ( β ^ 2 - 4 αγ ) ^ 0.5 } × R 1 2 α ] Rx . . . ( 9 )
如果使用式(9),则能够确定各电池组10-1~10-X的电流值。式(9)中,在X为1时,得到式(8)。
各电池组10-1~10-X的内部电阻R1~Rx,能够通过确定电池包100的温度而确定。如式(2)中所说明,因为内部电阻R1~Rx能够表示为温度TB1~TBx的函数,所以通过预先确定温度TB1~TBx,能够确定内部电阻R1~Rx。电池组10-1~10-X的温度TB1~TBx,能够考虑电池100的使用环境来适当确定。如果能够确定内部电阻R1~Rx,则能够基于式(6),算出α。
并且,通过确定各个电池组10-1~10-X的SOC(StateOfCharge),能够确定各个电池组10-1~10-X的电动势Vo1~Vox。因为SOC以及电动势存在对应关系,如果预先求得表示SOC以及电动势的对应关系的数据,则能够根据SOC确定电动势。如果能够确定各个电池组10-1~10-X的SOC以及电动势Vo1~Vox,则基于式(6),能够算出β。
并且,各个电池组10-1~10-X的SOC1(t)~SOCx(t),能够基于下述式(10)算出。
【数10】
SOCi ( t + Δt ) = SOCi ( t ) - Ii ( t ) × Δt 3600 × 100 CAPi × Mi × μi . . . ( 10 )
式(10)中,下标i是1~x的值,对应于电池组10-1~10-X。SOCi(t),是时刻t的电池组的SOC。SOCi(t+Δt)是经过了时间Δt之后的电池组的SOC。CAPi表示电池组的满充电容量,Mi是在各个电池组10-1~10-X中,并联的单电池11的数量。μ是决定各个电池组10-1~10-X的劣化状态(具体的是容量劣化)的劣化系数。劣化系数μ是例如0~1之间的值,能够基于试验等预先确定。
式(10)中,如果确定了初始状态(时刻t为0)的各个电池组10-1~10-X的SOC1(0)~SOCx(0),则能够算出经过了任意的时间Δt之后的各个电池组10-1~10-X的SOC1(t)~SOCx(t)。式(10)中包含变量Mi,基于式(10)算出的SOC,根据并联的单电池11的数量Mi而变化。
电池组10-1~10-X的充放电控制中,控制电池组10-1~10-X的充放电,使得电池组10-1~10-X的SOC在预先确定的上限值以及下限值的范围内变化。因此,在设定电池组10-1~10-X的SOC时,需要在上限值以及下限值的范围内设定SOC。
另一方面,式(6)中,如果设定电池包100的电力W,则能够确定γ的值。电池包100的电力W,是电池组10-1~10-X的电力W1~Wx的总和。
需要电池包100的电力(具体的,输出)W比预先确定的要求电力(要求输出)高。要求输出基于预先确定的车辆行驶模式(称为目标行驶模式)确定。目标行驶模式表示车速相对于时间轴的变化。如果预先确定目标行驶模式,则能够确定与目标行驶模式对应的电池包100的电力(要求输出)。为了达成目标行驶模式下的行驶,需要电池包100的电力(输出)W比电池包100的要求输出高。
并且,需要满足要求输出的电池包100的电力(输出)W比输出限制值低。电池包100的输出限制值,是各个电池组10-1~10-X的输出限制值的总和。各个电池组10-1~10-X的输出限制值WOUT1~WOUTx,如下式(11)所示,能够使用预先确定的映射WOUT_MAP确定。映射能够针对各个电池组10-1~10-X设置。
【数11】
WOUTi(t)=WOUT_MAPi(TBi(t),SOCi(t))...(11)
式(11)中,下标i是1~x的值,对应于电池组10-1~10-X。电池组10-1~10-X的输出限制值WOUT1~WOUTx,依赖于电池组10-1~10-X的温度TB1~TBx以及SOC1~SOCx。因此,如果确定温度TB1~TBx以及SOC1~SOCx,则能够使用映射WOUT_MAP确定各个电池组10-1~10-X的输出限制值WOUT1~WOUTx。
将α、β以及λ的值、和各个电池组10-1~10-X的内部电阻R1~Rx以及电动势Vo1~Vox代入式(9)时,能够算出各个单电池10-1~10-X的电流值I1~Ix。
在电池包100的总电流的值为0时,在电池包100中流动的循环电流是在电池组10-1~10-x中流动的电流。循环电流具有下式(12)的关系。
【数12】
Ik=-∑Ii(i=1~k-1,k+1~x)...(12)
在式(12)中,Ik表示在特定的电池组中流动的电流。式(12)的右边表示:在除了特定的电池组的其他所有的电池组中流动的电流的总和。
基于式(12),能够具体地确定满足式(12)的条件的电流值I1~Ix。关于具体确定的电流值I1~Ix,因为存在多个组合,所以从多个组合中,确定各个电流值I1~Ix的最大值以及最小值。例如,关于电流值Ix,因为可以取得多个数值,能够从这些多个数值中,确定最大值以及最小值。
各电流值的I1~Ix的最大值以及最小值,具有下式(13)所示的关系。
【数13】
Ii_max≤Idi_lim...(13)
在式(13)中,下标i是1~x的值,对应于电池组10-1~10-X。Ii_max是在电流值Ii可以取得多个值时,这些值中的最大值。Idi_lim是各个电池组10-1~10-X的连续容许放电电流。连续容许放电电流,根据电池组10-1~10-X的结构(特别是并联的单电池11的数量)而不同。
并且,各个电流值I1~Ix的最小值,具有下式(14)所示的关系。
【数14】
Ii_min≥Ici_lim...(14)
在式(14)中,下标i是1~x的值,对应于电池组10-1~10-X。Ii_min是在电流值Ii可以取得多个值时,这些值中的最小值。Ici_lim是各个电池组10-1~10-X的连续容许充电电流。连续容许充电电流,根据电池组10-1~10-X的结构(特别是并联的单电池11的数量)而不同。
在式(14)中,最小值Ii_min以及连续容许充电电流Ici_lim为负值时,式(14)能够由下述式(15)表示。
【数15】
|Ii_min|≤|Ici_lim|...(15)
能够确定电池组的电流值Ii,使得最大值Ii_max比连续容许放电电流Idi_lim小,并且最小值Ii_min比连续容许充电电流Ici_lim大。换言之,能够设定电流值Ii的可取得值,使得各个电池组的放电电流不超过各个电池组的连续容许放电电流,并且各个电池组的充电电流不超过各个电池组的连续容许充电电流。通过使得最大值Ii_max比连续容许放电电流Idi_lim小、最小值Ii_min比连续容许充电电流Ici_lim大,能够抑制在各个电池组10-1~10-X中流动超过容许值的电流。
如果确定各个电池组10-1~10-X的电流值I1~Ix,使得满足式(13)以及式(14),则基于式(10),能够确定电并联的单电池11的数量M1~Mx。此处,作为M1~Mx,可以取得多个值。
并且,如果确定了各个电池组10-1~10-X的电动势Vo1~Vox,则能够确定各个电池组10-1~10-X中电串联的单电池11的数量N1~Nx。也就是说,因为能够预先测定单电池11的电动势,所以将各个电池组10-1~10-X的电动势Vo1~Vox除以单电池11的电动势,就能够算出电串联的单电池11的数量N1~Nx。
关于电并联的单电池11的数量M1~Mx和电串联的单电池11的数量N1~Nx,当存在多个组合时,能够考虑电池包100的结构,确定单电池11的数量M1~Mx、N1~Nx。此处,如果在单电池11的数量M1~Mx、N1~Nx中选择最少的值,则能够降低电池包100的成本。
如果确定了M1~Mx和N1~Nx,则基于M1~Mx和N1~Nx,能够确定各个电池组10-1~10-X的结构。例如,在安装电池组10-1时,并联M1个单电池11,并且串联N1个单电池11。为了电连接多个单电池11,能够使用总线和/或电缆。
算出M1~Mx以及N1~Nx的处理,能够通过计算机执行。也就是说,通过将为了算出M1~Mx以及N1~Nx所需要的参数输入到计算机,能够得到M1~Mx以及N1~Nx。
本实施例中,根据单电池11的种类,电池组10-1~10-X和/或电池包100的特性会变化。因此,能够根据单电池11的种类,预先求出M1~Mx以及N1~Nx的值。然后,将单电池11的种类和M1~Mx、N1~Nx的值在建立对应的状态下存储到存储器中。如此,如果确定了单电池11的种类,则通过参照存储器中存储的信息,能够容易地确定M1~Mx、N1~Nx的值。

Claims (6)

1.一种电池包,包含并联的多个电池组,其特征在于:
各个所述电池组,具有电连接的多个单电池,
各个所述电池组的循环电流,是在所述电池包的总电流为零时在各个所述电池组中流动的电流,根据如下算式计算:
β = - R l × { V o l × Σ l R i - ( Σ V o i R i - V o l × Σ l R i ) }
γ = W - V o l × ( Σ V o i R i - V o i × Σ l R i )
Ik=-ΣIi(i=1~k-1,k+1~x)
其中,I是各个所述电池组的循环电流,Vo是根据串联的所述单电池的数量而变化的各个所述电池组的开路电压、R是各个所述电池组的内部电阻,W是并联连接的所述多个电池组的电力的总和,比预先确定的要求电力高,
所述内部电阻R和所述开路电压Vo的下标1、i、x以及所述循环电流I的下标x、k、i是分配给所述多个电池组的值,
各个所述电池组中,并联的所述单电池的数量和串联的所述单电池的数量,是在确定所述各循环电流I1~Ix以使各个所述循环电流I1~Ix的最大值小于所述电池组的连续容许放电电流值、且各个所述循环电流I1~Ix的最小值大于所述电池组的连续容许充电电流的条件下决定的数量。
2.如权利要求1所述的电池包,其特征在于:各个所述电池组,输出用于车辆行驶的能量。
3.如权利要求1所述的电池包,其特征在于:各个所述电池组,输出用于车辆行驶的能量;
所述要求电力是与预先设定的所述车辆的行驶模式对应的电力。
4.一种电池包的制造方法,该电池包具有分别包含多个单电池且并联的多个电池组,所述电池包的制造方法的特征在于,包含:
第一步骤,根据如下算式计算在所述电池包的总电流为零时在各个所述电池组中流动的循环电流:
β = - R l × { V o l × Σ l R i - ( Σ V o i R i - V o l × Σ l R i ) }
γ = W - V o l × ( Σ V o i R i - V o i × Σ l R i )
Ik=-ΣIi(i=1~k-1,k+1~x)
其中,I是各个所述电池组的循环电流,Vo是根据串联的所述单电池的数量而变化的各个所述电池组的开路电压、R是各个所述电池组的内部电阻,W是并联连接的所述多个电池组的电力的总和,比预先确定的要求电力高,
所述内部电阻R和所述开路电压Vo的下标1、i、x以及所述循环电流I的下标x、k、i是分配给所述多个电池组的值,
第二步骤,在确定所述循环电流I1~Ix以使各个所述循环电流I1~Ix的最大值小于所述电池组的连续容许放电电流值、且各个所述循环电流I1~Ix的最小值大于所述电池组的连续容许充电电流的条件下,确定所述各个电池组中并联的所述单电池的数量和串联的所述单电池的数量,
第三步骤,使用在所述第二步骤中确定的数量的所述单电池,安装各个所述电池组。
5.如权利要求4所述的电池包的制造方法,其特征在于:各个所述电池组,输出用于车辆行驶的能量。
6.如权利要求4所述的电池包的制造方法,其特征在于:各个所述电池组,输出用于车辆行驶的能量;
所述要求电力,是与预先设定的所述车辆的行驶模式对应的电力。
CN201180005325.3A 2011-04-25 2011-04-25 电池包 Active CN102934314B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002424 WO2012147121A1 (ja) 2011-04-25 2011-04-25 電池パック

Publications (2)

Publication Number Publication Date
CN102934314A CN102934314A (zh) 2013-02-13
CN102934314B true CN102934314B (zh) 2015-12-02

Family

ID=47068139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180005325.3A Active CN102934314B (zh) 2011-04-25 2011-04-25 电池包

Country Status (5)

Country Link
US (1) US8647765B2 (zh)
EP (1) EP2704285B1 (zh)
JP (1) JP5376045B2 (zh)
CN (1) CN102934314B (zh)
WO (1) WO2012147121A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245094B2 (ja) * 2014-06-30 2017-12-13 日立化成株式会社 電池システム
CN104734283A (zh) * 2015-02-15 2015-06-24 四川力垦锂动力科技有限公司 电池管理系统和电池管理方法
CN107369859A (zh) * 2016-05-12 2017-11-21 深圳市沃特玛电池有限公司 一种电动汽车电池系统充电及放电方法
EP3518382B1 (en) * 2016-09-21 2022-03-30 Envision AESC Japan Ltd. Power supply system
KR102168910B1 (ko) * 2016-09-21 2020-10-22 가부시키가이샤 인비젼 에이이에스씨 재팬 전원 시스템
CN107367695B (zh) * 2017-07-31 2023-08-01 创驱(上海)新能源科技有限公司 一种高压锂离子电池充放电测试系统
CN110962690B (zh) * 2018-09-28 2021-03-02 郑州宇通客车股份有限公司 电池组能量管理方法
CN109888416A (zh) * 2019-03-04 2019-06-14 江苏博煦电池科技有限公司 一种锂离子电池串并联组合的方法
JP2022139597A (ja) * 2021-03-12 2022-09-26 トヨタ自動車株式会社 車両

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707420A (en) * 1983-03-16 1987-11-17 South African Inventions Development Corporation Power storage battery
CN101552483A (zh) * 2007-10-25 2009-10-07 日立工机株式会社 充电装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240890A (ja) 1992-02-28 1993-09-21 Ngk Insulators Ltd 集合電池の過充放電監視装置
JPH10117447A (ja) * 1996-08-22 1998-05-06 Hitachi Ltd ナトリウム硫黄電池システム
JP4959867B2 (ja) 2000-04-12 2012-06-27 パナソニック株式会社 組電池の放熱評価方法およびこの放熱評価方法を用いた組電池の冷却設計方法
JP4082147B2 (ja) 2002-09-19 2008-04-30 日産自動車株式会社 組電池
JP4355515B2 (ja) 2003-04-24 2009-11-04 日本電気株式会社 バッテリモジュールの構成方法及びバッテリモジュール
JP2006067683A (ja) * 2004-08-26 2006-03-09 Railway Technical Res Inst 蓄電装置
US7573234B1 (en) * 2005-11-28 2009-08-11 Quallion Llc System having electronics for dropping current of battery pack
JP4379430B2 (ja) * 2006-04-24 2009-12-09 トヨタ自動車株式会社 電源システムおよび車両
JP5003257B2 (ja) 2007-04-10 2012-08-15 日産自動車株式会社 ハイブリッド電動車両用電源システムおよびその制御装置
CN101675555B (zh) 2007-05-18 2012-09-12 松下电器产业株式会社 组电池及电池系统
US8475954B2 (en) * 2008-04-14 2013-07-02 A123 Systems, LLC Flexible voltage nested battery module design
US9005788B2 (en) * 2009-07-06 2015-04-14 Amperex Technology Limited Management scheme for multiple battery cells
JP2011072153A (ja) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd 車両用電源装置及びこれを備える車両並びに車両用電源装置の容量均等化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707420A (en) * 1983-03-16 1987-11-17 South African Inventions Development Corporation Power storage battery
CN101552483A (zh) * 2007-10-25 2009-10-07 日立工机株式会社 充电装置

Also Published As

Publication number Publication date
EP2704285A4 (en) 2015-01-28
US8647765B2 (en) 2014-02-11
US20120276440A1 (en) 2012-11-01
JPWO2012147121A1 (ja) 2014-07-28
EP2704285B1 (en) 2020-10-21
CN102934314A (zh) 2013-02-13
WO2012147121A1 (ja) 2012-11-01
JP5376045B2 (ja) 2013-12-25
EP2704285A1 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
CN102934314B (zh) 电池包
US10137792B2 (en) Vehicle control based on lithium plating detection in electrified vehicle battery
US11173775B2 (en) Closed loop feedback control to mitigate lithium plating in electrified vehicle battery
Rothgang et al. Modular battery design for reliable, flexible and multi-technology energy storage systems
JP5401366B2 (ja) ハイブリッド車両の制御装置
US9590431B2 (en) Battery controller, battery system
EP2720343B1 (en) Battery control device and battery system
JP5349567B2 (ja) バッテリ・パックの入出力可能電力推定装置およびその方法
EP3410558A1 (en) Battery control device
US20160276843A1 (en) Battery Charge Strategy Using Discharge Cycle
CN105322613A (zh) 用于锂离子电池的快速充电算法
WO2016112960A1 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
CN203984052U (zh) 混合电源
US20220163591A1 (en) Battery management apparatus, battery management method, and battery energy storage system
US20170166078A1 (en) Battery charge equalization system
KR101572178B1 (ko) 이차 전지 셀의 전압 밸런싱 장치 및 방법
KR101567557B1 (ko) 이차 전지 셀의 전압 벨런싱 장치 및 방법
Barreras et al. Derating strategies for lithium-ion batteries in electric vehicles
JP6713283B2 (ja) 蓄電装置、輸送機器及び制御方法
Einhorn et al. Current equalization of serially connected battery cells for a possible second life application
JP2016149885A (ja) 二次電池の制御装置
Monteiro et al. Bidirectional multilevel converter for electric vehicles
KR101460560B1 (ko) 복합형 에너지저장장치에 적용되는 울트라커패시터 팩의 soc 관리장치 및 그 제어방법
US20210155114A1 (en) Lithium plating detection and mitigation in electric vehicle batteries
Lencwe et al. Towards performance enhancement of lead-acid battery for modern transport vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant