JP4022678B2 - 高純度透明シリカガラスの製造方法 - Google Patents

高純度透明シリカガラスの製造方法 Download PDF

Info

Publication number
JP4022678B2
JP4022678B2 JP01105298A JP1105298A JP4022678B2 JP 4022678 B2 JP4022678 B2 JP 4022678B2 JP 01105298 A JP01105298 A JP 01105298A JP 1105298 A JP1105298 A JP 1105298A JP 4022678 B2 JP4022678 B2 JP 4022678B2
Authority
JP
Japan
Prior art keywords
silica glass
transparent silica
purity
temperature
purity transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01105298A
Other languages
English (en)
Other versions
JPH11209132A (ja
Inventor
賢治 加茂
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP01105298A priority Critical patent/JP4022678B2/ja
Publication of JPH11209132A publication Critical patent/JPH11209132A/ja
Application granted granted Critical
Publication of JP4022678B2 publication Critical patent/JP4022678B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高温粘性値が高い高純度透明シリカガラスの製造方法に関し、さらに気泡を消滅させることも可能である高純度透明シリカガラスの製造方法に関する。さらに詳しくは、半導体製造用治具や、光透過性を利用する各種光学材料、高温型液晶基板などの材料として利用できる高純度透明シリカガラスの製造方法に関する。
【0002】
【従来の技術】
現在、半導体工業において、集積度の増加に伴い高純度のシリカガラスが要求されている。さらに半導体工業においては、高温粘性の高いシリカガラスが必要とされる。
【0003】
このような要求を満たすシリカガラスを得るために、精製した天然シリカ質粉末を火炎溶融、電気溶融、プラズマ溶融させる方法等が知られている。(特開昭52−121017号公報、特開昭62−30632号公報等)しかしながら、これらのシリカガラスは高温粘性の高いシリカガラスであるけれども、精製した天然シリカ質粉末を使用しているにもかかわらず、純度が悪いという問題があった。
【0004】
一方、合成シリカガラスを得る方法としては四塩化ケイ素などのケイ素化合物を酸水素火炎で火炎加水分解させてシリカガラスを得る方法や、珪素のアルコキシドを原料としゾル−ゲル法でシリカカガラスを得る方法が知られている。しかしながら、これらの合成シリカガラスは高純度であるけれども、含有されるOH基量が多いために高温粘性が天然シリカ質粉末を使用して得られたシリカガラスより劣るという問題があった。
【0005】
また、非晶質シリカ粉末にアルカリ成分を加え加熱してクリストバライト化しそのクリストバライト化した粉末を純化処理を行った後、溶融させてシリカガラスを得る方法(特開平1−176243号公報等)があるが、この方法は製造工程が複雑であり安価なシリカガラスが得られないという問題点があった。
【0006】
また、特公昭59−34660号公報や特開昭57−34031号公報には、シリカガラス中の気泡を減少させる方法として1000〜1500℃の温度領域で高圧ガスを作用させる方法が開示されている。このような方法は確かに気泡を減少させるのに有効であるけれども、得られるガラスは、通常の石英ガラスより密度が高くなっており、密度が高くなったシリカガラスをそのまま使用するとシリカガラスが膨脹したり、また、高圧ガス圧力を作用させるとシリカガラス表面にガスが浸入するという問題があった。さらに、このようなシリカガラスは均質性(Δn)が通常得られるシリカガラスより劣るという問題もあった。
【0007】
【発明が解決しようとする課題】
このように、従来の技術により得られるガラスでは、高温粘性の低さ、高純度でない、密度変化、ガスの浸入、均質性が悪いといった課題を生じており、高温で長時間使用する半導体製造用治具や、光透過性を利用する各種光学材料、高温型液晶基板などの用途には適したものではなかった。
【0008】
本発明の目的は、このような従来法による課題を解決する、すなわち、高温での粘性が高くかつ高純度な透明シリカガラスを容易に製造できる方法を提供することにある。さらに、加熱による密度変化が少なく、ガスの浸入がなく、かつ気泡が極めて少ない高純度透明シリカガラスの製造方法、また、均質性に優れた高純度透明シリカガラスの製造方法を提供することも本発明の目的とする。
【0009】
【課題を解決するための手段】
本発明者らは上記の課題を解決するために鋭意検討を行った結果、高純度の非晶質シリカ粉末を減圧雰囲気下で加熱してクリストバライト結晶化させ、その後これを溶融し、不活性ガスで加圧状態とすること、さらに、このようにして得られる高純度透明石英ガラスを熱間静水圧プレス装置を用いて不活性ガスによる加圧下加熱し、その後再度加熱処理を施すことで以下の知見を見出だした。
【0010】
1)珪素のアルコキシドより得られる高純度の非晶質シリカ粉末を出発原料として用いることで得られるガラスも高純度となり、光学材料や半導体製造用治具として優れた材料となること。
【0011】
2)出発原料中のOH基の含有量を60〜500ppmと一定範囲とすることで、得られる透明シリカガラスの高温粘性を高めることができること。
【0012】
3)出発原料を減圧下加熱保持してクリストバライト結晶化させ、さらにこのシリカ質焼結体が溶融しうる温度に加熱溶解し、その後不活性ガスで加圧状態にすることにより、得られる透明シリカガラスの高温粘性をさらに高めることができること。
【0013】
4)3)のようにして得られた透明シリカガラスに対して、さらに熱間静水圧プレス装置を用いて不活性ガスによる加圧下加熱することで、ガラス中の気泡を減少あるいは消滅させることができること。
【0014】
5)4)のようにして得られた透明シリカガラスに対して、さらに再度加熱処理することで、加熱による密度変化が少なく、浸入したガスを除去することができ、また、均質性に優れたものとすることができること。
【0015】
このように、本発明の高純度透明シリカガラスの製造方法を用いることでこれらの優れた点を見出だし、本発明を完成するに至った。
【0016】
以下、本発明をさらに詳細に説明する。
【0017】
本発明において用いられる出発原料である高純度非晶質シリカ粉末は、珪素のアルコキシドより得た非晶質シリカ粉末であり、その含有金属不純物としてNa、K、Mg、Ca、Fe、Al及びTiが各々独立してすべて0.1ppm以下であることが必須である。さらに高純度非晶質シリカ粉末中のOH基含有量は60〜500ppmである。
【0018】
ここで、珪素のアルコキシドとしては、メチルシリケート、エチルシリケート等を例示することができるが、これに限定されるものではない。珪素のアルコキシドを高純度非晶質シリカ粉末とする方法としては、珪素のアルコキシドを酸又はアルカリと接触させ加水分解して得る方法を例示することができる。使用される酸又はアルカリとしては、珪素のアルコキシドを加水分解できるものであれば特に限定されず、例えば、酸として塩酸、酢酸等が例示でき、アルカリとしてアンモニア等が例示できる。
【0019】
高純度非晶質シリカ粉末に含まれ得る含有金属不純物のうち本発明の方法において重要であるのは、Na、K、Mg、Ca、Fe、Al及びTiである。これらの含有金属不純物の出発原料であるシリカ粉末中における含有量はすべて0.1ppm以下である。ここで、Na、Kが不純物として0.1ppmを超えて含まれる場合、これらはシリコンウエハの熱処理工程においてガラスが結晶化するという問題点が生じ好ましくない。また、Mg、Ca、Fe、Al、Tiが不純物として0.1ppmを超えて含まれる場合、これらは紫外線の吸収作用を有するため高純度透明シリカガラスの透過率を悪化させるという問題点が生じ好ましくない。
【0020】
また、出発原料であるシリカ粉末中のOH基の含有量は60〜500ppmであるが、OH基の含有量が60ppm未満になると1500〜1700℃での減圧下での熱処理によるクリストバライト結晶化が不十分となり得られるガラスは高温粘性値が低くなるため好ましくない。また、OH基の含有量が500ppmを超えると得られるガラス中にOH基が10ppmより多く含まれるために高温粘性値が低くなるので好ましくない。
【0021】
また、出発原料であるシリカ粉末はその粒度を調整することが好ましく、加水分解、粉砕、篩別などの処理の条件を設定することで粒度範囲を制御できる。高純度非晶質シリカ粉末の粒度範囲としては、高純度透明シリカガラスの製造工程において気泡の除去を容易にするために30〜500μmに調製することが好ましく、30〜200μmが特に好ましい。この理由としては、500μmを超える大きな粒子を用いるとそれがじゃまとなって気泡が除去しづらくなることがあり、30μmより小さな粒子を用いる場合には粒子同士が速く緻密化してしまい気泡が除去できにくくなることがあるためである。なお、耐熱性容器にシリカ粉末を充填するにあたっては耐熱性容器の内側にカーボンフェルトなどの耐熱性のシートを敷いてもよい。
【0022】
上記記載の高純度非晶質シリカ粉末を耐熱性容器、例えば高純度カーボンルツボなどの高純度処理したカーボン容器や炭化珪素容器に充填し、加熱処理を行う。
【0023】
出発原料である高純度非晶質シリカ粉末を耐熱性容器に充填した後、次に1)10mmHg以下の減圧雰囲気下で出発原料を1500〜1700℃の温度で所定時間保持させた後、2)減圧雰囲気下で溶融しうる温度以上に加熱し、その後、3)不活性ガスを用いて加圧状態として保持し、4)これを常圧に戻すことで透明シリカガラスが得られる。
【0024】
ここで、1)の減圧の条件としては10mmHg以下である。減圧の条件が10mmHgを超える場合には高温においてシリカが昇華することにより発生するガスの影響を受け透明なシリカガラスを得られなくなるため好ましくない。
【0025】
また、1)の加熱の条件としては、出発原料が1500〜1700℃の温度で所定時間保持させればよく、例えばカーボン抵抗加熱方式あるいは高周波加熱方式の真空雰囲気電気炉により実施することが例示できる。この加熱温度により、出発原料をクリストバライト結晶化させることができる。出発原料をクリストバライト結晶化させるにあたっては、出発原料の50重量%以上結晶化させることが好ましい。さらに、加熱時間については加熱温度により一定しないが、最終的に得られる高純度透明シリカガラス中のOH基含有量を10ppm以下にして高温粘性値を高くするためには、例えば1500℃であれば保持時間は15時間以上必要であるが1700℃の温度では1時間ぐらいの保持時間で十分である。
【0026】
続いて、2)溶融しうる温度以上の温度まで加熱する。
【0027】
ここで、溶融しうる温度とは本発明において用いられる高純度非晶質シリカ粉末が1)の加熱処理にて生成するクリストバライト結晶を有したシリカ質焼結体が溶融しうる温度であり、常圧において1713℃である。加熱温度がこの温度に達しない場合、クリストバライト結晶を有したシリカ質焼結体が溶融しないか溶融した出発原料中にクリストバライト結晶が溶融しきれずに残り、ガラスが割れやすくなるため好ましくない。クリストバライト結晶を有したシリカ質焼結体を溶融し保持する時間としては、加熱温度により一定しないが、このシリカ質焼結体がほぼ全量溶解しガラス化できる時間であれば特に制限はないが、低い場合には長時間を要する。例えば、加熱温度が1800〜1850℃の場合には5分以上保持することで達成される。
【0028】
その後、3)これを不活性ガスを用いて加圧状態として保持する。
【0029】
加圧するために用いられる不活性ガスとしては、本発明の目的である高純度透明シリカガラスを製造することができるものであれば特に制限なく用いることができ、Ar、窒素、Heなどの不活性ガスを例示することができるが、経済性、気密性、不活性ガスの熱伝導率などを考慮すれば、Ar、窒素がさらに好ましい。
【0030】
不活性ガスを用いて加圧する際の条件としては加圧状態であれば特に問題なく実施できるが、2kgf/cm2以上が好ましい。加圧条件でない場合には製造工程中に生じる気泡が大きくなり、作製したシリカガラスに含まれる気泡を減少するために熱間静水圧プレスを行う際に気泡の除去が困難となるため好ましくない。また直径1mm以上の気泡は減少させることが特に困難となるため、加圧条件が2kgf/cm2以上がより好ましく、経済性、加圧装置の運転上のトラブルの回避のため、2〜10kgf/cm2とすることが特に好ましい。
【0031】
この加圧処理の後、4)冷却するが、冷却の条件としては、上記記載の加熱処理時の温度より加熱を停止して放冷したり、冷却装置により冷却すればよい。
【0032】
以上のようにして得られる高純度透明シリカガラスは出発原料を溶解した際に生じる気泡をある程度含んだものであるが、さらに熱間静水圧プレス処理により気泡を減少させ、さらに再加熱処理によりガラスの密度を戻したり浸入したガスを取り除くことができる。以下に、この熱間静水圧プレス処理及び再加熱処理につき詳しく説明する。
【0033】
上記記載の方法により得られた高純度透明シリカガラスに対し、熱間静水圧プレス装置を用いて1200〜1350℃の温度で100〜200MPaの不活性ガスによる圧力を作用させることにより、気泡を実質的に含まない高純度透明シリカガラスの製造も可能である。
【0034】
この熱間静水圧プレス処理工程における温度条件としては、1200〜1350℃の範囲である。温度が1200℃未満の場合にはガラスの流動性少なくなりこの工程において直径1mm未満の気泡を減少させることが困難となることがあり、温度が1350℃を超える場合にはガラスの結晶化が著しくなり均質な高純度透明シリカガラスを得られなくなることがある。
【0035】
熱間静水圧プレス処理工程において加圧するために用いられる不活性ガスとしては、本発明の目的である高純度透明シリカガラスを製造することができるものであれば特に制限なく用いることができ、Ar、窒素、Heなどの不活性ガスを例示することができるが、経済性、気密性、不活性ガスの熱伝導率などを考慮すればAr、窒素がさらに好ましい。
【0036】
不活性ガスを用いて加圧する際の圧力条件としては、直径1mm未満の気泡の除去が容易とし、さらに経済性、加圧装置の運転上のトラブルの回避のために100〜200MPaの範囲が好ましい。
【0037】
ここで、気泡を減少させる意味としては、本発明の方法により得られる高純度透明シリカガラスを光透過性を利用する各種光学材料、高温型液晶基板などの用途に適用可能とするためであり、その気泡量としては実施例にもみられるように単位容積あたりの気泡の数として表される。その具体的な数値としては、高純度透明シリカガラスの中において、1個/cm3未満であることが好ましく、気泡がその測定によって認められなくなり消滅することがさらに好ましい。
【0038】
加圧処理後、得られた透明シリカガラスは冷却されるが、冷却の条件としては、上記記載の加熱処理時の温度より加熱を停止して放冷したり、冷却装置により冷却すればよい。
【0039】
このような熱間静水圧プレス処理工程の後、再加熱処理を行うことで得られるガラスの密度を戻したり、浸入したガスを取り除くことで、より優れた特性を有する高純度透明シリカガラスの製造が可能である。
【0040】
ここで、再加熱する条件としては、大気中で1000〜1300℃の温度範囲で15時間以内保持することが好ましい。より具体的な条件として、大気中で1200℃まで6時間で昇温させ1200℃で4時間保持させのがよい。
【0041】
また、再加熱処理後の冷却条件としては、上記の保持加熱温度範囲から700℃までは冷却速度を制御し、700℃から室温までは制御を中止して放冷したり、冷却装置により冷却すればよく、より具体的な条件として、再加熱処理後1200℃〜700℃まで8時間かけて降温させ、700℃から室温までは炉冷させるという条件が挙げられる。ここで、注意する点としては、再加熱保持温度から700℃の冷却速度を0.5〜2.0℃/分に制御することが好ましい。制御する理由として、この間の冷却速度がはやいと、熱間静水圧プレス処理した石英ガラスの均質性の改善や高くなった密度を戻すことが困難となることがあるためである。
【0042】
また、この再加熱処理により高純度透明シリカガラス中に熱間静水圧プレス処理工程で浸入した不活性ガスを取り除くことができる。不活性ガスが浸入したまま高純度透明シリカガラスを半導体製造用治具に使用すると発泡することがあり、発泡を回避するためにこの再加熱処理は有用なものである。
【0043】
本発明の方法により得られる高純度透明シリカガラスのOH基含有量としては、加熱による劣化を少なくするために10ppm以下にすることが望ましい。このことにより基板材料として利用する場合に起こりうる加熱処理による変形を抑制することができる。
【0044】
また、本発明の方法により得られる高純度透明シリカガラスの均質性(Δn)は3×10-5以下にすることが望ましい。このような均質性の数値を有する高純度透明シリカガラスは殊に均質性が要求される各種光学材として有用である。
【0045】
【実施例】
本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれに限定されるものではない。なお実施例における評価は以下の方法により行った。
【0046】
〜不純物の分析〜
珪素のアルコキシドを加水分解して得られた市販品の非晶質シリカ粉末を公知の方法であるICP法により分析した。
【0047】
〜平均粒子径〜
非晶質シリカ粉末の平均粒子径は、レーザー回折散乱法COULTER LS−130(COLTER ELECTRONICS社製)により測定した。
【0048】
〜気泡径及び気泡量〜
シリカガラスを切断機と研磨装置を用いて100mm×100mm×10mm(厚み)の大きさに鏡面研磨し測定用サンプルとした。これを目盛り付きレンズのある偏光顕微鏡(オリンパス社製、型式:BH−2)を使用し、サンプル中の気泡径及び気泡量を測定した。
【0049】
〜密度〜
シリカガラスを切断機と研磨装置を用いて100mm×100mm×10mm(厚み)の大きさに鏡面研磨し測定用サンプルとした。これをアルキメデス法により密度を測定した。
【0050】
〜クリストバライト結晶化の程度〜
マック・サイエンス社製の自動X線回折計(MXP3)を用いて、1500〜1700℃でクリストバライト結晶化させたシリカ質焼結体を粉砕した試料中の非晶質シリカとクリストバライト結晶の回折ピーク強度比を測定し、その強度比からクリストバライト結晶化の程度を算出した。
【0051】
〜OH基含有量〜
シリカガラスを切断機と研磨装置を用いて100mm×100mm×10mm(厚み)の大きさに鏡面研磨し測定用サンプルとした。これをFT−IR装置 (島津製作所社製、型式:FT−IR−8100M)を使用し、サンプルのIR透過光の波長3600カイザーのOH基吸収スペクトルにより定量した。
【0052】
〜表面のガス分析〜
シリカガラスを切断機を用いて10mm×10mm、厚みは作製した状態のままであるシリカガラスを測定用サンプルとした。このサンプルをESCA(Perkin Elmer社製、機種5400MC)によりその表面のガス量を測定した。
【0053】
〜高温粘性値の測定
シリカガラスを切断機と研磨装置を用いて110mm×5mm×3mm(厚み)の大きさに鏡面研磨し測定用サンプルとした。このサンプルの1200℃での粘性値を片持ちビームベンディング法より計算した。
【0054】
〜均質性(Δn)の測定〜
シリカガラスを研磨装置を用いてφ165mm×25mm(厚み)の大きさに鏡面研磨し測定サンプルとした。これを干渉計(ZYGO社製、機種:MarkIV)を用いて均質性(Δn)を測定した。
【0055】
実施例1
珪素のアルコキシドを加水分解して得られた市販品の非晶質シリカ粉末を出発原料とした。この非晶質シリカ粉末の平均粒子径は、レーザー回折散乱法により測定したところ151μmであった。この粉末中の不純物を分析した結果は表1の通りであった。また、OH基の含有量は100ppmであった。
【0056】
【表1】
Figure 0004022678
【0057】
この粉末を高純度処理したカーボン容器に充填し、カーボン抵抗加熱炉に設置し、真空度を10-3mmHgまで減圧し、300℃/時間の昇温速度で1500℃まで昇温し、15時間保持させた。この条件と同じ処方により別に得たシリカ質焼結体を粉砕し、上記記載の方法でX線回折計によりクリストバライト結晶化の程度を算出すると50重量%クリストバライト結晶化していた。
【0058】
その後、300℃/時間の昇温速度で1850℃まで昇温し、5分間保持した後、減圧を解除し、窒素ガスを2kgf/cm2となるまで導入し、さらに10分間保持した。保持中の真空度は1mmHgであった。冷却はガス圧をかけたまま放冷し、透明シリカガラスを得た。この透明シリカガラスを上記記載の方法により評価したところ、1200℃での粘性値は1012.2Pa・sであり、この透明シリカガラスには窒素は検出されなかった。また、この透明シリカガラス中の気泡径及び気泡量、ガラスの密度、ガラス中のOH基含有量を上記記載の方法により測定し、その結果を表2に示す。
【0059】
【表2】
Figure 0004022678
【0060】
さらに、得られた透明シリカガラスを上記記載の方法によりその純度を測定したところ、表3の結果となった。
【0061】
【表3】
Figure 0004022678
【0062】
実施例2
実施例1で使用したと同じ非晶質シリカ粉末を使用し、この粉末を高純度処理したカーボン容器に充填し、カーボン抵抗加熱炉に設置し、真空度を10-3mmHgまで減圧し、300℃/時間の昇温速度で1650℃まで昇温し、2時間保持させた。この条件と同じ処方により別に得たシリカ質焼結体を粉砕し、上記記載の方法でX線回折計によりクリストバライト結晶化の程度を算出すると70重量%クリストバライト結晶化していた。
【0063】
その後、続いて300℃/時間の昇温速度で1850℃まで昇温し、5分間保持した後、減圧を解除し、窒素ガスを4.0kgf/cm2となるまで導入し、さらに10分間保持した。保持中の真空度は1mmHgであった。冷却はガス圧をかけたまま放冷し、透明シリカガラスを得た。
【0064】
この得られた透明シリカガラスを熱間静水圧プレス装置に入れ、Arガスを圧力媒体とし、600℃/時間の昇温速度で1300℃まで上げ、圧力200MPaをかけた状態で1時間保持した。
【0065】
次に、熱間静水圧プレス処理後、シリカガラスを大気中、1200℃まで6時間で昇温させ1200℃で4時間保持させた後、1200℃から700℃まで8時間かけて降温させるという再加熱処理を行った。そして、再加熱したシリカガラスの密度を測定したところ、2.205g/cm3であり、熱間静水圧プレス前の密度に戻すことができた。この透明シリカガラスを上記記載の方法により評価したところ、1200℃での粘性値は1012.3Pa・sであり、Arは検出されなかった。また、このようにして得たシリカガラスの均質性(Δn)を上記記載の方法により測定したところ、1.9×10-5であった。
【0066】
さらに、この透明シリカガラス中の気泡径及び気泡量、ガラスの密度、ガラス中のOH基含有量を上記記載の方法により測定し、その結果を表4に示す。
【0067】
【表4】
Figure 0004022678
【0068】
比較例1
OH基含有量が50ppmである以外は実施例1で使用したと同様の非晶質シリカ粉末を使用し、この粉末を高純度処理したカーボン容器に充填し、カーボン抵抗加熱炉に設置し、真空度を10-3mmHgまで減圧し、300℃/時間の昇温速度で1500℃まで昇温し、15時間保持させた。続いて300℃/時間の昇温速度で1850℃まで昇温し、5分間保持した後、減圧を解除し、窒素ガスを2.0kgf/cm2となるまで導入し、さらに10分間保持した。保持中の真空度は2mmHgであった。冷却は加圧状態のまま放冷し、透明シリカガラスを得た。得られた透明シリカガラス中の気泡径及び気泡量を測定し、その結果を表5に示す
【0069】
【表5】
Figure 0004022678
【0070】
また、この得られた透明シリカガラスの1200℃での粘性値は1011.8Pa・sであり、OH基含有量は5ppmであった。
【0071】
この結果からOH基含有量が60ppm未満である原料粉末を使用した場合は加熱途中に一定時間の保持をさせてもクリストバライト結晶化が不十分であるために高温粘性値が低下することが分かった。
【0072】
比較例2
OH基含有量が700ppmである以外は実施例1で使用したと同様の非晶質シリカ粉末を使用し、この粉末を高純度処理したカーボン容器に充填し、カーボン抵抗加熱炉に設置し、真空度を10-3mmHgまで減圧し、300℃/時間の昇温速度で1600℃まで昇温し、5時間保持させた。続いて300℃/時間の昇温速度で1850℃まで昇温し、5分間保持した後、減圧を解除し、窒素ガスを4.0kgf/cm2となるまで導入し、さらに10分間保持した。保持中の真空度は2mmHgであった。冷却は加圧状態のまま放冷し、透明シリカガラスを得た。得られた透明シリカガラス中の気泡径及び気泡量を測定し、その結果を表6に示す
【0073】
【表6】
Figure 0004022678
【0074】
また、この得られた透明シリカガラスの1200℃での粘性値は1011.5Pa・sであり、OH基含有量は40ppmであった。
【0075】
この結果からOH基含有量が500ppmを超える原料粉末を使用した場合は加熱途中に一定時間の保持をさせてもガラス中の含有するOH基が10ppm以上となり高温粘性値が低下することが分かった。
【0076】
比較例3
精製した天然水晶粉末中の不純物を分析した結果は表7の通りであった。
【0077】
【表7】
Figure 0004022678
【0078】
この粉末を高純度処理したカーボン容器に充填し、カーボン抵抗加熱炉に設置し、真空度を10-3mmHgまで減圧し、300℃/時間の昇温速度で1850℃まで昇温し、20分間保持した後、減圧を解除し、窒素ガスを2kgf/cm2となるまで導入し、さらに10分間保持した。保持中の真空度は1mmHgであった。冷却はガス圧をかけたまま放冷し、透明石英ガラスを得た。
【0079】
この透明シリカガラスの1200℃での粘性値は1012.2Pa・sであり、この透明シリカガラスには窒素は検出されなかった。得られた透明シリカガラス中の気泡径及び気泡量を測定し、その結果を表8に示す
【0080】
【表8】
Figure 0004022678
【0081】
さらに、得られた透明シリカガラスを上記記載の方法によりその純度を測定したところ、表9の結果となった。
【0082】
【表9】
Figure 0004022678
【0083】
これらの結果より、比較例3で得られた透明シリカガラスは、高温での粘性値は高いものの、実施例1の結果と比較すると、純度は実施例で作製した石英ガラスよりも劣ることが分かった。
【0084】
【発明の効果】
本発明の高純度透明シリカガラス及びその製造方法によれば、以下の優れた点がある。
【0085】
1)高温での粘性が高くかつ高純度な透明シリカガラスを容易に製造できるため、半導体製造用治具などの材料として有用である。
【0086】
2)さらに、加熱による密度変化が少なく、ガスの浸入がなく、かつ気泡が極めて少なく、また、均質性に優れた高純度透明シリカガラスを製造できるため、半導体製造用治具や、光透過性を利用する各種光学材料、高温型液晶基板などの材料として有用である。
【0087】

Claims (5)

  1. 珪素のアルコキシドより得たシリカであって、その含有金属不純物としてNa、K、Mg、Ca、Fe、Al及びTiが各々独立して0.1ppm以下であり、かつOH基含有量が60ppm〜500ppmである高純度非晶質シリカ粉末を出発原料とし、出発原料を10mmHg以下の減圧雰囲気下で1500〜1700℃の温度で所定時間保持させクリストバライト結晶化させた後、減圧雰囲気下で溶融しうる温度におき、その後不活性ガスで加圧状態にして保持した後冷却することを特徴とする高純度透明シリカガラスの製造方法。
  2. 請求項1に記載の高純度透明シリカガラス製造方法により得られた高純度透明シリカガラスに対し、熱間静水圧プレス装置を用いて1200〜1350℃の温度で100〜200MPaの不活性ガスによる圧力を作用させて気泡を減少させた後冷却し、1000〜1300℃で熱処理をした後冷却することを含むことを特徴とする高純度透明シリカガラスの製造方法。
  3. 高純度透明シリカガラスのOH基含有量を10ppm以下にすることを特徴とする請求項1又は請求項2に記載の高純度透明シリカガラスの製造方法。
  4. 高純度透明シリカガラスの1200℃での粘性値を1012.2Pa・s以上にすることを特徴とする請求項1〜3のいずれかに記載の高純度透明シリカガラスの製造方法。
  5. 高純度透明シリカガラスの均質性(Δn)を3×10-5未満にすることを特徴とする請求項1〜3のいずれかに記載の高純度透明シリカガラスの製造方法。
JP01105298A 1998-01-23 1998-01-23 高純度透明シリカガラスの製造方法 Expired - Fee Related JP4022678B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01105298A JP4022678B2 (ja) 1998-01-23 1998-01-23 高純度透明シリカガラスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01105298A JP4022678B2 (ja) 1998-01-23 1998-01-23 高純度透明シリカガラスの製造方法

Publications (2)

Publication Number Publication Date
JPH11209132A JPH11209132A (ja) 1999-08-03
JP4022678B2 true JP4022678B2 (ja) 2007-12-19

Family

ID=11767264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01105298A Expired - Fee Related JP4022678B2 (ja) 1998-01-23 1998-01-23 高純度透明シリカガラスの製造方法

Country Status (1)

Country Link
JP (1) JP4022678B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500411B2 (ja) * 2000-04-24 2010-07-14 株式会社オハラ 紫外線用石英ガラスおよびその製造方法
KR100446512B1 (ko) * 2001-11-13 2004-09-04 삼성전자주식회사 솔-젤 공법을 이용한 실리카 글래스 제조 방법
CN105473518B (zh) * 2013-08-15 2019-11-05 Agc株式会社 低散射石英玻璃和石英玻璃的热处理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839725B2 (ja) * 1990-12-28 1998-12-16 新日鐵化学株式会社 高純度結晶質シリカの製造方法
JP3526591B2 (ja) * 1993-05-26 2004-05-17 新日鐵化学株式会社 合成石英ガラスの製造方法
JP3751326B2 (ja) * 1994-10-14 2006-03-01 三菱レイヨン株式会社 高純度透明石英ガラスの製造方法
JP3121733B2 (ja) * 1994-11-01 2001-01-09 信越石英株式会社 高純度合成クリストバライト粉、その製造方法及びシリカガラス
JP3128451B2 (ja) * 1994-12-08 2001-01-29 信越化学工業株式会社 合成石英ガラスの製造方法
JPH09295826A (ja) * 1996-04-30 1997-11-18 Tosoh Corp 高純度透明シリカガラスの製造方法

Also Published As

Publication number Publication date
JPH11209132A (ja) 1999-08-03

Similar Documents

Publication Publication Date Title
CN101511744B (zh) 熔融石英玻璃及其制造方法
EP0322881B2 (en) Method of producing uniform silica glass block
JP2862001B2 (ja) 石英ガラス光学部材の製造方法
JP3988211B2 (ja) 高純度透明シリカガラスの製造方法
US20090104454A1 (en) Manufacture of Large Articles in Synthetic Vitreous Silica
JP3578357B2 (ja) 耐熱性合成石英ガラスの製造方法
JPH08151220A (ja) 石英ガラスの成形方法
JP4022678B2 (ja) 高純度透明シリカガラスの製造方法
TW201420532A (zh) SiO2-TiO2系玻璃之製造方法及由該玻璃構成之光罩基板之製造方法
JP2861512B2 (ja) 石英ガラス光学部材の製造方法
JPH11310423A (ja) 合成石英ガラスおよびその製造方法
JP2014031308A (ja) ナノインプリントモールド用合成石英ガラス及びその製造方法
JP2011026173A (ja) 合成石英ガラスの熱処理方法
JP3199275B2 (ja) 石英ガラスの製造方法
JPH0840735A (ja) 合成石英ガラスルツボの製造方法
JP4473653B2 (ja) 高純度石英ガラスの製造方法
JP2000143258A (ja) ArFエキシマレ―ザ―リソグラフィ―用合成石英ガラスの製造方法
JPS6272537A (ja) 高純度石英ガラスの製造方法
JP3188517B2 (ja) 石英ガラスの製造方法
JPH09295826A (ja) 高純度透明シリカガラスの製造方法
JP5418428B2 (ja) 合成石英ガラスブロックの熱処理方法
JP3371399B2 (ja) クリストバライト結晶相含有シリカガラスおよびその製造方法
JPS63218522A (ja) 石英ガラス中の歪の除去方法
JPH0776093B2 (ja) 石英ガラスの製造方法
JP2002220240A (ja) 石英ガラスの熱間形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees