JP3956190B2 - 強誘電体キャパシタアレイ及び強誘電体メモリの製造方法 - Google Patents

強誘電体キャパシタアレイ及び強誘電体メモリの製造方法 Download PDF

Info

Publication number
JP3956190B2
JP3956190B2 JP2001018047A JP2001018047A JP3956190B2 JP 3956190 B2 JP3956190 B2 JP 3956190B2 JP 2001018047 A JP2001018047 A JP 2001018047A JP 2001018047 A JP2001018047 A JP 2001018047A JP 3956190 B2 JP3956190 B2 JP 3956190B2
Authority
JP
Japan
Prior art keywords
ferroelectric
film
electrode
anisotropic conductive
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001018047A
Other languages
English (en)
Other versions
JP2001291842A (ja
Inventor
尚男 西川
栄治 名取
克行 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001018047A priority Critical patent/JP3956190B2/ja
Priority to US09/769,262 priority patent/US6521928B2/en
Publication of JP2001291842A publication Critical patent/JP2001291842A/ja
Application granted granted Critical
Publication of JP3956190B2 publication Critical patent/JP3956190B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は強誘電体メモリのメモリセル構造に関し、特に、スタック型メモリセルのメモリセルの構造及びその製造方法に関する。
【0002】
【従来の技術】
従来、強誘電体メモリセルの形成には、例えば、スタック型メモリ構造では、トランジスタや配線層等からなる半導体形成層の上に、メモリセルアレイのキャパシタ層を形成している。キャパシタの形成には、キャパシタの下部電極層、強誘電体膜、上部電極層の各パターニング工程を行う必要があり、これをフォトレジスト塗布、パターン露光、エッチングの各工程からなるリソグラフィ技術によって行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、キャパシタ形成のためにパターニングを繰返すことは、各層の位置合わせ回数が増えてパターンずれが生じ、いわゆるアライメント精度が低下する。また、リソグラフィ(プラズマエッチング)によって強誘電体膜がダメージを受けやすく、有機材料であるフォトレジストは有機材料を含む強誘電体膜とは剥離性が悪い傾向がある。更に、パターニング工程数が多いことは、コストがかさむ原因となる。
【0004】
よって、本発明は、リソグラフィプロセスによるパターニングをなるべく使用しないでキャパシタセルアレイを形成することの出来るメモリセル構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の強誘電体キャパシタアレイは、複数のキャパシタに対応した凹凸パターンが両面に形成された強誘電体膜と、前記強誘電体の凸部に対応して配置された一対の電極と、前記強誘電体の凸部と前記電極の間に少なくとも介在して、前記強誘電体膜の凸部と前記電極の間を電気的に接続する異方性導電膜とを備える。かかる構成とすることによって、大量のキャパシタをエッチング(リソグラフィ)プロセスを行うことなく形成することが可能となる。それにより、強誘電体膜へのダメージを減らすことが可能となる。
【0006】
好ましくは、上記強誘電体膜は、複数のキャパシタに対応した凹凸パターンが形成された原盤(型)を用いて強誘電体材料に該凹凸パターンを転写して形成される。かかる構成とすることによって、強誘電体膜をエッチング(リソグラフィ)プロセスを行うことなく形成することが可能となる。それにより、強誘電体膜へのダメージを減らすことが可能となる。
【0007】
このような、強誘電体キャパシタアレイは、強誘電体メモリに好都合である。好ましくは、上記一対の電極はそれぞれ第1及び第2の基板に形成され、この第1及び/又は第2の基板は、LSI回路を含んでメモリセルの選択、書込み、読出し等を行う。
【0008】
本発明のスタック型メモリは、半導体回路が形成される半導体回路層とメモリセルのキャパシタが形成されるキャパシタ層とを積層してなるスタック型メモリにおいて、上記キャパシタ層は、メモリセルアレイを構成するキャパシタ群の各一方の電極が形成された第1の電極膜と、上記キャパシタ群の各電極に対応した凹凸パターンが両面に形成された強誘電体膜と、上記メモリセルアレイを構成するキャパシタ群の各他方の電極が形成された第2の電極膜と、上記第1の電極膜及び上記強誘電体膜相互間、上記第2の電極膜及び上記強誘電体膜相互間にそれぞれ介在して所定膜厚以下となることによって導通する第1及び第2の異方性導電膜と、を含む。かかる構成とすることによって、強誘電体膜をエッチング(リソグラフィ)プロセスを行うことなく形成することが可能となる。それにより、強誘電体膜へのダメージを減らすことが可能となる。
【0009】
本発明の強誘電体メモリの製造方法は、メモリセルのキャパシタに対応した凹凸パターンが形成された原盤を用いて強誘電体材料に該凹凸パターンを転写し、膜の少なくとも片面に凹凸部を有する強誘電体膜を形成する過程と、前記キャパシタの一方の電極が形成された第1の基板と前記強誘電体膜の一面側とを第1の異方性導電膜を介して積層する過程と、前記強誘電体膜の他面側に、前記キャパシタの他方の電極を積層する過程を含む。
【0010】
好ましくは、前記強誘電体膜の他面側に前記キャパシタの他方の電極を積層する過程は、前記強誘電体膜の他面側と前記キャパシタの他方の電極が形成された第2の基板とを第2の異方性導電膜を介して積層する。
【0011】
【実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。図1は、本発明のメモリセル構造(スタック型)を形成する過程を説明する工程図である。
【0012】
本工程においては、予めキャパシタ構造に対応した凹凸パターンが形成された原盤(型)を用い、そのパターンを強誘電体膜に転写することによりキャパシタ構造を形成する。
【0013】
まず、図1(a)に示すように、メモリセルのキャパシタアレイを形成するために、原盤11及び12が用意される。これ等の原盤には、キャパシタアレイの誘電体のパターンがエッチングされており、両原盤によって強誘電体材料(あるいは前駆体)13を挟持し、必要に応じて圧縮することによってパターンが転写される。原盤11及び12の製造工程については、後述する。
【0014】
強誘電体材料13としては、チタン酸鉛、ジルコン酸チタン酸鉛、ジルコン酸鉛等のベロブスカイト型酸化物強誘電体、ビスマス系層状酸化物、ポリフッ化ビニリデン、フッ化ビニリデン/三フッ化エチレン共重合体、シアン化ビニリデン/酢酸ビニル共重合体等の有機高分子系強誘電体等を使用可能である。
【0015】
この強誘電体材料(あるいは前駆体)13は、液状あるいは液状化可能な物質であることが好ましい。液状であることで、原盤上の凹部に強誘電体材料を充填することが容易となる。例えば、強誘電体膜13の組成としてジルコン酸チタン酸鉛を利用する場合には、チタニウムテトライソプロポキシド、テトラ−n−プロキシジルコニウム、酢酸鉛を2−n−ブトキシエタノール及びジエタノールアミン等の有機溶剤に混合した液を用いる。
【0016】
また、例えば、強誘電体材料13として有機高分子系強誘電体を利用する場合には、エネルギ硬化性物質又は熱可塑性であることが好ましい。このような物質を利用することで堅牢な強誘電体膜が得られ、後述するように強誘電体膜から原盤を分離する際に、強誘電体膜の破損を防ぐことができる。エネルギ硬化性物質を利用する場合のエネルギとしては、光及び熱の少なくともいずれか一方であることが望ましい。光や熱の利用は、汎用の露光装置、ベイク炉やホットプレート等の加熱装置を利用することができ、省設備化を図ることが可能である。
【0017】
図1(b)に示すように、強誘電体材料13を原盤11及び12によって成形する。例えば、後述のように、原盤11及び/又は12を透明な石英で造り、外部から光を照射して硬化させる。熱可塑性材料の場合には、適切な温度で加熱する。原盤11及び12の各パターンが強誘電体膜13に転写され、強誘電体膜13が硬化した後、原盤12を取外す。
【0018】
図1(c)に示すように、別途の工程により製造された、トランジスタ(図示せず)や配線層(図示せず)、電極層15等が形成されたLSI基板14に異方性導電膜材料16をスピンコート等によって形成する。後述の図2で説明するように、異方性導電膜16は膜厚を薄くすることによって、絶縁性から導電性に変る性質を持つ。
【0019】
異方性導電膜16は、具体的に例を挙げれば、PMMAをテトラヒドロフラン(THF)に溶かし、溶液化する。これに、同じくテトラヒドロフランに溶かしたポリピロール(polypyrrols)を混合する。PMMAとポリピロールの比率は、例えば、20〜70%である。溶媒としては、上記テトラヒドロフランの他、クロロホルム、ジクロロメタン等を使用することが出来る。この混合溶液を、前述したように、基板14の電極及び配線層15の上に、例えば、スピンコートによって塗布し、100〜170℃に加熱してテトラヒドロフランを除去する。
【0020】
図1(d)に示すように、原盤11を反転し、基板14と位置合せを行いながら強誘電体膜13と異方性導電膜16とを密着させる。強誘電体膜13下側の下方へ向って凸となる部分と電極層等15間の異方性導電膜(後述図2の16’)では膜厚が薄くなって導電性となる。また、異方性導電膜16は、強誘電体膜13及び電極層15等とのバインダとしても機能する。
【0021】
次に、図1(e)に示すように、強誘電体膜13の上側の原盤11を外す。
【0022】
図1(f)に示すように、強誘電体膜13に異方性導電膜材料16と同様の異方性導電膜材料17をスピンコート等によって塗布し、異方性導電膜17を形成する。
【0023】
図1(g)に示すように、別途の工程により製造された、下面に電極層19等が形成された上側基板18と、下側基板14とを位置合せし、強誘電体膜13を両基板によって挟持するようにして、電極層19と異方性導電膜17とを密着させる。強誘電体膜13の上方へ向って凸となる部分と電極層19間の異方性導電膜(後述図3の17’)では膜厚が薄くなり、導電性となる。また、異方性導電膜17は電極層19等及び強誘電体膜13間のバインダとしても機能する。その結果、電極15(異方性導電膜16’)及び電極19(異方性導電膜17’)で挟まれた部分の強誘電体膜13は、キャパシタとして機能する。
【0024】
このようにして、強誘電体膜13をリソグラフィ技術によらずに、パターニングし、電極層と電気的にコンタクトして、LSI基板14上にキャパシタセルアレイを配置した強誘電体メモリを形成することが可能となる。
【0025】
なお、強誘電体メモリデバイスの構造に応じて、上側基板18の下面に形成された電極層19等が異方性導電膜17を介して強誘電体膜13に密着されれば、上側基板18自体はその後、前記の原盤と同様に外してもよい。そして、その場合には、当該電極層19等の上方に、更に別途の工程によって製造された他の機能デバイスや半導体層等を配置することができる。
【0026】
図2及び図3は、異方性導電膜16の機能を説明する図である。両図において、説明の便宜上、図1とは異なり、基板14、18が上下逆に示されている。
【0027】
図2に示すように、強誘電体膜13及び電極層15によって異方性導電膜16を狭持する。この際、異方性導電膜膜厚を、図2のd1の厚みでは導通し、d2の厚みでは導通しないように設定する。すると、異方性導電膜の領域16’のみで強誘電体膜と電極層は導通する。
【0028】
更に、図3に示すように、強誘電体膜13及び電極層19によって異方性導電膜17を狭持する。狭持部分17’の膜厚は薄くなって、導電性となる。異方性導電膜17の非狭持部分は、絶縁性である。その結果、電極15、異方性導電膜16’、強誘電体膜13、異方性導電膜17’、電極19によって、キャパシタが形成される。このキャパシタは、メモリセルにおいて情報保持の役割を担う。
【0029】
図4は、異方性導電膜を使用する場合の他の利点を説明する図である。同図において、図3と対応する部分には、同一符号を付し、かかる部分の説明は省略する。
【0030】
異方性導電膜を使用した場合には、図4に示すように、上下の電極層(あるいは端子)15及び19相互間に多少のずれhが生じていても狭持領域16’、17’で電気的なコンタクトを確保することが出来るので、高集積化しても電極(あるいは端子等)相互間の電気的接続を容易に確保することが可能である。
【0031】
図5(a)乃至同図(e)は、原盤11、12の製造工程の一例を示している。
【0032】
図5(a)に示すように、基材21上にレジスト層を形成する。基材21はエッチング可能な材料であれば、特に限定されるものではないが、少なくともエッチングされる部分は、シリコンあるいはその化合物で構成されていることが好ましい。シリコンあるいはその化合物は、エッチングにより、高精度の凹部の形成が容易であるため、好適である。また、光透過性の原盤を製造したい場合には、基材構成材料として石英が望ましい。石英は、エッチングにより、高精度の凹部の形成が容易であるため、好適である。
【0033】
レジスト層を形成する物質としては、例えば、クレゾールノボラック系樹脂に感光剤としてジアゾナフトキノン誘導体を配合して得られるポジ型レジストが利用できる。ここで、ポジ型のレジストとは、所定のパターンに応じて光等の放射エネルギ線を照射することにより、放射エネルギ線に暴露された領域が現像液により選択的に除去可能となる物質のことである。レジスト層を形成する方法としては、例えば、スピンコート法を利用することができる。
【0034】
次に、図5(b)に示すように、マスク(レクチル)23を介してレジスト層22の所定領域のみに放射エネルギ線24を照射する。マスク23はキャパシタに対応する凹部を原盤上に形成するために必要とされる領域においてのみ、放射エネルギ線24が透過するように、パターン形成されたものである。
【0035】
レジスト層22に放射エネルギ線24を照射した後に所定の条件により、現像処理を行うと、図5(c)に示すように、放射エネルギ線24に暴露された領域25においてのみ、レジスト層22の一部が選択的に除去されて基材21の表面が露出し、それ以外の領域はレジスト層22により、覆われたままの状態となる。
【0036】
こうして、レジスト層22がパターン化されると、図5(d)に示すように、このレジスト層22をマスクとして基材21を所定の深さにエッチングする。エッチングの方法としては、ウエット方式及びドライ方式があるが、基材21の材質に合わせて、エッチング形状、エッチングレート、面内均一性等の点から最適な方式及び条件を選べばよい。加工精度の点から言えばドライ方式の方が優れており、例えば、平行平板型リアクティブイオンエッチング(RIE)方式、誘導結合型(ICP)方式、エレクトロンサイクロトロン共鳴(ECR)、ヘリコン波励起方式等の装置が利用できる。
【0037】
エッチングを終了した基材21を洗浄すると、図5(e)に示すように、キャパシタ電極に対応したパターンが形成された原盤11が得られる。
【0038】
原盤12についても、同様の工程によって製造することが出来る。本実施の形態では、原盤11及び12は、一旦製造すれば耐久性の許す限り何度でも使用できるため経済的である。
【0039】
このように、本発明の実施の形態によれば、強誘電体膜のパターニングをリソグラフィプロセスを使用しないで行うことが可能となる。それにより、強誘電体膜のプラズマエッチングによるダメージやエッチング液によるダメージが減少する。また、パターニングによる位置合せの回数も減るので、パターンのずれによるアライメント精度低下も減少する。
【0040】
なお、実施例では、1つの導電性ポリマと1つの絶縁性ポリマとを混合した溶液を使用したが、導電性ポリマとして1つ若しくはそれ以上の材料を使用した溶液と、絶縁性ポリマとしても1つ若しくはそれ以上の材料を使用した溶液とを混合して異方性導電膜として使用することが可能である。絶縁性ポリマとしては、上述したポリメタクリレート(polymetacrylate,PMMA)の他、ポリエステル(polyesters)、ポリカーボネート(polycarbonates)、ポリアクリレート(polyacrylates)、ポリオレフィン(polyolefines)、ポリスチレン(polystyrenes)、等であってもよい。導電性ポリマとしては、上述したポリピロールの他、ポリアニリン(polyaniline)、ポリシロフェン(polythiophenes)、ポリシロフェンビニレン(polythiophenvinylenes)、等であっても良い。
【0041】
なお、実施例では、強誘電体膜の両面に凸凹を形成し、両面の凸凹と各々の電極の間に異方性導電膜を形成したが、必ずしも強誘電体膜の両面に形成しなくても、少なくとも片面に形成していれば、本発明の強誘電体キャパシタアレイおよび強誘電体メモリの製造方法の効果を得ることができる。すなわち、強誘電体膜を、複数のキャパシタに対応した凹凸パターンが形成された原盤(型)を用いて強誘電体材料に該凹凸パターンを転写して形成することによって、強誘電体膜をエッチング(リソグラフィ)プロセスを行うことなく形成することが可能となり、強誘電体膜へのダメージを減らすことが可能となる。そのため、凸凹ないし異方性導電膜を強誘電体膜の両面に形成することがより望ましいが、片面に形成しても、両面に形成する場合よりも強誘電体膜へのダメージを減らすことが可能である。
【0042】
【発明の効果】
以上説明したように、本発明の強誘電体メモリ及びその製造法によれば、強誘電体膜をキャパシタとするためのパターニングをエッチングあるいはリソグラフィすることなく、行うことが可能であるので、強誘電体膜の特性劣化を可及的に回避することが可能となって好ましい。
【図面の簡単な説明】
【図1】図1は、本発明の実施の形態のキャパシタ形成工程を説明する工程図である。
【図2】図2は、異方性導電膜を説明する説明図である。
【図3】図3は、異方性導電膜を用いたキャパシタ構造を説明する説明図である。
【図4】図4は、異方性導電膜を用いる場合の他の利点を説明する説明図である。
【図5】図5は、原盤の製造過程を説明する工程図である。
【符号の説明】
11 下側原盤
12 上側原盤
13 強誘電体膜(材料)
14 下側基板
15 配線層
16 異方性導電膜
17 異方性導電膜
18 上側基板

Claims (6)

  1. 複数のキャパシタを形成する各々の一方の電極が形成された第1の基板と、前記一方の電極に対向して配置され、前記複数のキャパシタを形成する各々の他方の電極が形成された第2の基板と、前記一方の電極および前記他方の電極に対応して設けられた凸部を含む凹凸パターンが両面に形成された強誘電体膜と、前記第1の基板及び前記強誘電体膜相互間、前記第2の基板及び前記強誘電体膜相互間にそれぞれ介在する第1及び第2の異方性導電膜とを備え、前記第1の異方性導電膜は、前記強誘電体膜の凸部と前記一方の電極の間においてのみ導通し、前記第2の異方性導電膜は、前記強誘電体膜の凸部と前記他方の電極の間においてのみ導通することを特徴とする強誘電体キャパシタアレイ。
  2. 請求項1に記載された強誘電体キャパシタアレイを用いる強誘電体メモリ。
  3. 半導体回路が形成される半導体回路層とメモリセルのキャパシタが形成されるキャパシタ層とを積層してなるスタック型メモリであって、前記キャパシタ層は、メモリセルアレイを構成する複数のキャパシタを形成する各々の一方の電極が形成された第1の基板と、前記一方の電極に対向して配置され、前記複数のキャパシタを形成する各々の他方の電極が形成された第2の基板と、前記一方の電極および前記他方の電極に対応して設けられた凸部を含む凹凸パターンが両面に形成された強誘電体膜と、前記第1の基板及び前記強誘電体膜相互間、前記第2の基板及び前記強誘電体膜相互間にそれぞれ介在する第1及び第2の異方性導電膜とを備え、前記第1の異方性導電膜は、前記強誘電体膜の凸部と前記一方の電極の間においてのみ導通し、前記第2の異方性導電膜は、前記強誘電体膜の凸部と前記他方の電極の間においてのみ導通することを特徴とする、スタック型メモリ。
  4. メモリセルのキャパシタに対応した凹凸パターンが形成された原盤を用いて強誘電体材料に該凹凸パターンを転写し、膜の少なくとも一方の面に凹凸部を有する強誘電体膜を形成する過程と、前記キャパシタの一方の電極が形成された第1の基板と前記強誘電体膜の前記一方の面とを第1の異方性導電膜を介して積層する過程と、前記強誘電体膜の前記一方の面と対向する他方の面に前記キャパシタの他方の電極を積層する過程を含み、前記強誘電体膜の前記他方の面に前記キャパシタの他方の電極を積層する過程が、前記強誘電体膜の前記他方の面と前記キャパシタの他方の電極が形成された第2の基板とを第2の異方性導電膜を介して積層することを特徴とする強誘電体メモリの製造方法。
  5. 強誘電体膜は、エネルギの付与により硬化可能な物質を含む、請求項4に記載の強誘電体メモリの製造方法。
  6. 前記エネルギは、光及び熱のうち少なくともいずれか一方である、請求項記載の強誘電体メモリの製造方法。
JP2001018047A 2000-01-28 2001-01-26 強誘電体キャパシタアレイ及び強誘電体メモリの製造方法 Expired - Fee Related JP3956190B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001018047A JP3956190B2 (ja) 2000-01-28 2001-01-26 強誘電体キャパシタアレイ及び強誘電体メモリの製造方法
US09/769,262 US6521928B2 (en) 2000-01-28 2001-06-28 Ferroelectric capacitor array and method for manufacturing ferroelectric memory

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000020329 2000-01-28
JP2000-20329 2000-01-28
JP2001018047A JP3956190B2 (ja) 2000-01-28 2001-01-26 強誘電体キャパシタアレイ及び強誘電体メモリの製造方法

Publications (2)

Publication Number Publication Date
JP2001291842A JP2001291842A (ja) 2001-10-19
JP3956190B2 true JP3956190B2 (ja) 2007-08-08

Family

ID=26584395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018047A Expired - Fee Related JP3956190B2 (ja) 2000-01-28 2001-01-26 強誘電体キャパシタアレイ及び強誘電体メモリの製造方法

Country Status (2)

Country Link
US (1) US6521928B2 (ja)
JP (1) JP3956190B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20005980L (no) * 2000-11-27 2002-05-28 Thin Film Electronics Ab Ferroelektrisk minnekrets og fremgangsmåte ved dens fremstilling
US6756620B2 (en) * 2001-06-29 2004-06-29 Intel Corporation Low-voltage and interface damage-free polymer memory device
NO20015735D0 (no) * 2001-11-23 2001-11-23 Thin Film Electronics Asa Barrierelag
US7170122B2 (en) * 2003-09-30 2007-01-30 Intel Corporation Ferroelectric polymer memory with a thick interface layer
US7808024B2 (en) * 2004-09-27 2010-10-05 Intel Corporation Ferroelectric polymer memory module
JP4445446B2 (ja) * 2005-09-13 2010-04-07 株式会社東芝 半導体装置の製造方法
JP2009212448A (ja) * 2008-03-06 2009-09-17 Toshiba Corp 半導体記憶装置およびその製造方法
KR100984182B1 (ko) * 2008-04-14 2010-09-28 삼성전자주식회사 비휘발성 메모리 장치 및 이의 제조 방법
GB0809840D0 (en) * 2008-05-30 2008-07-09 Univ Catholique Louvain Ferroelectric organic memories with ultra-low voltage operation
JP5779933B2 (ja) * 2011-03-25 2015-09-16 凸版印刷株式会社 薄膜トランジスタ装置およびその製造方法
JP6229532B2 (ja) * 2014-02-21 2017-11-15 国立研究開発法人産業技術総合研究所 有機強誘電体薄膜の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681766A (en) * 1971-03-01 1972-08-01 Ibm Ferroelectric/photoconductor storage device with an interface layer
US5070026A (en) * 1989-06-26 1991-12-03 Spire Corporation Process of making a ferroelectric electronic component and product
JPH04228132A (ja) * 1990-06-12 1992-08-18 Canon Inc 情報記憶媒体および該媒体を用いた記録・保持方法
JPH0547172A (ja) * 1991-08-07 1993-02-26 Olympus Optical Co Ltd 強誘電体メモリ
US5627013A (en) * 1991-11-14 1997-05-06 Rohm Co., Ltd. Method of forming a fine pattern of ferroelectric film
US5375085A (en) * 1992-09-30 1994-12-20 Texas Instruments Incorporated Three-dimensional ferroelectric integrated circuit without insulation layer between memory layers
JP2831521B2 (ja) * 1992-12-17 1998-12-02 シャープ株式会社 強誘電性液晶表示素子及びその製造方法
JPH07307444A (ja) * 1994-05-16 1995-11-21 Mitsubishi Materials Corp 不揮発性強誘電体薄膜メモリのパターン形成方法
JP2838196B2 (ja) * 1996-08-20 1998-12-16 東京工業大学長 単一トランジスタ型強誘電体メモリへのデータ書込み方法
US5963466A (en) * 1998-04-13 1999-10-05 Radiant Technologies, Inc. Ferroelectric memory having a common plate electrode
US6255157B1 (en) * 1999-01-27 2001-07-03 International Business Machines Corporation Method for forming a ferroelectric capacitor under the bit line
JP2001237384A (ja) * 2000-02-22 2001-08-31 Oki Electric Ind Co Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2001291842A (ja) 2001-10-19
US6521928B2 (en) 2003-02-18
US20010050869A1 (en) 2001-12-13

Similar Documents

Publication Publication Date Title
EP1548470B1 (en) Organic electroluminescence element comprising a lens array sheet
JP3956190B2 (ja) 強誘電体キャパシタアレイ及び強誘電体メモリの製造方法
JP4585745B2 (ja) 半導体デバイスを形成する方法
TW405174B (en) Process for manufacturing semiconductor integrated circuit device
US9840059B2 (en) Fine pattern structures having block co-polymer materials
US9190274B2 (en) Methods of fabricating fine patterns
JP2004111933A (ja) エンボス加工マスクリソグラフィ
KR101830205B1 (ko) 압전 센서 제조 방법 및 이를 이용한 압전 센서
US5127989A (en) Method of forming a thin film pattern with a trapezoidal cross section
US9880473B2 (en) Surface treatment method for dielectric anti-reflective coating (DARC) to shrink photoresist critical dimension (CD)
JP5090625B2 (ja) 半導体デバイスを形成する方法およびシステム
CN111640766A (zh) 一种阵列基板及其制作方法
KR20050070862A (ko) 스플릿 게이트형 플래쉬 메모리 소자의 제조방법
US7427559B2 (en) Method of reducing the surface roughness of spin coated polymer films
KR101120180B1 (ko) 반도체 소자의 제조 방법
JP4051980B2 (ja) 強誘電体メモリの製造方法
JPS6117135B2 (ja)
JPH0621383A (ja) 半導体記憶装置およびその製造方法
US20200409273A1 (en) Fabricating Devices with Reduced Isolation Regions
TWI309852B (en) Method for forming photoresist on the substrate
US9099529B2 (en) Method of forming a conductive polymer microstructure
KR100370163B1 (ko) 반도체 소자 제조 방법
KR20050067317A (ko) 패턴 형성 방법과 이를 이용한 박막트랜지스터 및액정표시장치 제조방법
TW201924104A (zh) 用於薄膜電晶體(tft)裝置之半導體圖案化技術
JPH11214719A (ja) 太陽電池素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees