JP3918317B2 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP3918317B2
JP3918317B2 JP25340698A JP25340698A JP3918317B2 JP 3918317 B2 JP3918317 B2 JP 3918317B2 JP 25340698 A JP25340698 A JP 25340698A JP 25340698 A JP25340698 A JP 25340698A JP 3918317 B2 JP3918317 B2 JP 3918317B2
Authority
JP
Japan
Prior art keywords
signal
output
data
mask
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25340698A
Other languages
English (en)
Other versions
JP2000090697A (ja
Inventor
直治 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25340698A priority Critical patent/JP3918317B2/ja
Priority to US09/236,338 priority patent/US6438667B1/en
Priority to KR1019990004559A priority patent/KR100356091B1/ko
Publication of JP2000090697A publication Critical patent/JP2000090697A/ja
Application granted granted Critical
Publication of JP3918317B2 publication Critical patent/JP3918317B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/1201Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/48Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/26Accessing multiple arrays
    • G11C2029/2602Concurrent test

Landscapes

  • Dram (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数のデータ入出力端子を備えた半導体記憶装置に関し、特に、複数のマスク/ディセーブル端子を備え、各マスク/ディセーブル制御信号によって対応するデータ入出力端子から入出力されるデータの書き込み/読み出しを禁止するマスク/ディセーブル動作をおこなう半導体記憶装置に関するものである。
【0002】
【従来の技術】
RAM(Random Access Memory)またはROM(Read Only Memory)に代表される半導体記憶装置は、大容量の記憶を可能とするとともに、データの高速な書き込み/読み出しを必要とすることから、複数ビットに対応した複数のデータ入出力端子を備えている。このような半導体記憶装置の中には、複数のデータ入出力端子に対して、データの書き込み/読み出しを禁止するマスク/ディセーブル端子を備えたものがある。
【0003】
また、近年、パッケージされた1つの半導体記憶装置(以下、特に、半導体記憶デバイスと称する)を複数個組み合わせて、さらなる大容量化を実現させた半導体記憶モジュールが多く流通している。この半導体記憶モジュールにおいては、複数の半導体記憶デバイスに対して共通のデータバスを用いているが、データの書き込み/読み出しの許可を各半導体記憶デバイスごとにコントロールする必要があり、半導体記憶デバイスとして上記のマスク/ディセーブル端子を備えた半導体記憶装置を使用することにより、柔軟性の高いデータの入出力をおこなうことが可能となった。
【0004】
ここで従来技術として、マスク/ディセーブル端子を備え、外部クロックに同期して動作するシンクロナス・ダイナミックRAM(以下、SDRAMと称する)を基本構成とした半導体記憶装置について説明する。図16は、従来の半導体記憶装置の概略構成を示すブロック図である。図16は、特に、MPU(Micro Processing Unit)によって、MPUのアドレス空間よりも大きな容量のメモリを管理できるメモリ・バンク方式が採用された場合のSDRAMを示している。
【0005】
図16において、SDRAM100は、記憶単位となるメモリセルをマトリクス状に配置したメモリアレイを、2つのバンク(バンク0、バンク1)に分割し、さらに各バンクは、複数のブロックに分割されている。各バンクは、ロウデコーダ102およびコラムデコーダ103を備え、これらのデコーダ102,103によって、メモリアレイ101から1つのメモリセルを選択する。ここで、ロウデコーダ102は、ロウアドレス信号110を受けて、ロウ(行)方向のメモリセルを特定するワード線から1つを選択する回路である。また、コラムデコーダ103は、コラムアドレス信号111を受けて、コラム(列)方向のメモリセルを特定するビット線から1つを選択する回路である。なお、各ビット線には、メモリセルに蓄えられた電荷を増幅させるセンスアンプ104が接続されている。
【0006】
バンク0またはバンク1において、データの読み出し命令を受け、ロウデコーダ102およびコラムデコーダ103によって特定されたメモリセルのデータは、グローバルデータバス(GDB)106を経由してライトアンプ/センスバッファ105に入力する。このSDRAM100では、複数ビットのデータ入出力を可能としているので、例えば16ビットのデータ入出力の場合、入力されるロウアドレス信号110およびコラムアドレス信号111に対して特定されるメモリセルの2バイト分のデータを、ライトアンプ/センスバッファ105に蓄積することでデータをパラレル出力する。
【0007】
ライトアンプ/センスバッファ105に蓄積された読み出しデータは、I/Oデータバッファ/レジスタ107に導かれ、I/Oデータバッファ/レジスタ107のデータ入出力端子DQ0〜DQnから出力される。
【0008】
一方、データの書き込み命令を受けると、書き込みデータは、ライトアンプ/センスバッファ105からGDB106を経由してロウデコーダ102およびコラムデコーダ103によって特定されたメモリセルに入力される。なお、書き込みデータは、I/Oデータバッファ/レジスタ107のデータ入出力端子DQ0〜DQnから入力され、ライトアンプ/センスバッファ105に導かれる。
【0009】
ロウアドレス信号110およびコラムアドレス信号111は、アドレスバッファ/レジスタ&バンクセレクト108のアドレス端子A0〜Anから入力される信号に基づいて生成される。
【0010】
また、バンク0およびバンク1には、RAS信号120、CAS信号121およびWE信号122が入力され、これら3つの信号の組み合わせによって、書き込み命令や読み出し命令等の制御命令が決定される。特に、これらの制御命令によって、ライトアンプ/センスバッファ105の機能が決定される。
【0011】
バンク0およびバンク1に入力されるRAS信号120、CAS信号121およびWE信号122は、制御信号ラッチ113から出力される。制御信号ラッチ113は、コマンドデコーダ112からコマンド信号125を入力し、コマンド信号125が示す制御命令をラッチし、RAS信号120、CAS信号121およびWE信号122を、それらの組み合わせによって制御命令を表わせる信号レベルとして出力する。
【0012】
コマンドデコーダ112は、/CS信号、/RAS信号、/CAS信号および/WE信号を入力し、各信号の組み合わせから制御命令を決定し、その制御命令を示すコマンド信号125を出力する。また、コマンドデコーダ112は、/CS信号、/RAS信号、/CAS信号および/WE信号の組み合わせからアクセスモードを決定し、そのアクセスモードを示すモード信号126を出力する。
【0013】
モードレジスタ114は、モード信号126と、アドレスバッファ/レジスタ&バンクセレクト108によって中継されるアドレス信号A0〜Anとを入力して一時的に記憶する。コラムアドレスカウンタ109は、モードレジスタ114に記憶されたモード信号とアドレス信号から、連続読み出しモード等のアクセスモードを判別し、アクセスモードに応じたコラムアドレス信号111を生成して出力する。
【0014】
また、SDRAM100は、例えばMPUのシステムクロックといった外部から与えられる同期信号(CLK)によって動作し、上記した内部回路における動作を高速におこなえることを特徴としている。クロックバッファ115は、その外部から与えられるクロック信号(CLK)およびそのクロック信号の出力を制御するクロックイネーブル信号(CKE)を入力し、入力したクロック信号を上記各回路に供給している。また、クロックバッファ115は、入力したクロックイネーブル信号をコマンドデコーダ112、アドレスバッファ/レジスタ&バンクセレクト108およびI/Oデータバッファ/レジスタ107に中継している。
【0015】
また、I/Oデータバッファ/レジスタ107は、前述したマスク/ディセーブル端子からマスク/ディセーブル信号を入力する。特に、I/Oデータバッファ/レジスタ107は、DQMU端子から、データ信号DQ0〜DQnの上位ビットのマスク/ディセーブルをおこなう信号であるDQMU信号を入力し、DQML端子から、データ信号DQ0〜DQnの下位ビットのマスク/ディセーブルをおこなう信号であるDQML信号を入力している。
【0016】
これらDQMU信号およびDQML信号は、MASK0およびMASK1信号としてバンク0およびバンク1に送信され、各バンクのライトアンプ/センスバッファ105に入力される。DQMU信号(MASK1)が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が書き込み命令を示す場合には、ライトアンプ/センスバッファ105は、データ信号DQ0〜DQnの上位ビットに相当するデータに対してマスクすなわち書き込み禁止の状態となる。また、DQML信号(MASK0)が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が書き込み命令を示す場合には、ライトアンプ/センスバッファ105は、データ信号DQ0〜DQnの下位ビットに相当するデータに対してマスクすなわち書き込み禁止の状態となる。
【0017】
一方、DQMU信号が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が読み出し命令を示す場合には、ライトアンプ/センスバッファ105は、データ信号DQ0〜DQnの上位ビットに相当するデータに対してディセーブルすなわち読み出し禁止の状態となる。また、DQML信号が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が読み出し命令を示す場合には、ライトアンプ/センスバッファ105は、データ信号DQ0〜DQnの下位ビットに相当するデータに対してディセーブルすなわち読み出し禁止の状態となる。
【0018】
図17は、従来における半導体記憶装置の要部を示す説明図であり、上述の従来のSDRAMのデータ入出力部における構成を示すものである。図16に示したI/Oデータバッファ/レジスタ107は、実際には、図17に示すように、DQ0〜DQ15のデータ入出力端子に接続されたI/Oデータバッファ131と、DQMLおよびDQMUのマスク端子にそれぞれ接続されたDQM入力バッファ132およびDQM入力バッファ133に細分化される。
【0019】
また、図16に示したライトアンプ/センスバッファ105も、実際には、図17に示すように、DQ0〜DQ15のデータ入出力端子に対応したライトアンプ&センスバッファ141に細分化される。さらに、DQM入力バッファ132は、DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ141に接続されており、DQM入力バッファ133は、DQ8〜DQ15に対応した8つのライトアンプ&センスバッファ141に接続されている。
【0020】
したがって、バンク詳しくはライトアンプ&センスバッファ141にデータの書き込み命令が与えられた場合、データ入出力端子DQ0〜DQ15に入力された各データは、それぞれ対応するI/Oデータバッファ131を介してライトアンプ&センスバッファ141に入力され、GDBに送出される。
【0021】
この際、DQML端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合すなわちデータの書き込み禁止を示す場合には、DQ0〜DQ7に対応するライトアンプ&センスバッファ141からGDBへのデータ送出はおこなわれない。同様に、DQMU端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合には、DQ8〜DQ15に対応するライトアンプ&センスバッファ141からGDBへのデータ送出はおこなわれない構成となっている。
【0022】
一方、バンク詳しくはライトアンプ&センスバッファ141にデータの読み出し命令が与えられた場合、ロウアドレス信号110およびコラムアドレス信号111によって順次に特定されるメモリセルのデータは、GDBに送出され、各GDBに接続されたライトアンプ&センスバッファ141に入力される。各ライトアンプ&センスバッファ141に入力されたデータは、それぞれ対応するI/Oデータバッファ131に送出され、データ入出力端子DQ0〜DQ15から出力される。
【0023】
この際、DQML端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合すなわちデータの読み出し禁止を示す場合には、DQ0〜DQ7に対応するライトアンプ&センスバッファ141からI/Oデータバッファ131へのデータ送出はおこなわれない。同様に、DQMU端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合には、DQ8〜DQ15に対応するライトアンプ&センスバッファ141からI/Oデータバッファ131へのデータ送出はおこなわれない構成となっている。
【0024】
つぎに、ライトアンプ&センスバッファ141を詳細に説明する。図18は、ライトアンプ&センスバッファ141、I/Oデータバッファ131およびDQM入力バッファ132との間の結線を示す説明図である。図18は、特にデータ入出力端子DQ0にかかわる構成を示しているが、他のデータ入出力端子DQ1〜DQ15に関しても同様な構成である。図18に示すように、ライトアンプ&センスバッファ141は、実際にはセンスバッファ151とライトアンプ152に細分化される。ライトアンプ&センスバッファ141において、データの読み出し命令に対しては、センスバッファ151が機能し、GDB(GDB0、GDB1)に送出された読み出しデータ(Rdata0/1)を受け取り、I/Oデータバッファ131に送出する。また、センスバッファ151は、DQM入力バッファ132から出力されるマスク/ディセーブル信号(MASK0)を入力し、当該MASK0信号の信号レベルに応じて、データの読み出しディセーブル動作を行う。
【0025】
一方、ライトアンプ&センスバッファ141において、データの書き込み命令に対しては、ライトアンプ152が機能し、I/Oデータバッファ131から出力された書き込みデータ(Wdata)を受け取り、GDB(GDB0、GDB1)に送出する。ライトアンプ152もまた、DQM入力バッファ132から出力されるマスク/ディセーブル信号(MASK0)を入力し、当該MASK0信号の信号レベルに応じて、データの書き込みマスク動作を行う。
【0026】
なお、SDRAMのようなDRAMにおいては、通常、1つのデータの信号レベルを、2つの信号レベルの比較によって確定するため、GDBに送出されるデータの信号レベルは、GDB0およびGDB1の2つの信号に基づいて定まり、ここでは、GDB1に送出される信号のレベルに対するGDB0の信号レベルを、I/Oデータバッファ131に入出力されるデータの信号レベルとして説明をする。
【0027】
以下に、センスバッファ151について詳細に説明する。図19は、センスバッファ151の回路構成を示す説明図である。図19において、センスバッファ151は、2つのトランスファゲートSW100およびSW101と、3つのスイッチング素子(ここでは、FET素子)TR100、TR101およびTR102と、3つのインバータ161、163および166と、3つのNANDゲート162、164および165とから構成される。
【0028】
また、センスバッファ151に接続されるGDB0およびGDB1上には、センスアンプ104が接続されており、このセンスアンプからGDB0およびGDB1にデータが送出される。
【0029】
センスバッファ151から出力される読み出しデータRdata0信号およびRdata1信号(Rdata0/1)はともに同じ信号レベルを示し、この信号がI/Oデータバッファ131に入力される。センスバッファ151において、Rdata0信号は、NANDゲート164から出力され、Rdata1信号は、インバータ166から出力される。インバータ166は、その入力端子をNANDゲート165の出力端子と接続している。また、NANDゲート164の一方の入力端子は、NANDゲート165の出力端子に接続しており、NANDゲート165の一方の入力端子は、NANDゲート164の出力端子に接続している。よって、Rdata0/1の信号レベルは、NANDゲート164および165の他方の入力端子にそれぞれ入力される信号の信号レベルに依存して定まる。
【0030】
NANDゲート164の他方の入力端子は、トランスファゲートSW100の一方の接点端子とスイッチング素子TR100のD端子に接続されている。また、NANDゲート165の他方の入力端子は、トランスファゲートSW101の一方の接点端子とスイッチング素子TR101のD端子に接続されている。トランスファゲートSW100およびSW101の他方の接点端子は、ともに“H”レベルを示す電源端子に接続されているので、NANDゲート164および165の他方の入力端子に入力される信号のレベルは、トランスファゲートSW100およびSW101と、スイッチング素子TR100およびTR101のON/OFF状態によって決定される。すなわち、トランスファゲートSW100およびSW101と、スイッチング素子TR100およびTR101のON/OFF状態によって、Rdata0信号およびRdata1信号(Rdata0/1)の信号レベルが決定される。
【0031】
トランスファゲートSW100およびSW101はともに制御端子を、インバータ163の出力端子に接続している。また、NANDゲート162の出力端子とインバータ163の入力端子は、互いに接続されている。NANDゲート162は、一方の入力端子からデータの読み出し命令を示す制御信号(READ)を入力し、他方の入力端子からインバータ161の出力信号を入力する。インバータ161は、DQM入力バッファ132から出力されるMASK0信号を入力し、その反転信号を出力する。よって、NANDゲート162から出力される信号のレベル、すなわち、READ信号とMASK0信号に応じて、トランスファゲートSW100およびSW101のON/OFFが制御される。
【0032】
一方、スイッチング素子TR100は、そのG端子をGDB0に接続しており、スイッチング素子TR101は、そのG端子をGDB1に接続している。すなわち、スイッチング素子TR100およびTR101は、それぞれGDB0およびGDB1上に送出される信号の信号レベルに応じて、ON/OFF制御される。ここで、スイッチング素子TR100およびTR101は、ともにそのS端子を、スイッチング素子TR102のD端子に接続している。また、スイッチング素子TR102は、そのS端子を、“L”レベルを示す電位に接続しており、スイッチング素子TR100がON状態、すなわちスイッチング素子TR100のG端子に、スイッチング素子TR100のスレショルドレベル以上(ここでは、“H”レベル)の信号が入力され、かつ、スイッチング素子TR102がON状態、すなわちスイッチング素子TR102のG端子に、スイッチング素子TR102のスレショルドレベル以上(ここでは、“H”レベル)の信号が入力された場合には、スイッチング素子TR100のD端子は、“L”レベルの電位となる。すなわち、NANDゲート164の他方の入力端子に“L”レベルの信号が入力される。
【0033】
また、スイッチング素子TR101がON状態、すなわちスイッチング素子TR101のG端子に、スイッチング素子TR101のスレショルドレベル以上(ここでは、“H”レベル)の信号が入力され、かつ、スイッチング素子TR102がON状態、すなわちスイッチング素子TR102のG端子に、スイッチング素子TR102のスレショルドレベル以上(ここでは、“H”レベル)の信号が入力された場合には、スイッチング素子TR101のD端子は、“L”レベルの電位となる。すなわち、NANDゲート165の他方の入力端子に“L”レベルの信号が入力される。
【0034】
スイッチング素子TR102のG端子には、インバータ163の出力端子がされており、スイッチング素子TR102は、前記したREAD信号およびMASK0信号に応じて、ON/OFF制御される。
【0035】
すなわち、データ読み出し時、READ信号が“H”レベルになると、トランジスタTR102がオンし、TR100およびTR101からなる差動増幅回路が活性化されて、GDB1およびGDB0のデータをRdata0およびRdata1として出力する。しかし、データ読み出し時であっても、マスク信号MASK0が“H”レベルであると、TR102はオフとなり、GDB1およびGDB0のデータは、差動増幅回路から出力されない。
【0036】
図20は、センスバッファ151に入出力する信号(GDB0およびGDB1上に送出された信号、READ信号、MASK0信号、Rdata0信号、Rdata1信号)のタイムチャートである。
【0037】
まず、第1のREAD信号のパルス発生期間(期間(1))詳しくはパルス立ち上がり時において、MASK0信号が“L”レベルを示す場合、すなわちデータの読み出しディセーブル動作をおこなわない場合、GDB0上の信号が“H”レベルを示す際、すなわち同時にGDB1上の信号が“L”レベルを示す際に、NANDゲート162の出力は“L”レベルを示し、インバータ163は“H”レベルを示して、トランスファゲートSW100およびSW101はともにON状態となる。さらに、スイッチング素子TR102がON状態となる。そして、GDB0上の信号が“H”レベルを示すことにより、スイッチング素子TR100がON状態となって、NANDゲート164の他方の入力端子には、“L”レベルの信号が入力される。すなわち、NANDゲート164は、“H”レベルの信号をRdata0信号として出力する。
【0038】
また、GDB1上の信号が“L”レベルを示すことにより、スイッチング素子TR101がOFF状態となって、NANDゲート165の他方の入力端子には、トランスファゲートSW101によって供給される“H”レベルの信号が入力される。ここで、NANDゲート165の一方の入力端子は、NANDゲート164の出力が示す“H”レベルの信号を入力するので、NANDゲート165は、“L”レベルの信号を出力する。NANDゲート165から出力された信号は、インバータ166において反転され、Rdata1信号として出力されるので、この場合、Rdata1信号もまた、Rdata0信号と同じく“H”レベルを示す。
【0039】
つぎに、第2のREAD信号のパルス発生期間(期間(2))詳しくはパルス立ち上がり時においては、MASK0信号が“L”レベルを示した状態で、かつGDB0上の信号が“L”レベルを示す際、すなわち同時にGDB1上の信号が“H”レベルを示す際に、NANDゲート162の出力(“L”レベル)およびインバータ163の出力(“H”レベル)は変化せずに、トランスファゲートSW100およびSW101はともにON状態を示し、スイッチング素子TR102がON状態となったままである。期間(1)と異なる点は、GDB0上の信号が“L”レベルを示すことにより、スイッチング素子TR100がOFF状態となり、NANDゲート164の他方の入力端子に、トランスファゲートSW100によって供給される“H”レベルの信号が入力されることである。
【0040】
また、GDB1上の信号が“L”レベルを示すことにより、スイッチング素子TR101がON状態となって、NANDゲート165の他方の入力端子には、“L”レベルの信号が入力される。すなわち、NANDゲート165は、“H”レベルの信号を出力する。NANDゲート165から出力された信号は、インバータ166において反転され、Rdata1信号として出力されるので、この場合、Rdata1信号は、“L”レベルを示す。ここで、NANDゲート164の一方の入力端子は、NANDゲート165の出力が示す“H”レベルの信号を入力するので、NANDゲート164は、“L”レベルの信号を、Rdata0信号として出力する。
【0041】
したがって、MASK0信号が“L”レベルを示す場合、すなわちデータの読み出しディセーブル動作をおこなわない場合は、Rdata0信号およびRdata1信号(Rdata0/1)は、GDB0上に送出された信号と同じ信号レベルを示して、I/Oデータバッファ131に送出される。
【0042】
つづいて、第3のREAD信号のパルス発生期間(期間(3))詳しくはパルス立ち上がり時において、MASK0信号が“H”レベルを示す場合、すなわちデータの読み出しディセーブル動作をおこなう場合、GDB0上の信号が“H”レベルを示す際、すなわち同時にGDB1上の信号が“L”レベルを示す際には、NANDゲート162の出力は、“H”レベルを示し、インバータ163は、“L”レベルを示すので、トランスファゲートSW100およびSW101は、ともにOFF状態となる。さらに、スイッチング素子TR102がOFF状態となる。そして、GDB0上の信号が“H”レベルを示すことにより、スイッチング素子TR100がON状態となるが、スイッチング素子TR102もOFF状態となっており、また、トランスファゲートSW100から“H”レベルの電位も供給されないため、NANDゲート164の他方の入力端子に入力される信号のレベルは不確定となる。
【0043】
また、GDB1上の信号が“L”レベルを示すことにより、スイッチング素子TR100がOFF状態となるが、トランスファゲートSW101から“H”レベルの電位は供給されないため、NANDゲート165の他方の入力端子に入力される信号のレベルは不確定となる。
【0044】
したがって、NANDゲート164および165の出力は変化せず、すなわちRdata0信号およびRdata1信号のレベルは変更されない。これにより、読み出しデータのディセーブル動作が達成される。図20においては、点線で示す部分が、ディセーブル動作により出力されない信号である。
【0045】
つづく第4のREAD信号のパルス発生期間(期間(4))詳しくはパルス立ち上がり時においては、再びMASK0信号は“L”レベルを示し、期間(2)と同様な状態となる。
【0046】
つぎに、ライトアンプ152について詳細に説明する。図21は、ライトアンプ152の回路構成を示す説明図である。図21において、ライトアンプ152は、2つのトランスファゲートSW110およびSW111と、5つのインバータ171、173、174、175および176と、1つのNANDゲート172とから構成される。
【0047】
また、ライトアンプ152に接続されるGDB0およびGDB1は、センスアンプ104に接続されており、GDB0およびGDB1上に送出される書き込み信号によりセンスアンプ104にデータを書き込む。
【0048】
I/Oデータバッファ131から出力される書き込みデータWdataは、ライトアンプとしてのインバータ174に入力され、その信号レベルが反転されて出力される。インバータ174の出力端子は、トランスファゲートSW110の一方の接点端子およびインバータ175の入力端子に接続されている。ここで、トランスファゲートSW110の他方の接点端子はGDB1に接続されており、トランスファゲートSW110がON状態を示す場合に、Wdata信号のレベルを反転させた信号をGDB1上に送出する。
【0049】
インバータ175の出力端子は、トランスファゲートSW111の一方の接点端子に接続されている。また、トランスファゲートSW111の他方の接点端子はGDB0に接続されており、トランスファゲートSW111がON状態を示す場合に、Wdata信号と同じレベルの信号をGDB0上に送出する。
【0050】
したがって、これらインバータ174および175によって、1つの書き込みデータWdataから、互いにレベルの反転した2つの信号をそれぞれGDB0およびGDB1上に送出することが可能となっている。
【0051】
そして、トランスファゲートSW110の一方の制御端子は、インバータ173の出力端子と接続し、他方の制御端子は、インバータ176の出力端子と接続している。また、インバータ176の入力端子は、インバータ173の出力端子と接続しているので、トランスファゲートSW110は、インバータ173の出力する信号のレベルに応じてON/OFF制御される。
【0052】
また、トランスファゲートSW111の一方の制御端子も、インバータ173の出力端子と接続し、他方の制御端子も、インバータ176の出力端子と接続している。よって、トランスファゲートSW111も、トランスファゲートSW110と同様に、インバータ173の出力する信号のレベルに応じてON/OFF制御される。
【0053】
インバータ173の入力端子は、NANDゲート172の出力端子と接続している。また、NANDゲート172は、一方の入力端子からデータの書き込み命令を示す制御信号(WE)を入力し、他方の入力端子からインバータ171の出力信号を入力する。インバータ171は、DQM入力バッファ132から出力されるMASK0信号を入力し、その反転信号を出力する。よって、NANDゲート172から出力される信号のレベル、すなわち、READ信号とMASK0信号に応じて、トランスファゲートSW110およびSW111のON/OFFが制御される。
【0054】
したがって、GDB0およびGDB1上の信号のレベルは、Wdata信号と、WE信号と、MASK0信号に応じて変化する。すなわち、データ書き込み時、WE信号が“H”レベルになると、トランスゲートSW110およびSW111はオンして、ライトアンプ174から出力された書き込みデータは、GDB1およびGDB0へ送出される。一方、この時マスク信号MASK0が“L”レベルであると、SW110およびSW111はオフとなり、ライトアンプ174からGDB1およびGDB0への書き込みデータの送出は禁止される。
【0055】
図22は、ライトアンプ152に入出力する信号(Wdata信号、WE信号、MASK0信号、GDB0およびGDB1上に送出された信号)のタイムチャートである。
【0056】
まず、第1のWE信号のパルス発生期間(期間(1))詳しくはパルス立ち上がり時において、MASK0信号が“L”レベルを示す場合、すなわちデータの書き込みマスク動作をおこなわない場合、Wdata信号が“L”レベルを示す際に、NANDゲート172の出力は、“L”レベルを示し、インバータ173は“H”レベルを示して、トランスファゲートSW110およびSW111は、ともにON状態となる。
【0057】
Wdata信号は、“L”レベルを示しているので、インバータ174により反転された“H”レベルを示す信号が、トランスファゲートSW110を介してGDB1上に送出される。また、インバータ174から出力された“H”レベルを示す信号は、インバータ175に入力されて反転され、“L”レベルを示す信号としてトランスファゲートSW111を介してGDB0上に送出される。
【0058】
つぎに、第2のWE信号のパルス発生期間(期間(2))詳しくはパルス立ち上がり時においては、MASK0信号が“L”レベルを示した状態で、かつWdata信号が“H”レベルを示す際に、NANDゲート172の出力(“L”レベル)およびインバータ173の出力(“H”レベル)は変化せずに、トランスファゲートSW100およびSW101はともにON状態を示す。期間(1)と異なる点は、Wdata信号が“H”レベルを示すことにより、インバータ174により反転された“L”レベルを示す信号が、トランスファゲートSW110を介してGDB1上に送出され、インバータ175によりさらに反転された“H”レベルを示す信号が、トランスファゲートSW111を介してGDB0上に送出されることである。
【0059】
つづいて、第3のWE信号のパルス発生期間(期間(3))詳しくはパルス立ち上がり時において、MASK0信号が“H”レベルを示す場合、すなわちデータの書き込みマスク動作をおこなう場合、Wdata信号が“L”レベルを示す際に、NANDゲート172の出力は、WE信号のレベルにかかわらず、“H”レベルを示し、インバータ173は“L”レベルを示して、トランスファゲートSW110およびSW111は、ともにOFF状態となる。よって、インバータ174および175から出力される信号は、それぞれGDB1およびGDB0上に送出されない。すなわち、Wdata信号を書き込みデータとしてGDBに送出することができず、これにより、書き込みデータのマスク動作が達成される。図22においては、点線で示す部分が、マスク動作により入力されない信号である。
【0060】
つづく第4のWE信号のパルス発生期間(期間(4))詳しくはパルス立ち上がり時においては、再びMASK0信号は“L”レベルを示し、期間(2)と同様な状態となる。
【0061】
以上に説明したセンスバッファ151において、DQM入力バッファ132から出力されるマスク/ディセーブル信号(MASK0)を入力し、読み出しデータのディセーブル動作をおこなうものとしたが、読み出しデータのディセーブル動作は、I/Oデータバッファ131を制御することによっても可能である。
【0062】
図23は、ライトアンプ&センスバッファ141と、ディセーブル動作を可能としたI/Oデータバッファ131aと、DQM入力バッファ132とにおける結線を示す説明図である。図23においては、特にデータ入出力端子DQ0にかかわる構成を示しているが、他のデータ入出力端子DQ1〜DQ15に関しても同様な構成である。
【0063】
図23のライトアンプ&センスバッファ141において、ライトアンプ152は、図21および図22において説明したとおりの構成および動作を示すが、センスバッファ151aは、図19のセンスバッファ151において、MASK0信号の入力をおこなわず、インバータ161およびNANDゲート162からなる構成を、READ信号を入力して、反転させた信号をインバータ163とトランスファゲートSW100およびSW101の他方の制御端子に入力するインバータに置き換える必要がある。
【0064】
よって、図23に示すように、I/Oデータバッファ131aは、DQM入力バッファ132から出力されるマスク/ディセーブル信号(MASK0)を入力し、当該MASK0信号の信号レベルに応じて、データの読み出しディセーブル動作を行う。
【0065】
以下に、I/Oデータバッファ131aについて詳細に説明する。図24は、I/Oデータバッファ131aの回路構成を示す説明図である。特に、図24は、読み出しデータをデータ入出力端子に出力する際に機能する回路構成を示している。図24において、I/Oデータバッファ131aは、2つのトランスファゲートSW120およびSW121と、2つのスイッチング素子(ここでは、FET素子)TR120およびTR121と、8つのインバータ181、184〜190と、1つのNANDゲート182と、1つのNORゲート183とから構成される。
【0066】
I/Oデータバッファ131aは、センスバッファ151aから出力される読み出しデータRdata0およびRdata1(ともに同じ信号レベルを示す)を入力し、DQM入力バッファ132から出力されるMASK0信号が“L”レベルの場合、そのRdata0およびRdata1の示す信号に応じてデータ入出力端子DQに読み出しデータを出力する。一方、MASK0信号が“H”レベルの場合、Rdata0およびRdata1は、NANDゲート182およびNORゲート183を通過することを阻止され、TR120およびTR121は共にオフとなって、DQ0はハイインピーダンス(Hi−z)状態となる。
【0067】
まず、I/Oデータバッファ131aにおいて、Rdata0信号は、NANDゲート182の一方の入力端子に入力される。NANDゲート182の他方の入力端子は、インバータ181の出力端子に接続されている。また、インバータ181は、MASK0信号を入力し、その反転信号を出力する。よって、NANDゲート182は、MASK0信号が“L”レベルを示す場合に、Rdata0信号に対するインバータとして機能する。
【0068】
NANDゲート182の出力端子は、トランスファゲートSW120の一方の接点端子に入力しており、トランスファゲートSW120の他方の接点端子は、インバータ185の入力端子に接続されている。インバータ185は、トランスファゲートSW120から入力される信号の反転信号を出力し、インバータ189に入力する。ここで、インバータ185は、その出力端子をインバータ186の入力端子と接続し、その入力端子をインバータ186の出力端子と接続している。すなわち、インバータ185とインバータ186とからなる構成により、トランスファゲートSW120の他方の接点端子から出力される信号に対するラッチ機能が果たされる。
【0069】
そして、インバータ185の出力端子は、インバータ189の入力端子に接続しており、インバータ185から出力された信号は、インバータ189によって反転される。インバータ189の出力端子は、スイッチング素子TR120のG端子に接続している。スイッチング素子TR120はG端子における信号レベルに応答してON/OFFする。
【0070】
一方、Rdata1信号は、NORゲート183の一方の入力端子に入力される。また、NORゲート183の他方の入力端子は、MASK0信号を入力する。よって、NORゲート183は、MASK0信号が“L”レベルを示す場合に、Rdata1信号に対するインバータとして機能する。
【0071】
NORゲート183の出力端子は、トランスファゲートSW121の一方の接点端子に入力しており、トランスファゲートSW121の他方の接点端子は、インバータ187の入力端子に接続されている。インバータ187は、トランスファゲートSW121から入力される信号の反転信号を出力し、インバータ190に入力する。ここで、インバータ187は、その出力端子をインバータ188の入力端子と接続し、その入力端子をインバータ188の出力端子と接続している。すなわち、インバータ187とインバータ188とからなる構成により、トランスファゲートSW121の他方の接点端子から出力される信号に対するラッチ機能が果たされる。
【0072】
そして、インバータ187の出力端子は、インバータ190の入力端子に接続しており、インバータ187から出力された信号は、インバータ190によって反転される。インバータ190の出力端子は、スイッチング素子TR121のG端子に接続している。スイッチング素子TR121はG端子における信号レベルに応答してON/OFFする。
【0073】
そして、スイッチング素子TR120は、そのD端子を“H”レベルを示す電位VCCに接続しており、そのS端子を、データ入出力端子DQ0およびスイッチング素子TR121のD端子に接続している。また、スイッチング素子TR121は、そのS端子を“L”レベルを示す電位VSSに接続している。よって、スイッチング素子TR121がON状態となった場合には、データ入出力端子DQ0に出力される信号は、VSSと同じ電位である“L”レベルを示す。また、スイッチング素子TR120がON状態となり、かつスイッチング素子TR121がOFF状態となる場合に、データ入出力端子DQ0に出力される信号は、VCCと同じ電位である“H”レベルを示す。
【0074】
また、I/Oデータバッファ131aには、前述したクロック信号(CLK)が入力されており、トランスファゲートSW120およびSW121のそれぞれの一方の制御端子には、このクロック信号(CLK)が入力されている。そして、トランスファゲートSW120およびSW121のそれぞれの他方の制御端子には、インバータ184の出力端子が接続されており、インバータ184の入力端子には、上記クロック信号(CLK)が入力される。よって、トランスファゲートSW120およびSW121はともに、クロック信号(CLK)に同期してON/OFFを繰り返す。
【0075】
したがって、データ入出力端子DQ0に出力される信号のレベルは、CLK信号と、MASK0信号と、Rdata0信号と、Rdata1信号に応じて変化する。
【0076】
図25は、I/Oデータバッファ131aに入出力する信号(CLK信号、MASK0信号、Rdata0信号、Rdata1信号)のタイムチャートである。
【0077】
図25において、まず、第1のCLK信号のパルス発生期間(期間(1))詳しくはパルス立ち上がり時は、トランスファゲートSW120およびSW121は、ともにON状態となり、MASK0信号が“L”レベルを示す場合、すなわちデータの読み出しディセーブル動作をおこなわない場合、かつRdata0信号が“L”レベルを示す際、すなわち同時にRdata1信号もまた“L”レベルを示す状態を示す。この場合、インバータ181の出力は“H”レベルを示して、NANDゲート182の出力は“H”レベルを示し、トランスファゲートSW120の一方の接点端子に入力される。トランスファゲートSW120はON状態であるので、NANDゲート182の出力(“H”レベル)は、そのままインバータ185に入力される。
【0078】
インバータ185から出力される信号は、反転されて“L”レベルとなり、つづくインバータ189に入力される。この“L”レベルの信号は、インバータ189で反転されて結局“H”レベルの信号となり、スイッチング素子TR120をOFF状態にする。
【0079】
また、NORゲート183の出力は“H”レベルを示し、トランスファゲートSW121の一方の接点端子に入力される。トランスファゲートSW121もまたON状態であるので、NORゲート183の出力(“H”レベル)は、そのままインバータ187に入力される。
【0080】
インバータ187から出力される信号は、反転されて“L”レベルとなり、つづくインバータ190に入力される。この“L”レベルの信号は、インバータ190において反転されて“H”レベルの信号となり、スイッチング素子TR121をON状態にする。
【0081】
こうして、スイッチング素子TR120がOFF状態、スイッチング素子TR121がON状態となるので、データ入出力端子DQ0に出力される信号のレベルは、VSSと同電位である“L”レベルを示す。すなわち、Rdata0信号(Rdata1信号)の示すレベルの信号が、データ入出力端子DQ0に出力される。
【0082】
つぎに、第2のCLK信号のパルス発生期間(期間(2))詳しくはパルス立ち上がり時は、トランスファゲートSW120およびSW121は、ともにON状態となり、MASK0信号が“L”レベルを示したままで、Rdata0信号が“H”レベルを示す状態、すなわち同時にRdata1信号もまた“H”レベルを示す状態である。この場合、Rdata0信号およびインバータ181の出力はともに“H”レベルを示すので、NANDゲート182の出力は“L”レベルを示して、トランスファゲートSW120の一方の接点端子に入力される。トランスファゲートSW120はON状態であるので、NANDゲート182の出力(“L”レベル)は、そのままインバータ185に入力される。
【0083】
インバータ185から出力される信号は、反転されて“H”レベルとなり、つづくインバータ189に入力される。この“H”レベルの信号は、インバータ189で反転されて結局“L”レベルの信号となり、スイッチング素子TR120をON状態にする。
【0084】
また、NORゲート183は、Rdata1信号が“H”レベルを示し、MASK0信号が“L”レベルを示すので、“L”レベルの信号を出力して、トランスファゲートSW121の一方の接点端子に入力される。トランスファゲートSW121もまたON状態であるので、NORゲート183の出力(“L”レベル)は、そのままインバータ187に入力される。
【0085】
インバータ187から出力される信号は、反転されて“H”レベルとなり、つづくインバータ190に入力される。この“H”レベルの信号は、インバータ190において反転されて“L”レベルの信号となり、スイッチング素子TR121をOFF状態にする。
【0086】
こうして、スイッチング素子TR120がON状態、スイッチング素子TR121がOFF状態となるので、データ入出力端子DQ0に出力される信号のレベルは、VCCと同電位である“H”レベルを示す。すなわち、Rdata0信号(Rdata1信号)の示すレベルの信号が、データ入出力端子DQ0に出力される。
【0087】
つづいて、第3のCLK信号のパルス発生期間(期間(3))詳しくはパルス立ち上がり時は、トランスファゲートSW120およびSW121は、ともにON状態となり、MASK0信号が“H”レベルを示す場合、すなわちデータの読み出しディセーブル動作をおこなう場合、かつRdata0信号が“L”レベルを示す際、すなわち同時にRdata1信号もまた“L”レベルを示す状態である。この場合、Rdata0信号およびインバータ181の出力はともに“L”レベルを示すので、NANDゲート182の出力は“H”レベルを示して、トランスファゲートSW120の一方の接点端子に入力される。トランスファゲートSW120はON状態であるので、NANDゲート182の出力(“H”レベル)は、そのままインバータ185に入力される。
【0088】
インバータ185から出力される信号は、反転されて“L”レベルとなり、つづくインバータ189に入力される。この“L”レベルの信号は、インバータ189で反転されて結局“H”レベルの信号となり、スイッチング素子TR120をOFF状態にする。
【0089】
また、NORゲート183は、Rdata1信号が“L”レベルを示し、MASK0信号が“H”レベルを示すので、“L”レベルの信号を出力して、トランスファゲートSW121の一方の接点端子に入力される。トランスファゲートSW121もまたON状態であるので、NORゲート183の出力(“L”レベル)は、そのままインバータ187に入力される。
【0090】
インバータ187から出力される信号は、反転されて“H”レベルとなり、つづくインバータ190に入力される。この“H”レベルの信号は、インバータ190において反転されて“L”レベルの信号となり、スイッチング素子TR121をOFF状態にする。
【0091】
こうして、スイッチング素子TR120およびTR121はともにOFF状態となり、データ入出力端子DQ0に出力される信号は、ハイインピーダンス(Hi−z)状態となる。すなわち、データ入出力端子DQ0に出力される信号のレベルは不確定となり、これにより、読み出しデータのディセーブル動作が達成される。
【0092】
つづく第4のCLK信号のパルス発生期間(期間(4))詳しくはパルス立ち上がり時は、再びMASK0信号が“L”レベルを示し、期間(2)と同様な状態となる。
【0093】
以上に説明したSDRAMのように、複数ビットのデータ入出力端子を備え、かつデータの書き込み/読み出しの可否を選択可能なマスク/ディセーブル端子を備えた半導体記憶装置を含めた半導体記憶装置の動作を確認するための試験は、一般に、半導体記憶装置の各端子に端子接続ピンを接続するICテスタを使用しておこなわれている。
【0094】
【発明が解決しようとする課題】
しかしながら、ICテスタが使用可能なドライバやコンパレータの数すなわち端子接続ピンの数には限りがあり、同時に試験をおこなえる半導体記憶デバイスの数は制限される。特に、上記のようなマスク/ディセーブル端子を備える半導体記憶デバイスを試験する場合には、すべての半導体記憶デバイスの入出力データを試験するためには、各半導体記憶デバイスのすべてのマスク/ディセーブル端子に対して試験用の端子接続ピンを用意しなければならず、同時に試験をおこなえる半導体記憶デバイスの数は制限されることになっていた。
【0095】
図26は、従来の半導体記憶装置のICテスタによる試験動作を示す説明図であり、上述した従来の半導体記憶装置をICテスタによって試験をする場合の当該ICテスタの接続状態を示すものである。図示は省略するが、ICテスタにおいては、通常、複数の半導体記憶デバイスをそれぞれソケットに装着し、同時に試験をおこなうことで、試験時間の短縮を図っている。
【0096】
図26に示すように、2つの半導体記憶デバイス191および192の同時試験をおこなう場合、各半導体記憶デバイスのデータ入出力端子DQ0〜DQ15は、共通のデータバスラインに接続され、/RAS、/CASおよび/WE端子もまた、共通の制御コマンドラインに接続されるので、それら共通のデータバスラインおよび共通の制御コマンドラインに必要なICテスタの接続端子ピン数は、各データ入力端子DQ0〜DQ15用として16個、および/RAS、/CASおよび/WE端子用として3個となる。
【0097】
したがって、データバスラインおよび制御コマンドラインに必要な接続端子ピン数は、同時に試験をおこなう半導体記憶デバイスの数によって変化しない。一方、マスク/ディセーブル端子は、各半導体記憶デバイスに対してそれぞれ2つずつ備わっており、各半導体記憶デバイスのマスク/ディセーブル端子を個別に制御する必要があるので、それぞれのDQMLおよびDQMU端子に接続する合計4個の接続端子ピンをさらに用意しなければならない。2つの半導体デバイス191および192のマスク/ディセーブル端子2つずつを接続すると合計23個のピンが必要となるので、例えば、ICテスタにおいて使用可能な接続端子ピン数が23個とすると、このICテスタでは、3つ以上の半導体デバイスを接続して同時に試験をすることはできないことになる。
【0098】
このように、マスク/ディセーブル端子を備えた複数の半導体記憶デバイスを同時に試験するには、マスク/ディセーブル端子を備えていない半導体記憶デバイスを試験する場合と比較して、ICテスタのドライバ/コンパレータを、(各半導体記憶デバイスのマスク/ディセーブル端子の数)×(試験する半導体記憶デバイスの数)で計算される個数分がさらに必要となる。これにより、同時に試験可能な半導体記憶デバイスの数が減少してしまい、試験時間を多く費やすことになるといった問題点があった。特に、大量の半導体記憶デバイスの試験をおこなう場合には、上記問題は、顕著なものになっていた。
【0099】
この問題を解決するために、ICテスタにおいて、ドライバ/コンパレータの数を増やすことや、データバスラインを増設すること、またはあらかじめ十分な数のドライバ/コンパレータを備えたICテスタを使用することなどの対応が考えられるが、一般的に、そのようなオプションやICテスタは高価であり、設備投資コストの増大につながるため余り現実的ではない。
【0100】
本発明は、上記に鑑みてなされたものであって、現在使用しているICテスタを用いて、一度により多くの半導体記憶デバイスの試験を可能にして、利便性、特に試験をおこなう際の利便性を高めた半導体記憶装置を提供することを目的とする。
【0101】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、請求項1の発明にかかる半導体記憶装置にあっては、複数のデータ入出力端子と、複数のマスク/ディセーブル端子と、を有し、各マスク/ディセーブル端子に割り当てられた前記データ入出力端子から入出力されるデータの書き込み/読み出しを前記マスク/ディセーブル端子に印加されるマスク/ディセーブル制御信号に応答して禁止するマスク/ディセーブル動作をおこなうことが可能な半導体記憶装置において、前記マスク/ディセーブル端子に対する前記データ入出力端子の割り当てを変更する割り当て変更手段を備えたことを特徴とする。
【0102】
この請求項1の発明によれば、マスク/ディセーブル端子ごとに書き込み/読み出しを禁止するデータ入出力端子の割り当てを変更することができ、1のマスク/ディセーブル端子の使用が禁止されても、当該1のマスク/ディセーブル端子に割り当てられたデータ入出力端子のマスク/ディセーブル動作を他のマスク/ディセーブル端子で制御することが可能になる。
【0103】
また、請求項2の発明にかかる半導体記憶装置にあっては、複数のデータ入出力端子と、複数のマスク/ディセーブル端子と、を有し、各マスク/ディセーブル端子に割り当てられた前記データ入出力端子から入出力されるデータの書き込み/読み出しを禁止するマスク/ディセーブル動作をおこなう半導体記憶装置において、入力される複数の動作モード信号を判別する判別手段と、前記判別手段による判別の結果、前記判別手段により判別された動作モード信号に基づいて前記マスク/ディセーブル端子に対する前記データの割り当てを変更する割り当て変更手段と、を備えたことを特徴とする。また、請求項3の発明にかかる半導体記憶装置にあっては、請求項2の発明において、前記第2の動作モードは試験モードであることを特徴とする。
【0104】
また、請求項4の発明にかかる半導体記憶装置にあっては、請求項2の発明において、前記半導体記憶装置のデータ入出力端子は、前記第1および第2のデータ入出力端子群で構成され、前記第2の動作モード時、前記第1のマスク/ディセーブル端子に印加する前記マスク/ディセーブル制御信号で、前記第1および第2のデータ入出力端子群の前記マスク/ディセーブル動作を制御するように構成されていることを特徴とする。
【0105】
これら請求項2〜4の発明によれば、第2の動作モード(試験モード)の際、第1のマスク/ディセーブル端子で、第1および第2のデータ入出力端子群の両方のマスク/ディセーブル動作を制御することができるようになり、第2の動作モード時に使用するマスク/ディセーブル端子の数を削減することができ、以ってICテスタに同時に試験することができる半導体記憶デバイスの数を増やすことができる。
【0106】
また、請求項5の発明にかかる半導体記憶装置にあっては、請求項2の発明において、さらに、前記第1および第2のデータ入出力端子のデータをメモリセルアレイ部にそれぞれ書き込みおよび該メモリセルアレイ部からのデータを該第1および第2のデータ入出力端子にそれぞれ読み出すための第1および第2の書き込み/読み出し制御回路部を有し、前記変更手段は、前記判別手段からの動作モード信号に応答して、前記第1および第2のマスク/ディセーブル端子と前記第1および第2の書き込み/読み出し制御回路部相互間の接続関係を選択的に切替えるように構成されていることを特徴とする。
【0107】
また、請求項6の発明にかかる半導体記憶装置にあっては、請求項5の発明において、前記第1および第2の書き込み/読み出し制御回路部の各々は、前記データ入出力端子のデータを取込みおよび前記データ入出力端子にデータを出力するためのI/Oデータバッファ回路と、該I/Oデータバッファ回路からのデータを受け、それを増幅してデータバスへ出力し、該データバスに伝送されたデータをセンスして前記I/Oデータバッファ回路へ伝送するライトアンプ/センスバッファ回路を有し、前記変更手段は前記ライトアンプ/センスバッファ回路を制御することを特徴とする。
【0108】
また、請求項7の発明にかかる半導体記憶装置にあっては、請求項6の発明において、前記変更手段は、さらに前記I/Oデータバッファ回路も制御するように構成されていることを特徴とする。
【0109】
これら請求項5〜7の発明によれば、変更手段により第1および第2のマスク/ディセーブル端子と第1および第2の書き込み/読み出し制御回路部相互間の接続関係を切替えることで請求項2に記載されている動作モードに基づくデータ入出力端子群とマスク/ディセーブル端子との対応関係の変更を容易に実施することができる。
【0110】
【発明の実施の形態】
以下に、本発明にかかる半導体記憶装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態においては、本発明にかかる半導体記憶装置を、外部クロックに同期して動作するSDRAMを例として説明する。
【0111】
図1は、本発明にかかる半導体記憶装置をパッケージした半導体記憶デバイス(特に、この実施の形態においては、パッケージされたSDRAM)のICテスタによる試験における、ICテスタと各半導体記憶デバイス1〜4との結線を示す説明図である。ICテスタにおいては、通常、複数の半導体記憶デバイスをそれぞれソケットに装着し、同時に試験をおこなうことで、試験時間の短縮を図っている。
【0112】
図26に記載の従来例と異なる点は、従来は、ICテスタから各デバイスに対しDQML信号とDQMU信号を供給しているのに対し、本発明では図1に示すごとくICテスタは各デバイスに対し1つのDQM信号(例えばDQMU信号)のみしか供給しない。
【0113】
図1において、半導体記憶デバイスの16個のデータ入出力端子DQ0〜DQ15は共用のデータバスラインに接続され、/RAS、/CASおよび/WE端子もまた、共用の制御コマンドラインに接続されるので、この段階で、ICテスタにおいて19個の接続端子ピンが必要となる。
【0114】
これに加えて、各半導体記憶デバイスのマスク/ディセーブル端子に接続するための接続端子ピンが必要とされるが、本発明にかかる半導体記憶デバイスにおいては、2つのうちの1つのマスク/ディセーブル端子の接続のみで試験動作を可能としているので、ICテスタの使用可能な接続端子ピン数が23個であるとすると、残りの4個の接続端子ピンのそれぞれに、各半導体記憶デバイスのマスク/ディセーブル端子を割り当てることができる。
【0115】
したがって、図1に示すように、半導体記憶デバイス1〜4の各DQMU端子がICテスタに接続され、各DQML端子は接続されない。これにより、ICテスタにおいて使用可能な接続端子ピン数が23個である場合に、従来の半導体記憶デバイスを同時に2つ使用した試験を可能としたが、本実施の形態によれば、その半導体記憶デバイスを同時に4つ使用した試験を可能とする。このように、本実施の形態にかかる半導体記憶デバイスは、ICテスタにおいて同時に試験できる個数を、従来と比較して倍増させることができるので、ICテスタに対して新たな投資をすることなく、大幅な試験時間の短縮と試験コストの削減が図ることができる。
【0116】
ここで、DQML信号とDQMU信号のうち一方だけしか各デバイスに供給しなければ、複数のデータ入出力端子のうち半数についてマスク/ディセーブル動作制御ができなくなってしまうが、本発明では、試験モード時、ICテスタから供給する1つのDQM信号(例えばDQMU信号)でデバイス全てのデータ入出力端子のマスク/ディセーブル動作制御をおこなえるように構成することで、前述の不具合を解消している。その構成について、以下に詳述する。
【0117】
(実施の形態1)
図2は、実施の形態1にかかる半導体記憶装置の概略構成を示すブロック図である。図2において、半導体記憶装置であるSDRAM10は、従来の技術において説明したSDRAMと同様に、MPUによってそのMPUのアドレス空間よりも大きな容量のメモリを管理できるメモリ・バンク方式が採用された場合のSDRAMを示している。
【0118】
従来の図13と異なる点は、テストモードデコーダ26およびDQM切り替え回路27を設け、通常モード時は、外から入力されるDQML信号およびDQMU信号を、それぞれそのままMASK0信号およびMASK1信号として各バンクに与え、試験モード時は、DQML信号およびDQMU信号のうちの一方をMASK0’信号およびMASK1信号の両方に与え、それらを各バンクに供給している点である。
【0119】
図2において、SDRAM10は、記憶単位となるメモリセルをマトリクス状に配置させたメモリアレイを、2つのバンク(バンク0、バンク1)に分割している。また、各バンクは、複数のブロックに分割している。そして、各ブロックは、ロウデコーダ12およびコラムデコーダ13を備え、これらデコーダにより、各ブロックの担うメモリアレイ11から1つのメモリセルを選択する。
【0120】
ここで、ロウデコーダ12は、ロウアドレス信号20を受けて、行方向のメモリセルを特定するワード線(図示せず)から1つを選択する回路である。また、コラムデコーダ13は、コラムアドレス信号21を受けて、列方向のメモリセルを特定するビット線(図示せず)から1つを選択する回路である。また、各ビット線上には、メモリセルに蓄えられた電荷を増幅させるセンスアンプ14が接続されている。
【0121】
例えば、1MビットのSDRAMを例にとると、バンク0およびバンク1は、それぞれ64kバイト(512kビット)を有し、各バンクは、128kビットのメモリ容量(128kのメモリセル)を有するブロックに4分割される。この場合、各ブロックのロウデコーダは、512個のロウアドレスから1つのワード線を特定し、コラムデコーダ/センスアンプは、256個のコラムアドレスから1つのビット線を特定する。
【0122】
バンク0またはバンク1において、データの読み出し命令を受け、ロウデコーダ12およびコラムデコーダ13によって特定されたメモリセルのデータは、グローバルデータバス(GDB)16を経由してライトアンプ/センスバッファ15(ただし、この場合、センスバッファが機能する)に入力する。SDRAM10では、複数ビットのデータ入出力を可能としているので、例えば16ビットのデータ入出力の場合、入力されるロウアドレス信号20およびコラムアドレス信号21に対して特定されるメモリセルの2バイト(16ビット)分のデータをライトアンプ/センスバッファ15に蓄積してパラレル出力を可能としている。
【0123】
ライトアンプ/センスバッファ15に蓄積された読み出しデータは、I/Oデータバッファ/レジスタ17に導かれ、I/Oデータバッファ/レジスタ17のデータ入出力端子DQ0〜DQn(上の例では、n=15)から出力される。
【0124】
一方、バンク0またはバンク1において、データの書き込み命令を受けると、I/Oデータバッファ/レジスタ17のデータ入出力端子DQ0〜DQn(上の例では、n=15)から入力された書き込みデータは、ライトアンプ/センスバッファ15(ただし、この場合、ライトアンプが機能する)に導かれる。ライトアンプ/センスバッファ15に導かれたデータは、続いてGDB16を経由し、ロウデコーダ12およびコラムデコーダ13により特定されたメモリセルに書き込まれる。
【0125】
前述したデータの読み出しの場合と同様に、例えば16ビットのデータ入出力の場合、入力されるロウアドレス信号20およびコラムアドレス信号21によって特定されるメモリセルに、ライトアンプ/センスバッファ15に蓄積された2バイト(16ビット)分のデータを入力することができる。
【0126】
ロウアドレス信号20およびコラムアドレス信号21は、アドレスバッファ/レジスタ&バンクセレクト18のアドレス端子A0〜Anから入力される信号に基づいて生成される。実際には、ロウアドレス信号20およびコラムアドレス信号21は、アドレス端子A0〜Anに入力されるアドレス信号を、アクティブ命令信号と、読み出し/書き込み命令信号によるラッチタイミングによって時分割(マルチプレクス)で取り込むことにより生成される。なお、アドレスの最上位ビットであるAnは、バンク0かバンク1かを選択するためのバンクセレクト用として使用される。
【0127】
また、バンク0およびバンク1には、RAS信号30、CAS信号31およびWE信号32が入力され、これら3つの信号の組み合わせによって、データの書き込み命令や読み出し命令等の制御命令を判別する。特に、この制御命令によって、ライトアンプ/センスバッファ15の機能が決定される。
【0128】
例えば、制御命令が書き込み命令を示す場合、ライトアンプ/センスバッファ15は、ライトアンプとして機能し、I/Oデータバッファ/レジスタ17より複数ビットのデータを取り込み、取り込んだデータを、GDB16を経由させてセンスアンプ14またはメモリアレイ11に転送する。一方、制御命令が読み出し命令を示す場合、ライトアンプ/センスバッファ15は、センスバッファとして機能し、GDB16を経由してセンスアンプ14またはメモリアレイ11からデータを取り込み、取り込んだデータをI/Oデータバッファ/レジスタ17に転送する。
【0129】
バンク0およびバンク1に入力されるRAS信号30、CAS信号31およびWE信号32は、制御信号ラッチ23から出力される。制御信号ラッチ23は、コマンドデコーダ22からコマンド信号35を入力し、コマンド信号35が示す制御命令をラッチして、そのラッチした制御命令を、RAS信号30、CAS信号31およびWE信号32の3つの信号の組み合わせで表せるように各信号を生成して出力する。
【0130】
コマンドデコーダ22は、/CS信号、/RAS信号、/CAS信号および/WE信号を入力し、各信号の組み合わせから制御命令を決定し、その制御命令を示すコマンド信号35を出力する。また、コマンドデコーダ22は、/CS信号、/RAS信号、/CAS信号および/WE信号の組み合わせからデータのアクセスモードを決定し、そのアクセスモードを示すモード信号36を出力する。このモード信号36は、モードレジスタ24に入力される。
【0131】
モードレジスタ24は、モード信号36と、アドレスバッファ/レジスタ&バンクセレクト18によって中継されるアドレス信号A0〜Anとを入力して一時的に記憶する。コラムアドレスカウンタ19は、モードレジスタ24に記憶されたモード信号とアドレス信号から、連続読み出しモード等のアクセスモードを判別し、アクセスモードに応じたコラムアドレス信号21を生成して出力する。
【0132】
SDRAM10は、例えばMPUのシステムクロックといった外部から与えられる同期信号(CLK)によって動作し、高速に動作することを特徴としている。クロックバッファ25は、その外部から与えられるクロック信号(CLK)およびそのクロック信号の出力を制御するクロックイネーブル信号(CKE)を入力し、入力したクロック信号を上記した各回路に供給している。
【0133】
クロックバッファ25は、入力したクロックイネーブル信号をコマンドデコーダ22、アドレスバッファ/レジスタ&バンクセレクト18およびI/Oデータバッファ/レジスタ17に入力しており、これら回路を動作させない場合にクロック信号の供給を停止させることで、消費電力の低減を実現している。
【0134】
I/Oデータバッファ/レジスタ17は、マスク/ディセーブル端子からマスク/ディセーブル信号を入力する。特に、I/Oデータバッファ/レジスタ17は、DQMU端子から、データ信号DQ0〜DQnの上位ビットに対するマスク/ディセーブルをおこなうための信号をDQMU信号として入力する。また、DQML端子から、データ信号DQ0〜DQnの下位ビットに対してマスク/ディセーブルをおこなうための信号をDQML信号として入力する。
【0135】
さらに、本発明のSDRAM10においては、テストモードデコーダ26およびDQM切り替え回路(マスク/ディセーブル切り替え回路)27を備えており、このテストモードデコーダ26およびDQM切り替え回路27が、ICテスタによる試験時にDQML信号またはDQMU信号の一方に基づいてMASK0’信号およびMASK1信号を出力する。ここで、テストモードデコーダ26は、コマンドデコーダ22において/RAS信号、/CAS信号および/WE信号の組み合わせにより決定されて出力されるテスト命令信号(TCS信号)37と、アドレスバッファ/レジスタ&バンクセレクト18に入力されるアドレス信号A0〜Anの一部または全てを入力し、テスト信号38をDQM切り替え回路27へ出力する。
【0136】
なお、テスト命令信号(TCS信号)37は、ICテスタによる半導体記憶装置の試験をおこなうための動作モード信号であり、半導体記憶装置がICテスタに装着された際に、ICテスタ側からテストモードを示す/RAS信号、/CAS信号および/WE信号が送信されることによって、コマンドデコーダ22から出力される信号である。
【0137】
また、アドレスバッファ/レジスタ&バンクセレクト18からテストモードデコーダ26に与えられるアドレス信号は、具体的にどのような試験を行うのかを指示する。テストモードデコーダ26は、コマンドデコーダ22から試験モードを示すテスト命令信号37を受け、かつアドレスバッファ/レジスタ&バンクセレクト18より書き込みマスク/読み出しディセーブル試験を指示する信号を受け取ると、テスト信号38を活性化する。
【0138】
DQM切り替え回路27は、テストモードデコーダ26から出力されるテスト信号38と、I/Oデータバッファ/レジスタ17を介して入力されるDQML信号(MASK0)およびDQMU信号(MASK1)とを入力し、テスト信号38の信号レベルに応じて、通常時は、MASK0信号およびMASK1信号をそのまま出力し、テスト時は、テスト信号38およびMASK0信号またはMASK1信号に基づいてDQML信号(MASK0’)またはDQMU信号(MASK1’)を擬似的に出力する。なお、図2の実施例では、DQM切り替え回路27は、MASK1信号を通常時、テスト時にかかわらずそのまま出力するが、MASK0信号は、通常時はそのまま出力し、テスト時は、テスト信号38およびMASK1信号に基づいて、MASK0’信号を生成するようになっている。
【0139】
DQM切り替え回路27から出力されるMASK0’信号およびMASK1信号は、バンク0およびバンク1に送信され、各バンクのライトアンプ/センスバッファ15に入力される。MASK1信号が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が書き込み命令を示す場合には、ライトアンプ/センスバッファ15は、データ信号DQ0〜DQnの上位ビットに相当するデータに対してマスクすなわち書き込み禁止の状態となる。また、MASK0’信号が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が書き込み命令を示す場合には、ライトアンプ/センスバッファ15は、データ信号DQ0〜DQnの下位ビットに相当するデータに対してマスクすなわち書き込み禁止の状態となる。
【0140】
MASK1信号が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が読み出し命令を示す場合には、ライトアンプ/センスバッファ15は、データ信号DQ0〜DQnの上位ビットに相当するデータに対してディセーブルすなわち読み出し禁止の状態となる。また、MASK0’信号が“H”レベルを示し、かつバンク0およびバンク1に与えられる制御命令が読み出し命令を示す場合には、ライトアンプ/センスバッファ15は、データ信号DQ0〜DQnの下位ビットに相当するデータに対してディセーブルすなわち読み出し禁止の状態となる。
【0141】
なお、実際のSDRAMには、メモリセルに書き込まれたデータをビット線に読み出し、センスアンプにより増幅して再書き込みをおこなう動作、所謂リフレッシュをおこなうためのリフレッシュコントローラを必要とするが、図2においては、SDRAMの動作を容易に理解するため、それを省略している。
【0142】
図3は、実施の形態1にかかる半導体記憶装置をパッケージした半導体記憶デバイスの概観図であり、図2のSDRAM10をパッケージ化した状態(特に、SDRAMデバイスと称する)を示している。図3において、SDRAMデバイスは、50ピンの端子から構成されている。
【0143】
50ピンの端子のうち、DQ0〜DQ15は、データ入出力端子であり、図2に示したI/Oデータバッファ/レジスタ17に接続され、16ビットのパラレル入出力を可能としている。また、A0〜A10は、アドレス端子であり、A11は、前述したバンクセレクト用の端子である。A0〜A11端子は、図2に示したアドレスバッファ/レジスタ&バンクセレクト18に接続される。
【0144】
/WE、/CASおよび/RASは、SDRAMの制御クロックを入力するための端子である。/WE端子は、データの書き込み/読み出し動作に関与し、/CAS端子は、コラムアドレスのラッチに関与し、/RAS端子は、ロウアドレスのラッチに関与する。また、/CSは、SDRAMデバイスを複数個使用してSDRAMモジュールを構成した場合に、各SDRAMデバイスを活性状態にするためのチップセレクト端子である。以上の/WE、/CAS、/RASおよび/CSの4つの端子から入力される信号は図2に示したコマンドデコーダ22に導かれ、各信号の組み合わせにより、上述した制御命令やアクセスモードといったSDRAMの動作モードを決定する。
【0145】
CLKおよびCKEは、図2に示したクロックバッファ25に接続される端子であり、それぞれSDRAMの同期クロック信号(CLK)およびそのクロックイネーブル信号(CKE)を与える。DQMLおよびDQMUは、マスク/ディセーブル端子であり、図2に示したI/Oデータバッファ/レジスタ17に接続される。図3に示すSDRAMデバイスにおいては、DQML端子が、データ入出力端子DQ0〜7のマスク/ディセーブルを制御し、DQMU端子が、データ入出力端子DQ8〜15のマスク/ディセーブルを制御する。
【0146】
図4は、実施の形態1にかかる半導体記憶装置のうち、I/Oデータバッファ/レジスタ17、DQM切り替え回路27およびライトアンプ/センスバッファ15のより詳細な構成を説明する図である。図4は、特に、前述した図18〜22に示したライトアンプ&センスバッファ141とI/Oデータバッファ131にそれぞれ相当するライトアンプ&センスバッファ51とI/Oデータバッファ41を採用した構成を示している。以下は、図4を用いて、SDRAM10のデータ入出力の動作およびDQM切り替え回路27における動作を詳細に説明するものである。
【0147】
図2に示したI/Oデータバッファ/レジスタ17は、実際には、図4に示すように、DQ0〜DQ15のデータ入出力端子に接続されたI/Oデータバッファ41と、DQMLおよびDQMUのマスク/ディセーブル端子にそれぞれ接続されたDQM入力バッファ42およびDQM入力バッファ43に細分化される。
【0148】
また、図2に示したライトアンプ/センスバッファ15も、実際には、図4に示すように、DQ0〜DQ15のデータ入出力端子にそれぞれ対応したライトアンプ&センスバッファ51に細分化される。また、DQM入力バッファ42は、DQM切り替え回路27に接続されており、DQM入力バッファ43は、データ入出力端子DQ8〜DQ15に対応した8つのライトアンプ&センスバッファ51と、DQM切り替え回路27とに接続されている。
【0149】
DQM切り替え回路27は、入力信号の1つとしてテストモードデコーダ26からテスト信号38を入力し、信号の出力先としてデータ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ51に接続されている。したがって、DQM切り替え回路27は、DQM入力バッファ42から出力されるDQML信号(MASK0)と、DQM入力バッファ43から出力されるDQMU信号(MASK1)と、テストモードデコーダ26から出力されるテスト信号38とを入力し、データ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ51に対してMASK0’信号を出力する。
【0150】
ここで、DQM切り替え回路27は、2つのトランスファゲートSW0およびSW1と、1つのインバータ60とから構成される。トランスファゲートSW0の一方の接点端子は、MASK0信号を入力する入力端子すなわちDQM入力バッファ42に接続され、他方の接点端子は、DQ0〜DQ7に対応したDQML信号であるMASK0’を出力する出力端子すなわちデータ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ51に接続されている。
【0151】
また、トランスファゲートSW1の一方の接点端子は、MASK1信号を入力する入力端子、すなわちDQM入力バッファ43に接続され、他方の接点端子は、トランスファゲートSW0の他方の接点端子とともに、MASK0’を出力する出力端子、すなわちデータ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ51に接続されている。
【0152】
さらに、トランスファゲートSW0の一方の制御端子は、インバータ60の出力端子と接続され、他方の制御端子は、テスト信号38の入力端子と接続されている。また、トランスファゲートSW1の一方の制御端子は、テスト信号の入力端子と接続され、他方の制御端子は、インバータ60の出力端子と接続されている。インバータ60の入力端子はテスト信号38の入力端子に接続されている。
【0153】
図5は、テスト信号38の信号レベルとトランスファゲートSW0およびSW1のON/OFF状態との関係を示す説明図である。このような構成において、図5に示すように、テスト信号38が“L”レベルを示す場合、すなわち通常動作時には、トランスファゲートSW0はON状態となり、DQM入力バッファ42から出力されたMASK0信号がそのままDQML信号として、データ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ51に入力される。この場合、トランスファゲートSW1はOFF状態を示し、DQM入力バッファ43から出力されたMASK1信号は、DQM切り替え回路27から出力されない。
【0154】
一方、テスト信号38が“H”レベルを示す場合、すなわちテスト時には、トランスファゲートSW0はOFF状態となり、DQM入力バッファ42から出力されたMASK0信号は、DQM切り替え回路27から出力されない。この場合、トランスファゲートSW1はON状態を示し、DQM入力バッファ43から出力されたMASK1信号がそのままDQML信号として、データ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ51に入力される。
【0155】
テスト信号38が“L”レベルを示す場合すなわち通常のデータの書き込み/読み出し動作において、バンク詳しくはライトアンプ&センスバッファ51にデータの書き込み命令が与えられた場合、データ入出力端子DQ0〜DQ15に入力された各データは、それぞれ対応するI/Oデータバッファ41を介してライトアンプ&センスバッファ51に入力され、GDBに送出される。
【0156】
この際、DQML端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合すなわちDQM切り替え回路27から出力されるDQML信号が“H”レベルを示す場合には、データの書き込み禁止を意味し、DQ0〜DQ7に対応するライトアンプ&センスバッファ51からGDBへのデータ送出はおこなわれない。また、同様に、DQMU端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合には、DQ8〜DQ15に対応するライトアンプ&センスバッファ51からGDBへのデータ送出はおこなわれない。
【0157】
また、テスト信号38が“L”レベルを示す場合すなわち通常のデータの書き込み/読み出し動作において、バンク詳しくはライトアンプ&センスバッファ51にデータの読み出し命令が与えられた場合、ロウアドレス信号およびコラムアドレス信号によって順次に特定されるメモリセルのデータは、センスアンプを介してGDBに送出され、各GDBに接続されたライトアンプ&センスバッファ51に入力される。各ライトアンプ&センスバッファ51に入力されたデータは、それぞれ対応するI/Oデータバッファ41に送出され、データ入出力端子DQ0〜DQ15から出力される。
【0158】
この際、DQML端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合すなわちDQM切り替え回路27から出力されるDQML信号が“H”レベルを示す場合には、データの読み出しの禁止を意味し、DQ0〜DQ7に対応するライトアンプ&センスバッファ51からI/Oデータバッファ41へのデータ送出はおこなわれない。また、同様に、DQMU端子から入力されるマスク/ディセーブル信号が“H”レベルを示す場合には、DQ8〜DQ15に対応するライトアンプ&センスバッファ51からI/Oデータバッファ41へのデータ送出はおこなわれない。
【0159】
一方、テスト信号38が“H”レベルを示すテスト時には、DQM入力バッファ43から送出されるDQMU信号が、データ入出力端子DQ0〜DQ15に対応したすべてのライトアンプ&センスバッファ51に入力されるので、このDQMU信号のみで、すべてのデータ入出力端子のマスク/ディセーブル制御をおこなうことができる。すなわち、テスト時にICテスタから各半導体記憶デバイスのDQML端子に対し、制御信号を送出する必要がなくなる。一方、テスト信号38が“L”レベルを示す通常動作時には、従来どおりに、DQML信号およびDQMU信号の各信号レベルによって、それぞれに分担されたデータ入出力端子のマスク/ディセーブル制御をおこなうことができる。これは、ICテスタを使用した半導体記憶デバイスの試験において、マスク/ディセーブル動作のために割り当てられるコンパレータ/ドライバの数を半減させたことを意味する。
【0160】
以上に説明した実施の形態1においては、ライトアンプ&センスバッファ51のうち、データの読み出しに対するディセーブル動作をセンスバッファが担い、データの書き込みに対するマスク動作をライトアンプが担うものとして説明を行ったが、図23〜25に示したように、データの読み出しに対するディセーブル動作をI/Oデータバッファが担い、データの書き込みに対するマスク動作をライトアンプが担う構成としてもよい。すなわち、図4に示すライトアンプ&センスバッファ51のセンスバッファと、I/Oデータバッファ41を、それぞれ図23に示すセンスバッファ151aとI/Oデータバッファ131aに替えることができる。
【0161】
図6は、I/Oデータバッファにおいてディセーブル動作を可能とするI/Oデータバッファ41aと、ライトアンプのみにマスク/ディセーブル信号が供給されるライトアンプ&センスバッファ51と、DQM切り替え回路27との間の結線関係に注目したより詳細な構成を説明する図である。図6において、図4と異なる点は、DQM切り替え回路27から出力されるMASK0’信号が、データ入出力端子DQ0〜DQ7に対応するライトアンプ&センスバッファ51だけでなく、データ入出力端子DQ0〜DQ7に対応するI/Oデータバッファ41aにも供給されている点と、DQM入力バッファから出力されるMASK1信号が、データ入出力端子DQ8〜DQ15に対応するライトアンプ&センスバッファ51だけでなく、データ入出力端子DQ8〜DQ15に対応するI/Oデータバッファ41aにも供給されている点である。
【0162】
これにより、書き込みデータのマスク動作に関しては、ライトアンプ&センスバッファ51(特に、ライトアンプ)が担い、読み出しデータのディセーブル動作に関しては、I/Oデータバッファ41aが担うことが可能になる。
【0163】
以上に説明した実施の形態1にかかる半導体記憶装置によれば、データのマスク/ディセーブル動作をおこなうためのマスク/ディセーブル端子を複数個備えた半導体記憶装置において、データの書き込み/読み出し等の制御命令を構成するための複数の入力信号の組み合わせから、ICテスタ等による試験をおこなうためのテストモードを判断し、該テストモードを示すテスト信号を出力するテストモードデコーダと、前記テスト信号がアクティブ状態を示す場合に、複数個のマスク/ディセーブル端子のうちの1つのマスク/ディセーブル端子のみを使用することで、すべてのデータのマスク/ディセーブル動作を可能とするDQM切り替え回路とを備えているので、ICテスタにおいてマスク/ディセーブル動作の試験のために使用するコンパレータ/ドライバの数を減らすことができ、同時に試験可能な半導体記憶装置の数を増加させることができる。これにより、本実施の形態にかかる半導体記憶装置は、試験時間の大幅な短縮と試験コストの削減を達成させることができる。
【0164】
(実施の形態2)
つぎに、実施の形態2にかかる半導体記憶装置について説明する。実施の形態1との相違点は、テストモードデコーダ26よりDQM切り替え回路90に対し、テスト信号38とテスト命令信号39を供給するようにした点と、DQM切り替え回路90の構成をそれに合わせて修正した点である。図7は、実施の形態2にかかる半導体記憶装置の概略構成を示すブロック図である。図7において、実施の形態2にかかる半導体記憶装置であるSDRAM40は、テストモードデコーダ26が、コマンドデコーダ22から入力されるテスト命令信号(TCS信号)37とアドレスバッファ/レジスタ&バンクセレクト18から出力されるアドレス信号の一部によって、テスト信号38およびテスト命令信号(TCS信号)39を生成し、DQM切り替え回路90が、これらのテスト信号38およびテスト命令信号39を入力する。
【0165】
図8は、実施の形態2にかかる半導体記憶装置の要部構成を示す説明図であり、SDRAM40のデータ入出力部およびDQM切り替え回路90のより具体的な構成を示すものである。図8は、特に、前述した図18〜22に示したライトアンプ&センスバッファ141とI/Oデータバッファ131にそれぞれ相当するライトアンプ&センスバッファ54とI/Oデータバッファ44を採用した構成を示している。図8において、データ入出力端子DQ0〜DQ15に入力される各データ信号は、それぞれのデータ入出力端子に対応するI/Oデータバッファ44に入力され、DQML端子およびDQMU端子にそれぞれ入力されるDQML信号およびDQMU信号は、DQML端子およびDQMU端子にそれぞれに対応するDQM入力バッファ45およびDQM入力バッファ46に入力される。
【0166】
DQM切り替え回路90においては、さらに、入力信号として、テストモードデコーダ26より、テスト信号38およびTCS信号39を入力する。DQM切り替え回路90は、これらMASK0信号、MASK1信号、テスト信号38およびTCS信号39に応じて、ライトアンプ&センスバッファ54に対するマスク/ディセーブル信号となるMASK0’信号およびMASK1’信号を出力する。
【0167】
DQM切り替え回路90から出力されるMASK0’信号は、データ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ54に入力される。このMASK0’信号の信号レベルによって、データ入出力端子DQ0〜DQ7に入出力されるデータのマスク/ディセーブル動作をおこなうことができる。また、DQM切り替え回路90から出力されるMASK1’信号は、データ入出力端子DQ8〜DQ15に対応した8つのライトアンプ&センスバッファ54に入力される。このMASK1’信号の信号レベルによって、データ入出力端子DQ8〜DQ15に入出力されるデータのマスク/ディセーブル動作をおこなうことができる。
【0168】
図9は、DQM切り替え回路90の回路構成を示す説明図である。図9において、DQM切り替え回路90は、4つのトランスファゲートSW10〜SW13と、3つのインバータ71、73および75と、2つのNANDゲート72および74とから構成される。
【0169】
インバータ75は、その入力端子をテスト信号38の入力端子に接続しており、その反転信号を出力する。トランスファゲートSW10の一方の接点端子は、MASK0信号を入力する入力端子すなわちDQM入力バッファ45に接続され、他方の接点端子は、MASK0’信号を出力する出力端子すなわちデータ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ54に接続されている。
【0170】
また、トランスファゲートSW11の一方の接点端子は、MASK1信号を入力する入力端子すなわちDQM入力バッファ46に接続され、他方の接点端子は、MASK1’信号を出力する出力端子すなわちデータ入出力端子DQ8〜DQ15に対応した8つのライトアンプ&センスバッファ54に接続されている。
【0171】
さらに、トランスファゲートSW10の一方の制御端子は、インバータ75の出力端子と接続し、他方の制御端子は、テスト信号38の入力端子と接続している。また、トランスファゲートSW11も同様に、一方の制御端子は、インバータ75の出力端子と接続し、他方の制御端子は、テスト信号38の入力端子と接続している。
【0172】
図10は、テスト信号38の信号レベルとトランスファゲートSW10〜SW13のON/OFF状態との関係を示す説明図である。図10に示すように、テスト信号38が“L”レベルを示す場合(つまり、通常動作時)、トランスファゲートSW10およびトランスファゲートSW11はON状態を示し、トランスファゲートSW10は、MASK0信号をそのままMASK0’信号として出力し、トランスファゲートSW11は、MASK1信号をそのままMASK1’信号として出力する。
【0173】
一方、テスト信号38が“H”レベルを示す場合(つまり、テストモード時)、トランスファゲートSW10およびトランスファゲートSW11はOFF状態を示し、トランスファゲートSW10は、MASK0信号をMASK0’信号として出力しない。また、トランスファゲートSW11においても、MASK1信号をMASK1’信号として出力しない。
【0174】
また、トランスファゲートSW12の一方の接点端子は、NANDゲート74の出力端子に接続され、他方の接点端子は、トランスファゲートSW13の一方の接点端子およびMASK0’信号を出力する出力端子に接続されている。トランスファゲートSW13の一方の接点端子は、トランスファゲートSW12の他方の接点端子に接続され、他方の接点端子は、MASK1’信号を出力する出力端子に接続されている。
【0175】
さらに、トランスファゲートSW12の一方の制御端子は、テスト信号38の入力端子と接続し、他方の制御端子は、インバータ75の出力端子と接続している。また、トランスファゲートSW13も同様に、一方の制御端子は、インバータ75の出力端子と接続し、他方の制御端子は、テスト信号38の入力端子と接続している。
【0176】
したがって、図10に示すように、テスト信号38が“L”レベルを示す場合(通常動作時)、トランスファゲートSW12はOFF状態を示し、NANDゲート74からの信号は、MASK0’信号、MASK1’信号として送出されない。
【0177】
一方、テスト信号38が“H”レベルを示す場合(テスト時)、トランスファゲートSW12およびトランスファゲートSW13はともにON状態を示し、トランスファゲートSW12は、NANDゲート74から入力された信号をMASK0’信号として出力し、また、トランスファゲートSW13は、NANDゲート74から出力された信号をMASK1’信号として出力する。この時、TCS信号39は“H”レベルとなっており、これによりNANDゲート72の出力は“H”レベルに固定され、NANDゲート74は、インバータ73の出力信号に対するインバータとして機能する。したがって、MASK0’信号およびMASK1’信号は、DQM入力バッファ46の出力信号であるMASK1信号と同じ論理レベルを示す。
【0178】
したがって、以上に説明したトランスファゲートSW10〜SW13の動作において、テスト信号38が“L”レベルを示す場合(通常動作時)は、トランスファゲートSW10およびSW11がON状態となり、トランスファゲートSW12およびSW13がOFF状態となるので、DQM切り替え回路に入力されたMASK0信号は、そのままMASK0’信号として出力し、MASK1信号は、そのままMASK1’信号として出力する。
【0179】
また、テスト信号38が“H”レベルを示す場合(テスト時)は、トランスファゲートSW10およびSW11がOFF状態となり、トランスファゲートSW12およびSW13がON状態となるので、MASK0’信号およびMASK1’信号として出力される信号は、ともにNANDゲート74から出力される信号のレベルに依存して変化する。
【0180】
つぎに、NANDゲート74の出力信号のレベルを決定するNANDゲート72、インバータ71および73の動作について説明する。まず、NANDゲート74の一方の入力端子は、NANDゲート72の出力端子に接続され、他方の入力端子は、インバータ73の出力端子に接続されている。そして、NANDゲート72の一方の入力端子は、MASK0信号を入力する入力端子に接続され、他方の入力端子は、インバータ71の出力端子に接続されている。インバータ71は、前述したテストモードデコーダから出力されるTCS信号39を入力し、その反転信号を出力する。また、インバータ73は、MASK0信号を入力し、その反転信号を出力する。
【0181】
まず、TCS信号39が“H”レベルを示す場合すなわち半導体記憶装置をテストモードとして動作させる場合、インバータ71の出力は、“L”レベルを示すので、NANDゲート72の出力は、MASK0信号のレベルに関係なく、“H”レベルを示す。この状態において、MASK1信号が“H”レベルを示す場合は、インバータ73の出力は“L”レベルを示すので、NANDゲート74の出力は、“H”レベルを示す。
【0182】
また、同じくTCS信号39が“H”レベルを示す状態において、MASK1信号が“L”レベルを示す場合は、インバータ73の出力は“H”レベルを示すので、NANDゲート74の出力は、“L”レベルを示す。すなわち、TCS信号39が“H”レベルを示す場合には、MASK1信号がそのままNANDゲート74から出力される。
【0183】
なお、実施の形態2においては、テスト信号38が“H”レベルを示す場合すなわち半導体記憶装置をテストモードとして動作させる場合は、DQM入力バッファ46を介してMASK1信号を入力するDQMU端子を、ICテスタのコンパレータ/ドライバに割り当てる端子として使用することができ、DQML端子は使用せずにDQMU端子のみにマスク/ディセーブル信号を与えることで、ICテスタにおいて試験動作のために割り当てられるコンパレータ/ドライバの数を半減させることができる。
【0184】
以上に説明した実施の形態2においては、ライトアンプ&センスバッファ54のうち、データの読み出しに対するディセーブル動作をセンスバッファが担い、データの書き込みに対するマスク動作をライトアンプが担うものとして説明を行ったが、図23〜25に示したように、データの読み出しに対するディセーブル動作をI/Oデータバッファが担い、データの書き込みに対するマスク動作をライトアンプが担う構成としてもよい。すなわち、図8に示すライトアンプ&センスバッファ54のセンスバッファと、I/Oデータバッファ44を、それぞれ図23に示すセンスバッファ151aとI/Oデータバッファ131aに替えることができる。
【0185】
図11は、I/Oデータバッファにおいてディセーブル動作を可能とするI/Oデータバッファ44aと、ライトアンプのみにマスク/ディセーブル信号が供給されるライトアンプ&センスバッファ54と、DQM切り替え回路90との間の結線関係に注目したより詳細な構成を説明する図である。図11において、図8と異なる点は、DQM切り替え回路90から出力されるMASK0’信号が、データ入出力端子DQ0〜DQ7に対応するライトアンプ&センスバッファ54だけでなく、データ入出力端子DQ0〜DQ7に対応するI/Oデータバッファ44aにも供給されている点と、DQM切り替え回路90から出力されるMASK1’信号が、データ入出力端子DQ8〜DQ15に対応するライトアンプ&センスバッファ54だけでなく、データ入出力端子DQ8〜DQ15に対応するI/Oデータバッファ44aにも供給されている点である。
【0186】
これにより、書き込みデータのマスク動作に関しては、ライトアンプ&センスバッファ54(特に、ライトアンプ)が担い、読み出しデータのディセーブル動作に関しては、I/Oデータバッファ44aが担うことが可能になる。
【0187】
以上に説明した実施の形態2にかかる半導体記憶装置によれば、データのマスク/ディセーブル動作をおこなうためのマスク/ディセーブル端子を複数個備えた半導体記憶装置において、データの書き込み/読み出し等の制御命令を構成するための複数の入力信号の組み合わせからICテスタ等による試験をおこなうためのテストモードを判断して該テストモードを示すテスト信号およびテスト命令信号を出力するテストモードデコーダと、前記テスト信号およびテスト命令信号がアクティブ状態を示す場合に、複数個のマスク/ディセーブル端子のうちの1つのマスク/ディセーブル端子のみ使用することですべてのデータのマスク/ディセーブル動作を可能とするDQM切り替え回路とを備えているので、ICテスタにおいてマスク/ディセーブル動作の試験のために使用するコンパレータ/ドライバの数を減らすことができ、同時に試験可能な半導体記憶装置の数を増加させることができる。これにより、本発明にかかる半導体記憶装置は、試験時間の大幅な短縮と試験コストの削減を達成させることができる。
【0188】
また、DQM切り替え回路を、論理ゲートと、トランスファゲートとによって構成しているので、半導体記憶装置内の構成要素として高集積に組み込むことが可能になり、半導体記憶装置のサイズを圧迫せず、また、高速な動作を実現することができる。
【0189】
(実施の形態3)
つぎに、実施の形態3にかかる半導体記憶装置について説明する。実施の形態2と異なる点は、テストモードデコーダ26よりDQM切り替え回路に、テスト信号38と2つのテスト命令信号67、68を供給するようにし、テスト命令信号67が“H”レベルを示すとき、DQML信号をMASK0’信号、MASK1’信号として供給し、テスト命令信号68が“H”レベルを示すとき、DQMU信号をMASK0’信号、MASK1’信号として供給し、つまり、テスト命令信号67、68により、テスト時に使用するマスク/ディセーブル端子(DQMLまたはDQMU)を選択できるように構成した点である。図12は、実施の形態3にかかる半導体記憶装置の概略構成を示すブロック図である。図12において、実施の形態3にかかる半導体記憶装置であるSDRAM50は、コマンドデコーダ22から2つのテスト命令信号(TCS1信号、TCS2信号)が出力され、テストモードデコーダ26においてこのTCS1信号65およびTCS2信号66と、アドレスバッファ/レジスタ&バンクセレクト18よりアドレスの一部を入力することで、テスト信号38と、これらTCS1信号およびTCS2信号(特に、TCS1信号67およびTCS2信号68と称する)とを出力し、これら3つの信号がDQM切り替え回路91に入力される。なお、テストモードデコーダ26におけるテスト信号38は、例えばTCS1信号65とTCS2信号66のいずれか一方が“H”レベルを示す場合に、“H”レベルを示して出力される。また、TCS1信号67とTCS2信号68のどちらかを“H”レベルにするかは、コマンドデコーダ22からTCS1信号65、TCS2信号66を出力するかわりに、テストモードデコーダ26に入力されるアドレス信号で切り換えてもよい。
【0190】
図13は、実施の形態3にかかる半導体記憶装置の要部構成を示す説明図であり、SDRAM50のデータ入出力部およびDQM切り替え回路91の構成を詳細に説明するためのものである。図13は、特に、前述した図18〜22に示したライトアンプ&センスバッファ141とI/Oデータバッファ131にそれぞれ相当するライトアンプ&センスバッファ57とI/Oデータバッファ47を採用した構成を示している。図13において、データ入出力端子DQ0〜DQ15に入力される各データ信号は、それぞれのデータ入出力端子に対応するI/Oデータバッファ47に入力され、DQML端子およびDQMU端子にそれぞれ入力されるDQML信号およびDQMU信号は、DQML端子およびDQMU端子にそれぞれに対応するDQM入力バッファ48およびDQM入力バッファ49に入力される。
【0191】
DQM入力バッファ48は、マスク/ディセーブル信号としてMASK0信号を出力し、そのMASK0信号は、DQM切り替え回路91に入力される。また、DQM入力バッファ49は、マスク/ディセーブル信号としてMASK1信号を出力し、そのMASK1信号もまた、DQM切り替え回路91に入力される。
【0192】
DQM切り替え回路91においては、さらに、入力信号として、テストモードデコーダ26より、テスト信号38、TCS1信号67およびTCS2信号68を入力する。DQM切り替え回路91は、これらMASK0信号、MASK1信号、テスト信号38、TCS1信号67およびTCS2信号68に応じて、ライトアンプ&センスバッファ57に対するマスク/ディセーブル信号となるMASK0’信号およびMASK1’信号を出力する。
【0193】
DQM切り替え回路91から出力されるMASK0’信号は、データ入出力端子DQ0〜DQ7に対応した8つのライトアンプ&センスバッファ57に入力される。このMASK0’信号の信号レベルによって、データ入出力端子DQ0〜DQ7に入出力されるデータのマスク/ディセーブル動作をおこなうことができる。
【0194】
また、DQM切り替え回路91から出力されるMASK1’信号は、データ入出力端子DQ8〜DQ15に対応した8つのライトアンプ&センスバッファ57に入力される。このMASK1’信号の信号レベルによって、データ入出力端子DQ8〜DQ15に入出力されるデータのマスク/ディセーブル動作をおこなうことができる。
【0195】
図14は、DQM切り替え回路91の回路構成を示す説明図である。図14において、DQM切り替え回路91は、4つのトランスファゲートSW10〜SW13と、3つのNANDゲート81、82および83と、1つのインバータ84とから構成される。
【0196】
インバータ84は、その入力端子をテスト信号38の入力端子に接続しており、その反転信号を出力する。トランスファゲートSW10〜SW13の構成および動作は、実施の形態2において説明したと図9と同様であるので、ここではその説明を省略する。
【0197】
したがって、図14に示すトランスファゲートSW10〜SW13と、テスト信号38との関係は、図10に示した内容と同様の内容になる。したがって、トランスファゲートSW10〜SW13の動作において、テスト信号38が“L”レベルを示す場合(通常動作時)は、トランスファゲートSW10およびSW11がON状態となり、トランスファゲートSW12およびSW13がOFF状態となるので、DQM切り替え回路91に入力されたMASK0信号は、そのままMASK0’信号として出力し、MASK1信号は、そのままMASK1’信号として出力する。
【0198】
また、テスト信号38が“H”レベルを示す場合(テスト時)は、トランスファゲートSW10およびSW11がOFF状態となり、トランスファゲートSW12およびSW13がON状態となるので、MASK0’信号およびMASK1’信号として出力される信号は、ともにNANDゲート83から出力される信号のレベルに依存して変化する。
【0199】
つぎに、NANDゲート83の出力信号のレベルを決定するNANDゲート81および82の動作について説明する。まず、NANDゲート83の一方の入力端子は、NANDゲート81の出力端子に接続され、他方の入力端子は、NANDゲート82の出力端子に接続されている。そして、NANDゲート81の一方の入力端子は、MASK0信号を出力するDQM入力バッファ48の出力端子に接続され、他方の入力端子は、前述したテストモードデコーダから出力されるTCS1信号67を入力する入力端子に接続されている。NANDゲート82は、一方の入力端子を、MASK1信号を出力するDQM入力バッファ49の出力端子に接続し、他方の入力端子を、前述したテストモードデコーダから出力されるTCS2信号68を入力する入力端子に接続している。
【0200】
まず、TCS1信号67が“L”レベルを示す場合、NANDゲート81の出力は、MASK0信号のレベルに関係なく、“H”レベルを示す。この状態において、TCS2信号68が“H”レベルを示す場合に限り、MASK1信号の反転信号がNANDゲート82の出力となる。NANDゲート81の出力が“H”レベルを示しているので、NANDゲート82の出力は、再度NANDゲート83で反転される。すなわち、テスト信号38が“H”レベルを示す場合で、TCS1信号67を“L”レベルとし、TCS2信号68を“H”レベルとすることで、MASK1信号がそのままMASK0’信号およびMASK1’信号として出力される。
【0201】
つぎに、TCS2信号68が“L”レベルを示す場合、NANDゲート82の出力は、MASK1信号のレベルに関係なく、“H”レベルを示す。この状態において、TCS1信号67が“H”レベルを示す場合に限り、MASK0信号が反転されてNANDゲート81の出力となる。NANDゲート82の出力が“H”レベルを示しているので、NANDゲート81の出力は、再度NANDゲート83で反転される。すなわち、テスト信号38が“H”レベルを示す場合で、TCS1信号67を“H”レベルとし、TCS2信号68を“L”レベルとすることで、MASK0信号がそのままMASK0’信号およびMASK1’信号として出力される。
【0202】
このように、実施の形態3におけるDQM切り替え回路91の動作は、TCS1信号67とTCS2信号68に与える信号レベルによって、MASK0信号すなわちDQML信号を、DQ0〜DQ15のすべてのデータに対してマスク/ディセーブル動作をおこなわせるマスク/ディセーブル信号として利用するか、MASK1信号すなわちDQMU信号を、DQ0〜DQ15のすべてのデータに対してマスク/ディセーブル動作をおこなわせるマスク/ディセーブル信号として利用するかの選択が可能になる。したがって、DQMU端子またはDQML端子の一方の端子のみを、ICテスタのコンパレータ/ドライバに割り当てる端子として使用し、試験時、マスク/ディセーブル動作をおこなわせることができ、使用するコンパレータ/ドライバの数を減少させることが可能になる。
【0203】
以上に説明した実施の形態3においては、ライトアンプ&センスバッファ57のうち、データの読み出しに対するディセーブル動作をセンスバッファが担い、データの書き込みに対するマスク動作をライトアンプが担うものとして説明を行ったが、図23〜25に示したように、データの読み出しに対するディセーブル動作をI/Oデータバッファが担い、データの書き込みに対するマスク動作をライトアンプが担う構成としてもよい。すなわち、図13に示すライトアンプ&センスバッファ57のセンスバッファと、I/Oデータバッファ47を、それぞれ図23に示すセンスバッファ151aとI/Oデータバッファ131aに替えることができる。
【0204】
また、図15は、I/Oデータバッファにおいてディセーブル動作を可能とするI/Oデータバッファ47aと、ライトアンプのみにマスク/ディセーブル信号が供給されるライトアンプ&センスバッファ57と、DQM切り替え回路91との間の結線関係に注目したより詳細な構成を説明する図である。図15において、図13と異なる点は、DQM切り替え回路91から出力されるMASK0’信号が、データ入出力端子DQ0〜DQ7に対応するライトアンプ&センスバッファ57だけでなく、データ入出力端子DQ0〜DQ7に対応するI/Oデータバッファ47aにも供給されている点と、DQM切り替え回路91から出力されるMASK1’信号が、データ入出力端子DQ8〜DQ15に対応するライトアンプ&センスバッファ57だけでなく、データ入出力端子DQ8〜DQ15に対応するI/Oデータバッファ47aにも供給されている点である。
【0205】
これにより、書き込みデータのマスク動作に関しては、ライトアンプ&センスバッファ57(特に、ライトアンプ)が担い、読み出しデータのディセーブル動作に関しては、I/Oデータバッファ47aが担うことが可能になる。
【0206】
以上に説明したように、実施の形態3にかかる半導体記憶装置によれば、データのマスク/ディセーブル動作をおこなうためのマスク/ディセーブル端子を複数個備えた半導体記憶装置において、データの書き込み/読み出し等の制御命令を構成するための複数の入力信号の組み合わせからICテスタ等による試験をおこなうためのテストモードを判断して該テストモードを示すテスト信号および複数のテスト命令信号を出力するテストモードデコーダと、前記テスト信号および複数のテスト命令信号がアクティブ状態を示す場合に、複数個のマスク/ディセーブル端子のうちのいずれか1つのマスク/ディセーブル端子を選択して使用することですべてのデータのマスク/ディセーブル動作を可能とするDQM切り替え回路とを備えているので、ICテスタにおいてマスク/ディセーブル動作の試験のために使用するコンパレータ/ドライバの数を減らすことができ、同時に試験可能な半導体記憶装置の数を増加させることができる。これにより、本発明にかかる半導体記憶装置は、試験時間の大幅な短縮と試験コストの削減を達成させることができる。
【0207】
また、DQM切り替え回路を、論理ゲートと、トランスファゲートとによって構成しているので、半導体記憶装置内の構成要素として高集積に組み込むことが可能になり、半導体記憶装置のサイズを圧迫せず、また、高速な動作を実現することができる。
【0208】
また、実施の形態1〜3において、2つのマスク/ディセーブル端子を備えた半導体記憶装置について説明したが、このマスク/ディセーブル端子は、3つ以上でも良く、その場合、上記したトランスファゲートおよび論理ゲートの構成を一部変更するのみで、1つのマスク/ディセーブル端子によるすべてのデータ入出力のマスク/ディセーブル動作をおこなわせることができる。
【0209】
さらに、実施の形態1〜3において、半導体記憶装置をSDRAMを基本構成として説明したが、通常のDRAM、SRAM、EPROM、EEPROM等を基本構成とすることができ、複数のマスク/ディセーブル端子を備えた構成であれば、その種類を問わない。
【0210】
【発明の効果】
以上説明したように、請求項1にかかる発明によれば、マスク/ディセーブル端子ごとに書き込み/読み出しを禁止するデータ入出力端子の割り当てを変更することができ、1のマスク/ディセーブル端子の使用が禁止されても、当該1のマスク/ディセーブル端子に割り当てられたデータ入出力端子のマスク/ディセーブル動作を他のマスク/ディセーブル端子で制御することができ、試験装置の資源を効率的に使用できることから、複数のマスク/ディセーブル端子を備えた半導体記憶装置に対して同時に試験をおこなえる数を増大させることが可能となり、試験時間の短縮および試験コストの削減が図ることができる等、利便性、特に試験をおこなう際の利便性を高めた半導体記憶装置が得られるという効果を奏する。
【0211】
また、請求項2〜4にかかる発明によれば、第2の動作モード(試験モード)の際、第1のマスク/ディセーブル端子で、第1および第2のデータ入出力端子群の両方のマスク/ディセーブル動作を制御することができるようになり、第2の動作モード時に使用するマスク/ディセーブル端子の数を削減することができ、以ってICテスタに同時に試験することができる半導体記憶デバイスの数を増やすことができるので、請求項1にかかる発明と同様に利便性、特に試験をおこなう際の利便性を高めた半導体記憶装置が得られるという効果を奏する。
【0212】
また、請求項5〜7の発明によれば、変更手段により第1および第2のマスク/ディセーブル端子と第1および第2の書き込み/読み出し制御回路部相互間の接続関係を切替えることで請求項2に記載されている動作モードに基づくデータ入出力端子群とマスク/ディセーブル端子との対応関係の変更を容易に実施することができるので、請求項2にかかる発明と同様に利便性、特に試験をおこなう際の利便性を高めた半導体記憶装置が得られるという効果を奏する。
【図面の簡単な説明】
【図1】実施の形態1にかかる半導体記憶デバイスとICテスタとの結線を示す説明図である。
【図2】実施の形態1にかかる半導体記憶装置の概略構成を示すブロック図である。
【図3】実施の形態1にかかる半導体記憶装置をパッケージした半導体記憶デバイスの概観図である。
【図4】実施の形態1にかかる半導体記憶装置の詳細な構成を説明する図である。
【図5】実施の形態1にかかる半導体記憶装置のテスト信号の信号レベルとトランスファゲートSW0およびSW1のON/OFF状態との関係を示す説明図である。
【図6】実施の形態1にかかる半導体記憶装置においてディセーブル動作を可能とするI/Oデータバッファを採用した詳細な構成を説明する図である。
【図7】実施の形態2にかかる半導体記憶装置の概略構成を示すブロック図である。
【図8】実施の形態2にかかる半導体記憶装置の要部構成を示す説明図である。
【図9】実施の形態2にかかる半導体記憶装置のDQM切り替え回路の回路構成を示す説明図である。
【図10】実施の形態2にかかる半導体記憶装置のテスト信号の信号レベルとトランスファゲートSW10〜SW13のON/OFF状態との関係を示す説明図である。
【図11】実施の形態2にかかる半導体記憶装置においてディセーブル動作を可能とするI/Oデータバッファを採用した詳細な構成を説明する図である。
【図12】実施の形態3にかかる半導体記憶装置の概略構成を示すブロック図である。
【図13】実施の形態3にかかる半導体記憶装置の要部構成を示す説明図である。
【図14】実施の形態3にかかる半導体記憶装置のDQM切り替え回路の回路構成を示す説明図である。
【図15】実施の形態3にかかる半導体記憶装置においてディセーブル動作を可能とするI/Oデータバッファを採用した詳細な構成を説明する図である。
【図16】従来の半導体記憶装置の概略構成を示すブロック図である。
【図17】従来における半導体記憶装置の要部を示す説明図である。
【図18】従来における半導体記憶装置の要部間の結線を示す説明図である。
【図19】従来における半導体記憶装置のセンスバッファの回路構成を示す説明図である。
【図20】従来における半導体記憶装置のセンスバッファに入出力する信号のタイムチャートである。
【図21】従来における半導体記憶装置のライトアンプの回路構成を示す説明図である。
【図22】従来における半導体記憶装置のライトアンプに入出力する信号のタイムチャートである。
【図23】従来における半導体記憶装置の要部間の結線を示す説明図である。
【図24】従来における半導体記憶装置のI/Oデータバッファの回路構成を示す説明図である。
【図25】従来における半導体記憶装置のI/Oデータバッファに入出力する信号のタイムチャートである。
【図26】従来の半導体記憶装置のICテスタによる試験動作を示す説明図である。
【符号の説明】
1,2,3,4 半導体記憶デバイス
10,40,50 SDRAM
11 メモリアレイ
12 ロウデコーダ
13 コラムデコーダ
14 センスアンプ
15,51,54,57 ライトアンプ/センスバッファ
16 グローバルデータバス(GDB)
17 I/Oデータバッファ/レジスタ
18 アドレスバッファ/レジスタ&バンクセレクト
19 コラムアドレスカウンタ
22 コマンドデコーダ
23 制御信号ラッチ
24 モードレジスタ
25 クロックバッファ
26 テストモードデコーダ
27,90,91 DQM切り替え回路
41,44,47 I/Oデータバッファ
42,43,45,46,48,49 DQM入力バッファ

Claims (3)

  1. 複数のデータ入出力端子と、
    複数のマスク/ディセーブル端子と、
    前記複数のデータ入出力端子に対応して設けられ、書き込みデータをアンプするとともに読出データをセンスする複数のライトアンプ/センスバッファとを有し、
    各マスク/ディセーブル端子に割り当てられた前記データ入出力端子から入出力されるデータの書き込み/読み出しを前記マスク/ディセーブル端子に印加されるマスク/ディセーブル制御信号に応答して禁止するマスク/ディセーブル動作をおこなうことが可能な半導体記憶装置において、
    前記マスク/ディセーブル端子に対する前記データ入出力端子の割り当てを変更する割り当て変更手段を備え、
    前記割り当て変更手段は
    第1の動作モードのときには、前記マスク/ディセーブル端子から前記マスク/ディセーブル制御信号をそのまま前記ライトアンプ/センスバッファに供給し、
    第2の動作モードのときには、前記マスク/ディセーブル端子から前記マスク/ディセーブル信号の少なくとも一部を変更して前記ライトアンプ/センスバッファに供給することを特徴とする半導体記憶装置。
  2. 第1のデータ入出力端子群と、
    第2のデータ入出力端子群と、
    第1のデータ入出力端子群に対応する第1のマスク/ディセーブル端子と、
    第2のデータ入出力端子群に対応する第2のマスク/ディセーブル端子と、
    前記複数のデータ入出力端子に対応して設けられ、書き込みデータをアンプするとともに読み出しデータをセンスする複数のライトアンプ/センスバッファと、を有し、
    各マスク/ディセーブル端子に割り当てられた前記データ入出力端子から入出力されるデータの書き込み/読み出しを前記マスク/ディセーブル端子に印加されるマスク/ディセーブル制御信号に応答して禁止するマスク/ディセーブル動作を行うことが可能な半導体記憶装置において、
    第1の動作モード時においては、前記第1のマスク/ディセーブル端子からのマスク/ディセーブル制御信号を第1のデータ入出力端子群に対応するライトアンプ/センスバッファに供給するとともに、前記第2のマスク/ディセーブル端子からのマスク/ディセーブル制御信号を第2のデータ入出力端子群に対応するライトアンプ/センスバッファに供給し、
    第2の動作モード時においては、前記第1のマスク/ディセーブル端子からのマスク/ディセーブル制御信号を第2のデータ入出力群に対応するライトアンプ/センスバッファに供給することを特徴とする半導体装置。
  3. 第1のデータ入出力端子群と、
    第2のデータ入出力端子群と、
    第1のデータ入出力端子群に対応する第1のマスク/ディセーブル端子と、
    第2のデータ入出力端子群に対応する第2のマスク/ディセーブル端子と、
    前記複数のデータ入出力端子に対応して設けられ、書き込みデータをアンプするとともに読み出しデータをセンスする複数のライトアンプ/センスバッファと、を有し、
    各マスク/ディセーブル端子に割り当てられた前記データ入出力端子から入出力されるデータの書き込み/読み出しを前記マスク/ディセーブル端子に印加されるマスク/ディセーブル制御信号に応答して禁止するマスク/ディセーブル動作を行うことが可能な半導体記憶装置において、
    第1の動作モード時においては、前記第1のマスク/ディセーブル端子からのマスク/ディセーブル制御信号を第1のデータ入出力端子群に対応するライトアンプ/センスバッファに供給するとともに、前記第2のマスク/ディセーブル端子からのマスク/ディセーブル制御信号を第2のデータ入出力端子群に対応するライトアンプ/センスバッファに供給し、
    第2の動作モード時においては、前記第1のマスク/ディセーブル端子からのマスク/ディセーブル制御信号に対して演算を施して第2のデータ入出力端子群に対応するライトアンプ/センスバッファに供給して、前記マスク/ディセーブル端子に対する前記データ入出力端子の割り当てを変更することを特徴とする半導体記憶装置。
JP25340698A 1998-09-08 1998-09-08 半導体記憶装置 Expired - Fee Related JP3918317B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25340698A JP3918317B2 (ja) 1998-09-08 1998-09-08 半導体記憶装置
US09/236,338 US6438667B1 (en) 1998-09-08 1999-01-25 Semiconductor memory and memory system
KR1019990004559A KR100356091B1 (ko) 1998-09-08 1999-02-10 반도체 기억 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25340698A JP3918317B2 (ja) 1998-09-08 1998-09-08 半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2000090697A JP2000090697A (ja) 2000-03-31
JP3918317B2 true JP3918317B2 (ja) 2007-05-23

Family

ID=17250949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25340698A Expired - Fee Related JP3918317B2 (ja) 1998-09-08 1998-09-08 半導体記憶装置

Country Status (3)

Country Link
US (1) US6438667B1 (ja)
JP (1) JP3918317B2 (ja)
KR (1) KR100356091B1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437613B1 (ko) * 2001-10-23 2004-06-30 주식회사 하이닉스반도체 와이드 입/출력 디램 매크로용 집적 테스트 입/출력 장치
JP4146662B2 (ja) * 2002-04-12 2008-09-10 富士通株式会社 半導体記憶装置
KR200313168Y1 (ko) * 2003-02-05 2003-05-16 임재영 축하용 양초꽂이
JP2006066020A (ja) * 2004-08-30 2006-03-09 Fujitsu Ltd 半導体記憶装置
KR100557225B1 (ko) * 2004-11-04 2006-03-07 삼성전자주식회사 반도체 메모리 장치의 데이터 입/출력 방법 및 이를 위한반도체 메모리 장치
KR100557712B1 (ko) 2004-11-10 2006-03-07 삼성전자주식회사 반도체 메모리의 리페어 방법 및 장치
US20070033349A1 (en) * 2005-08-08 2007-02-08 Freescale Semiconductor, Inc. Multi-mode wireless processor interface
US7734674B2 (en) * 2005-08-08 2010-06-08 Freescale Semiconductor, Inc. Fast fourier transform (FFT) architecture in a multi-mode wireless processing system
US7653675B2 (en) * 2005-08-08 2010-01-26 Freescale Semiconductor, Inc. Convolution operation in a multi-mode wireless processing system
US7802259B2 (en) * 2005-08-08 2010-09-21 Freescale Semiconductor, Inc. System and method for wireless broadband context switching
US8140110B2 (en) * 2005-08-08 2012-03-20 Freescale Semiconductor, Inc. Controlling input and output in a multi-mode wireless processing system
JP2007272982A (ja) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd 半導体記憶装置およびその検査方法
KR100695437B1 (ko) * 2006-04-13 2007-03-16 주식회사 하이닉스반도체 멀티 포트 메모리 소자
KR100892675B1 (ko) * 2007-09-19 2009-04-15 주식회사 하이닉스반도체 반도체 메모리 장치
KR100925371B1 (ko) 2008-01-07 2009-11-09 주식회사 하이닉스반도체 반도체 집적 회로의 테스트 회로
KR101910933B1 (ko) * 2011-12-21 2018-10-24 에스케이하이닉스 주식회사 반도체 집적회로 및 그의 테스트 제어방법
KR20230139379A (ko) * 2022-03-25 2023-10-05 창신 메모리 테크놀로지즈 아이엔씨 제어 방법, 반도체 메모리 및 전자 기기
CN116844623B (zh) * 2022-03-25 2024-05-17 长鑫存储技术有限公司 一种控制方法、半导体存储器和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05265883A (ja) * 1992-03-19 1993-10-15 Fujitsu Ltd デュアルポートramインタフェース方式
US5848247A (en) * 1994-09-13 1998-12-08 Hitachi, Ltd. Microprocessor having PC card interface
US5778237A (en) * 1995-01-10 1998-07-07 Hitachi, Ltd. Data processor and single-chip microcomputer with changing clock frequency and operating voltage
KR100200916B1 (ko) * 1995-11-16 1999-06-15 윤종용 웨이퍼 테스트 신호 발생기를 가지는 반도체 메모리 장치
JP4000206B2 (ja) * 1996-08-29 2007-10-31 富士通株式会社 半導体記憶装置
US5996106A (en) * 1997-02-04 1999-11-30 Micron Technology, Inc. Multi bank test mode for memory devices

Also Published As

Publication number Publication date
KR100356091B1 (ko) 2002-10-19
JP2000090697A (ja) 2000-03-31
US6438667B1 (en) 2002-08-20
KR20000022569A (ko) 2000-04-25

Similar Documents

Publication Publication Date Title
JP3918317B2 (ja) 半導体記憶装置
KR100391730B1 (ko) 캐시의 사용이 선택될 수 있는 반도체 메모리 디바이스와, 반도체 메모리 디바이스 액세스 방법, 및 데이터 처리 시스템
KR100689011B1 (ko) 반도체 집적 회로
JP2000285694A (ja) 半導体記憶装置および半導体記憶装置を搭載する半導体集積回路装置
US8024627B2 (en) Semiconductor memory device, operating method thereof, and compression test method thereof
US6687174B2 (en) Semiconductor memory device capable of switching output data width
JP4309086B2 (ja) 半導体集積回路装置
KR100281894B1 (ko) 메모리 로직 복합 반도체 장치의 메모리 테스트 제어 회로 및메모리 테스트 방법
JP2001006395A (ja) 半導体メモリ装置及びそのテストモード時の読出方法
US6798701B2 (en) Semiconductor integrated circuit device having data input/output configuration variable
US7668028B2 (en) Dual in-line memory module, memory test system, and method for operating the dual in-line memory module
JP3822371B2 (ja) 同時カラム選択ライン活性化回路を具備する半導体メモリ装置及びカラム選択ライン制御方法
KR19990006329A (ko) 품종 전환가능한 반도체 장치 및 그 동작 테스트 방법
US6335887B1 (en) Semiconductor memory device allowing switching of word configuration
JPH11317100A (ja) 半導体記憶装置
KR100275724B1 (ko) 테스트 타임이 감소되는 고속 반도체 메모리 장치의 입출력 회로
KR100543449B1 (ko) 상대 어드레스 방식으로 모든 메모리 셀들의 액세스가가능하게 하는 반도체 메모리 장치
JPH04212776A (ja) 半導体記憶装置のテスト回路
JP2007179731A (ja) メモリロジック複合半導体装置及びメモリテスト方法
JP2002056696A (ja) 半導体記憶装置
JP2002319299A (ja) 半導体記憶装置
JP2987144B2 (ja) 半導体記憶装置
JP2000251496A (ja) 半導体集積回路装置
JP2005044436A (ja) 半導体記憶装置
KR20060031393A (ko) 반도체 메모리 장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees