JP3894088B2 - 燃料供給装置 - Google Patents

燃料供給装置 Download PDF

Info

Publication number
JP3894088B2
JP3894088B2 JP2002293155A JP2002293155A JP3894088B2 JP 3894088 B2 JP3894088 B2 JP 3894088B2 JP 2002293155 A JP2002293155 A JP 2002293155A JP 2002293155 A JP2002293155 A JP 2002293155A JP 3894088 B2 JP3894088 B2 JP 3894088B2
Authority
JP
Japan
Prior art keywords
current
switch
valve opening
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002293155A
Other languages
English (en)
Other versions
JP2004124890A (ja
Inventor
克也 小山
昭二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002293155A priority Critical patent/JP3894088B2/ja
Priority to US10/678,642 priority patent/US6880530B2/en
Priority to DE60309551T priority patent/DE60309551T2/de
Priority to EP03022681A priority patent/EP1408221B1/en
Publication of JP2004124890A publication Critical patent/JP2004124890A/ja
Application granted granted Critical
Publication of JP3894088B2 publication Critical patent/JP3894088B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料供給装置に関する。
【0002】
【従来の技術】
エンジンに用いられているソレノイド式燃料噴射装置(以下、インジェクタと言う)の駆動装置の診断装置として、特開平11−13519号公報には、燃料噴射装置の駆動制御装置の開弁電流に関連した故障の有無を診断することが記載されている。
【0003】
【特許文献1】
特開平11−13519号公報
【0004】
【発明が解決しようとする課題】
しかし、前記診断装置は、燃料供給装置の故障の有無検出のみで燃料供給装置の保護については触れられていない。そのために、燃料供給装置に過電流が流れるモードでの故障に至った場合、燃料供給装置が破損する可能性がある。本発明の目的は、燃料供給装置の診断を行い、燃料供給装置の保護を行うことが出来る燃料供給装置を提供することである。診断についても、各モードを断定できる手段を提供し、信頼性を向上させる。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、エンジンの運転状態を検出する手段,検出した前記運転状態に基づき、開弁信号と保持信号の2つの信号から構成される燃料噴射パルスの幅を算出する手段,前記燃料噴射パルスの幅に基づき、燃料噴射装置に備えられているソレノイドに開弁電流を供給する手段及び、前記開弁電流が所定電流値に至った後、開弁状態を保持する保持電流をソレノイドに供給する手段とを備えた燃料供給装置において、前記開弁信号と前記保持信号の論理積が成立した場合に、前記ソレノイドへの電流の供給を行い、前記燃料噴射パルスの開始時から前記開弁電流が所定電流値に到達するまでの時間が所定時間より短い場合、燃料噴射装置の異常判定を行う。
【0006】
これによれば、燃料供給装置に過電流が流れる状態で該装置が故障に至った場合であっても、燃料供給装置を保護することが出来る。
【0007】
【発明の実施の形態】
実施態様について説明する。実施態様によって、診断についても各モードを断定できる手段を提供し、信頼性を向上させることができる。
【0008】
図1に、実施態様のエンジンシステムを示す。エンジン1が吸入する空気は、エアクリーナ3の入力部4から取り入れられた吸入空気量を制御する絞り弁6を設置した絞り弁装置7を通り、コレクタ8に入る。絞り弁6は、モータ10に連結されており、モータ10を駆動することにより絞り弁6は操作される。絞り弁6を操作して、吸入空気量を制御している。コレクタ8に至った吸入空気は、各吸入空気管19に分配されてエンジン1の各シリンダ2に供給される。
【0009】
一方、燃料(主にガソリン)は、燃料タンク11から燃料ポンプ12により、吸引,加圧された上で燃料噴射装置(インジェクタ)13,可変燃圧プレッシャレギュレータ14により所定の圧力に調圧され、それぞれのシリンダ2に燃料噴射口を開口しているインジェクタ13からシリンダ2に噴射される。可変燃圧プレッシャレギュレータ14はエンジンコントロールユニット(以下、ECUと言う)15から制御される。空気流量計5からは吸入空気量を表す信号が出力され、ECU15に入力される。
【0010】
絞り弁7には絞り弁6の開度を検出するスロットルセンサ18が取り付けられており、その出力もECU15に入力される。
【0011】
クランク角センサ16は、カム軸22によって回転駆動され、クランク軸の回転位置を表す信号を出力する。この信号もECU15に入力されるようになっている。排気管23に設けられたA/F(空燃比)センサ20は、排気ガスの成分から実運転空燃比を検出して、その信号をECU15に送る。
【0012】
絞り弁装置7と一体に設けられたアクセルセンサ9は、アクセルペダル112と連結しており、ドライバーがアクセルペダル112を操作する量を検出,出力してその信号はECU15に入力される。ECU15は、処理手段(CPU)24を有し、前述したクランク角信号,アクセル開度信号などのエンジンの運転状態を検出する各種センサなどからの信号を入力信号として取込み、所定の演算を実行し、上記したインジェクタ13や点火コイル17や絞り弁操作のためのモータ10に所定の制御信号を出力し、燃料供給制御,点火時期制御,吸入空気制御を実行する。電源(バッテリ)25とECU15との間にはイグニッションスイッチ26が設けられる。燃料系に設けられた可変燃圧プレッシャ14に隣接して燃圧センサ21が設けてあり、その信号はECU15に入力される。
【0013】
次に、図2に示す、ECU15内のインジェクタ13の制御回路構成を説明する。
【0014】
インジェクタ13の制御回路31は以下に示す回路群から構成される。回路群を列挙する。まず、バッテリ電圧26aからバッテリ電圧より大きな電圧を生成する昇圧回路32。インジェクタ13は、シリンダ2内に燃料を噴射するために、インジェクタ13内のプランジャーを固定するスプリングによる押し付け力及び内部の燃料圧力は非常に高い。そこで、インジェクタ13を開弁させるためには大きな起磁力を必要とし、通常のバッテリ電圧からの電流供給ではインジェクタ13を開弁させることができない。このために、前述昇圧回路32を必要とする。
【0015】
次に、前述昇圧回路32で生成された昇圧電圧からインジェクタ13に電流の供給,遮断を制御するスイッチ素子33。インジェクタ13にバッテリ電圧26aから電流の供給,遮断を制御するスイッチ素子34。スイッチ素子33とスイッチ素子34からの供給電流がワイヤードORとなる信号線35aでは、電圧関係は、昇圧電圧32a>バッテリ電圧26aとなるために、昇圧電圧32aがスイッチ素子33及びスイッチ素子34を介してバッテリ26aに流れ込む可能性がある。そこで、信号線35aとスイッチ素子34間には電流逆流防止素子35を設定する。
【0016】
インジェクタ13の電流をグランド方向にシンクするスイッチ素子36及び
37はインジェクタ毎に個別に設定する。インジェクタ13に流れる電流をインジェクタから、スイッチ素子36(または、37)→グランド→素子38→インジェクタ13に帰還させる還流素子38である。
【0017】
また、図2では、前述スイッチ素子33,スイッチ素子34,電流逆流防止素子35及び還流素子38は、インジェクタ13対向気筒毎に設定している(アプリケーションとしては、前記スイッチ素子33,スイッチ素子34,電流逆流防止素子35及び還流素子38をインジェクタ13毎に個別設定することもある。)。
【0018】
前述スイッチ素子33,スイッチ素子34,スイッチ素子36,スイッチ素子37を制御する制御部39。インジェクタ13に流す基準電流を設定する基準電流生成部40。
【0019】
CPU24,インジェクタ制御回路31間のインターフェースは、パラレル入力24a,24b及びシリアル通信24cから構成される。パラレル入力では、CPU24で算出した燃料噴射パルス幅に基づき、開弁信号24a及び保持信号24bがCPU24から出力され、制御部39に入力される。シリアル通信24cでは、インジェクタ制御回路31内のシリアル・ペリフェラル・インターフェイス(SPI)部42と通信を行い、診断部41で検出された診断結果をCPU24にフィードバックする。
【0020】
図3に、スイッチ素子33及びスイッチ素子34の内部回路構成を示す。スイッチ素子33は、電流電圧変換素子51,PチャンネルMOSFET52,電流電圧変換素子51両端の電位差から電流を検出する電流検出器53から構成されている。
【0021】
PチャンネルMOSFET52は、制御部39からの制御信号33zにより、オン/オフ制御され、オン時にPチャンネルMOSFET52に流れる電流を電流電圧変換素子51と電流検出器53により検出し、電流値33wを診断部41に出力する。
【0022】
スイッチ素子34の内部回路構成も基本的にはスイッチ素子33と同様である。即ち、電流電圧変換素子54,NチャンネルMOSFET55,電流電圧変換素子54両端の電位差から電流を検出する電流検出器56から構成されている。ここでMOSFETは、Pチャンネル52,Nチャンネル55で示したが、双方ともNチャンネル,Pチャンネルどちらでもよい。
【0023】
NチャンネルMOSFET55は、制御部39からの制御信号34zにより、オン/オフ制御され、オン時にNチャンネルMOSFET55に流れる電流を電流電圧変換素子54と電流検出器56により検出し、電流値34wを診断部41に出力する。
【0024】
図4に、スイッチ素子36の内部回路構成を示す。スイッチ素子37も同様であるため、スイッチ素子36についてのみ記載する。
【0025】
NチャンネルMOSFET61は、制御部39からの制御信号36zにより、オン/オフ制御される。また、MOSFET61がオン時に流れる電流を検出する電流電圧変換素子62の両端の電位差を電流検出器63で検出し、電流値36yを制御部39及び診断部41に出力する。制御部39では電流値36yの信号を元にインジェクタ13に流れる電流値13aを検出して電流制御を行う。
【0026】
固定バイアス電圧を生成するバイアス電圧器64は、本図では、図示していないコントロールユニット31内で生成される電圧(VCC)を元に生成し、VCCからの抵抗分圧により所定のバイアス電圧を生成する。
【0027】
バイアス電圧器64で生成された所定電圧を信号線36aに流し込む定電流源65では、インジェクタ13の制御に影響を与えない程の小さい電流をバイアスし、信号線36aがハイインピーダンスのとき、信号線36aは定電流源65により所定電圧に保持される。信号線36aと電圧信号36wとをインピーダンス分離するためのバッファ66を設置している。即ち、信号線36a側のインピーダンスは非常に高くなっている。また電圧信号36wは診断部41に出力する。
【0028】
図5に、CPUからの燃料噴射信号、即ち、開弁信号24aおよび保持信号24bによるインジェクタ13の駆動波形を示す。
【0029】
タイミングt1は、インジェクタ13の噴射開始タイミングである。CPU24からの開弁信号24a及び保持信号24bの論理積が成立したとき、スイッチ素子33及びスイッチ素子36をオンさせ、スイッチ素子33→インジェクタ13→スイッチ素子36→グランドにインジェクタ駆動電流13aを流し、所定電流値71に到達するまで、昇圧電圧32aをインジェクタ13に開弁電流13aを供給し、インジェクタ13を開弁させる。このときのインジェクタ駆動電流13aは、スイッチ素子36に設定された電流電圧変換素子62で検出され、その検出値36yと基準電流生成部40で生成される基準信号を比較することにより、所定電流値を流す。
【0030】
所定電流値71に到達したタイミングt2では、スイッチ素子33及び36をオフさせ、インジェクタ駆動電流13aの供給を遮断する。
【0031】
タイミングt3では、所定値電流72までインジェクタ駆動電流13aが減少したことを検出し、スイッチ素子34及びスイッチ素子36を制御部39からの制御信号34z,36zによりそれぞれオンさせ、スイッチ素子34→逆流防止素子35→インジェクタ13→スイッチ素子36→グランドに、バッテリ電圧26aからインジェクタ駆動電流13aを流し、所定電流値73に到達するまでスイッチ素子34をオンする。このときのインジェクタ駆動電流13aは、スイッチ素子36に設定された電流電圧変換素子62で検出され、その検出値36yと基準電流生成部40で生成される基準信号を比較することにより、所定電流値を流す。保持信号24bがオフするまでのt3,t4区間は、前述のスイッチ素子34のオン,オフ動作を繰り返し、所定電流値72,73の間でインジェクタ駆動電流13aの定電流制御を行う。本定電流制御の目的はインジェクタ13が開弁した状態を保持することである。なお、スイッチ素子34がオフした時は、グランド→還流素子38→インジェクタ13→スイッチ素子36→グランド経路でインジェクタ駆動電流13aを流す。
【0032】
タイミングt4では、保持信号24bのオフにより、インジェクタ駆動電流13aを遮断し、燃料噴射を停止する。なお、タイミングt4では、スイッチ素子34及びスイッチ素子36をオフさせ、即ち、インジェクタ13の上下流を制御する双方のスイッチ素子を停止し、インジェクタ駆動電流13aを素早く減少させ、インジェクタ13の燃料噴射は保持信号24bに連動して停止する。
【0033】
図6から図16は、燃料供給装置の診断方法について示した図である。
【0034】
図6は、インジェクタ13の上下流が短絡した場合、即ち、信号線35aと信号線36aが短絡した場合、スイッチ素子36に流れる電流36cを示した図である。
【0035】
タイミングt11では、CPU24からの開弁信号24a及び保持信号24bの論理積が成立し、スイッチ素子33及びスイッチ素子36をオンさせるべく、制御部39から制御信号33z及び36zのオン信号が出力される。しかし、信号線35aと信号線36aが短絡している場合、インジェクタ13のインダクタンス成分が無いために電流36cの立上りの傾きは急峻である。このとき、開弁信号24a及び保持信号24bの論理積が成立したときから所定時間t13以内に開弁電流36cが所定値71に到達した場合、診断部41では、インジェクタの上下流短絡と診断し、NGコード“ Short to High Side Driver”を出力する。
【0036】
なお、スイッチ素子36に流れる電流は、スイッチ素子36内に設定されている電流電圧変換素子62で検出され、その電流検出信号36yは診断部41に入力され、前記開弁電流所定値71と比較されることにより検出可能である。
【0037】
前記診断時は、スイッチ素子33及びスイッチ素子36を過電流破壊から保護するために、制御部39は、診断部からの診断結果を信号線41a経由で受けて、制御信号33z及び36zをオフし、スイッチ素子33及びスイッチ素子36をオフする。
【0038】
前記保護動作によりオフしたスイッチ素子の復帰タイミングは、次の燃料噴射開始タイミングである。即ち、タイミングt12である。このタイミングt12時に前記短絡状態が継続していた場合は前述と同様な動作になる。
【0039】
図7は、図6で示した信号線35aと信号線36aが短絡した場合の診断フローチャートである。
【0040】
本診断は開弁信号24aと保持信号24bの論理積が成立した場合に以下開始される(S1)。
【0041】
S1により診断がスタートすると、S2では開弁信号24aと保持信号24bの論理積が成立してからの所定時間を計測するタイマをスタートさせる。
【0042】
S3で、前記タイマが所定時間経過せずに、S4にて開弁電流の所定値71に到達した場合、即ち、信号線35aと信号線36aが短絡し、インジェクタ13のインダクタンス成分が無くなり電流立上り遅れが所定時間より小さくなった場合は、S5にて、“ Short to High Side Driver”判定をする。
【0043】
逆に、開弁電流の所定値71に到達していない場合は、S3の判定条件に遷移し、S3→S4→S3のループで判定条件を遷移し、S3でタイマが所定時間を計測するまでループ遷移する。
【0044】
S3により、前記タイマが所定時間経過した場合は、本診断結果は正常であるとの判断になり、本診断は終了する。
【0045】
図8は、インジェクタ下流スイッチ素子36の信号線36aが、バッテリ短絡した場合、または、グランド短絡した場合の、スイッチ素子36に流れる電流36c及び信号線36aの電圧変化を示した図である。
【0046】
図8で信号線36aがバッテリ短絡した状態は、タイミングt21〜t25及びt29以降の区間である。また、グランド短絡した状態は、タイミングt26,t27の区間である。
【0047】
インジェクタ駆動信号がオフ、即ち、開弁信号24a、且つ、保持信号24bがオフのとき、信号線36aの電圧状態は、通常スイッチ素子36内に設定されている定電流源65により所定電圧にバイアスされている。
【0048】
しかし、タイミングt21で信号線36aがバッテリ短絡した場合は、36aの電圧はバッテリ電圧近くまで上昇する。この状態を、バッファ66を介した電圧信号36wにより診断部41でモニタしており、インジェクタ駆動信号がオフ状態のときに、所定電圧75より大きな状態となった場合は、診断部41で“Short to VB”と判定する。
【0049】
タイミングt22では、開弁信号24aと保持信号24bの論理積が成立する開弁電流供給タイミングである。このとき、制御部39からの制御信号33z及び36zはオンし、この制御信号により、スイッチ素子33及びスイッチ素子36はオンされる。
【0050】
しかし、信号線36aはバッテリ短絡しているために、タイミングt23では、スイッチ素子36に流れる電流36cは、診断部41内に設定された過電流判定閾値74を超える。なお、スイッチ素子36に流れる電流は、スイッチ素子36内に設定されている電流電圧変換素子62で検出され、その電流検出信号36yは診断部41に入力され、前記過電流判定閾値74と比較されることにより検出可能である。
【0051】
そして、過電流判定閾値74(タイミングt23)を超えた状態がt31時間継続した場合、スイッチ素子36を過電流破壊から保護するために、制御部39は制御信号36zをオフし、また、同時に上流のスイッチ素子33もオフするために、制御信号33zをオフする。
【0052】
タイミングt24は、本来ならば燃料噴射終了タイミングであるが、前記過電流判定による制御信号33z及び36zのオフにより、駆動信号に変化は発生しない。
【0053】
タイミングt25は、バッテリ短絡状態から正常復帰したタイミングである。このとき、信号線36aの電圧は定電流源65によりバッテリ短絡判定電圧値75未満である所定電圧にバイアスされる。
【0054】
タイミングt26で信号線36aがグランド短絡した場合は、36aの電圧はグランド電圧近くまで低下する。この状態を、バッファ66を介した電圧信号36wにより診断部41でモニタしており、インジェクタ駆動信号がオフ状態のときに、所定電圧76より小さな状態となった場合は、診断部41で“Short toGND”と判定する。
【0055】
なお本図では、信号線36aのグランド短絡状態はタイミングt27で正常復帰することとする。タイミングt27は、グランド短絡状態から正常復帰したタイミングである。このとき、信号線36aの電圧は定電流源65によりグランド短絡判定電圧値76より大きな所定電圧にバイアスされる。
【0056】
タイミングt28は、次の燃料噴射開始タイミングである。本タイミングでは過電流保護状態を解除し、また、本タイミングでは、信号線36aは正常状態に復帰しているので、スイッチ素子36に流れる電流36cは正常電流となり、スイッチ素子36のオンにより、信号線36aの電圧はグランドレベルとなる。
【0057】
しかし、保持電流供給タイミング、即ち、開弁信号24aがオフ、保持信号24bがオンである時、タイミングt29でバッテリ短絡するとスイッチ素子36に流れる電流36cは、過電流判定閾値74を超える。なお、スイッチ素子36に流れる電流は、スイッチ素子36内に設定されている電流電圧変換素子62で検出され、その電流検出信号36yは診断部41に入力され、前記過電流判定閾値74と比較される。
【0058】
そして、過電流判定閾値74(タイミングt30)を超えた状態がt31時間継続した場合、スイッチ素子36を過電流破壊から保護するために、制御部39は制御信号36zをオフし、また、同時に上流のスイッチ素子33もオフするために、制御信号33zをオフする。
【0059】
過電流破壊保護状態からの解除タイミングは、タイミングt28と同様、次の燃料開始タイミングである。
【0060】
図9は、図8で示した信号線36aがバッテリ短絡、または、グランド短絡した場合の診断フローチャートである。
【0061】
本診断は開弁信号24aと保持信号24bの双方がオフしている場合に以下開始される(S11)。
【0062】
正常時は、信号線36aの電圧が、スイッチ素子36に設定される定電流源65により所定電圧にバイアスされる。その所定電圧は、グランド短絡判定電圧値76より大きく、バッテリ短絡判定電圧値75より小さくバイアスされている。
【0063】
S12判定条件で信号線36aの電圧が前記範囲内、即ち、グランド短絡判定電圧値76とバッテリ短絡判定電圧値75内の場合は正常である。
【0064】
逆にS12で前記電圧範囲から外れている場合は、S13に遷移する。
【0065】
S13で信号線36aの電圧がバッテリ短絡判定電圧値75より大きい場合は、バッテリ短絡状態であるため、S14にて“Short to VB”判定をする。
【0066】
また、S13の条件から外れた場合は、信号線36aの電圧がグランド短絡判定電圧値76より小さいことを示し、即ち、グランド短絡状態であるため、S15で“Short to GND”判定をする。
【0067】
本診断は、開弁信号24a及び保持信号24bが双方オフの間、実行される。
【0068】
図10は、インジェクタ13の上流信号線35aがバッテリ短絡した場合のスイッチ素子33及びスイッチ素子34に流れる電流33c,34cの波形を示した図である。なお、バッテリ短絡は区間t41からt46間として示す。
【0069】
信号線35aがバッテリ短絡後の燃料噴射開始タイミングt42では、スイッチ素子33及びスイッチ素子36をオンさせるべく、制御部39から制御信号33z及び36zのオン信号が出力される。
【0070】
このオン信号に基づきスイッチ素子33及びスイッチ素子36がオンして、電流33cが流れる。しかし、この時信号線35aがバッテリ短絡しているために、33cに流れる電流は、抵抗成分が無いために大きな電流となる。
【0071】
電流33cはスイッチ素子33内に設定されている電流電圧変換素子51で検出され、その検出電流値33wは診断部41に入力される。診断部41では、過電流検出閾値77以上の状態(t43)がt51間継続した場合、スイッチ素子33を過電流破壊から保護するために、制御部39からの制御信号33zをオフする。また、この時対に動作している下流スイッチ素子36も同時にオフするために36zをオフさせる。
【0072】
タイミングt44では、開弁信号24aがオフし、保持信号24bがオン保持となる保持電流供給タイミングであるが、過電流破壊からの保護状態に陥っているために電流33c及び34cに変化は発生しない。
【0073】
タイミングt45は、燃料噴射終了タイミングであるが、過電流破壊からの保護状態に陥っているために電流33c及び34cに変化は発生しない。
【0074】
タイミングt47は、次の燃料噴射開始タイミングである。タイミングt47の前にt46で、信号線35aがバッテリ短絡状態から通常状態に復帰しているので、t47以降は正常電流が流れる。即ち、タイミングt47では、開弁信号24aと保持信号24bの論理積が成立した場合、スイッチ素子33及び36がオンして開弁電流33cがインジェクタ13に供給される。
【0075】
タイミングt48で、スイッチ素子36での検出電流において所定値71に到達するとスイッチ素子33及びスイッチ素子36をオフする。
【0076】
そして、電流閾値72以下になったことをスイッチ素子36で検出する(t49)と、スイッチ素子34をオンさせ、電流閾値73になるまでインジェクタ13に保持電流を供給する。保持信号24bがオフとなるまで、スイッチ素子34のオンオフを繰り返し保持電流をインジェクタ13に供給続ける。
【0077】
図11は、インジェクタ13の上流信号線35aがグランド短絡した場合のスイッチ素子33及びスイッチ素子34に流れる電流33c,34cの波形を示した図である。なお、グランド短絡は区間t61からt66間及びt68以降として示す。
【0078】
信号線35aが、グランド短絡後の燃料噴射開始タイミングt62では、スイッチ素子33及びスイッチ素子36をオンさせるべく、制御部39から制御信号33z及び36zのオン信号が出力される。このオン信号に基づきスイッチ素子33及びスイッチ素子36がオンして、インジェクタ供給電流33cが流れる。しかし、この時、信号線35aがグランド短絡しているために、33cに流れる電流は抵抗成分が無いために大きな電流となる。電流33cはスイッチ素子33内に設定されている電流電圧変換素子51で検出され、その検出電流値33wは診断部41に入力される。診断部41では、過電流検出閾値77以上の状態(t63)がt51間継続した場合、スイッチ素子33を過電流破壊から保護するために、制御部39からの制御信号33zをオフする。また、この時対に動作している下流スイッチ素子36も同時にオフするために36zをオフさせる。
【0079】
タイミングt64では、開弁信号24aがオフし、保持信号24bがオン保持となる保持電流供給タイミングである。しかし、前記過電流破壊保護状態に陥っているために、電流33c及び34cは変化しない。
【0080】
タイミングt65は、燃料噴射終了タイミングであるが、前記過電流破壊保護状態に陥っているために、電流33c及び34cは変化しない。
【0081】
タイミングt67は、次の燃料噴射開始タイミングである。タイミングt67の前にt66で、信号線35aがグランド短絡状態から通常状態に復帰しているので、t67以降は正常電流が流れる。
【0082】
しかし、保持電流供給タイミング、即ち、開弁信号24aがオフ、保持信号24bがオン状態のときに信号線35aがグランド短絡すると、スイッチ素子34に流れる電流34cは、抵抗成分が無いために大きな電流となる。電流34cはスイッチ素子34内に設定されている電流電圧変換素子54で検出され、その検出電流値34wは診断部41に入力される。診断部41では、過電流検出閾値78以上の状態(t69)がt70間継続した場合、スイッチ素子34を過電流破壊から保護するために、制御部39からの制御信号34zをオフする。また、この時対に動作している下流スイッチ素子36も同時にオフするために36zをオフさせる。
【0083】
なお、過電流破壊保護状態からの復帰タイミングは、次の燃料開始タイミングである。
【0084】
図12は、図10及び図11で示したスイッチ素子33及びスイッチ素子34の過電流診断のフローチャートである。
【0085】
S21〜S23はスイッチ素子33の過電流診断、S24〜S26はスイッチ素子34の過電流診断である。
【0086】
S21で、スイッチ素子33に流れる電流33cが過電流判定閾値77より大か否かを判定する。そして、前記判定結果が否の場合は正常状態であるため、状態判定S21に戻る。逆に、電流33cが過電流判定閾値77より大の場合は、過電流判定状態であるため、状態S22に遷移し、過電流状態が所定時間継続しているか否かを判定する。否の場合はS21の条件に回帰し、過電流状態が継続している場合はS21→S22→S21のループ状態を遷移する。そして、過電流状態が所定時間継続している場合は、S22の判定条件により、S23に遷移し、スイッチ素子33の“Overcurrent 判定”をする。なお、S22での所定時間の計測は、ノイズ耐量向上のために設定されたフィルタである。
【0087】
S24で、スイッチ素子33に流れる電流33cが過電流判定閾値77より大か否かを判定する。そして、前記判定結果が否の場合は正常状態であるため、状態判定S24に戻る。逆に、電流33cが過電流判定閾値78より大の場合は、過電流判定状態であるため、状態S25に遷移し、過電流状態が所定時間継続しているか否かを判定する。否の場合はS24の条件に回帰し、過電流状態が継続している場合はS24→S25→S24のループ状態を遷移する。そして、過電流状態が所定時間継続している場合は、S25の判定条件により、S26に遷移し、スイッチ素子34の“Overcurrent 判定”をする。なお、S25での所定時間の計測は、ノイズ耐量向上のために設定されたフィルタである。
【0088】
以上がスイッチ素子33及び34の過電流判定である。
【0089】
図13は、開弁電流供給量が不足した場合の波形を示した図である。
【0090】
タイミングt71で、開弁信号24a及び保持信号24bの論理積が成立した時、開弁電流13aがインジェクタ13に供給される。通常時、開弁電流は、開弁信号24aがオフする前に所定電流値71に到達する。しかし、昇圧電圧32aがインジェクタ13からの要求値まで昇圧されていない時等は、開弁電流は十分に供給することができない。そのため、所定時間で所定開弁電流がインジェクタ13に供給できずインジェクタ13の噴射開始ができなくなる。そのために、開弁信号24aがオンからオフするタイミングt72まで、開弁電流が所定電流値71まで到達していない場合は、開弁電流不足である“ No Peak”診断を行う。
【0091】
t72で開弁電流不足を検出した後のt72以降は、燃料噴射終了時であるタイミングt73までは保持電流を供給する。
【0092】
t74以降は、正常時の波形を示した図であり、図5で前述している通りである。
【0093】
なお、本診断は、開弁信号24aがオンしている間に異常状態に陥り、スイッチ素子33及びスイッチ素子36がオフしている場合は、誤診断を防止するために実施されないこととする。即ち、図6,図8,図10,図11に示した異常波形時は、本診断は実行されない。
【0094】
図14は、図13で示した開弁電流不足である“ No Peak”診断を行う診断ロジックのフローチャートである。
【0095】
本診断は、開弁信号24aの立下がり時に実施される。S31で開弁信号24aの立ち下がりが検出されるまで、本診断はスタートされない。そして、S31で立ち下がりが検出されると、状態S32に遷移し、S32では開弁電流が所定電流値に到達したか否かを判定する。もし、所定電流値71に到達していれば正常動作できるため、本診断を終了する。
【0096】
しかし、所定電流値に到達していなければ、開弁電流が不足している状態であるため、S33に遷移し、“ No Peak”判定をして、開弁電流不足を診断する。
【0097】
図15は、保持電流供給量が不足した場合の波形を示した図である。
【0098】
タイミングt81で、開弁信号24a及び保持信号24bの論理積が成立した時、開弁電流13aがインジェクタ13に供給される。そして、本図示は正常時であるため、開弁信号24aがオフする前のタイミングt82で開弁電流13aは所定値71に到達する。
【0099】
タイミングt82で電流13aは所定値71に到達したので、以後は保持電流が供給されるべく、t83で制御信号34z及び36zがオンする。しかし、スイッチ素子34の異常等により保持電流13aが供給されない場合は、保持電流が供給されない状態である。よって、保持信号24bがオンからオフするタイミング時に保持電流13aが、所定値79未満である時、保持電流の供給不足である“Open Load”判定をする。
【0100】
タイミングt85以降は正常波形を示し、開弁電流13aが所定値71到達後、保持電流13aは、電流72から73の間で電流制御され、本電流は所定値79より大きな電流である。
【0101】
図16は、図15で示した保持電流不足である“ Open Load”診断を行う診断ロジックのフローチャートである。
【0102】
本診断は、保持信号24bの立下がり時に実施される。S41で保持信号24bの立ち下がりが検出されるまで、本診断はスタートされない。
【0103】
そして、S41で立ち下がりが検出されると、状態S42に遷移し、S42では保持電流が所定電流値79以上か否かを判定する。もし、所定電流値79以上であれば、正常動作でるため、本診断を終了する。
【0104】
しかし、所定電流値79以上でなければ、保持電流が不足している状態であるため、S43に遷移し、“ Open Load”判定をして、保持電流不足を診断する。
【0105】
なお、本診断は、保持信号24bがオンしている間に異常状態に陥り、スイッチ素子34及びスイッチ素子36がオフしている場合は、誤診断を防止するために実施されないこととする。即ち、図6,図8,図10,図11に示した異常波形時は、本診断は実行されない。
【0106】
図17から図18は、本発明の燃料供給装置の誤診断防止方法について示した図である。
【0107】
図17は、開弁信号24aの入力処理について示した図である。
【0108】
タイミングt91は、インジェクタ13の噴射開始タイミングである。CPU24からの開弁信号24a及び保持信号24bの論理積が成立したとき、スイッチ素子33及びスイッチ素子36をオンさせ、スイッチ素子33→インジェクタ13→スイッチ素子36→グランドにインジェクタ駆動電流13aを流し、所定電流値71に到達するまで、昇圧電圧32aをインジェクタ13に開弁電流13aを供給し、インジェクタ13を開弁させる。
【0109】
所定電流値71に到達したタイミングt92では、スイッチ素子33及び36をオフさせ、インジェクタ駆動電流13aの供給を遮断する。
【0110】
タイミングt93では、所定値電流72までインジェクタ駆動電流13aが減少したことを検出し、スイッチ素子34及びスイッチ素子36を制御部39からの制御信号34z,36zによりそれぞれオンさせ、スイッチ素子34→逆流防止素子35→インジェクタ13→スイッチ素子36→グランドに、バッテリ電圧26aからインジェクタ駆動電流13aを流し、所定電流値73に到達するまでスイッチ素子34をオンする。保持信号24bがオフするまでのt3,t4区間は、前述のスイッチ素子34のオン,オフ動作を繰り返し、所定電流値72,
73の間でインジェクタ駆動電流13aの定電流制御を行う。
【0111】
タイミングt94で、開弁信号24aが再びオンすると、開弁信号24aと保持信号24bの論理積が成立するので、開弁電流を供給するタイミングとなる。しかし、燃料噴射期間であるt91からt95の間に2回開弁電流を供給する必要が無く、また、開弁電流供給間隔が短いと昇圧回路32で生成される昇圧電圧32aの昇圧時間が十分確保されず、開弁電流の供給不足となる可能性がある。そこで、保持信号24bがオンしている間は、1回しか開弁信号24aを受け付けないこととし、タイミングt24でも電流13aに変化を与えない。
【0112】
タイミングt95では、保持信号24bのオフにより、インジェクタ駆動電流13aを遮断し、燃料噴射を停止する。なお、タイミングt95では、スイッチ素子34及びスイッチ素子36をオフさせ、即ち、インジェクタ13の上下流を制御する双方のスイッチ素子を停止し、インジェクタ駆動電流13aを素早く減少させ、インジェクタ13の燃料噴射は保持信号24bに連動して停止する。
【0113】
図18は、対向気筒がオーバーラップした場合の処理について示した図である。
【0114】
図2において、インジェクタ2個に対して、上流スイッチ素子33及びスイッチ素子34は共通である。そのため、下流スイッチ素子36及びスイッチ素子
37が同時にオンすると、電流33c及び電流34cが2分流し、正規電流がインジェクタ13に供給できなくなり、インジェクタ制御が最適に行われなくなる。また、電流が2分流するために、開弁電流供給不足である“ No Peak”診断,保持電流供給不足である“ Open Load”診断で誤診断する可能性がある。そこで、本ロジックでは、前述誤診断を防止するために、下流スイッチ素子が同時オンするオーバーラップ領域が発生した場合は、後の気筒を優先させ、前に動作していた燃料噴射は止めることとする。以下、タイミングを詳細に記載する。
【0115】
タイミングt101は、インジェクタ13の噴射開始タイミングである。CPU24からの開弁信号24a及び保持信号24bの論理積が成立したとき、スイッチ素子33及びスイッチ素子36をオンさせ、スイッチ素子33→インジェクタ13→スイッチ素子36→グランドにインジェクタ駆動電流13aを流し、所定電流値71に到達するまで、昇圧電圧32aをインジェクタ13に開弁電流13aを供給し、インジェクタ13を開弁させる。
【0116】
所定電流値71に到達したタイミングt102では、スイッチ素子33及びスイッチ素子36をオフさせ、インジェクタ駆動電流13aの供給を遮断し、所定値電流72までインジェクタ駆動電流13aが減少したことを検出すると、スイッチ素子34及びスイッチ素子36を制御部39からの制御信号34z,36zによりそれぞれオンさせ、スイッチ素子34→逆流防止素子35→インジェクタ13→スイッチ素子36→グランドに、バッテリ電圧26aからインジェクタ駆動電流13aを流し、所定電流値73に到達するまでスイッチ素子34をオンする。保持信号24bがオフするまでの区間は、前述のスイッチ素子34のオン,オフ動作を繰り返し、所定電流値72,73の間でインジェクタ駆動電流13aの定電流制御を行う。
【0117】
タイミングt103で、開弁信号24a及び対向気筒の保持信号24b′が入力されると、スイッチ素子33及びスイッチ素子37をオンさせ、スイッチ素子33→インジェクタ13→スイッチ素子37→グランドにインジェクタ駆動電流13bを流し、所定電流値71に到達するまで、昇圧電圧32aを対向気筒のインジェクタ13′に開弁電流13bを供給し、対向気筒のインジェクタ13′を開弁させる。
【0118】
このとき、先に動作していたインジェクタ電流13aは停止させるために、スイッチ素子36をオフさせる。これにより、保持信号24bがオンからオフするときは、保持電流13aが流れていないために、保持電流供給不足の誤診断を防止させるために、止めた気筒の“Open Load”診断は実行させない。
【0119】
所定電流値71に到達したタイミングt104では、スイッチ素子33及び
37をオフさせ、インジェクタ駆動電流13bの供給を遮断し、所定値電流72までインジェクタ駆動電流13bが減少したことを検出すると、スイッチ素子34及びスイッチ素子37を制御部39からの制御信号34z,37zによりそれぞれオンさせ、スイッチ素子34→逆流防止素子35→インジェクタ13→スイッチ素子37→グランドに、バッテリ電圧26aからインジェクタ駆動電流13bを流し、所定電流値73に到達するまでスイッチ素子34をオンする。保持信号24b′がオフするまでの区間は、前述のスイッチ素子34のオン,オフ動作を繰り返し、所定電流値72,73の間でインジェクタ駆動電流13bの定電流制御を行う。
【0120】
タイミングt106では、保持信号24b′のオフにより、インジェクタ駆動電流13bを遮断し、燃料噴射を停止する。なお、タイミングt106では、スイッチ素子34及びスイッチ素子37をオフさせ、即ち、インジェクタ13′の上下流を制御する双方のスイッチ素子を停止し、インジェクタ駆動電流13bを素早く減少させ、インジェクタ13′の燃料噴射は保持信号24b′に連動して停止する。
【0121】
以上、本発明の一実施形態について記述したが、本発明は前記実施形態に限定されるものではなく、特許請求項の範囲に記載された発明の精神を逸脱しない範囲で設計において種種の変更ができるものである。
【0122】
例えば、インジェクタ電流波形は、1つの開弁電流と1つの保持電流により実現されているが、保持電流の電流値は2段階であってもよい。即ち、開弁電流24aと保持電流24bの論理積が成立したときに開弁電流を供給して開弁電流所定値到達後の開弁信号24aがオンの間は、比較的大きな保持電流を供給し、開弁信号24aがオフ、保持信号24bがオンの間は所定の保持電流を供給するインジェクタ駆動電流においても、本発明は適用できる。
【0123】
以上述べた燃料供給装置では、運転状態を検出する手段と、前記運転状態に基づき燃料噴射パルス幅を算出する手段と、前記燃料噴射パルス幅に基づき、燃料噴射装置に備えられているソレノイドに大きな所定電流値に至るまで開弁電流を供給する手段と、前記開弁電流が所定電流値に至った後は、開弁状態を保持する保持電流をソレノイドに供給する手段とを、前記燃料噴射パルス幅は、開弁信号と保持信号の2つの信号から構成される手段と、前記開弁信号と保持信号の論理積が成立した場合のみ、燃料噴射装置に備えられているソレノイドに開弁電流を供給する手段と、燃料噴射パルス開始時からの時間を計測する手段を有し、開弁電流が前記大きな所定電流値に到達する時間が所定時間より短い場合、燃料噴射装置のソレノイド異常判定を行う。
【0124】
また、バッテリ電圧と、バッテリ電圧からバッテリ電圧より大きな電圧を生成する昇圧回路と、燃料噴射装置に備えられているソレノイドに前記昇圧電圧から電流を供給するスイッチ(以下、スイッチ1)と、燃料噴射装置に備えられているソレノイドに前記バッテリ電圧から電流を供給するスイッチ(以下、スイッチ2)と、燃料噴射装置に備えられているソレノイドからグランド方向に電流をシンクするスイッチ(以下、スイッチ3)と、前記スイッチ1及びスイッチ2がオフのとき、グランドから燃料噴射装置に備えられているソレノイド及びスイッチ3を介してグランドに電流を回帰させて燃料噴射装置に備えられているソレノイドに電流を供給するフライホイール回路を有する回路構成において、ソレノイド異常判定時は、スイッチ1,スイッチ2,スイッチ3の全てを遮断する。
【0125】
更に、スイッチ1及びスイッチ3のそれぞれに流れる電流を検出する手段を有し、前記開弁信号と保持信号の論理積が成立している際に、前記スイッチ1及びスイッチ3のいずれかの電流が所定以上の状態が所定時間以上継続した場合に、前記スイッチ1及びスイッチ3を遮断する。
【0126】
また、スイッチ2及びスイッチ3のそれぞれに流れる電流を検出する手段を有し、開弁信号がオフ、保持信号がオンしている状態時に、前記スイッチ2及びスイッチ3のいずれかの電流値が所定以上の状態が所定時間以上継続した場合に、スイッチ2及びスイッチ3を遮断することを特徴とする。
【0127】
前記が過電流からスイッチを保護する手段であり、前記遮断後の復帰タイミングは、次の燃料噴射開始タイミングである。
【0128】
また、開弁信号終了時までに燃料噴射装置に備えられているソレノイドに流れる開弁電流が所定電流値まで至らなかった場合、開弁電流不足を検出し、また、保持信号終了時に燃料噴射装置に備えられているソレノイドに所定電流以上の保持電流が流れていない場合、保持電流不足を検出して、インジェクタ駆動電流不足を検出する。
【0129】
また、定電圧源と、スイッチ3と並列に接続される、前記定電圧源から電流を供給する定電流源と、スイッチ3の電圧を検出する電圧検出器を有し、スイッチ1,スイッチ2,スイッチ3が全てオフのときに前記電圧検出器により検出された電圧が所定電圧より高い場合、燃料噴射装置のソレノイド異常判定を行うこと、また、定電圧源と、スイッチ3と並列に接続される、前記定電圧源から電流を供給する定電流源と、スイッチ3の電圧を検出する電圧検出器を有し、スイッチ1,スイッチ2,スイッチ3が全てオフのときに前記電圧検出器により検出された電圧が所定電圧より低い場合、燃料噴射装置のソレノイド異常判定を行うこと、により、スイッチ3のバッテリ短絡,グランド短絡を検出する。
【0130】
また、誤診断を防止するために、下記機能を有する。
【0131】
開弁信号と保持信号の論理成立は、保持信号オン期間中1回のみしか受け付けない手段を有する。
【0132】
また、スイッチ1及びスイッチ2は対向気筒毎に設定され、対向気筒のスイッチ3のオンタイミングがオーバーラップした場合、時間的に先にオンしていたスイッチ3をオフさせる手段を有し、オフした気筒の保持電流不足の診断をマスクして、誤診断を防止する。
【0133】
また、電流異常によりスイッチを遮断した場合は、開弁電流不足及び保持電流不足の診断をマスクし、誤診断を防止することが出来る。
【0134】
また、燃料供給装置に過電流が流れるモードでの故障に至った場合、燃料供給装置の破損を防止し、燃料供給装置の診断と同時に燃料供給装置の保護について考慮した診断装置を提供できる。
【0135】
また、診断についても、各故障モードを断定できる手段を提供し、信頼性を向上させる。
【0136】
【発明の効果】
本発明によれば、燃料供給装置の診断を行い、燃料供給装置の保護を行うことが出来る燃料供給装置を提供することができる。
【図面の簡単な説明】
【図1】装置を示す概略図。
【図2】インジェクタの制御回路構成図。
【図3】上流スイッチ素子の回路構成図。
【図4】下流スイッチ素子の回路構成図。
【図5】インジェクタ駆動電流波形を示した図。
【図6】上下流短絡時のインジェクタ駆動電流波形を示した図。
【図7】上下流短絡時の診断フローチャート。
【図8】下流スイッチのバッテリ短絡,グランド短絡時のインジェクタ駆動電流波形を示した図。
【図9】下流スイッチの診断フローチャート。
【図10】上流スイッチのバッテリ短絡時のインジェクタ駆動電流波形を示した図。
【図11】上流スイッチのグランド短絡時のインジェクタ駆動電流波形を示した図。
【図12】上流スイッチの診断フローチャート。
【図13】開弁電流不足時のインジェクタ駆動電流波形を示した図。
【図14】開弁電流不足時の診断フローチャート。
【図15】保持電流不足時のインジェクタ駆動電流波形を示した図。
【図16】保持電流不足時の診断フローチャート。
【図17】開弁信号2回入力時のインジェクタ駆動電流波形を示した図。
【図18】対向気筒オーバーラップのインジェクタ駆動電流波形を示した図。
【符号の説明】
1…エンジン、2…シリンダ、12…燃料ポンプ、13…インジェクタ、14…可変燃圧プレッシャレギュレータ、15…コントロールユニット、16…クランク角センサ、17…点火コイル、21…燃圧センサ、24…CPU、32…昇圧回路、33…開弁用上流スイッチ素子、34…保持用上流スイッチ素子、35…電流逆流防止素子、36…シンク用スイッチ素子、38…還流素子、39…制御部、40…基準電流生成部、41…診断部、42…SPI部。

Claims (17)

  1. エンジンの運転状態を検出する手段、
    検出した前記運転状態に基づき、開弁信号と保持信号の2つの信号から構成される燃料噴射パルスの幅を算出する手段、
    前記燃料噴射パルスの幅に基づき、燃料噴射装置に備えられているソレノイドに開弁電流を供給する手段及び、
    前記開弁電流が所定電流値に至った後、開弁状態を保持する保持電流をソレノイドに供給する手段とを備えた燃料供給装置において、
    前記開弁信号と前記保持信号の論理積が成立した場合に、前記ソレノイドへの電流の供給を行い、
    前記燃料噴射パルスの開始時から前記開弁電流が所定電流値に到達するまでの時間が、タイマで計測された所定時間より短い場合、燃料噴射装置の異常判定を行うことを特徴とする燃料供給装置。
  2. 請求項1において、
    バッテリ電圧、
    バッテリ電圧からバッテリ電圧よりも大きな電圧を生成する昇圧回路、
    前記ソレノイドに前記昇圧回路から電流を供給する第1のスイッチ、
    前記ソレノイドに前記バッテリ電圧から電流を供給する第2のスイッチ、
    前記ソレノイドからグランドの方向に電流をシンクする第3のスイッチ、
    前記第1のスイッチ及び前記第2のスイッチがオフのとき、前記グランドから燃料噴射装置に備えられている前記ソレノイド及び前記第3のスイッチを介して前記グランドに電流を回帰させて前記ソレノイドに電流を供給するフライホイール回路を有し、
    前記ソレノイドの異常判定時は、前記第1のスイッチ乃至前記第3のスイッチを遮断することを特徴とする燃料供給装置。
  3. 請求項2において、
    前記第1のスイッチ、前記第2のスイッチ及び前記第3のスイッチの遮断後の復帰タイミングは、遮断した次の燃料噴射開始時であることを特徴とする燃料供給装置。
  4. 請求項2において、
    前記第1のスイッチ及び前記第3のスイッチのそれぞれに流れる電流を検出する手段を有し、
    前記開弁信号と前記保持信号の論理積が成立している際に、前記第1のスイッチ及び前記第3のスイッチの何れかの電流が所定値以上の状態が所定時間以上継続した場合に、前記第1のスイッチ及び前記第3のスイッチの少なくとも何れかを遮断することを特徴とする燃料供給装置。
  5. 請求項4において、
    前記第1のスイッチ及び前記第3のスイッチを遮断した後の復帰タイミングは、遮断した次の燃料噴射開始時であることを特徴とする燃料供給装置。
  6. 請求項2において、
    前記第2のスイッチ及び前記第3のスイッチのそれぞれに流れる電流を検出する手段を有し、
    前記開弁信号がオフ、前記保持信号がオンしている状態時に、前記第2のスイッチ及び前記第3のスイッチの何れかの電流値が所定以上の状態が所定時間以上継続した場合に、前記第2のスイッチ及び前記第3のスイッチの少なくとも何れかを遮断することを特徴とする燃料供給装置。
  7. 請求項6において、
    前記第1のスイッチ及び前記第3のスイッチを遮断した後の復帰タイミングは、遮断した次の燃料噴射開始時であることを特徴とする燃料供給装置。
  8. 請求項1において、
    前記保持信号の終了時に前記ソレノイドに所定電流以上の保持電流が流れていない場合、保持電流不足を検出することを特徴とする燃料供給装置。
  9. 請求項2において、
    定電圧源と、
    前記第3のスイッチと並列に接続され、前記定電圧源から電流を供給する定電流源と、
    前記第3のスイッチの電圧を検出する電圧検出器とを有し、
    前記第1乃至第3のスイッチが全てオフのときに前記電圧検出器により検出された電圧が所定電圧より高い場合、燃料噴射装置のソレノイド異常判定を行うことを特徴とするエンジン燃料噴射装置。
  10. 請求項2において、
    定電圧源と、
    前記第3のスイッチと並列に接続され、前記定電圧源から電流を供給する定電流源と、
    前記第3のスイッチの電圧を検出する電圧検出器とを有し、
    前記第1乃至第3のスイッチ3が全てオフのときに前記電圧検出器により検出された電圧が所定電圧より低い場合、燃料噴射装置のソレノイド異常判定を行うことを特徴とするエンジン燃料噴射装置。
  11. 請求項1において、
    前記開弁信号と前記保持信号の前記論理積の成立は、前記保持信号がオンである度毎に1回しか受け付けないことを特徴とする燃料供給装置。
  12. 請求項2において、
    前記第1のスイッチ及び前記第2のスイッチは対向気筒毎に設定され、
    対向気筒の前記第3のスイッチのオンタイミングがオーバーラップした場合、時間的に先にオンしていたスイッチ3をオフさせることを特徴とする燃料供給装置。
  13. 請求項2において、
    前記第1乃至第3の何れかのスイッチが遮断された場合は、
    前記開弁信号終了時までに前記ソレノイドに流れる前記開弁電流が所定電流値まで至らなかった場合、開弁電流不足を検出することを特徴とする燃料供給装置。
  14. 請求項4において、
    前記第1のスイッチ及び前記第3のスイッチの少なくとも何れかを遮断した場合は、該燃料噴射パルスの間は開弁電流不足の検出を停止することを特徴とする燃料供給装置。
  15. 請求項2において、
    前記第1のスイッチ乃至前記第3のスイッチを遮断した場合は、該燃料噴射パルスの間は保持電流不足の検出を停止することを特徴とする燃料供給装置。
  16. 請求項6において、
    前記第2のスイッチ及び前記第3のスイッチの少なくとも何れかを遮断した場合は、該燃料噴射パルスの間は前記保持電流不足の検出を停止することを特徴とする燃料供給装置。
  17. 請求項12において、
    前記第3のスイッチを遮断した場合は、該燃料噴射パルスの間は前記保持電流不足の検出を停止することを特徴とする燃料供給装置。
JP2002293155A 2002-10-07 2002-10-07 燃料供給装置 Expired - Lifetime JP3894088B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002293155A JP3894088B2 (ja) 2002-10-07 2002-10-07 燃料供給装置
US10/678,642 US6880530B2 (en) 2002-10-07 2003-10-06 Fuel supply system
DE60309551T DE60309551T2 (de) 2002-10-07 2003-10-07 Kraftstoffversorgungssystem mit elektromagnetischem Einspritzventil
EP03022681A EP1408221B1 (en) 2002-10-07 2003-10-07 Fuel supply system with solenoid-actuated injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293155A JP3894088B2 (ja) 2002-10-07 2002-10-07 燃料供給装置

Publications (2)

Publication Number Publication Date
JP2004124890A JP2004124890A (ja) 2004-04-22
JP3894088B2 true JP3894088B2 (ja) 2007-03-14

Family

ID=32025473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293155A Expired - Lifetime JP3894088B2 (ja) 2002-10-07 2002-10-07 燃料供給装置

Country Status (4)

Country Link
US (1) US6880530B2 (ja)
EP (1) EP1408221B1 (ja)
JP (1) JP3894088B2 (ja)
DE (1) DE60309551T2 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894088B2 (ja) * 2002-10-07 2007-03-14 株式会社日立製作所 燃料供給装置
US7252072B2 (en) 2003-03-12 2007-08-07 Cummins Inc. Methods and systems of diagnosing fuel injection system error
JP4353211B2 (ja) * 2006-07-11 2009-10-28 株式会社日立製作所 通信機能内蔵制御装置
DE102006046840A1 (de) * 2006-10-02 2008-04-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Kraftstoffeinspritzsystems
DE102006055341B3 (de) * 2006-11-23 2008-03-13 Siemens Ag Verfahren zur Lokalisierung eines Fehlerorts innerhalb eines Kraftstoffeinspritzsystems
JP2008291778A (ja) * 2007-05-25 2008-12-04 Denso Corp 電磁弁制御装置
JP4933396B2 (ja) * 2007-10-15 2012-05-16 ボッシュ株式会社 バッテリ電圧ショート検出診断方法及び車両動作制御装置
JP4871245B2 (ja) 2007-10-26 2012-02-08 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP5203859B2 (ja) * 2008-09-01 2013-06-05 日立オートモティブシステムズ株式会社 電磁負荷回路の故障診断装置
JP4688922B2 (ja) * 2008-11-21 2011-05-25 三菱電機株式会社 内燃機関の制御装置
US7931008B2 (en) * 2009-08-03 2011-04-26 GM Global Technology Operations LLC Systems and methods for detecting failed injection events
US8214132B2 (en) * 2010-09-17 2012-07-03 Caterpillar Inc. Efficient wave form to control fuel system
US8813723B2 (en) * 2011-05-20 2014-08-26 GM Global Technology Operations LLC System and method for detecting a stuck fuel injector
JP5851354B2 (ja) * 2012-06-21 2016-02-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102012211994A1 (de) * 2012-07-10 2014-01-16 Continental Automotive Gmbh Steuergerät zur Ansteuerung zumindest einen Kraftstoffeinspritzventils und Schaltungsanordnung mit einem solchen Steuergerät
DE102012215257B4 (de) * 2012-08-28 2022-10-06 Vitesco Technologies GmbH Schaltungsanordnung zum induktiven Heizen zumindest eines Kraftstoffeinspritzventils sowie Kraftstoffeinspritzventilanordnung mit einer solchen Schaltungsanordnung und Verfahren zum Betreiben einer Schaltungsanordnung und einer Kraftstoffeinspritzventilanordnung
JP5542884B2 (ja) 2012-08-30 2014-07-09 三菱電機株式会社 車載エンジン制御装置
DE102013201410B4 (de) * 2013-01-29 2018-10-11 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
JP5842858B2 (ja) * 2013-04-09 2016-01-13 株式会社デンソー 燃料噴射装置の異常検出回路
JP5994756B2 (ja) * 2013-09-13 2016-09-21 株式会社デンソー インジェクタ駆動装置
JP5797809B1 (ja) 2014-05-09 2015-10-21 三菱電機株式会社 電気負荷の給電制御装置
EP3144512B1 (en) * 2014-05-13 2019-07-10 Hitachi Automotive Systems, Ltd. Fuel injection system for internal combustion engine
US9617940B2 (en) * 2014-08-14 2017-04-11 General Electric Company Engine diagnostic system and an associated method thereof
JP6183341B2 (ja) * 2014-12-03 2017-08-23 株式会社デンソー インジェクタ駆動装置
CN106677946B (zh) * 2016-12-14 2019-05-14 中国第一汽车股份有限公司 能检测喷油器电磁阀衔铁吸合点的装置
CN106593737B (zh) * 2016-12-14 2019-05-14 中国第一汽车股份有限公司 共轨喷油器电磁阀衔铁吸合点检测装置
DE112018005560T5 (de) * 2017-11-24 2020-07-09 Hitachi Automotive Systems, Ltd. Kraftstoffeinspritzsteuervorrichtung und Kraftstoffeinspritzsteuerverfahren
JP7135809B2 (ja) * 2018-04-20 2022-09-13 株式会社デンソー 噴射制御装置
JP7135810B2 (ja) * 2018-04-20 2022-09-13 株式会社デンソー 噴射制御装置
JP6970823B2 (ja) * 2018-05-23 2021-11-24 日立Astemo株式会社 燃料噴射制御装置
WO2021085226A1 (ja) * 2019-10-28 2021-05-06 日立Astemo株式会社 負荷駆動装置
JP2021113538A (ja) * 2020-01-20 2021-08-05 日立Astemo株式会社 電磁弁駆動装置
KR20210099392A (ko) * 2020-02-04 2021-08-12 현대자동차주식회사 냉시동 분할분사제어 방법 및 엔진 시스템
JP7472824B2 (ja) * 2021-02-26 2024-04-23 株式会社デンソー 燃料噴射制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309753A1 (de) 1987-09-30 1989-04-05 Siemens Aktiengesellschaft Verfahren zur Überwachung einer induktiven Last
US4922878A (en) * 1988-09-15 1990-05-08 Caterpillar Inc. Method and apparatus for controlling a solenoid operated fuel injector
JP3613885B2 (ja) * 1996-05-24 2005-01-26 国産電機株式会社 内燃機関用インジェクタの駆動制御方法及び駆動制御装置
JPH1113519A (ja) 1997-06-19 1999-01-19 Nissan Motor Co Ltd 燃料噴射弁の駆動制御装置の診断装置及び該診断装置の診断装置
JPH11148439A (ja) * 1997-06-26 1999-06-02 Hitachi Ltd 電磁式燃料噴射弁及びその燃料噴射方法
JPH1182127A (ja) 1997-09-08 1999-03-26 Unisia Jecs Corp 燃料噴射弁の駆動制御装置の診断装置
JP3905247B2 (ja) * 1999-05-13 2007-04-18 三菱電機株式会社 筒内噴射式インジェクタの制御装置
JP3932474B2 (ja) * 1999-07-28 2007-06-20 株式会社日立製作所 電磁式燃料噴射装置及び内燃機関
JP3505453B2 (ja) * 1999-11-08 2004-03-08 三菱電機株式会社 燃料噴射制御装置
JP2001152940A (ja) * 1999-11-24 2001-06-05 Mitsubishi Electric Corp 燃料噴射システム
DE10015647A1 (de) 2000-03-29 2001-10-04 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung zumindest eines elektromagnetischen Verbrauchers
JP2001317394A (ja) * 2000-04-28 2001-11-16 Mitsubishi Electric Corp 筒内噴射エンジンの燃料噴射制御装置
JP3825235B2 (ja) 2000-08-22 2006-09-27 株式会社日立製作所 インジェクタ駆動回路
US6332455B1 (en) * 2000-10-17 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Device for controlling fuel injection
JP2002357149A (ja) * 2001-05-31 2002-12-13 Aisan Ind Co Ltd 電磁式燃料噴射弁の駆動回路
JP4037632B2 (ja) * 2001-09-28 2008-01-23 株式会社日立製作所 燃料噴射装置を備えた内燃機関の制御装置
JP3894088B2 (ja) * 2002-10-07 2007-03-14 株式会社日立製作所 燃料供給装置

Also Published As

Publication number Publication date
DE60309551D1 (de) 2006-12-21
EP1408221B1 (en) 2006-11-08
EP1408221A3 (en) 2004-06-16
US6880530B2 (en) 2005-04-19
DE60309551T2 (de) 2007-07-05
JP2004124890A (ja) 2004-04-22
US20040118384A1 (en) 2004-06-24
EP1408221A2 (en) 2004-04-14

Similar Documents

Publication Publication Date Title
JP3894088B2 (ja) 燃料供給装置
JP5079068B2 (ja) 噴射器配列における故障検出
US10267253B2 (en) Fuel injection system for internal combustion engine
EP3232038B1 (en) Fuel control device for internal combustion engine
CN107849997B (zh) 内燃机的燃料喷射控制装置
US20080249699A1 (en) Method and Device For Monitoring a Fuel Injection Device For an Internal Combustion Engine
JP5345230B2 (ja) 内燃機関制御装置
US7273039B2 (en) Control apparatus for vehicular internal combustion engine
US20100095936A1 (en) Method and control device for controlling a fuel injector
US20090093944A1 (en) Method of controlling fuel injection apparatus
JP4343380B2 (ja) 燃料噴射用ソレノイド駆動回路
JP2001193531A (ja) 少なくとも1つの負荷を制御するための方法及び装置
US8733323B2 (en) Method for ascertaining an error in a fuel metering unit of an injection system
JP4062821B2 (ja) 電磁負荷の駆動装置
JP2012184686A (ja) エンジンコントロールユニット
JP6733571B2 (ja) 電子制御装置
JP6250712B2 (ja) 燃料噴射装置
JP4635352B2 (ja) ピエゾアクチュエータ駆動回路および燃料噴射装置
CN202300670U (zh) 发动机控制单元
JP2019019778A (ja) 電子制御装置
JP4935223B2 (ja) エンジンシステムの駆動装置
JP5678867B2 (ja) ピエゾインジェクタの駆動装置
JP2018189033A (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R151 Written notification of patent or utility model registration

Ref document number: 3894088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term