JP3810349B2 - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP3810349B2
JP3810349B2 JP2002203700A JP2002203700A JP3810349B2 JP 3810349 B2 JP3810349 B2 JP 3810349B2 JP 2002203700 A JP2002203700 A JP 2002203700A JP 2002203700 A JP2002203700 A JP 2002203700A JP 3810349 B2 JP3810349 B2 JP 3810349B2
Authority
JP
Japan
Prior art keywords
film
insulating film
dummy
upper electrode
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203700A
Other languages
English (en)
Other versions
JP2003100912A (ja
Inventor
久 小川
義弘 森
昭彦 皷谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002203700A priority Critical patent/JP3810349B2/ja
Publication of JP2003100912A publication Critical patent/JP2003100912A/ja
Application granted granted Critical
Publication of JP3810349B2 publication Critical patent/JP3810349B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体記憶装置及びその製造方法に関し、特に、高誘電体膜や強誘電体膜を用いるもののメモリセル構造に関するものである。
【0002】
【従来の技術】
近年、大容量のメモリ容量と高速のデータ転送速度を要求されるマルチメディア機器向けに、高性能ロジック回路にDRAMを混載したDRAM混載プロセスが実用化されている。
【0003】
しかしながら、従来のDRAMプロセスは、記憶容量部となるキャパシタの容量絶縁膜の形成に高温の熱処理を必要とするために、高性能ロジック回路におけるトランジスタの不純物拡散層の不純物濃度プロファイルを悪化させるなどの不具合がある。また、DRAMやFeRAMなどのメモリ単体プロセスにおいても、メモリセルトランジスタの微細化を図る上では、できるだけ高温の熱処理は回避することが好ましい。
【0004】
そこで、記憶容量部の容量誘電体膜として、低温での形成が可能でメモリセルサイズの微細化が可能な高誘電体膜を用いたMIM(Metal-Insulator-Metal )キャパシタの開発が必須となっている。この高誘電体膜としては、BST膜((BaSr)TiO3 膜)などのペロブスカイト構造を有する誘電体膜がある。一方、このMIMキャパシタのメタル電極を構成する材料としては耐酸化性の強いPtが一般的には有望視されている。また、強誘電体膜としても、SBT膜(SrBi2Ta29 膜)やBTO膜(Bi4Ti312膜)などのペロブスカイト構造を有する誘電体膜がよく用いられる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の記憶容量部となるMIMキャパシタにおいては、以下のような不具合があった。
【0006】
まず、容量絶縁膜の上に設けられているPt電極(上部電極)に直接なコンタクト孔を形成すると、コンタクトプラグを形成する時の還元雰囲気等がキャパシタの特性に悪影響を及ぼすおそれがある。一般に、誘電体膜は酸化物であることが多いので、還元雰囲気によって誘電体膜中の酸素欠損を生じることなどがあるからである。特に、容量絶縁膜が高誘電体膜や強誘電体膜である場合には、酸素欠損を生じるおそれが強い。特に、ペロブスカイト構造を有する誘電体膜においては、酸素欠損による特性の劣化が顕著に現れる。
【0007】
また、従来Pt電極を使用していなかったDRAMなどのデバイスにおいては、新規材料であるPt電極へのコンタクト形成などの工程では既存の設備との共用化が難しく、専用設備での運用が必要となってくる。例えば層間絶縁膜にPt電極に到達するコンタクト孔を開口した時など、Pt電極が露出したときにはPtがスパッタリングされるので、チャンバの壁面やチャンバ内の部材などにPtが付着している。このチャンバをそのまま使用すると、トランジスタの活性領域などにPtが侵入して、トランジスタ動作に悪影響を及ぼすおそれがあるからである。
【0008】
本発明の目的は、容量絶縁膜上のPtなどからなる上部電極に直接ではなく間接的に接続される配線層を設ける手段を講ずることにより、MIMキャパシタの特性のよい半導体記憶装置及びその製造方法を提供することにある。
【0009】
また、本発明は、専用設備を不要として製造コストを低減できる半導体記憶装置及びその製造方法を提供することをも目的としている。
【0010】
【課題を解決するための手段】
本発明の半導体記憶装置は、半導体基板上の絶縁層の上に設けられ、下部電極,上部電極及び下部電極と上部電極との間に介在する容量絶縁膜から構成される記憶容量部と、上記記憶容量部の上部電極,容量絶縁膜にそれぞれ連続して設けられた容量絶縁膜延長部及び上部電極延長部と、上記上部電極延長部及び上記容量絶縁膜延長部の下方に位置する部分を含むように設けられたダミー導体部材と、上記上部電極延長部及び容量絶縁膜延長部の側面に接し、上記ダミー導体部材に接続される導体部材と、上記ダミー導体部材に電気的に接続される上層配線とを備えている。
【0011】
これにより、上部配線を上部電極に直接接続させる必要が無くなるので、上部電極をPtなどによって構成したときにも、容量絶縁膜が還元雰囲気にさらされることに起因する容量絶縁膜の特性の劣化を防止することができる。
【0012】
上記導体部材は、上記上部電極延長部及び容量絶縁膜延長部の側面を全周に亘って覆っていることにより、より確実な電気的接続が可能になる。
【0013】
上記容量絶縁膜は、高誘電体膜又は強誘電体膜であってもよい。
【0014】
上記絶縁層を挟んで上記記憶容量部の下方に形成されたビット線と、上記ビット線と同じ導体膜から形成された局所配線と、上記絶縁層を貫通してダミー下部電極と上記局所配線とを接続する導体プラグとをさらに備えていることにより、ビット線用の導体膜を利用して、ビット線下置き型のメモリに適した構造が得られる。
【0015】
上記絶縁層の下方において半導体基板上に設けられた素子分離用絶縁膜と、上記半導体基板の上記素子分離用絶縁膜によって囲まれる領域に設けられ、ゲート電極と上記半導体基板内で上記ゲート電極の両側に設けられた不純物拡散層とを有するメモリセルトランジスタと、上記素子分離用絶縁膜の上に設けられ、上記ゲート電極と同じ導体膜から形成された局所配線と、上記絶縁膜を貫通して上記局所配線に接続される導体プラグとをさらに備えていることにより、ゲート電極の導体膜(ポリシリコン膜など)を利用して、ビット線下置き型のメモリとビット線上置き型のメモリとの双方に適応しうる構造が得られる。
【0016】
上記半導体基板に設けられ、ゲート電極と上記半導体基板内で上記ゲート電極の両側に設けられた不純物拡散層とを有するメモリセルトランジスタと、上記半導体基板の上記不純物拡散層とは離間して設けられたもう1つの不純物拡散層から形成された局所配線と、上記絶縁層を貫通して上記局所配線に接続される導体プラグとをさらに備えることにより、ソース・ドレイン領域を形成するためのプロセスを利用して、ビット線下置き型のメモリとビット線上置き型のメモリとの双方に適応しうる構造が得られる。
【0017】
上記ダミー導体部材は、少なくとも上記絶縁層に側方を囲まれる領域に設けられており、上記導体部材は、上記上部電極延長部と上記ダミー導体部材とに接触していることにより、ダミー下部電極を設けることなく上部電極延長部と上層配線とを電気的に接続することができるので、より占有面積の小さな構造を得ることができる。
【0018】
上記ダミー導体部材は局所配線であり、上記上層配線は上記局所配線に接触していてもよい。
【0019】
上記ダミー導体部材はダミープラグであり、上記導体部材は上記ダミープラグの上面のうち少なくとも一部と接触していてもよい。
【0020】
上記導体部材は、上記上部電極延長部及び容量絶縁膜延長部の側面に亘って設けられ、上記ダミー導体部材の上面のうち少なくとも一部と接する導体サイドウォールであってもよい。
【0021】
上記記憶容量部は、筒状の下部電極,容量絶縁膜及び上部電極を有していることにより、比較的高密度にメモリセルを配置した半導体記憶装置が得られる。
【0022】
本発明の半導体記憶装置の製造方法は、下部電極,上部電極及び下部電極と上部電極との間に介在する容量絶縁膜から構成される記憶容量部と、上記上部電極と電気的に接続されるダミー導体部材と、上記ダミー導体部材と電気的に接続される上層配線とを備えている半導体記憶装置の製造方法であって、半導体基板上の絶縁層の上に第1の導体膜を形成した後、第1の導体膜をパターニングして下部電極を形成する工程(a)と、上記下部電極を覆う誘電体膜を形成する工程(b)と、上記誘電体膜を覆う第2の導体膜を形成する工程(c)と、上記第2の導体膜の上に、上記下部電極の全体の一部を覆うエッチングマスクを形成する工程(d)と、上記第2の導体膜,上記誘電体膜をパターニングして、上記誘電体膜から上記容量絶縁膜及び容量絶縁膜延長部を形成し、上記第2の導体膜から上記上部電極及び上部電極延長部を形成する工程(e)と、上記工程(e)の後に、基板上に第3の導体膜を堆積した後、上記第3の導体膜をパターニングして、上記上部電極延長部及び上記容量絶縁膜延長部の側面に接し,かつ上記ダミー導体部材と電気的に接続される導体部材を形成する工程(f)とを含んでいる。
【0023】
この方法により、工程(f)において、導体部材により上部電極とダミー導体部材とが互いに電気的に接続される構造となり、上部電極の上方からコンタクトを形成する必要がなくなるので、容量絶縁膜の特性の劣化を防止することができる。また、工程(a)から(f)までの間において、従来のプロセスよりもフォトリソグラフィー工程等の増大を伴うこともない。
【0024】
上記工程(a)では、上記第1の導体膜をパターニングすることにより、上記下部電極と,上記下部電極と互いに離間した領域に位置するダミー用膜を形成し、上記工程(b)から上記工程(e)までの間に、上記ダミー用膜をパターニングすることにより、上記ダミー導体部材の少なくとも一部としてダミー下部電極を形成し、上記工程(f)では、上記上部電極延長部,上記容量絶縁膜延長部および上記ダミー下部電極の側面に接し,上記上部電極延長部の上方のうち少なくとも一部を覆う上記導体部材を形成することにより、導体部材,ダミー下部電極によって、上部電極と上層配線とを電気的に接続することができる。
【0025】
上記工程(a)の前に、上記絶縁層に側方を囲まれる領域に上記ダミー導体部材の少なくとも一部を形成する工程をさらに備え、上記工程(f)では、上記ダミー導体部材の上面のうち少なくとも一部と接するように上記導体部材を形成することにより、導体部材,ダミー導体部材により上部電極と上層配線とを電気的に接続することができる。
【0026】
上記工程(f)では、上記導体部材として、上記上部電極延長部,上記容量絶縁膜延長部の側面に接し,上記上部電極延長部の上方のうち少なくとも一部を覆う導体膜を形成することができる。
【0027】
上記工程(f)では、上記導体部材として、上記上部電極延長部,上記容量絶縁膜延長部の側面に接する導体サイドウォールを形成することもできる。
【0028】
上記誘電体膜は、高誘電体膜又は強誘電体膜であってもよい。
【0029】
【発明の実施の形態】
(第1の実施形態)
本実施形態においては、本発明を、ビット線が記憶容量部よりも下方に設けられているいわゆるビット線下置き型のDRAMメモリセル構造に適用した例について説明する。
【0030】
図1(a),(b)は、それぞれ順に、本発明の第1の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図、及び上部電極・接続用導体膜を示す平面図である。また、図2(a)〜(c)は、本実施形態における半導体記憶装置の製造工程を示す断面図である。以下、本実施形態における半導体記憶装置の構造と製造方法とについて、順に説明する。ここで、本実施形態の各図においては、メモリ部の構造のみを示すが、本実施形態の半導体記憶装置は、図示されていないロジック回路部においてロジック回路素子が設けられている混載型デバイスである。ただし、ロジック回路素子の構造自体は、直接本発明の本質とは関係がないので、図示を省略するものとする。
【0031】
−メモリセルの構造−
図1(a)に示すように、本実施形態の半導体記憶装置であるDRAMのメモリセルにおいて、p型のSi基板10の表面部には、活性領域を囲む素子分離用絶縁膜11と、n型不純物を導入して形成されたソース領域12及びドレイン領域13とが互いに離間して設けられている。なお、p型のSi基板10のうちソース領域12とドレイン領域13との間に介在する部分がチャネル領域として機能する。また、Si基板10の活性領域上において、ソース領域12とドレイン領域13との間には酸化シリコンからなるゲート絶縁膜14が設けられ、ゲート絶縁膜14の上にはポリシリコンからなるゲート電極15(ワード線の一部)が設けられ、ゲート電極15の側面上には酸化シリコンからなる絶縁性サイドウォール16が設けられている。上記ソース領域12,ドレイン領域13,チャネル領域,ゲート絶縁膜14及びゲート電極15によりメモリセルトランジスタTRが形成されている。なお、図1(a)に示す断面においては、メモリセルトランジスタTRのゲートとして機能していないゲート電極15が示されているが、これらは図1(a)とは異なる断面においては、メモリセルトランジスタTRのゲートとして機能している。そして、各ゲート電極15は、紙面にほぼ直交する方向に延びて、DRAMのワード線となっている。
【0032】
また、Si基板10の上には、素子分離用絶縁膜11,ゲート電極15及び絶縁性サイドウォール16を覆うBPSGからなる第1層間絶縁膜18が設けられており、第1層間絶縁膜18を貫通してソース領域12に到達するポリシリコンからなる下層メモリセルプラグ20aと、第1層間絶縁膜18を貫通してドレイン領域13に到達するビット線プラグ20bとが設けられている。さらに、第1層間絶縁膜18の上には、ビット線プラグ20bに接続されるW/Tiの積層膜からなるビット線21aと、ビット線21aとは同じW/Tiの積層膜からなる局所配線21bとが設けられている。また、第1層間絶縁膜18の上には、プラズマTEOSからなる第2層間絶縁膜22が設けられている。そして、第2層間絶縁膜22を貫通して下層メモリセルプラグ20aに到達する上層メモリセルプラグ30aと、第2層間絶縁膜22を貫通して局所配線21bに到達するダミーセルプラグ30bと、第2層間絶縁膜22を貫通して局所配線21bに到達する配線プラグ30cとが設けられている。
【0033】
また、第2層間絶縁膜22の上には、TiAlNからなる下部バリアメタル32aと、その上に形成されたPtからなる下部電極33aと、TiAlNからなるダミー下部バリアメタル32bと、その上に形成されたダミー下部電極33bとが設けられている。さらに、第2層間絶縁膜22び下部電極33a,ダミー下部電極33bを覆うBST膜((BaSr)TiO3 膜)34と、BST膜34を覆うPt膜35と、Pt膜35を覆うTiAlNからなる上部バリアメタル36とが設けられている。
【0034】
BST膜34のうち下部電極33aに接する部分が容量絶縁膜34aであり、BST膜34のうちダミー下部電極33bに接する部分が容量絶縁膜延長部34bである。また、Pt膜35のうち下部電極33aに対向する部分が上部電極35aであり、Pt膜35のうちダミー下部電極33bに対向する部分が上部電極延長部35bである。上記下部バリアメタル32a及び下部電極33aにより、DRAMメモリセルのストレージノードSNが構成されている。また、下部電極33a,容量絶縁膜34a及び上部電極35aにより、記憶容量部MCが構成されている。
【0035】
そして、上部バリアメタル36の上面及び側面と,Pt膜35の側面及びBST膜34の側面と第2層間絶縁膜22とに亘って、接続用導電膜37が設けられている。この接続用導電膜37は、上部バリアメタル36の全上面と、上部バリアメタル36,Pt膜35及びBST膜34の全周囲とを取り囲んでいる。特に、ダミーセル領域Rdcにおいては、図1(b)に示すように接続用導体膜37は、上部バリアメタル36,上部電極延長部35b,容量絶縁膜延長部34b,ダミー下部電極33b及びダミー下部バリアメタル32bの各側面上に設けられている。このような構造により、接続用導体膜37は、上部電極延長部35bとダミー下部電極33b(ダミー下部バリアメタル32b)とを互いに電気的に接続している。なお、接続用導体膜37は、必ずしも上部バリアメタル36の全上面を覆っている必要はない。しかし、接続用導体膜37が上部バリアメタルの全上面を覆うことにより、還元性雰囲気の侵入を抑制することができる。
【0036】
さらに、第2層間絶縁膜22及び接続用導体膜37の上には、プラズマTEOSからなる第3層間絶縁膜41が設けられていて、第3層間絶縁膜41には、配線プラグ30cに接触するCu配線42が埋め込まれている。
【0037】
すなわち、図1(a),(b)に示す構造において、記憶容量部MC,ストレージノードNC,メモリセルトランジスタTRなどを含む有効メモリセル領域Recと、ダミー下部電極33b,容量絶縁膜延長部34b,上部電極延長部35b,ダミーセルプラグ30bなどを含むダミーセル領域Rdcとが存在することになる。
【0038】
本実施形態の特徴は、上部電極35a又は上部電極延長部35b(上部バリアメタル36)に接触するプラグが設けられておらず、接続用導体膜37,ダミー下部電極33b,ダミーセルプラグ30b,配線プラグ30c及び局所配線21bによって上部電極35aが上層の配線(Cu配線42)に接続されている点である。
【0039】
そして、図1(b)に示すように、上部電極35aを構成するPt膜35(上部バリアメタル36)は多数のメモリセルによって共有化されており、Pt膜35の下方には、多数の下部電極33a(下部バリアメタル32a)と、ダミー下部電極33b(ダミー下部バリアメタル32b)とが設けられている。ダミー下部電極33b(ダミー下部バリアメタル32b)は、Pt膜35の下方に複数個設けてもいるが、ダミー下部電極33b(ダミー下部バリアメタル32b)は、Pt膜35のいずれか一部の下方に少なくとも1つ設けられていれば、上部電極35aとダミー下部電極33bとが電気的に接続される。
【0040】
本実施形態によると、上部電極を構成しているPt膜35(上部バリアメタル36)に接触するプラグが存在しないので、第3層間絶縁膜41及び接続用導体膜37にプラグを埋め込むためのコンタクト孔を形成する必要がない。したがって、従来の構造のごとく、上部電極にコンタクト孔を形成するためのドライエッチング(プラズマエッチング)工程において、上部電極を構成するPt膜が露出することがない。つまり、Pt膜が露出している状態で還元性雰囲気にさらされると、BSTなどからなる容量絶縁膜(特に高誘電体膜)に酸素欠損を生じるおそれがある。ここで、本実施形態のごとくPt膜の上にTiAlNからなる上部バリアメタルが設けられていても、上部バリアメタルは薄いこと、コンタクト孔のエッチングの際には通常オーバーエッチングが行なわれるのでコンタクト孔がPtからなる上部電極に達する可能性が大きいことなどを考慮すると、上部バリアメタルに容量絶縁膜の酸素欠損の防止機能を期待することはできない。それに対し、本実施形態においては、Pt膜35の上方にコンタクト孔が形成されないので、Pt膜が還元性雰囲気にさらされることに起因する容量絶縁膜34aの酸素欠損を確実に回避することができる。
【0041】
また、層間絶縁膜にコンタクト孔を開口する工程で、Pt膜35が露出することがないので、コンタクト孔形成のためのエッチングを、ロジック回路素子を形成するためのプロセスなどと同じ装置(チャンバなど)内で行なうことができる。なお、Ptからなる下部電極33a,ダミー下部電極33bや、上部電極35aの形成自体は、Pt膜形成用の専用設備で行なうので、ロジック回路素子を形成するための装置を汚染するおそれは本来的に生じない。
【0042】
−メモリセルの製造方法−
次に、本実施形態における半導体記憶装置のメモリセルの製造工程について、図2(a)〜(c)を参照しながら説明する。
【0043】
図2(a)に示す工程で、以下の処理を行なう。まず、p型のSi基板10に、活性領域を囲む素子分離用絶縁膜11を形成し、活性領域に、ソース領域12及びドレイン領域13と、ゲート絶縁膜14と、ゲート電極15と、絶縁性サイドウォール16とからなるメモリセルトランジスタTRを形成する。このメモリセルトランジスタTRの形成工程は、熱酸化,ポリシリコン膜の形成及びパターニング,イオン注入等の周知の技術を用いて周知の手順により行なわれる。
【0044】
次に、メモリセルトランジスタTRの上に、BPSG膜を堆積した後、アニールとCMP(化学機械的研磨)による平坦化とを行なって第1層間絶縁膜18を形成する。さらに、第1層間絶縁膜18を貫通してソース領域12,ドレイン領域13にそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内及び第1層間絶縁膜18の上にn型ポリシリコン膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にポリシリコン膜を埋め込んで、下層メモリセルプラグ20aとビット線プラグ20bとを形成する。
【0045】
次に、第1層間絶縁膜18の上にW/Ti積層膜を堆積した後、エッチングによりW/Ti積層膜をパターニングして、ビット線プラグ20bに接続されるビット線21aと、この段階では他の部材と接続されずに孤立している局所配線21bとを形成する。その際、W膜のパターニングの時にはTi膜の表面が露出した時を検出してW膜のエッチング終了時期を判定し、Ti膜のパターニングの時には、ポリシリコンよりなる第1のメモリセルプラグ20aに対して高い選択比が得られる条件でエッチングを行う。
【0046】
次に、基板上に、プラズマTEOS膜を堆積した後、CMP(化学機械的研磨)による平坦化を行なって第2層間絶縁膜22を形成する。さらに、第2層間絶縁膜22を貫通して、下層メモリセルプラグ20aと局所配線21b(2箇所)とにそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内にW膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にW膜を埋め込んで、下層メモリセルプラグ20aに接続される上層メモリセルプラグ30aと、2箇所で局所配線21bにそれぞれ接触するダミーセルプラグ30b及び配線プラグ30cとを形成する。
【0047】
次に、第2層間絶縁膜22の上に、厚みが約6nmのTiAlN膜と、厚みが約50nmのPt膜とを順次堆積する。そして、TiAlN膜とPt膜とをパターニングすることにより、第2層間絶縁膜22の上に、上層メモリセルプラグ30aに接続される下部バリアメタル32a及びその上のPtからなる下部電極33aと、ダミーセルプラグ30bに接続されるダミー下部バリアメタル32b及びその上のダミー下部電極33bとを形成する。ここで、Pt膜をパターニングする時には、下地であるTiAlN膜に対して高い選択が得られる条件でエッチングを行ない、TiAlN膜をパターニングする時には下地であるWからなる上層メモリセルプラグ30aが掘れ下がらないように、選択比の高い条件でエッチングを行なう。
【0048】
次に、図2(b)に示す工程で、第2層間絶縁膜22,下部電極33a及びダミー下部電極33bを覆う厚みが約30nmのBST膜((BaSr)TiO3 膜)と、厚みが約30nmのPt膜と、厚みが約6nmのTiAlN膜と、NSG(ノンドープドシリケートガラス)膜とを順次堆積する。そして、NSG膜をパターニングしてハードマスク38を形成した後、ハードマスク38を用いたドライエッチングにより、TiAlN膜と、Pt膜と、BST膜とを順次パターニングして、有効メモリセル領域Rec及びダミーセル領域Rdcを覆う上部バリアメタル36と、上部電極35a及び上部電極延長部35bを含むPt膜35と、容量絶縁膜34a及び容量絶縁膜延長部34bを含むBST膜34とを形成する。その後、ハードマスク38は、例えば希弗酸液を用いて選択的に除去される。
【0049】
次に、図2(c)に示す工程で、基板上に、例えば、厚み約30nmのTiAlN膜を形成した後、レジストマスクをマスクとしてTiAlN膜をパターニングして接続用導体膜37を形成する。このとき、接続用導体膜37は、基板上の有効メモリセル領域Recとダミーセル領域Rdcとにおいて、上部バリアメタル36の上面を覆い、さらに、ダミーセル領域Rdcの断面においては、上部バリアメタル36,Pt膜35,BST膜34,ダミー下部電極33b,ダミー下部バリアメタル32bの各側面を覆い、かつ第2層間絶縁膜22の一部を覆っている。
【0050】
さらに、第3層間絶縁膜41の堆積と平坦化、第3層間絶縁膜41への配線プラグ30cに到達するトレンチの形成、トレンチへのCu配線42の埋め込み(ダマシン法)などを行なうことにより、図1(a)に示すメモリセルの断面構造が得られる。
【0051】
本実施形態における製造方法によると、第3層間絶縁膜41及び接合用導体膜37に、Pt膜35(上部バリアメタル36)の上に到達するコンタクト孔を形成する工程を回避することができる。すなわち、第3層間絶縁膜41に配線埋め込み用トレンチを形成する場合など、一般に、Cu配線の形成工程においては、還元雰囲気でのアニールがよく用いられる。したがって、上部バリアメタル36の上にコンタクト孔が形成されると、アンモニア等が薄い上部バリアメタル36を通って、あるいはオーバーエッチングによりPt膜35が露出した場合には直接にPt膜35に接触するので、アンモニア等がPt膜35を通過してBST膜34に達することがある。その場合、BST膜34中の酸素が失われて酸素欠損を生じるなど、容量絶縁膜34aの特性の劣化を招くおそれがある。それに対し、本実施形態のごとく、Pt膜35の上に到達するコンタクト孔を形成する工程を回避することにより、かかる原因による容量絶縁膜34aの特性の劣化を確実に抑制することができる。さらに、上部バリアメタル36の上面及び側面と、上部電極延長部35bの側面、ダミー下部電極33bの側面、ダミー下部バリアメタル32bの側面を1つの層である接続用導体膜37で覆うことができるため、確実な接続形状を得ることができる。また、上部バリアメタル36の全上面を接続用導体膜37で覆うことにより、還元性雰囲気の侵入を抑制することができる。
【0052】
なお、Cu配線42を形成する工程は、従来の上部電極にプラグを形成する工程に対応し、局所配線21bや配線コンタクト30cの形成はメモリセルを形成する工程を利用して実施できる。
【0053】
なお、本実施形態においては、上部電極35a及び下部電極33aをPtにより構成し、上部バリアメタル36および接続用導体膜37をTiAlNにより構成したが、これらの部材を、耐酸化性を持つ他の導体材料により構成してもよい。また、容量絶縁膜34aをBSTにより構成したが、他の高誘電体材料により構成してもよい。特に、構造式がABO3 によって表されるペロブスカイト構造を有する誘電体膜の場合には、酸素原子が還元によって失われやすいので、本発明を適用することにより、大きな実効が得られる。
【0054】
また、本発明は、本実施形態のような混載デバイスに限られず、汎用のDRAMあるいはFeRAM等の金属電極を用いるキャパシタを有する半導体記憶装置にも適用できることはいうまでもない。
【0055】
(第2の実施形態)
図3は、第2の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【0056】
同図に示すように、本実施形態のメモリ部の構造のうち第1の実施形態と異なる点は、第1の実施形態におけるW/Ti膜からなる局所配線21b,ダミーセルプラグ30b,ダミー下部バリアメタル32b及びダミー下部電極33bが設けられておらず、第2層間絶縁膜22に形成されたトレンチを埋めるWからなる局所配線23が設けられている点である。この局所配線23は、上層メモリセルプラグ30aと同時に形成されている。その他の部材は、上記図1(a)に示す部材と同じであり、それらの部材には図1(a)と同じ符号が付されている。
【0057】
本実施形態によると、Wからなる局所配線23及び接続用導体膜37を介して、上部電極35aとCu配線42とが電気的に接続される。そして、本実施形態においても、第3層間絶縁膜41に、上部電極35aを構成するPt膜35(上部バリアメタル36)に到達するコンタクト孔を形成する必要がない。よって、本実施形態により、上記第1の実施形態と同様に、容量絶縁膜34aの特性の劣化防止や、メモリセル形成のための専用の設備不要化などの効果を発揮することができる。
【0058】
それに加えて、本実施形態では、ダミー下部電極を設ける必要がないので、第1の実施形態に比べてメモリ部の占有面積を小さくすることができるという利点がある。
【0059】
(第3の実施形態)
図4は、第3の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【0060】
同図に示すように、本実施形態のメモリ部の構造が第1の実施形態と異なる点は、第1の実施形態におけるW/Ti膜からなる局所配線21bの代わりに、素子分離用絶縁膜11の上にポリシリコンからなる局所配線24が設けられ、さらに、第1層間絶縁膜18を貫通して局所配線24に接触する下層ダミーセルプラグ20cと、第1層間絶縁膜18を貫通して局所配線24に接触する下層配線プラグ20dとが設けられている点である。そして、本実施形態においては、ダミーセルプラグ30bは下層ダミーセルプラグ20cに、配線プラグ30cは下層配線プラグ20dにそれぞれ接続されている。局所配線24は、ゲート電極15と同時に形成されている。その他の部材は、上記図1(a)に示す部材と同じであり、それらの部材には図1(a)と同じ符号が付されている。
【0061】
本実施形態によると、接続用導体膜32,ダミー下部電極33b,ダミー下部バリアメタル32b,ダミーセルプラグ30b,下層ダミーセルプラグ20c,局所配線24,下層配線プラグ20d及び配線プラグ30cを介して、上部電極35aとCu配線42とが電気的に接続される。そして、本実施形態においても、第3層間絶縁膜41に、上部電極35aを構成するPt膜35(上部バリアメタル36)に到達するコンタクト孔を形成する必要がない。よって、本実施形態により、上記第1の実施形態と同様に、容量絶縁膜34aの特性の劣化防止や、メモリセル形成のための専用の設備不要化などの効果を発揮することができる。
【0062】
(第4の実施形態)
図5は、第4の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【0063】
同図に示すように、本実施形態のメモリ部の構造が第1の実施形態と異なる点は、第1の実施形態におけるW/Ti膜からなる局所配線21bの代わりに、Si基板10中に不純物拡散層からなる局所配線25が設けられ、さらに、第1層間絶縁膜18を貫通して局所配線25に接触する下層ダミーセルプラグ20cと、第1層間絶縁膜18を貫通して局所配線25に接触する下層配線プラグ20dとが設けられている点である。そして、本実施形態においては、ダミーセルプラグ30bは下層ダミーセルプラグ20cに、配線プラグ30cは下層配線プラグ20dにそれぞれ接続されている。局所配線25は、ソース・ドレイン領域12,13と同時に形成されている。その他の部材は、上記図1(a)に示す部材と同じであり、それらの部材には図1(a)と同じ符号が付されている。
【0064】
本実施形態によると、接続用導体膜37,ダミー下部電極33b,ダミー下部バリアメタル32b,ダミーセルプラグ30b,下層ダミーセルプラグ20c,局所配線25,下層配線プラグ20d及び配線プラグ30cを介して、上部電極35aとCu配線42とが電気的に接続される。そして、本実施形態においても、第3層間絶縁膜41に、上部電極35aを構成するPt膜35(上部バリアメタル36)に到達するコンタクト孔を形成する必要がない。よって、本実施形態により、上記第1の実施形態と同様に、容量絶縁膜34の特性の劣化防止や、メモリセル形成のための専用の設備不要化などの効果を発揮することができる。
【0065】
(第5の実施形態)
上記第1〜第4の実施形態においては、本発明をビット線下置き型のDRAMメモリセル構造に適用した例について説明したが、本実施形態においては、本発明を、ビット線が記憶容量部よりも上方に設けられたビット線上置き型のDRAMメモリセル構造に適用した例について説明する。図6は、第5の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。図7(a)〜(c)は、第5の実施形態における半導体記憶装置の製造工程を示す断面図である。以下、本実施形態における半導体記憶装置の構造と製造方法とについて、順に説明する。ここで、本実施形態の各図においては、メモリ部の構造のみを示すが、本実施形態の半導体記憶装置は、第1の実施形態と同様に、図示されていないロジック回路部においてロジック回路素子が設けられている混載型デバイスである。ただし、ロジック回路素子の構造自体は、直接本発明の本質とは関係がないので、図示を省略するものとする。
【0066】
図6に示すように、本実施形態のメモリ部は、第3の実施形態と同様に、第1の実施形態におけるW/Ti膜からなる局所配線21bの代わりに、素子分離用絶縁膜11の上にポリシリコンからなる局所配線24が設けられ、さらに、第1層間絶縁膜18を貫通して局所配線24に接触する下層ダミーセルプラグ20cと、第1層間絶縁膜18を貫通して局所配線24に接触する下層配線プラグ20dとが設けられている。
【0067】
また、本実施形態においては、記憶容量部MCやダミーセルが第1層間絶縁膜18の上に設けられており、ダミー下部電極33b(ダミー下部バリアメタル32b)が直接下層ダミーセルプラグ20cに、第1Cu配線42は直接下層配線プラグ20dにそれぞれ接続されている。局所配線24は、ゲート電極15と同じポリシリコン膜から形成されている。
【0068】
さらに、ビット線プラグ20bの上には、第2層間絶縁膜22を貫通してビット線プラグ20bに到達する上層ビット線プラグ51と、上層ビット線プラグ51の側面を覆う絶縁体サイドウォール52と、上部バリアメタル36の上面を覆い、かつ上部バリアメタル36の側面,Pt膜35の側面及びBST膜34の側面上を覆うTiAlNからなる接続用導体膜37と、第3層間絶縁膜41に埋め込まれたCu膜からなるビット線53とが設けられている。つまり、ビット線が記憶容量部MCよりも上方に設けられたビット線上置き型DRAMメモリセルの構造を備えている。また、接続用導体膜37は、上部バリアメタル36の側面,Pt膜35の側面及びBST膜34の側面と、絶縁体サイドウォール52との間に介在している。
【0069】
図6における他の部材は、上記図1(a)に示す部材と同じであり、それらの部材には図1(a)と同じ符号が付されている。
【0070】
本実施形態によると、接続用導体膜37,ダミー下部電極33b,ダミー下部バリアメタル32b,ダミーセルプラグ30b,下層ダミーセルプラグ20c,局所配線24及び下層配線プラグ20dを介して、上部電極35aと第1のCu配線42とが電気的に接続される。そして、本実施形態においても、第3層間絶縁膜41に、上部電極35aを構成するPt膜35(上部バリアメタル36)に到達するコンタクト孔を形成する必要がない。よって、本実施形態により、ビット線上置き型の構造を採りながら、上記第1の実施形態と同様に、容量絶縁膜34aの特性の劣化防止や、メモリセル形成のための専用の設備不要化などの効果を発揮することができる。
【0071】
次に、本実施形態における半導体記憶装置のメモリセルの製造工程について、図7(a)〜(c)を参照しながら説明する。
【0072】
図7(a)に示す工程で、以下の処理を行なう。まず、p型のSi基板10に、活性領域を囲む素子分離用絶縁膜11を形成し、活性領域に、ソース領域12及びドレイン領域13と、ゲート絶縁膜14と、ゲート電極15と、絶縁性サイドウォール16とからなるメモリセルトランジスタTRを形成する。このメモリセルトランジスタTRの形成工程は、熱酸化,ポリシリコン膜の形成及びパターニング,イオン注入等の周知の技術を用いて周知の手順により行なわれる。このとき、ゲート電極15を形成する際に、同時に素子分離用絶縁膜11の上にポリシリコンからなる局所配線24を形成しておく。
【0073】
次に、メモリセルトランジスタTRの形成された基板上に、BPSG膜を堆積した後、アニールとCMP(化学機械的研磨)による平坦化とを行なって第1層間絶縁膜18を形成する。さらに、第1層間絶縁膜18を貫通してソース領域12,ドレイン領域13及び局所配線24の2箇所にそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内及び第1層間絶縁膜18の上にn型ポリシリコン膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にポリシリコン層を埋め込んで、下層メモリセルプラグ20aと、ビット線プラグ20bと、下層ダミーセルプラグ20cと、下層配線プラグ20dとを形成する。
【0074】
次に、第1層間絶縁膜18の上に、厚みが約6nmのTiAlN膜と、厚みが約50nmのPt膜とを順次堆積する。そして、TiAlN膜とPt膜とをパターニングすることにより、第1層間絶縁膜18の上に、下層メモリセルプラグ20aに接続される下部バリアメタル32a及びその上のPtからなる下部電極33aと、下層ダミーセルプラグ20bに接続されるダミー下部バリアメタル32b及びその上のダミー下部電極33bとを形成する。ここで、Pt膜をパターニングする時には、下地であるTiAlN膜に対して高い選択が得られる条件でエッチングを行ない、TiAlN膜をパターニングする時には下地であるポリシリコンからなる下層メモリセルプラグ20aが掘れ下がらないように、選択比の高い条件でエッチングを行なう。
【0075】
次に、第2層間絶縁膜22,下部電極33a及びダミー下部電極33bを覆う厚みが約30nmのBST膜((BaSr)TiO3 膜)と、厚みが約30nmのPt膜と、厚みが約6nmのTiAlN膜と、NSG膜とを順次堆積する。そして、NSG膜をパターニングしてハードマスク(図示しない。)を形成した後、ハードマスクを用いたドライエッチングにより、TiAlN膜と、Pt膜と、BST膜とを順次パターニングして、容量絶縁膜34a及び容量絶縁膜延長部34bを含むBST膜34と、上部電極35及び上部電極延長部35bを含むPt膜35と、Pt膜35の上面を覆う上部バリアメタル36とを形成する。このとき、BST膜,Pt膜,TiAlN膜及びNSG膜のうちビット線プラグ20bの上方に位置する部分は削除されて、開口59が形成されている。その後、NSG膜は、例えば希弗酸液を用いて選択的に除去される。
【0076】
次に、基板上に、例えば、厚み約30nmのTiAlN膜を形成した後、レジストマスクをマスクとしてパターニングを行い接続用導体膜37を形成する。このとき、接続用導体膜37は、基板上の有効メモリセル領域Recとダミーセル領域Rdcとにおいて、上部バリアメタル36の上面と、開口59の壁面と、上部バリアメタル36,Pt膜35,BST膜34,下部電極33a及びダミー下部電極33bの各側面とを覆い、かつ第1層間絶縁膜18の一部を覆っている。このことにより、上部電極延長部35bの側面とダミー下部電極33bの側面とには、接続用導体膜37が接しているため、上部電極延長部35bとダミー下部電極33bとは電気的に接続されている。
【0077】
次に、図7(b)に示す工程で、第2層間絶縁膜22を堆積した後、CMPにより、第2層間絶縁膜22の平坦化を行なう。そして、第2層間絶縁膜22と接続用導体膜37とを貫通してビット線プラグ20bに到達するコンタクト孔60を形成する。このとき、コンタクト孔60を、図7(a)に示す工程で形成された開口59の側面上の接続用導体膜の内径よりも十分小さくしておく。その後、基板の上に薄めの絶縁体膜を堆積した後、この絶縁体膜の異方性エッチングを行なうことにより、コンタクト孔60の側面上には、絶縁体サイドウォール52が形成される。次に、第2層間絶縁膜22を貫通して下層配線プラグ20dに到達するトレンチを形成する。そして、Cu膜の堆積とCMPとを行なって、コンタクト孔60と、下層配線プラグ20d上のトレンチとにCu膜を埋め込むことにより、上層ビット線プラグ51とCu配線42とを形成する。
【0078】
その後、第3層間絶縁膜41の堆積及び平坦化と、第3層間絶縁膜41への上層ビット線プラグ51に到達するコンタクト孔及びトレンチの形成と、コンタクト孔及びトレンチ内へのCu膜の埋込により、ビット線53を形成する(デュアルダマシン法)。これにより、図6に示すメモリセルの構造が得られる。
【0079】
本実施形態における製造方法によると、第2層間絶縁膜22に、上部電極35aを構成するPt膜35(上部バリアメタル36)の上に到達するコンタクト孔を形成する工程を回避することができるので、第1の実施形態における製造方法と同様に、還元性雰囲気にさらされることに起因する容量絶縁膜34aの特性の劣化を確実に抑制することができる。
【0080】
なお、本実施形態においては、上部電極35a及び下部電極33aをPtにより構成し、上部バリアメタル36および接続用導体膜37をTiAlNにより構成したが、これらの部材を、耐酸化性を持つ他の導体材料により構成してもよい。また、容量絶縁膜34aをBSTにより構成したが、他の高誘電体材料により構成してもよい。特に、構造式がABO3 によって表されるペロブスカイト構造を有する誘電体膜の場合には、酸素原子が還元によって失われやすいので、本発明を適用することにより、大きな実効が得られる。
【0081】
また、本発明は、本実施形態のような混載デバイスに限られず、汎用のDRAMあるいはFeRAM等の金属電極を用いるキャパシタを有する半導体記憶装置にも適用できることはいうまでもない。
【0082】
(第6の実施形態)
上述の第1の実施形態においては、ダミー下部バリアメタル32bおよびダミー下部電極33bを形成する場合について説明したが、本実施形態では、これらを設けるかわりに、接続用導体膜37をダミーセルプラグ30bと接触させることにより上部電極35aとダミーセルプラグ30bとを電気的に接続する場合について説明する。
【0083】
図8(a),(b)は、第6の実施形態における半導体記憶装置のメモリ部の一部の構造を示す断面図および平面図である。ここで、本実施形態の各図においては、メモリ部の構造のみを示すが、本実施形態の半導体記憶装置は、図示されていないロジック回路部においてロジック回路素子が設けられている混載型デバイスである。ただし、ロジック回路素子の構造自体は、直接本発明の本質とは関係がないので、図示を省略するものとする。
【0084】
図8(a)に示すように、本実施形態のメモリ部の構造のうちで第1の実施形態と異なるのは、ダミーセル領域Rdcにおいて、ダミー下部バリアメタル32bとダミー下部電極33bとが設けられていない点である。そして、有効メモリセル領域Recからダミーセル領域Rdcの方へ伸びる容量絶縁膜延長部34bと,容量絶縁膜延長部34bを覆う上部電極延長部35bと,上部バリアメタル36とが、ダミーセルプラグ30bの上のうち一部を露出させるように設けられている。上部バリアメタル36の上面上および側面上と,上部電極延長部35bの側面上,容量絶縁膜延長部34bの側面上とから、ダミーセルプラグ30bのうち少なくとも一部の上に亘って、接続用導体膜37が設けられている。
【0085】
つまり、上部電極延長部35bとダミーセルプラグ30bとを電気的に接続するために、第1の実施形態では接続用導体膜37,ダミー下部電極33bおよびダミー下部バリアメタル32bを設けたのに対し、本実施形態では、ダミーセルプラグ30bと接続用導体膜37とを直接接触させるように設けている。
【0086】
ここで、容量絶縁膜延長部34bと,容量絶縁膜延長部34bを覆う上部電極延長部35bと,上部バリアメタル36とは、ダミーセルプラグ30bの上のうち一部を露出させるように設けられていてもよいし、完全に露出させるように設けられていてもよい。完全に露出させるように設けられている場合には、接続用導体膜37が、下部電極33aおよび下部バリアメタル32aと電気的に接続されないように設けられており、かつダミーセルプラグ30bの上のうち少なくとも一部を覆うように設けられておればよい。つまり、接続用導体膜37は、下部電極32aと絶縁された状態でダミーセルプラグ30bと電気的に接続されておればよい。
【0087】
そして、図8(b)に示すように、上部電極35aを構成するPt膜35(上部バリアメタル36)は多数のメモリセルによって共有化されており、Pt膜35の下方には、多数の下部電極33a(下部バリアメタル32a)が設けられている。なお、その他の構造および効果は、第1の実施形態と同様であるので説明を省略する。
【0088】
次に、本実施形態における半導体記憶装置のメモリセルの製造工程について、図9(a)〜(c)を参照しながら説明する。図9(a)〜(c)は、第6の実施形態における半導体記憶装置の製造工程を示す断面図である。
【0089】
図9(a)に示す工程で、以下の処理を行なう。まず、p型のSi基板10に、活性領域を囲む素子分離用絶縁膜11を形成し、活性領域に、ソース領域12及びドレイン領域13と、ゲート絶縁膜14と、ゲート電極15と、絶縁性サイドウォール16とからなるメモリセルトランジスタTRを形成する。このメモリセルトランジスタTRの形成工程は、熱酸化,ポリシリコン膜の形成及びパターニング,イオン注入等の周知の技術を用いて周知の手順により行なわれる。
【0090】
次に、メモリセルトランジスタTRの形成された基板上に、BPSG膜を堆積した後、アニールとCMP(化学機械的研磨)による平坦化とを行なって第1層間絶縁膜18を形成する。さらに、第1層間絶縁膜18を貫通してソース領域12,ドレイン領域13にそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内及び第1層間絶縁膜18の上にn型ポリシリコン膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にポリシリコン膜を埋め込んで、下層メモリセルプラグ20aとビット線プラグ20bとを形成する。
【0091】
次に、第1層間絶縁膜18の上にW/Ti積層膜を堆積した後、エッチングによりW/Ti積層膜をパターニングして、ビット線プラグ20bに接続されるビット線21aと、この段階では他の部材と接続されずに孤立している局所配線21bとを形成する。その際、W膜のパターニングの時にはTi膜の表面が露出した時を検出してW膜のエッチング終了時期を判定し、Ti膜のパターニングの時には、ポリシリコンよりなる第1のメモリセルプラグ20aに対して高い選択比が得られる条件でエッチングを行う。
【0092】
次に、基板上に、プラズマTEOS膜を堆積した後、CMP(化学機械的研磨)による平坦化を行なって第2層間絶縁膜22を形成する。さらに、第2層間絶縁膜22を貫通して、下層メモリセルプラグ20aと局所配線21b(2箇所)とにそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内にW膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にW膜を埋め込んで、下層メモリセルプラグ20aに接続される上層メモリセルプラグ30aと、2箇所で局所配線21bにそれぞれ接触するダミーセルプラグ30b及び配線プラグ30cとを形成する。
【0093】
次に、図9(b)に示す工程で、第2層間絶縁膜22の上に、厚みが約6nmのTiAlN膜と、厚みが約50nmのPt膜とを順次堆積する。そして、TiAlN膜とPt膜とをパターニングすることにより、第2層間絶縁膜22の上に、上層メモリセルプラグ30aに接続される下部バリアメタル32a及びその上のPtからなる下部電極33aを形成する。ここで、Pt膜をパターニングする時には、下地であるTiAlN膜に対して高い選択が得られる条件でエッチングを行ない、TiAlN膜をパターニングする時には下地であるWからなる上層メモリセルプラグ30aが掘れ下がらないように、選択比の高い条件でエッチングを行なう。
【0094】
その後、第2層間絶縁膜22および下部電極33aを覆う厚みが約30nmのBST膜((BaSr)TiO3 膜)と、厚みが約30nmのPt膜と、厚みが約6nmのTiAlN膜と、NSG膜とを順次堆積する。そして、NSG膜をパターニングしてハードマスク38を形成した後、ハードマスク38を用いたドライエッチングにより、TiAlN膜と、Pt膜と、BST膜とを順次パターニングして、有効メモリセル領域Rec及びダミーセル領域Rdcを覆う上部バリアメタル36と、上部電極35a及び上部電極延長部35bを含むPt膜35と、容量絶縁膜34a及び容量絶縁膜延長部34bを含むBST膜34とを形成する。このとき、上部バリアメタル36,上部電極35a及び上部電極延長部34bは、第1の実施形態ではダミーセルプラグ30bの上方をほぼ完全に覆うようにパターニングされるのに対し、本実施形態ではダミーセルプラグ30bのうち少なくとも一部を露出するようにパターニングされる。その後、ハードマスク38は、例えば希弗酸液を用いて選択的に除去される。
【0095】
次に、図9(c)に示す工程で、基板上に、例えば、厚み約30nmのTiAlN膜を形成した後、レジストマスクをマスクとしてTiAlN膜をパターニングして接続用導体膜37を形成する。このとき、接続用導体膜37は、基板上の有効メモリセル領域Recとダミーセル領域Rdcとにおいて、上部バリアメタル36の上面を覆い、さらに、ダミーセル領域Rdcの断面においては、上部バリアメタル36,上部電極延長部35b及び容量絶縁膜延長部34bの各側面を覆い、かつダミーセルプラグ30bの上面のうち少なくとも一部を覆っている。
【0096】
さらに、第3層間絶縁膜41の堆積と平坦化、第3層間絶縁膜41への配線プラグ30cに到達するトレンチの形成、トレンチへのCu配線42の埋め込み(ダマシン法)などを行なうことにより、図8(a)に示すメモリセルの断面構造が得られる。
【0097】
本実施形態における製造方法によると、従来のプロセスに新たな工程を追加することなく、第3層間絶縁膜41及び接合用導体膜37に、Pt膜35(上部バリアメタル36)の上に到達するコンタクト孔を形成する工程を回避することができる。従って、第1の実施形態における製造方法と同様に、工程数の増加を伴うことなく,還元雰囲気にさらされることに起因する容量絶縁膜34aの特性の劣化を確実に抑制することができる。
【0098】
さらに、上部バリアメタル36の上面及び側面と上部電極延長部35bの側面とを、1つの層である接続用導体膜37で覆うことができるため、確実な接続形状を得ることができる。また、上部バリアメタル36の全上面を接続用導体膜37で覆うことにより、還元性雰囲気の侵入を抑制することができる。
【0099】
それに加えて、本実施形態では、ダミー下部電極を設ける必要がないので、第1の実施形態に比べてメモリ部の占有面積を小さくすることができるという利点がある。
【0100】
なお、Cu配線42を形成する工程は、従来の上部電極にプラグを形成する工程に対応し、局所配線21bや配線コンタクト30cの形成はメモリセルを形成する工程を利用して実施できる。
【0101】
なお、本実施形態においては、上部電極35a及び下部電極33aをPtにより構成し、上部バリアメタル36および接続用導体膜37をTiAlNにより構成したが、これらの部材を、耐酸化性を持つ他の導体材料により構成してもよい。また、容量絶縁膜34aをBSTにより構成したが、他の高誘電体材料により構成してもよい。特に、構造式がABO3 によって表されるペロブスカイト構造を有する誘電体膜の場合には、酸素原子が還元によって失われやすいので、本発明を適用することにより、大きな実効が得られる。
【0102】
また、本発明は、本実施形態のような混載デバイスに限られず、汎用のDRAMあるいはFeRAM等の金属電極を用いるキャパシタを有する半導体記憶装置にも適用できることはいうまでもない。
【0103】
なお、本実施形態では、ダミー下部電極33bおよびダミー下部バリアメタル32bを設けないで接続用導体膜37とダミーセルプラグ30bとを接触させる方法について述べたが、本発明においては、ダミー下部電極33bおよびダミー下部バリアメタル32bを設けて、かつ接続用導体膜37とダミーセルプラグ30bとを接触させてもよいことはいうまでもない。
【0104】
なお、本実施形態では、接続用導体膜37がダミーセルプラグ30b,局所配線21b,配線プラグ30cによりCu配線42に接続されており、これは第1の実施形態の接続方法を適用した例である。しかし、本発明では、第3,第4および第5の実施形態における接続方法を適用してもよい。ここで、例えば第5の実施形態の接続方法を適用する場合には、第1層間絶縁膜18の上に、下層ダミーセルプラグ20cの上面の少なくとも一部と接する接続用導体膜37を形成すればよい。
【0105】
(第7の実施形態)
本実施形態では、第6の本実施形態における接続用導体膜37を形成するかわりに、上部電極延長部35bおよび容量絶縁膜延長部34bの側面上に導体サイドウォールを形成する場合について説明する。
【0106】
図10(a),(b)は、それぞれ順に、第7の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図、及び上部電極・導体サイドウォール構造を示す平面図である。ここで、本実施形態の各図においては、メモリ部の構造のみを示すが、本実施形態の半導体記憶装置は、図示されていないロジック回路部においてロジック回路素子が設けられている混載型デバイスである。ただし、ロジック回路素子の構造自体は、直接本発明の本質とは関係がないので、図示を省略するものとする。
【0107】
図10(a)に示すように、本実施形態の半導体記憶装置であるDRAMのメモリセルにおいて、第6の実施形態と異なるのは、上部バリアメタル36の上にハードマスク43が設けられており、ハードマスク43,上部バリアメタル36,上部電極延長部35bおよび容量絶縁膜延長部34bの側面上からダミーセルプラグ30bの上面のうち少なくとも一部に接するように、TiAlNからなる導体サイドウォール40が設けられている点である。この導体サイドウォール40は、図10(b)に示すように、Pt膜35及びBST膜34の全周囲を取り囲んでいる。すなわち、導体サイドウォール40は、上部電極延長部35bとダミーセルプラグ30bとを互いに電気的に接続している。その他の構造および効果は、第6の実施形態と同様であるので説明を省略する。
【0108】
次に、本実施形態における半導体記憶装置のメモリセルの製造工程について、図11(a)〜(c)を参照しながら説明する。図11(a)〜(c)は、第7の実施形態における半導体記憶装置の製造工程を示す断面図である。
【0109】
図11(a)に示す工程で、以下の処理を行なう。まず、p型のSi基板10に、活性領域を囲む素子分離用絶縁膜11を形成し、活性領域に、ソース領域12及びドレイン領域13と、ゲート絶縁膜14と、ゲート電極15と、絶縁性サイドウォール16とからなるメモリセルトランジスタを形成する。このメモリセルトランジスタの形成工程は、熱酸化,ポリシリコン膜の形成及びパターニング,イオン注入等の周知の技術を用いて周知の手順により行なわれる。
【0110】
次に、メモリセルトランジスタの形成された基板上に、BPSG膜を堆積した後、アニールとCMP(化学機械的研磨)による平坦化とを行なって第1層間絶縁膜18を形成する。さらに、第1層間絶縁膜18を貫通してソース領域12,ドレイン領域13にそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内及び第1層間絶縁膜18の上にn型ポリシリコン膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にポリシリコン膜を埋め込んで、下層メモリセルプラグ20aとビット線プラグ20bとを形成する。
【0111】
次に、第1層間絶縁膜18の上にW/Ti積層膜を堆積した後、エッチングによりW/Ti積層膜をパターニングして、ビット線プラグ20bに接続されるビット線21aと、この段階では他の部材と接続されずに孤立している局所配線21bとを形成する。その際、W膜のパターニングの時にはTi膜の表面が露出した時を検出してW膜のエッチング終了時期を判定し、Ti膜のパターニングの時には、ポリシリコンよりなる下層メモリセルプラグ20aに対して高い選択比が得られる条件でエッチングを行う。
【0112】
次に、基板上に、プラズマTEOS膜を堆積した後、CMP(化学機械的研磨)による平坦化を行なって第2層間絶縁膜22を形成する。さらに、第2層間絶縁膜22を貫通して、下層メモリセルプラグ20aと局所配線21b(2箇所)とにそれぞれ到達するコンタクト孔を形成する。次に、コンタクト孔内にW/TiN/Ti膜を形成した後、CMPにより平坦化を行なうことにより、各コンタクト孔にW/TiN/Ti膜を埋め込んで、下層メモリセルプラグ20aに接続される上層メモリセルプラグ30aと、2箇所で局所配線21bにそれぞれ接触するダミーセルプラグ30b及び配線プラグ30cとを形成する。
【0113】
次に、図11(b)に示す工程で、第2層間絶縁膜22の上に、厚みが約30nmのTiAlN膜と、厚みが約30nmのPt膜とを順次堆積する。そして、TiAlN膜とPt膜とをパターニングすることにより、第2層間絶縁膜22の上に、上層メモリセルプラグ30aに接続される下部バリアメタル32a及びその上のPtからなる下部電極33aを形成する。ここで、Pt膜をパターニングする時には、下地であるTiAlN膜に対して高い選択が得られる条件でエッチングを行ない、TiAlN膜をパターニングする時には下地であるWからなる上層メモリセルプラグ30aが掘れ下がらないように、選択比の高い条件でエッチングを行なう。
【0114】
次に、第2層間絶縁膜22および下部電極33aを覆う厚みが約30nmのBST膜((BaSr)TiO3 膜)と、厚みが約30nmのPt膜と、厚みが約30nmのTiAlN膜と、SiO2 膜とを順次堆積する。そして、SiO2 膜をパターニングしてハードマスク43を形成した後、ハードマスク43を用いたドライエッチングにより、TiAlN膜と、Pt膜と、BST膜とを順次パターニングして、有効メモリセル領域Rec及びダミーセル領域Rdcを覆う上部バリアメタル36と、上部電極35a及び上部電極延長部35bを含むPt膜35と、容量絶縁膜34a及び容量絶縁膜延長部34bを含むBST膜34とを形成する。このとき、上部バリアメタル36,上部電極35a及び上部電極延長部34bは、第1の実施形態ではダミーセルプラグ30bの上方を完全に覆うようにパターニングされるのに対し、本実施形態ではダミーセルプラグ30bのうち少なくとも一部を露出するようにパターニングされる。
【0115】
次に、図11(c)に示す工程で、基板上に、厚みが約50nmの導体膜であるTiAlN膜を堆積した後、TiAlN膜を例えば異方性ドライエッチングによりエッチバックして、図11(c)に示す断面において、ハードマスク43,上部バリアメタル36,Pt膜35,BST膜34の各側面に亘って、導体サイドウォール40を形成する。
【0116】
さらに、第3層間絶縁膜41の堆積と平坦化、第3層間絶縁膜41への配線プラグ30cに到達するトレンチの形成、トレンチへのCu配線42の埋め込み(ダマシン法)などを行なうことにより、図10(a)に示すメモリセルの断面構造が得られる。
【0117】
本実施形態における製造方法によると、従来のプロセスにおけるフォトリソグラフィー工程を増やすことなく、第3層間絶縁膜41及びハードマスク43に、Pt膜35(上部バリアメタル36)の上に到達するコンタクト孔を形成する工程を回避することができる。従って、第1の実施形態における製造方法と同様に、工程数の増加を伴うことなく,還元雰囲気にさらされることに起因する容量絶縁膜34aの特性の劣化を確実に抑制することができる。
【0118】
それに加えて、本実施形態では、ダミー下部電極を設ける必要がないので、第1の実施形態に比べてメモリ部の占有面積を小さくすることができるという利点がある。
【0119】
なお、本実施形態においては、上部電極35a及び下部電極33aをPtにより構成し、上部バリアメタル36をTiAlNにより構成したが、これらの部材を、耐酸化性を持つ他の導体材料により構成してもよい。また、容量絶縁膜34aをBSTにより構成したが、他の高誘電体材料により構成してもよい。特に、構造式がABO3 によって表されるペロブスカイト構造を有する誘電体膜の場合には、酸素原子が還元によって失われやすいので、本発明を適用することにより、大きな実効が得られる。
【0120】
また、本発明は、本実施形態のような混載デバイスに限られず、汎用のDRAMあるいはFeRAM等の金属電極を用いるキャパシタを有する半導体記憶装置にも適用できることはいうまでもない。
【0121】
なお、本実施形態では、ダミー下部電極33bおよびダミー下部バリアメタル32bを設けないで導体サイドウォール40とダミーセルプラグ30bとを接触させる方法について述べたが、本発明においては、ダミー下部電極33bおよびダミー下部バリアメタル32bを設けて、かつ導体サイドウォール40とダミーセルプラグ30bとを接触させてもよいことはいうまでもない。
【0122】
なお、本実施形態では、導体サイドウォール40がダミーセルプラグ31b,局所配線21b,配線プラグ30cによりCu配線42に接続されており、これは第1の実施形態の接続方法を適用した例である。しかし、本発明では、第3,第4および第5の実施形態における接続方法を適用してもよい。ここで、第5の実施形態の接続方法を適用する場合には、第1層間絶縁膜18の上に、下層ダミーセルプラグ20cの上面の少なくとも一部と接する導体サイドウォール40を形成すればよい。
【0123】
(その他の実施形態)
上記第5の実施形態においては、ゲート配線となるポリシリコン膜を局所配線として用いたが、第5の実施形態のようなビット線上置き型構造を有するDRAMメモリセルにおいても、第2,第4の実施形態と同様の構造を採ることができる。すなわち、ビット線上置き型構造を有するDRAMメモリセルにおいて、図3に示す埋め込みW膜からなる局所配線23や、図5に示す不純物拡散層からなる局所配線25を設けてもよい。
【0124】
上記各実施形態においては、本発明をDRAMとロジック回路とを備えた混載型半導体記憶装置に適用した例を示したが、本発明はかかる実施形態に限定されるものではなく、汎用DRAMに対しても適用することができる。
【0125】
また、本発明は、FeRAM等の強誘電体膜を容量絶縁膜として用いた半導体記憶装置に対しても適用することができる。その場合にも、汎用メモリ型又はメモリ・ロジック混載型のいずれであってもよい。
【0126】
上記第1〜第5および第7の実施形態において、接続用導体膜37は、図1(b)に示すものと同様に、Pt膜35の全周囲においてPt膜35及びBST膜34の側面を完全に覆っている。これにより、容量絶縁膜34aへの不純物の混入などを確実に防止するバリア層としての機能を高く発揮することができる。ただし、本発明においては、必ずしも接続用導体膜37がPt膜35の全周囲においてPt膜35及びBST膜34の側面を完全に覆っている必要はない。
【0127】
上記第2〜第5の実施形態においても、接続用導体膜37は、図1(b)に示すと同様に、上部バリアメタル36の全上面を覆っている。これにより、容量絶縁膜34aへの水素などの侵入を確実に防ぐことができる。ただし、本発明においては、必ずしも接続用導体膜37がバリアメタル36の全上面を覆っている必要はない。
【0128】
なお、ダミー導体部材とは、第1,第3,第4および第5の実施形態においては少なくともダミー下部電極33b,ダミーセルプラグ30bを含んでおり、第2の実施形態においては少なくとも局所配線23を含んでおり、第6および第7の実施形態においては少なくともダミーセルプラグ30bを含んでいる。
【0129】
【発明の効果】
本発明によれば、上部電極を露出させることなく確実に上部電極と上層配線とを電気的に接続することができるため、容量絶縁膜の特性の劣化の小さい半導体記憶装置を実現することができる。
【図面の簡単な説明】
【図1】(a),(b)は、それぞれ順に、本発明の第1の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図、及び上部電極・接続用導体膜を示す平面図である。
【図2】(a)〜(c)は、本発明の第1の実施形態における半導体記憶装置の製造工程を示す断面図である。
【図3】本発明の第2の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【図4】本発明の第3の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【図5】本発明の第4の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【図6】本発明の第5の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図である。
【図7】(a)〜(c)は、本発明の第5の実施形態における半導体記憶装置の製造工程を示す断面図である。
【図8】(a),(b)は、第6の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図、及び上部電極・接続用導体膜構造を示す平面図である。
【図9】(a)〜(c)は、第6の実施形態における半導体記憶装置の製造工程を示す断面図である。
【図10】(a),(b)は、第7の実施形態における半導体記憶装置のうちメモリ部の一部の構造を示す断面図、及び上部電極・導体サイドウォール構造を示す平面図である。
【図11】(a)〜(c)は、第7の実施形態における半導体記憶装置の製造工程を示す断面図である。
【符号の説明】
10 半導体基板
11 素子分離用絶縁膜
12 ゲート電極
13 ソース領域
14 ゲート絶縁膜
15 ゲート電極
16 絶縁性サイドウォール
18 第1層間絶縁膜
20a 下層メモリセルプラグ
20b ビット線プラグ
20c 下部ダミーセルプラグ
20d 下層配線プラグ
21a ビット線
21b 局所配線
22 第2層間絶縁膜
23 局所配線
24 局所配線
25 局所配線
30a 上層メモリセルプラグ
30b ダミーセルプラグ
30c 配線プラグ ビット線
32a 下部バリアメタル
32b ダミーバリアメタル
33a 下部電極
33b ダミー下部電極
34a 容量絶縁膜
34b 容量絶縁膜延長部
35 Pt膜
35a 上部電極
35b 上部電極延長部
36 上部バリアメタル
37 接続用導体膜
38 マスク
40 導体サイドウォール
41 第3層間絶縁膜
42 Cu配線
43 ハードマスク

Claims (8)

  1. 半導体基板上の絶縁層の上に設けられ、下部電極,上部電極及び下部電極と上部電極との間に介在する容量絶縁膜から構成される記憶容量部と、
    上記記憶容量部の上部電極,容量絶縁膜にそれぞれ連続して設けられた容量絶縁膜延長部及び上部電極延長部と、
    上記上部電極延長部及び上記容量絶縁膜延長部の下方に位置する部分を含むように設けられたダミー導体部材と、
    上記上部電極延長部及び容量絶縁膜延長部の側面に接し、上記ダミー導体部材に接続される導体部材と、
    上記ダミー導体部材に電気的に接続される上層配線とを備え
    上記ダミー導体部材は、上記下部電極と同じ導体膜から形成されたダミー下部電極を含んでおり、
    上記導体部材は、上記上部電極全体及び上記上部電極延長部全体の上方を覆っており、且つ、上記上部電極延長部と上記ダミー下部電極とを互いに接続していることを特徴とする半導体記憶装置。
  2. 請求項1記載の半導体記憶装置において、
    上記導体部材は、上記上部電極延長部及び容量絶縁膜延長部の側面を全周に亘って覆っていることを特徴とする半導体記憶装置。
  3. 請求項1又は2に記載の半導体記憶装置において、
    上記絶縁層を挟んで上記記憶容量部の下方に形成されたビット線と、
    上記ビット線と同じ導体膜から形成された局所配線とをさらに備え、
    上記ダミー導体部材は、上記絶縁層を貫通してダミー下部電極と上記局所配線とを接続する導体プラグを含むことを特徴とする半導体記憶装置。
  4. 請求項1又は2に記載の半導体記憶装置において、
    上記絶縁層の下方において半導体基板上に設けられた素子分離用絶縁膜と、
    上記半導体基板の上記素子分離用絶縁膜によって囲まれる領域に設けられ、ゲート電極と上記半導体基板内で上記ゲート電極の両側に設けられた不純物拡散層とを有するメモリセルトランジスタと、
    上記素子分離用絶縁膜の上に設けられ、上記ゲート電極と同じ導体膜から形成された局所配線と、
    上記絶縁膜を貫通して上記局所配線に接続される導体プラグと
    をさらに備えていることを特徴とする半導体記憶装置。
  5. 請求項1又は2に記載の半導体記憶装置において、
    上記半導体基板に設けられ、ゲート電極と上記半導体基板内で上記ゲート電極の両側に設けられた不純物拡散層とを有するメモリセルトランジスタと、
    上記半導体基板の上記不純物拡散層とは離間して設けられたもう1つの不純物拡散層から形成された局所配線と、
    上記絶縁層を貫通して上記局所配線に接続される導体プラグと
    をさらに備えていることを特徴とする半導体記憶装置。
  6. 請求項1〜5のうちいずれか1つに記載の半導体記憶装置において、
    上記容量絶縁膜は、高誘電体膜又は強誘電体膜であることを特徴とする半導体記憶装置。
  7. 下部電極,上部電極及び下部電極と上部電極との間に介在する容量絶縁膜から構成される記憶容量部と、上記上部電極と電気的に接続されるダミー導体部材と、上記ダミー導体部材と電気的に接続される上層配線とを備えている半導体記憶装置の製造方法であって、
    半導体基板上の絶縁層の上に第1の導体膜を形成した後、第1の導体膜をパターニングして下部電極を形成する工程(a)と、
    上記下部電極を覆う誘電体膜を形成する工程(b)と、
    上記誘電体膜を覆う第2の導体膜を形成する工程(c)と、
    上記第2の導体膜の上に、上記下部電極の全体の一部を覆うエッチングマスクを形成する工程(d)と、
    上記第2の導体膜,上記誘電体膜をパターニングして、上記誘電体膜から上記容量絶縁膜及び容量絶縁膜延長部を形成し、上記第2の導体膜から上記上部電極及び上部電極延長部を形成する工程(e)と、
    上記工程(e)の後に、基板上に第3の導体膜を堆積した後、上記第3の導体膜をパターニングして、上記上部電極延長部及び上記容量絶縁膜延長部の側面に接し,かつ上記ダミー導体部材と電気的に接続される導体部材を形成する工程(f)とを備え、
    上記工程(a)では、上記第1の導体膜をパターニングすることにより、上記下部電極と,上記下部電極と互いに離間した領域に位置するダミー用膜を形成し、
    上記工程(b)から上記工程(e)までの間に、上記ダミー用膜をパターニングすることにより、上記ダミー導体部材の少なくとも一部としてダミー下部電極を形成し、
    上記工程(f)では、上記上部電極延長部,上記容量絶縁膜延長部および上記ダミー下部電極の側面に接し,上記上部電極全体及び上記上部電極延長部全体の上方を覆う上記導体部材を形成することを特徴とする半導体記憶装置の製造方法。
  8. 請求項に記載の半導体記憶装置の製造方法であって、
    上記誘電体膜は、高誘電体膜又は強誘電体膜であることを特徴とする半導体記憶装置の製造方法。
JP2002203700A 2001-07-18 2002-07-12 半導体記憶装置及びその製造方法 Expired - Fee Related JP3810349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203700A JP3810349B2 (ja) 2001-07-18 2002-07-12 半導体記憶装置及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001218277 2001-07-18
JP2001-218277 2001-07-18
JP2002203700A JP3810349B2 (ja) 2001-07-18 2002-07-12 半導体記憶装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2003100912A JP2003100912A (ja) 2003-04-04
JP3810349B2 true JP3810349B2 (ja) 2006-08-16

Family

ID=26618939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203700A Expired - Fee Related JP3810349B2 (ja) 2001-07-18 2002-07-12 半導体記憶装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP3810349B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787152B2 (ja) * 2004-04-28 2011-10-05 富士通セミコンダクター株式会社 半導体装置及びその製造方法
WO2006001064A1 (ja) * 2004-06-29 2006-01-05 Fujitsu Limited 半導体装置及びその製造方法
JP4042730B2 (ja) * 2004-09-02 2008-02-06 セイコーエプソン株式会社 強誘電体メモリおよびその製造方法
JP2006108152A (ja) * 2004-09-30 2006-04-20 Oki Electric Ind Co Ltd 半導体記憶装置
CN101194362B (zh) * 2005-06-13 2011-11-16 富士通半导体股份有限公司 半导体器件
JP2006157062A (ja) * 2006-03-10 2006-06-15 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP4780616B2 (ja) * 2006-04-25 2011-09-28 パナソニック株式会社 半導体記憶装置
JP2007329314A (ja) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP5251864B2 (ja) 2007-03-14 2013-07-31 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US20090120924A1 (en) * 2007-11-08 2009-05-14 Stephen Moffatt Pulse train annealing method and apparatus
JP5582166B2 (ja) * 2012-05-18 2014-09-03 富士通セミコンダクター株式会社 半導体装置
JP6197510B2 (ja) * 2013-09-10 2017-09-20 富士通セミコンダクター株式会社 半導体装置とその製造方法
JP2016072502A (ja) * 2014-09-30 2016-05-09 富士通セミコンダクター株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP2003100912A (ja) 2003-04-04

Similar Documents

Publication Publication Date Title
US6642564B2 (en) Semiconductor memory and method for fabricating the same
US6121083A (en) Semiconductor device and method of fabricating the same
US6825082B2 (en) Ferroelectric memory device and method of forming the same
JP4874456B2 (ja) 三重金属配線一つのトランジスター/一つのキャパシタ及びその製造方法
US6713310B2 (en) Ferroelectric memory device using via etch-stop layer and method for manufacturing the same
US6762445B2 (en) DRAM memory cell with dummy lower electrode for connection between upper electrode and upper layer interconnect
JP2001274350A (ja) 強誘電体メモリ及びその製造方法
JP3810349B2 (ja) 半導体記憶装置及びその製造方法
JP3768102B2 (ja) 半導体記憶装置及びその製造方法
KR19990035652A (ko) 디램 장치의 제조 방법
KR100345631B1 (ko) 반도체 장치 및 그 제조 방법
US20060022241A1 (en) Semiconductor memory device having capacitor using dielectric film, and method of fabricating the same
JP4766924B2 (ja) 半導体記憶装置及びその製造方法
US6858442B2 (en) Ferroelectric memory integrated circuit with improved reliability
JP4053702B2 (ja) 半導体記憶装置及びその製造方法
JP3871618B2 (ja) 半導体記憶装置及びその製造方法
KR100432882B1 (ko) 강유전성 메모리 장치 형성 방법
US20080087926A1 (en) Ferroelectric random access memory and methods of fabricating the same
KR20000057809A (ko) 집적회로 구조물 및 그 제조방법
JP2006253194A (ja) 半導体装置およびその製造方法
JP2004153293A (ja) 容量素子、半導体記憶装置及びその製造方法
JP2005223060A (ja) 強誘電体記憶装置及びその製造方法
JP2004153292A (ja) 容量素子、半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees