JP4053702B2 - 半導体記憶装置及びその製造方法 - Google Patents

半導体記憶装置及びその製造方法 Download PDF

Info

Publication number
JP4053702B2
JP4053702B2 JP33660699A JP33660699A JP4053702B2 JP 4053702 B2 JP4053702 B2 JP 4053702B2 JP 33660699 A JP33660699 A JP 33660699A JP 33660699 A JP33660699 A JP 33660699A JP 4053702 B2 JP4053702 B2 JP 4053702B2
Authority
JP
Japan
Prior art keywords
film
insulating film
bit line
storage electrode
contact plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33660699A
Other languages
English (en)
Other versions
JP2001156269A (ja
JP2001156269A5 (ja
Inventor
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33660699A priority Critical patent/JP4053702B2/ja
Priority to US09/718,389 priority patent/US6388282B1/en
Publication of JP2001156269A publication Critical patent/JP2001156269A/ja
Publication of JP2001156269A5 publication Critical patent/JP2001156269A5/ja
Application granted granted Critical
Publication of JP4053702B2 publication Critical patent/JP4053702B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トランジスタとキャパシタとからなる半導体記憶装置及びその製造方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路の高集積化に伴い、最小加工寸法の微細化と共にメモリセル面積の微細化は進む一方である。それにつれて、メモリセルにおけるキャパシタ面積は非常に小さくなってきている。メモリセル面積が小さくなるとキャパシタ容量(蓄積容量Cs)も小さくなってしまうが、キャパシタ容量はセンス感度、ソフトエラー、回路ノイズ等の点から一定値以上の値が必要である。これを解決する方法として、キャパシタを3次元的に形成して小さなセル面積でキャパシタ表面積をできるだけ大きくしてキャパシタ容量を稼ぐ方法と、キャパシタ絶縁膜に誘電率が高い絶縁膜(いわゆる高誘電体膜)を用いる方法との二つの方法が検討されている。
【0003】
0.15μm以下のデザインルールの世代(512MビットDRAM世代相当以降)になってくると、複雑な3次元形状をした蓄積(SN:Storage Node)電極の加工は、微細な加工を必要するのでだんだんと難しくなってきている。そこで、キャパシタ容量を稼ぐ方法として、キャパシタの3次元化を図ると共に、キャパシタ絶縁膜に誘電率の高い絶縁膜を用いることが非常に重要になってきている。
【0004】
誘電率が高い絶縁膜として代表的なものに(Ba,Sr)TiO3 (以下BST膜)がある。BST膜を用いる場合、蓄積電極にはBST膜の成膜途中で酸素雰囲気を用いるので工程途中で酸化されても導電性を示すRu膜(RuO2 膜は導電性)、又はRuO2 膜/Ru膜の積層膜を用いる検討が行われている(1995年IDEM Technical Digest, S.Yamamichi等、p.119-p.122)。
【0005】
RuO2 膜/Ru膜の積層膜を蓄積電極としたスタック型DRAMのキャパシタ構造の構成について図15を用いて説明する。先ず、p型Si基板11上に素子分離層12を形成した後、トランジスタのゲート酸化膜13、メモリセル部ではワード線となるゲート電極14、ゲートキャップ層15,ソース/ドレイン拡散層16,シリコン窒化膜17を形成し、第1の層間絶縁膜151を堆積して平坦化した後、蓄積電極コンタクトとビット線コンタクトの領域にポリシリコンからなるプラグ19,20を埋め込み形成する。その後、第2の層間絶縁膜152を形成した後、第2の層間絶縁膜152上にビット線(BL)コンタクトプラグ153を介してプラグ19に接続するビット線154を形成する。その後さらに第3の層間絶縁膜155を堆積した後、表面の平坦化、蓄積電極(SN)コンタクトホールの開口を行い、n- 型ポリシリコンの蓄積電極コンタクトプラグ156を埋込形成する。そして、蓄積電極材を成膜した後、レジスト膜を用いた通常のリソグラフィ法とRIE法を用いて電極材のパターニングを行い、蓄積電極29を形成する。レジスト膜を除去した後にBST膜などの高誘電率体からなるキャパシタ絶縁膜31を成膜し、さらにプレート電極32を形成する。
【0006】
このようなメモリセル構造においては、BLコンタクトプラグとSNコンタクトプラグは別々に形成されている、このような場合、最小デザインルールで配置されているビット線の間にSNコンタクトプラグを配置するために、SNコンタクトプラグの大きさが小さくなってしまい、抵抗が極端に大きくなり、書き込み、読み出し速度が不安定になってメモリセル動作に影響を与える事が懸念されている。
【0007】
【発明が解決しようとする課題】
上述したように、SNコンタクトプラグの抵抗が増大し、書き込み、読み出し速度が不安定になってメモリセル動作に影響を与える事が懸念されてという問題があった。
【0008】
本発明の目的は、SNコンタクトプラグの高抵抗化を防止し、書き込み、読み出し速度の安定化を図り得る半導体記憶装置及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
[構成]
本発明は、上記目的を達成するために以下のように構成されている。
【0010】
本発明の半導体記憶装置は、半導体基板上に形成されたトランジスタと、このトランジスタを覆う層間絶縁膜と、この層間絶縁膜に形成され、前記トランジスタのソース又はドレインの一方に接続するビット線コンタクトと、前記層間絶縁膜に形成され前記トランジスタのソース又はドレインの他方に接続する蓄積電極コンタクトと、前記ビット線コンタクト上に形成されたビット線コンタクトプラグと、前記蓄積電極コンタクト上に形成された蓄積電極コンタクトプラグと、前記ビット線コンタクトプラグに接続するビット線と、前記蓄積電極コンタクトプラグに接続するキャパシタの蓄積電極とを具備してなり、前記蓄積電極コンタクトプラグは、前記蓄積電極コンタクト上に形成された第1のバリアメタルと、この第1のバリアメタル上に形成された第1の金属電極材とを具備し、前記第1のバリアメタルは前記第1の金属電極材の底面のみに形成され、前記第1の金属電極材の周囲に第1の側壁絶縁膜が形成され、前記蓄積電極コンタクトプラグの上面は、前記第1の側壁絶縁膜の上面より高いことを特徴とする。
【0012】
本発明の半導体記憶装置の製造方法は、半導体基板上にトランジスタを形成する工程と、前記トランジスタを覆う第1の層間絶縁膜を形成する工程と、第1の層間絶縁膜に前記トランジスタのソース及びドレインに接続するコンタクトを形成する工程と、第1の層間絶縁膜上にバリアメタル及び金属電極材を順次堆積する工程と、前記バリアメタル及び金属電極材をパターニングし、前記トランジスタのソース又はドレインの一方に前記コンタクトを介して電気的接続するビット線コンタクトプラグと、前記トランジスタのソース又はドレインの他方に前記コンタクトを介して電気的接続する蓄積電極コンタクトプラグとを形成する工程と、前記ビット線コンタクトプラグ及び前記蓄積電極コンタクトプラグのそれぞれの側面に側壁絶縁膜を形成する工程と、第1の層間絶縁膜上に、前記ビット線コンタクトプラグ及び前記蓄積電極コンタクトプラグとを絶縁分離する第2の層間絶縁膜を形成する工程と、第2の層間絶縁膜に前記ビット線コンタクトプラグに接続する溝を形成する工程と、前記溝内にビット線を埋込形成する工程と、前記ビット線の表面に絶縁材を形成する工程と、第2の層間絶縁膜上に前記蓄積電極コンタクトプラグに接続する蓄積電極を形成する工程と、前記蓄積電極の表面を覆う誘電体膜を形成する工程と、前記誘電体膜の表面を覆う上部電極を形成することを特徴とする。
【0013】
[作用]
本発明は、上記構成によって以下の作用・効果を有する。
【0014】
本発明の半導体記憶装置及び半導体記憶装置の製造方法によれば、高抵抗であるSNコンタクトプラグのバリアメタル材をメタルプラグ材の底面のみに自己整合的に形成されるので工程の簡略化、プラグ抵抗の低減が実現できる。
【0015】
また、本発明の半導体記憶装置の製造方法によれば、ビット線コンタクトとSN電極コンタクトのメタルプラグを同時に形成する事により製造工程の簡略化が実現できる。
【0016】
また、SNコンタクトのメタルプラグをビット線より先に形成するため、SNコンタクトの形状をビット線の加工バラツキに影響されずに形成できるため、SNコンタクトのプラグを低抵抗で安定して形成できる。
【0017】
【発明の実施の形態】
本発明の実施の形態を以下に図面を参照して説明する。
【0018】
[第1実施形態]
図1は、本発明の第1の実施形態に係わるスタック型DRAMのメモリセルの概略構成を示す図である。図1(a)はDRAMの構成を示す平面図、図1(b)は同図(a)のA−A’部の断面図、図1(c)は同図(a)のB−B’部の断面図、図1(d)は同図(a)のC−C’部の断面図である。
【0019】
本実施形態のスタック型DRAMは、ビット線(BL)コンタクトプラグ及び蓄積電極(SN)コンタクトプラグ構造を除いて、基本的には従来のスタック型DRAMと同じ構造である。
【0020】
図1に示すように、例えばp型のSi基板11の表面に、溝に絶縁膜が埋め込み形成された素子分離層12が設けられている。素子分離層12上、又はSi基板11上のゲート酸化膜13を介して、ゲート電極(ワード線)14が形成されている。なお、ゲート電極14としては、単純なポリシリコン層のみや、抵抗を小さくするために、ポリシリコン層とWSi2 層とが積層されたいわゆるポリサイド構造、ポリシリコン層とW膜との積層構造を用いることが可能である。
【0021】
ゲート電極14上にシリコン窒化膜からなるゲートキャップ層15が形成されている。素子領域のSi基板11の表面に、ゲート電極14を挟むように、ソース/ドレイン拡散層16が形成されている。ゲート電極14及びゲートキャップ層15の積層構造の表面を覆うシリコン窒化膜17が形成されている。全面を覆うように、表面が平坦化された第1のBPSG膜18が形成されている。
【0022】
シリコン窒化膜17と第1のBPSG膜18とから側壁が構成されたコンタクトホールに、ポリシリコンからなるビット線(BL)コンタクト19,及び蓄積電極(SN)コンタクト20が埋め込み形成されている。なお、コンタクト19,20及び第1のBPSG膜の表面は平坦化され、高さが同一である。
【0023】
BLコンタクト19上に、BLコンタクトプラグ21が形成されている。SNコンタクト20上に、SNコンタクトプラグ22が形成されている。BLコンタクトプラグ21及びSNコンタクトプラグ22は、バリアメタルとしてのTiN層23上にTi層24が積層された構造である。なお、Ti層の変わりにW層を用いることも可能である。BLコンタクトプラグ21及びSNコンタクトプラグ22の側面にシリコン窒化膜(Si34)25が形成されている。
【0024】
全面を覆う第2のBPSG膜26が形成されている。第2のBPSG膜26に形成されたBLコンタクトプラグ21に接続する溝にビット線27及びシリコン窒化膜28が積層されている。
【0025】
第2のBPSG膜上にSNコンタクトプラグ22に接続する蓄積電極29が形成されている。第2のBPSG膜26上の蓄積電極29が形成されていない領域にシリコン窒化膜30が形成されている。蓄積電極29の表面を覆う(Ba,Sr)TiO3 膜31が形成されている。そして、全面にプレート電極32が形成されている。
【0026】
本実施形態のDRAMによれば、高抵抗であるSNコンタクトプラグのバリアメタル材をメタルプラグ材の底面のみに自己整合的に形成できるので工程の簡略化、プラグ抵抗の低減が実現できる。
【0027】
次に、図1に示したDRAMメモリセルの製造方法について説明する。図2〜図14は、本発明の第1の実施形態に係わるスタック型DRAMのメモリセルの製造工程を示す工程図である。なお、図2〜図13において、各図の(a),(b),(c),(d)は、図1の(a),(b),(c),(d)に対応した部位を示す図である。ここでは、メモリセルにNチャネルMOSトランジスタを用いた場合について説明するが、PチャネルMOSトランジスタを用いた場合も同様である。
【0028】
先ず、図2に示すように、例えば不純物濃度5×1015cm-3程度の(100)面のp型シリコン基板11又はN型シリコン基板の表面に、nチャネルトランジスタ形成領域にはpウェル、またpチャネルトランジスタ形成領域にはnウェルを形成する(不図示)。次いで、例えば反応性イオンエッチング(RIE)を用いて、素子領域以外の領域のSi基板11に深さ0.2μm程度の溝を掘りこんだ後に、溝に絶縁膜を埋め込み、いわゆるSTI(Shallow Trench Isolation)技術を用いた素子分離層12を形成する。
【0029】
次いで、トランジスタのゲート絶縁膜として厚さ60nm程度のゲート酸化膜13を形成する。メモリセル部ではワード線となるゲート電極材14を堆積する。なお、本実施形態では説明を省いたが、抵抗を小さくするためにいわゆるポリサイド構造(例えばポリSi膜とWSi2 膜の多層膜。それぞれ50mm程度の膜厚)を用いても良いし、他の構造、例えば、単純なポリSi層のみやポリSi層とW膜を用いた積層膜構造でもよい。
【0030】
次いで、ゲート電極材14上に、後工程の自己整合工程時のエッチングストッパ層となるシリコン窒化膜(Si34)からなるゲートキャップ層15を形成する。その後、ゲートキャップ層15上のゲート電極の形成領域に、図示されないレジスト膜を形成し、続いてこのレジスト膜をマスクに用いてゲートキャップ層15を加工してレジスト膜を除去する。そして、ゲートキャップ層15をマスクとして、ゲート電極材14をパターニングすることによって、メモリセル部ではワード線となるゲート電極14を形成する。
【0031】
次いで、ゲート電極14と後に形成される低濃度の不純物拡散層(ソース/ドレイン拡散層)との耐圧を向上させるために、例えば酸素雰囲気中で1050℃100秒程度のRTO(Rapid Thermal Oxidation)法による急速熱酸化を行いSi基板11の表面にいわゆる後酸化膜(不図示)を形成する。
【0032】
図示されないレジスト膜を形成した後、このレジスト膜、ゲートキャップ層15,ゲート電極14をマスクとして、ソース/ドレイン拡散層16となるn- 型不純物拡散層をSi基板11の所望の領域の表面に、例えばイオン注入法により形成する。
【0033】
次に、全面に例えば膜厚20nm程度のシリコン窒化膜(シリコン窒化膜)17をLP−CVD法により堆積する。その後、更に全面に第1のBPSG膜18をCVD法で約500nm堆積した後、第1のBPSG膜18の表面を例えば、CMP(Chemical Mechanical Polish;化学的機械研磨)法を用いてゲートキャップ層15上での第1のBPSG膜18の膜厚が100nm程度になるように全面を研磨して平坦化する。このCMP法による第1のBPSG膜18の平坦化により、ウェハ全面がほぼ全面に渡って平坦化される。
【0034】
なお、ここでは説明を省略したが、シリコン窒化膜17を形成する前に、全面に例えば膜厚20nm程度のシリコン窒化膜(Si34)をLP−CVD法により堆積した後、シリコン窒化膜に対してRIE法によるエッチングを行い、ゲート電極の側壁部に側壁絶縁膜を形成した後、レジスト膜と側壁絶縁膜及びゲート電極とをマスクにして所望の領域にイオン法入法でn+ (又はp+ )不純物拡散層からなるソース/ドレイン拡散層を形成する事ができる。この場合、全面に再度、後にCMPを行う際のストッパ膜として、例えば20nm程度のシリコン窒化膜(シリコン窒化膜)をLP−CVD法により堆積する。
【0035】
リソグラフィを用いて第1のBPSG膜18上に形成したレジスト膜をマスクに、ソース/ドレイン拡散層16とビット線又は蓄積電極とのコンタクトをとるためのポリシリコンプラグ用のコンタクトホールを形成する。このコンタクトホールの形成には、BPSG膜のエッチングレートがシリコン窒化膜のエッチングレートに対し10倍以上早い高選択比RIEを用いて、自己整合的に行う。このようにすることによって、ゲート電極14とこの後コンタクトホールに埋め込まれるn+ 型ポリシリコンコンタクトとのショートを防ぐことができ、製品の歩留まりを向上させることができる。
【0036】
レジスト膜を除去した後、全面にリン(P+ )や砒素(As+ )等を不純物としてドーピングしたn+ 型のポリシリコン層をLP−CVD法により堆積した後、CMP法やRIEを用いたエッチバック法を用いてコンタクトホールにn+ 型のポリシリコンからなるビット線(BL)コンタクト19,蓄積電極(SN)コンタクト20を完全に埋め込み形成する。この埋め込まれたn+ 型のポリシリコンからなるコンタクト19,20は、ソース/ドレイン拡散層16と電気的に接続されている。また、BLコンタクト19は、n+ 型のBL19を素子分離層12の上に延長して、後工程のBLコンタクトプラグを形成し易いような構造とする。
【0037】
次いで、図3に示すように、まず、TiN層23を例えば5nm程度の膜厚、Ti層24(又はW膜)を400nm程度の膜厚、その上にシリコン窒化膜41を例えば50mm程度順次堆積する。
【0038】
次いで、図4に示すように、BLコンタクトプラグ形成領域とSNコンタクトプラグ形成領域を覆うレジスト膜42を形成し、このレジスト膜42をマスクにして例えばRIEにより、シリコン窒化膜41,Ti層24,TiN層23を順次エッチングし、BLコンタクトプラグ21とSNコンタクトプラグ22を同時に形成する、
このようにして、コンタクト19,20と電気的に接続するように形成されたBLコンタクトプラグ21、SNコンタクトプラグ22を同時に形成する、
ここでは、コンタクトの上に形成されたメタルプラグ層の構造として、TiN/Tiの場合について述べたが、このほかの場合、例えば、TiN/W/TiN/Ti構造の場合でも良い。
【0039】
次いで、図5に示すように、レジスト膜42を除去した後、全面にシリコン窒化膜を例えば40nm程度CVD法を用いて堆積した後、RIEを行う事により、BL,SNコンタクトプラグの側面にシリコン窒化膜25を残置する。
【0040】
次いで、図6に示すように、層間絶縁膜として例えば第2のBPSG膜26を全面にCVD法により例えば400nm程度堆積し、CMP法を用いてウェハ全面の平坦化を行なう。この時のプラグ21,22表面のシリコン窒化膜41をCMP時のストッパ層として用いても良い。
【0041】
次いで、図7に示すように、第2のBPSG膜26上にビット線が形成される領域が開口するレジスト膜43を形成した後、第2のBPSG膜26に対してRIEを行って、第2のBPSG膜26に深さ300nm程度のライン状の第1の溝44を形成する。
【0042】
この時、BL,SNコンタクトプラグ21,22の表面及び側面はシリコン窒化膜25,41により覆われているので、第1の溝44を形成する場合のエッチングから保護されることになる。このように、BPSG膜とエッチングストッパとなるシリコン窒化膜(シリコン窒化膜)の間でエッチングレートが例えば10程度以上異なるような高選択比RIE法(BPSG膜のエッチングレートがシリコン窒化膜に比べて10倍以上速い)を用いる事がポイントである。
【0043】
次いで、図8に示すように、レジスト膜43を除去した後に、再度BLコンタクトプラグ領域に開口を有するレジスト膜45を形成し、BLコンタクトプラグ21上のシリコン窒化膜41とBLコンタクトプラグ21上部側面のシリコン窒化膜25をRIE法により除去する。この時、BLコンタクトプラグ21のTi層24の上部を多少エッチングしても良い。Ti層24の上部をエッチングすると、後の工程で形成するビット線とBLコンタクトプラグ21との接続領域におけるビット線の膜厚を厚く出来るため、ビット線の配線抵抗を低減できる。
【0044】
次いで、図9に示すように、レジスト膜45を除去した後に、W膜/TiN層/Ti膜等の積層膜(図中ではW膜のみを表示)を層間絶縁膜中に形成した第1の溝44を含む全面に堆積し,CMP法などにより第1の溝44にビット線となるW膜/TiN層/Ti膜等の積層膜を埋め込み形成する、いわゆる、CMP法を用いたダマシン工程(damascene工程)を用いてビット線27を形成する。
【0045】
この時図示はしていないが、ビット線を埋め込み形成する前に、周辺回路部のコンタクト領域にも通常のリソグラフィ法とRIE法を用いてコンタクトホールとメモリセル部のビット線を形成する時に用いる溝をあらかじめ形成しておく。この様にすると、ビット線コンタクトとビット線部にW膜等をダマシン工程で埋め込み形成する場合に、周辺回路部のコンタクトにもソース/ドレイン拡散層と電気的に接続されたコンタクトプラグ(図示せず)を同時に形成することができる。
【0046】
次いで、図10に示すように、ビット線27の表面を例えば70mm程度エッチング除去し、第2の溝47を形成する。次いで、図11に示すように、全面にシリコン窒化膜を200mm程度堆積し、CMP法やCDE(Chemical Dry Etching)法等によりビット線27上にのみシリコン窒化膜28を選択的に埋め込み形成する。
【0047】
次いで、図12に示すように、例えば全面に20mm程度の膜厚のシリコン窒化膜(Si34)30と例えば400nm程度の膜厚のTEOS酸化膜48とを順次堆積する。次に、蓄積電極の形成領域が開口となっているレジスト膜49を形成し、RIE法を用いて、TEOS酸化膜48とシリコン窒化膜30,SNコンタクトプラグ22の表面のシリコン窒化膜41,25とをエッチングしてホール50を形成し、第2のBPSG膜26中に埋め込み形成されているSNコンタクトプラグ22の上部表面及び上部側面の一部を露出させる。
【0048】
この時、TEOS酸化膜48、シリコン窒化膜30のエッチング角度は、ほぼ90度になるように注意する。このエッチングはTEOS酸化膜48のエッチングをシリコン窒化膜30をストッパ層としてRIE法で行い、次にシリコン窒化膜30及びSNコンタクトプラグ22の上面及び側面のシリコン窒化膜41,25を選択的にエッチングするような条件に変更してエッチングを行うと第2のBPSG膜26やシリコン窒化膜25を過度にオーバーエッチングすることなく蓄積電極パターンのホールを形成し、SNコンタクトプラグ22の上部表面を露出できる。この時、周辺回路部等のエッチングしたくない領域はレジスト膜(図示せず)で覆っておけばエッチングされない。
【0049】
次いで、図13に示すように、レジスト膜49を除去した後、露出したSNコンタクトプラグ22の上部表面及び側面上部を含む全面に蓄積電極材料として例えばペロブスカイト結晶構造を持った金属酸化膜;SrRuO3 (以下SROと記す)を例えば400nm程度の膜厚、スパッタリング法或いはプラズマCVD法により堆積した後、例えばCMP法やエッチバック法を用いて表面を平坦化し、蓄積電極29を埋め込み形成する。ここでは蓄積電極材料としてSRO膜の例を述べだが、この他にもRu膜やRuO2 膜、Pt膜、Re膜、Os膜、Pd膜、Rh膜、Au膜、Ir膜、IrO2 膜やそれらの積層膜などでも良い。また、各金属膜のグレインを他の金属膜、例えばRhやIrでスタッフィングしたような膜でも良い。
【0050】
ここでは、蓄積電極パターンのホールに全面に埋め込み形成する例を述べたが、ホールの内壁に例えば40nm程度の膜厚で薄く電極膜を形成するようにしても良い。
【0051】
次いで、図14に示すように、TEOS酸化膜48を、例えばNH4F液等のウエット・エッチング溶液を用いて選択的に除去する。この時、ウエット・エッチングは、TEOS酸化膜48の下層のシリコン窒化膜30でエッチングをストップさせる事ができる。例えば周辺回路部のようにTEOS酸化膜48を除去したくない領域をレジスト(図示せず)で覆ってウエット・エッチングを行っても良い。このようにすると、メモリセル部の蓄積電極表面の高さとメモリセル部以外のTEOS酸化膜の表面の高さがそろい、蓄積電極の有無によるメモリセル領域とメモリセル領域以外の領域の段差をほぼなくす事ができる。スタック構造のDRAM製造工程においては、段差を小さくする事が重要な工程である。
【0052】
(Ba,Sr)TiO3 膜31を例えばCVD法で全面に20nm程度の膜厚になるように堆積し,さらに必要であれば(Ba,Sr)TiO3 膜の結晶化アニールを行う。さらに,CVD法で全面に40mm程度のSrRuO3 膜を堆積し、キャパシタのプレート電極(上部電極)32を形成する。
【0053】
更に全面にPL(プレート)キャップ膜(図示せず)として例えばTiN層等を50nm程度の膜厚例えばスパッタ法等で形成する。その後、プレート電極32とPLキャップ膜を通常のリソグラフィ法とRIE法などを用いてパターニングする(図示せず)。この時、周辺回路領域等のようにプレート電極が無い領域とメモリセル領域の間に段差が発生することになる。
【0054】
ここで、プレート電極32としてSRO膜の代わりに、例えば、RuO2 膜、Ru膜、Pt膜、Re膜、Ir膜、Os膜、Pd膜、Rh膜、Au膜等の貴金属類導電膜またはそれらの金属酸化膜、SRO膜以外のペロブスカイト型の導電性金属酸化膜等を用いる事も可能である。さらに、全面に例えばプラズマTEOS酸化膜などの層間絶縁膜(図示せず)を膜厚400mm程度CVD法で堆積し、CMP法で再び全面が平坦になるように平坦化を行う。これにより、メモリセル部と周辺回路部等の段差をなくす事ができる。
【0055】
この後、図示はしないが、所望の領域にコンタクト孔を開孔し、メタル配線を形成する。もし、必要ならば複数層のコンタクト、メタル配線層を形成し、パッシベーション膜を形成して、パッドコンタクトを開けてDRAMを完成させる。
【0056】
本実施形態では、SNコンタクトプラグ22と蓄積電極29との間にバリアメタル層を省略した例を述べたが、TiN膜やTiAlN膜,TaSiN膜,WN膜などのバリアメタルを用いても良い。バリアメタル材料に求められる性質は、メタルプラグ材料(例えばW膜やTiN膜)と蓄積電極材料(SrRuO3 膜やRu膜等)の反応バリア性と耐酸化性である。この様な性質を満たす材料であればバリアメタルとして使用する事ができる。 この様に、ビット線コンタクト用プラグとSN電極用プラグを同じ材料/構造で同時に形成する事により;
1.ビット線コンタクトとSN電極コンタクトのメタルプラグを同時に形成する事により製造工程の簡略化が実現できる。
【0057】
2.SNコンタクトのメタルプラグをビット線より先に形成するため、SNコンタクトの形状をビット線の加工バラツキに影響されず形成できるため、SNコンタクトのプラグを低抵抗で安定して形成できる。
【0058】
なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態ではキャパシタ絶縁膜として(Ba,Sr)TiO3 膜の例を述べたが、高誘電率を持つ絶縁膜であれば良いので、他の膜、例えばTa25膜、Pb(Zr,Ti)O3 膜、SrTiO3 膜、NO膜(シリコン窒化膜とSiO2 膜)等でも良い。
【0059】
その他、本発明は、その要旨を逸脱しない範囲で、種々変形して実施することが可能である。
【0060】
【発明の効果】
以上説明したように本発明によれば、本発明の半導体記憶装置及び半導体記憶装置の製造方法によれば、高抵抗であるSNコンタクトプラグのバリアメタル材をメタルプラグ材の底面のみに自己整合的に形成されるので工程の簡略化、プラグ抵抗の低減が実現できる。
【図面の簡単な説明】
【図1】第1の実施形態に係わるスタック型DRAMのメモリセルの概略構成を示す図。
【図2】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図3】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図4】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図5】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図6】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図7】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図8】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図9】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図10】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図11】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図12】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図13】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図14】図1に示すスタック型DRAMのメモリセルの概略構成を示す図。
【図15】従来のスタック型DRAMのメモリセルの概略構成を示す図。
【符号の説明】
11…シリコン基板
12…素子分離層
13…ゲート酸化膜
14…ゲート電極
15…ゲートキャップ層
16…ドレイン拡散層
17…シリコン窒化膜
18…第1のBPSG膜
19…ビット線コンタクト
20…蓄積電極コンタクト
21…BLコンタクトプラグ
22…SNコンタクトプラグ
23…TiN層
24…Ti層
25…シリコン窒化膜
26…第2のBPSG膜
27…ビット線
28…シリコン窒化膜
29…蓄積電極
30…シリコン窒化膜
31…BST膜
32…プレート電極
41…シリコン窒化膜
42…レジスト膜
43…レジスト膜
44…第1の溝
45…レジスト膜
47…第2の溝
48…TEOS酸化膜
49…レジスト膜
50…ホール

Claims (5)

  1. 半導体基板上に形成されたトランジスタと、このトランジスタを覆う層間絶縁膜と、この層間絶縁膜に形成され、前記トランジスタのソース又はドレインの一方に接続するビット線コンタクトと、前記層間絶縁膜に形成され前記トランジスタのソース又はドレインの他方に接続する蓄積電極コンタクトと、前記ビット線コンタクト上に形成されたビット線コンタクトプラグと、前記蓄積電極コンタクト上に形成された蓄積電極コンタクトプラグと、前記ビット線コンタクトプラグに接続するビット線と、前記蓄積電極コンタクトプラグに接続するキャパシタの蓄積電極とを具備してなり、
    前記蓄積電極コンタクトプラグは、前記蓄積電極コンタクト上に形成された第1のバリアメタルと、この第1のバリアメタル上に形成された第1の金属電極材とを具備し、前記第1のバリアメタルは前記第1の金属電極材の底面のみに形成され、
    前記第1の金属電極材の周囲に第1の側壁絶縁膜が形成され、前記蓄積電極コンタクトプラグの上面は、前記第1の側壁絶縁膜の上面より高いことを特徴とする半導体記憶装置。
  2. 前記蓄積電極及び前記層間絶縁膜を覆うキャパシタ絶縁膜が形成され、前記キャパシタ絶縁膜上にプレート電極が形成されていることを特徴とする請求項1記載の半導体記憶装置。
  3. 前記ビット線コンタクトプラグは、前記ビット線コンタクト上に形成された第2のバリアメタルと、この第2のバリアメタル上に形成された第2の金属電極材とを具備していることを特徴とする請求項1記載の半導体記憶装置。
  4. 前記層間絶縁膜は、前記コンタクトホールが形成された第1の層間絶縁膜と、前記蓄積電極コンタクトプラグと同じ層に形成された第2の層間絶縁膜とを具備し、前記第2の金属電極材の周囲に第2の側壁絶縁膜が形成されていることを特徴とする請求項記載の半導体記憶装置。
  5. 半導体基板上にトランジスタを形成する工程と、
    前記トランジスタを覆う第1の層間絶縁膜を形成する工程と、
    第1の層間絶縁膜に前記トランジスタのソース及びドレインに接続するコンタクトを形成する工程と、
    第1の層間絶縁膜上にバリアメタル及び金属電極材を順次堆積する工程と、
    前記バリアメタル及び金属電極材をパターニングし、前記トランジスタのソース又はドレインの一方に前記コンタクトを介して電気的接続するビット線コンタクトプラグと、前記トランジスタのソース又はドレインの他方に前記コンタクトを介して電気的接続する蓄積電極コンタクトプラグとを形成する工程と、
    前記ビット線コンタクトプラグ及び前記蓄積電極コンタクトプラグのそれぞれの側面に側壁絶縁膜を形成する工程と、
    第1の層間絶縁膜上に、前記ビット線コンタクトプラグ及び前記蓄積電極コンタクトプラグとを絶縁分離する第2の層間絶縁膜を形成する工程と、
    第2の層間絶縁膜に前記ビット線コンタクトプラグに接続する溝を形成する工程と、
    前記溝内にビット線を埋込形成する工程と、
    前記ビット線の表面に絶縁材を形成する工程と、
    第2の層間絶縁膜上に前記蓄積電極コンタクトプラグに接続する蓄積電極を形成する工程と、
    前記蓄積電極の表面を覆う誘電体膜を形成する工程と、
    前記誘電体膜の表面を覆う上部電極を形成することを特徴とする半導体記憶装置の製造方法。
JP33660699A 1999-11-26 1999-11-26 半導体記憶装置及びその製造方法 Expired - Fee Related JP4053702B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33660699A JP4053702B2 (ja) 1999-11-26 1999-11-26 半導体記憶装置及びその製造方法
US09/718,389 US6388282B1 (en) 1999-11-26 2000-11-24 Semiconductor memory device and method of manufacture the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33660699A JP4053702B2 (ja) 1999-11-26 1999-11-26 半導体記憶装置及びその製造方法

Publications (3)

Publication Number Publication Date
JP2001156269A JP2001156269A (ja) 2001-06-08
JP2001156269A5 JP2001156269A5 (ja) 2005-09-02
JP4053702B2 true JP4053702B2 (ja) 2008-02-27

Family

ID=18300905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33660699A Expired - Fee Related JP4053702B2 (ja) 1999-11-26 1999-11-26 半導体記憶装置及びその製造方法

Country Status (2)

Country Link
US (1) US6388282B1 (ja)
JP (1) JP4053702B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382730B1 (ko) * 2000-12-14 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
KR20030002896A (ko) * 2001-06-30 2003-01-09 주식회사 하이닉스반도체 캐패시터의 제조 방법
US7045844B2 (en) * 2002-06-21 2006-05-16 Micron Technology, Inc. Memory cell and method for forming the same
US6756625B2 (en) * 2002-06-21 2004-06-29 Micron Technology, Inc. Memory cell and method for forming the same
KR100481173B1 (ko) * 2002-07-12 2005-04-07 삼성전자주식회사 다마신 비트라인공정을 이용한 반도체 메모리장치 및 그의제조방법
US7230292B2 (en) * 2003-08-05 2007-06-12 Micron Technology, Inc. Stud electrode and process for making same
US20110042722A1 (en) * 2009-08-21 2011-02-24 Nanya Technology Corp. Integrated circuit structure and memory array
KR101096835B1 (ko) * 2010-01-08 2011-12-22 주식회사 하이닉스반도체 반도체 소자의 형성 방법
KR20160013765A (ko) * 2014-07-28 2016-02-05 삼성전자주식회사 반도체 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749776B2 (ja) * 1997-02-28 2006-03-01 株式会社東芝 半導体装置
US6278152B1 (en) 1997-06-27 2001-08-21 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JPH1117116A (ja) 1997-06-27 1999-01-22 Toshiba Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US6388282B1 (en) 2002-05-14
JP2001156269A (ja) 2001-06-08

Similar Documents

Publication Publication Date Title
JP5646798B2 (ja) 半導体集積回路装置の製造方法
US6737694B2 (en) Ferroelectric memory device and method of forming the same
US6909134B2 (en) Ferroelectric memory device using via etch-stop layer and method for manufacturing the same
JP4809961B2 (ja) 半導体装置及びその製造方法
US20050121713A1 (en) Semiconductor device and method for manufacturing the same
JP4061618B2 (ja) 強誘電体メモリ素子およびその製造方法
US6677630B1 (en) Semiconductor device having ferroelectric film and manufacturing method thereof
US20100052021A1 (en) Semiconductor memory device
JP3768102B2 (ja) 半導体記憶装置及びその製造方法
US6696721B2 (en) Semiconductor device having a three-dimensional capacitor such as a stack-type capacitor
JP3810349B2 (ja) 半導体記憶装置及びその製造方法
JP4053702B2 (ja) 半導体記憶装置及びその製造方法
KR19990035652A (ko) 디램 장치의 제조 방법
JP4956355B2 (ja) 半導体装置の製造方法
US6964899B2 (en) Semiconductor device and method of manufacturing the same
KR20030002864A (ko) 반도체소자의 제조방법
US6855565B2 (en) Semiconductor device having ferroelectric film and manufacturing method thereof
JP3871618B2 (ja) 半導体記憶装置及びその製造方法
JP2001345434A (ja) 半導体装置
US20240107751A1 (en) Semiconductor memory device
JP2010141143A (ja) 半導体装置及びその製造方法
JP2004179497A (ja) 半導体装置および半導体装置の製造方法
JPH1117116A (ja) 半導体装置およびその製造方法
JP4441186B2 (ja) 半導体装置の製造方法
JP2001217407A (ja) 半導体集積回路装置およびその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees