JP3795634B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP3795634B2
JP3795634B2 JP15846497A JP15846497A JP3795634B2 JP 3795634 B2 JP3795634 B2 JP 3795634B2 JP 15846497 A JP15846497 A JP 15846497A JP 15846497 A JP15846497 A JP 15846497A JP 3795634 B2 JP3795634 B2 JP 3795634B2
Authority
JP
Japan
Prior art keywords
insulating film
forming
gate electrode
opening
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15846497A
Other languages
English (en)
Other versions
JPH1070191A (ja
Inventor
真理子 土生
一正 須之内
徹 尾崎
正身 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15846497A priority Critical patent/JP3795634B2/ja
Priority to US08/878,208 priority patent/US6078073A/en
Publication of JPH1070191A publication Critical patent/JPH1070191A/ja
Priority to US09/585,627 priority patent/US6483138B1/en
Application granted granted Critical
Publication of JP3795634B2 publication Critical patent/JP3795634B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、SAC(Self-Aligned Contact)法により形成された高集積な半導体装置とその製造方法に関し、特に微細なMOS(metal oxide semiconductor )トランジスタを有するDRAMなどの半導体装置の製造方法に関する。
【0002】
【従来の技術】
1つのMOSトランジスタと1つのキャパシタとによりメモリセルを構成するDRAM(Dynamic Random Access Memory)に代表される高集積半導体装置においては、最小加工寸法を微細化することにより、集積度を上げてきた。しかし、さらなる高集積化のために、パターニング間の合わせ精度に影響を受けずに微細な素子を形成することを可能とする技術として、さまざまな自己整合技術(self-align technology )が開発されてきた。
【0003】
例えば、MOSトランジスタのソースまたはドレイン拡散層と配線層(wiring layer)とを接続するコンタクトホールを、ゲート電極に自己整合的に形成する方法を、図28(a)〜(d)を用いて説明する。
【0004】
半導体基板100上に、ゲート絶縁膜1と、例えば多結晶シリコン膜等のゲート電極材料2、酸化膜3、窒化膜等の絶縁膜4を形成する。この後、例えばリソグラフィー法とRIE(Reactive Ion Etching)等の異方性エッチング技術を用いて、絶縁膜4と酸化膜3とゲート電極材料2をエッチングして、ゲート電極を形成する。さらに、例えば熱酸化等により後酸化膜3’を形成し、例えばイオン注入法によりヒ素等の不純物を基板100に添加して、ソースまたはドレイン拡散層8を形成する。図28(a)は、この段階における半導体装置の断面を示す。
【0005】
次に、図28(b)に示されるように、加工されたゲート電極を覆うように、例えば窒化膜等の絶縁膜6を堆積する。
【0006】
この後、例えばRIE等の異方性エッチング技術を用いて、絶縁膜6およびゲート酸化膜1をエッチングして基板100を露出し、ゲート電極2および絶縁膜4の側壁に絶縁膜6を残存させる。さらに、例えばイオン注入法によりヒ素等の不純物を基板100に添加して、ソースまたはドレイン拡散層9を形成する。図28(c)は、この段階における半導体装置の断面を示す。ここで、拡散層8,9により構成される形状のソースまたはドレイン構造は、一般にLDD構造と呼ばれ、トランジスタの信頼性を向上させる目的で形成される。
【0007】
さらに、層間絶縁膜10を堆積する。次に、レジスト膜11を塗布し、このレジスト膜11にコンタクトホール領域を含みかつゲート電極2にオーバーラップするような開口を形成する。例えばRIE等の異方性エッチング技術により、このレジスト膜11をマスクとして層間絶縁膜10をエッチングして基板100を露出し、コンタクトホール12を形成する。図28(d)は、この段階における半導体装置の断面を示す。
【0008】
この後、レジスト膜11を除去し、導電性材料を堆積し、拡散層8、9に接続する配線層を形成する。
【0009】
ここで、コンタクトホール12を形成する際、層間絶縁膜10のエッチング速度が絶縁膜4,6のエッチング速度よりも早くなるようにエッチング条件を設定することにより、図28(d)に示すように、コンタクトホール12のパターンがゲート電極2にオーバーラップしている場合にも、これらの絶縁膜4、6がエッチングされることを防止することができる。このため、ゲート電極2が絶縁膜4、6により覆われた構造となり、図示せぬ配線層とゲート電極2との短絡を防止することが可能となる。このように、コンタクトホール12のパターンとゲート電極2のパターンの合わせ精度に関係なく、配線層とゲート電極2との短絡を防止する技術を自己整合技術という。
【0010】
しかし、図28(d)に示すように、高密度の半導体装置では、コンタクトホール12が隣合うゲート電極の間の領域に形成されている。このため、近年の半導体装置の高集積化に伴い、ゲート電極間の距離が接近することにより、コンタクトホールの面積を確保することが困難となり、コンタクト抵抗値が増大するという問題がある。
【0011】
これに対して、コンタクト抵抗値を低減するために、側壁絶縁膜6の膜厚を薄くする方法がある。しかし、従来の製造方法では、側壁絶縁膜6をマスクとして拡散層9を形成するためのイオン注入を行うために、側壁絶縁膜6の膜厚を薄くすると、図29に示すように、拡散層9がゲート電極2の下方に深く拡散して、トランジスタの実効チャネル長Lが短縮されてしまう。このため、トランジスタ動作の制御が困難になる等の問題が発生する。
【0012】
【発明が解決しようとする課題】
このように、従来、ゲート電極と自己整合的にコンタクトホールを形成する際に、半導体装置の高集積化に伴いコンタクトホールの面積を確保することが困難となり、コンタクト抵抗が増大するという問題がある。また、このようなコンタクト抵抗の増大を抑制するために、この側壁絶縁膜の膜厚を薄くした場合には、この側壁絶縁膜をマスクとして形成されるソースまたはドレイン拡散層がゲート長方向に深く拡散して実効ゲート長が短くなり、トランジスタの制御性が劣化するという問題がある。
【0013】
この発明は上記実情に鑑みてなされたものであり、ゲート電極に自己整合的に形成されたコンタクトホールの面積を確保することにより、配線層と拡散層のコンタクト抵抗を低減することが可能で、制御性に優れた微細なトランジスタを有する高集積な半導体装置の製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
この発明に係る第1の半導体装置の製造方法においては、半導体基板上に形成されたゲート絶縁膜上に、上部に第1の絶縁膜が積層された複数のゲート電極を所定のゲート電極間隔で形成する工程と、このゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、前記ゲート電極の側壁に側壁絶縁膜を形成する工程と、前記側壁絶縁膜を覆うように、第2の絶縁膜を形成する工程と、前記側壁絶縁膜上の第2の絶縁膜をマスクとしてイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、前記半導体基板の上に層間絶縁膜を形成する工程と、前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜および前記側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記層間絶縁膜および前記第2の絶縁膜を、前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記露出された半導体基板の表面と接続された配線層を形成する工程とを具備することを特徴とする。
【0016】
又、前記第1の半導体装置の製造方法では、前記第2の絶縁膜を形成する工程により前記第2絶縁膜が形成された後、少なくとも前記第2の拡散層が形成される領域上の前記第2の絶縁膜を異方性エッチングによりエッチングする工程を具備するようにしても良い。
【0017】
前記第2の絶縁膜を形成する工程は、前記ゲート絶縁膜、前記第1の絶縁膜、及び前記側壁絶縁膜の露出面全面に前記第2の絶縁膜を形成する工程を含み、前記第2の拡散層を形成する工程は、前記第2の絶縁膜を通してイオン注入を行い、前記第2の拡散層を形成する工程を含むようにしても良い。
【0018】
前記第1の半導体装置の製造方法は、前記第2の絶縁膜を形成するに先立ち、前記ゲート電極を覆うように第3の絶縁膜を全面に形成する工程を具備し、前記開口部を形成する工程は、前記層間絶縁膜及び前記第2の絶縁膜を、これらの絶縁膜に対するエッチング速度が前記第3の絶縁膜に対するエッチング速度より大きくなるようにエッチングして前記ゲート電極に自己整合的に前記第3の絶縁膜を露出する開口部を形成する工程を含むようにしても良い。
【0019】
この発明に係る第2の半導体装置の製造方法においては、半導体基板上に形成されたゲート絶縁膜上に、上部に第1の絶縁膜が積層された複数のゲート電極を所定のゲート電極間隔で形成する工程と、このゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、前記第1の絶縁膜の側面と上面、及び前記ゲート電極の側面に、第2の絶縁膜を形成する工程と、前記ゲート電極の側壁の第2の絶縁膜をマスクとしてイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、前記半導体基板上の全面に層間絶縁膜を形成する工程と、前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、
前記層間絶縁膜および前記第2の絶縁膜を、前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記開口部の側壁および前記ゲート電極の側壁に第3の絶縁膜を形成する工程と、前記第3の絶縁膜が側壁に形成された前記開口部に導電材料を形成する工程とを具備することを特徴とする。
【0020】
前記第2の半導体装置の製造方法においては、前記第1の拡散層を形成する工程により前記第1の拡散層が形成された後、前記第2の絶縁膜を形成する工程により前記第2の絶縁膜が形成される前に、前記ゲート電極の側壁に側壁絶縁膜を形成する工程を具備するようにしても良い。
【0022】
前記第2の半導体装置の製造方法においては、前記第2の絶縁膜を形成する工程により前記第2絶縁膜が形成された後、少なくとも前記第2の拡散層が形成される領域上の前記第2の絶縁膜を異方性エッチングによりエッチングする工程を具備するようにしても良い。
【0023】
前記第2の絶縁膜を形成する工程は、前記ゲート絶縁膜、及び前記第1の絶縁膜の露出面全面に前記第2の絶縁膜を形成する工程を含み、前記第2の拡散層を形成する工程は、前記第2の絶縁膜を介してイオン注入を行い、前記第2の拡散層を形成する工程を含むようにしても良い。
【0024】
前記第2の半導体装置の製造方法においては、前記第2の絶縁膜を形成するに先立ち、前記ゲート電極を覆うように第3の絶縁膜を全面に形成する工程を具備し、前記開口部を形成する工程は、前記層間絶縁膜及び前記第2の絶縁膜を、エッチングして前記ゲート電極と前記第3の絶縁膜を露出する工程を含むようにしても良い。
【0025】
この発明に係る第3の半導体装置の製造方法においては、半導体基板上に形成されたゲート絶縁膜上に、上部に第1の絶縁膜が積層された複数のゲート電極を所定のゲート電極間隔で形成する工程と、このゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、前記ゲート電極の側壁に第1の側壁絶縁膜を形成する工程と、前記第1の絶縁膜および前記第1の側壁絶縁膜を覆うように、第2の絶縁膜を形成する工程と、前記第2の絶縁膜上の、前記ゲート電極の側壁に相当する部分に第2の側壁絶縁膜を形成する工程と、前記第2の側壁絶縁膜をマスクとしてイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、前記半導体基板の上に層間絶縁膜を形成する工程と、前記層間絶縁膜、前記第2の絶縁膜、および前記第2の側壁絶縁膜のエッチング速度が前記第1の絶縁膜および第1の側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記層間絶縁膜、前記第2の絶縁膜、及び前記第2の側壁絶縁膜を選択的にエッチングして前記ゲート電極に自己整合的に開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記開口部に導電材料を形成する工程とを具備することを特徴とする。
【0026】
前記第3の半導体装置の製造方法においては、前記第2の絶縁膜を形成する工程により前記第2絶縁膜が形成された後、少なくとも前記第2の拡散層が形成される領域上の前記第2の絶縁膜をエッチングする工程を具備するようにしても良い。
【0027】
前記第2の絶縁膜を形成する工程は、前記ゲート絶縁膜、前記第1の絶縁膜、及び前記第1の側壁絶縁膜の露出面全面に前記第2の絶縁膜を形成する工程を含み、前記第2の拡散層を形成する工程は、前記第2の絶縁膜を通してイオン注入を行い、前記第2の拡散層を形成する工程を含むようにしても良い。
【0028】
前記第3の半導体装置の製造方法においては、前記第2の絶縁膜を形成するに先立ち、前記ゲート電極を覆うように第3の絶縁膜を全面に形成する工程を具備し、前記開口部を形成する工程は、前記層間絶縁膜及び前記第2の絶縁膜を、エッチングして前記ゲート電極に自己整合的に前記第3の絶縁膜を露出する開口部を形成する工程を含むようにしても良い。
【0029】
この発明に係る第4の半導体装置の製造方法においては、半導体基板上に形成されたゲート絶縁膜上の第1領域及び第2領域に、上部に第1の絶縁膜が積層されたゲート電極を、前記第1領域におけるゲート電極間隔が前記第2領域におけるそれより狭くなるように形成する工程と、前記ゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、前記ゲート電極を覆うように、第2の絶縁膜を形成する工程と、前記側壁絶縁膜上の第2の絶縁膜の内、前記ゲート電極の側面に形成された部分をマスクとして、前記第2領域のみにイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、前記半導体基板の上に層間絶縁膜を形成する工程と、前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第1領域の、前記層間絶縁膜および前記第2の絶縁膜を、前記第1領域の前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に第1の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第2領域の、前記層間絶縁膜および前記第2の絶縁膜を選択的にエッチングして隣接するゲート電極間の領域に第2の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記開口部に導電材料を形成する工程とを具備することを特徴とする。
【0030】
前記第1の開口部を形成する工程と前記第2の開口部を形成する工程は、同時に行われ、これにより前記第1の開口部と前記第2の開口部が同時に形成されるようにしても良い。
【0031】
前記第4の半導体装置の製造方法においては、所望の領域上の前記第2絶縁膜を、異方性エッチングによりエッチングする工程を具備するようにしても良い。
【0032】
この発明に係る第5の半導体装置の製造方法においては、半導体基板上に形成されたゲート絶縁膜上の第1領域及び第2領域に、上部に第1の絶縁膜が積層されたゲート電極を、前記第1領域におけるゲート電極間隔が前記第2領域におけるそれより狭くなるように形成する工程と、前記ゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、前記ゲート電極の側壁に第1の側壁絶縁膜を形成する工程と、前記第1領域上のゲート電極間がほぼ埋まるように、第2の絶縁膜を形成する工程と、前記第2領域における、前記ゲート電極の側壁に相当する部分の前記第2の絶縁膜上に第2の側壁絶縁膜を形成する工程と、前記第2の側壁絶縁膜をマスクとして、前記第2領域にイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、前記半導体基板の上に層間絶縁膜を形成する工程と、前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜および前記第1の側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第1領域の、前記層間絶縁膜および前記第2の絶縁膜を、前記第1領域の前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に第1の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜、前記第1の側壁絶縁膜、および前記第2の側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第2領域の、前記層間絶縁膜および前記第2の絶縁膜を選択的にエッチングして隣接するゲート電極間の領域に第2の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、前記第1及び第2の開口部に導電材料を形成する工程とを具備することを特徴とする。
【0033】
前記第1の開口部を形成する工程と前記第2の開口部を形成する工程は、同時に行われ、これにより前記第1の開口部と前記第2の開口部が同時に形成されるようにしても良い。
【0043】
このような発明により、ゲート電極に自己整合的に形成されたコンタクトホールの面積を確保することにより、配線層と拡散層のコンタクト抵抗を低減することが可能で、制御性に優れた微細なトランジスタを有する高集積な半導体装置の製造方法を提供することができる。
【0044】
又、このような発明をDRAMに適用することにより、周辺回路等を構成する微細なトランジスタの実効チャネル長を確保し、さらに、メモリセル等のパターン密度の高い領域においてコンタクトホールの面積を確保することが可能となる。
【0045】
【発明の実施の形態】
以下、図面を参照してこの発明の実施形態を説明する。ここで、第1〜第7実施形態では、DRAMに代表される半導体装置の周辺回路部に係る半導体装置の製造方法を説明し、第8〜第11実施形態では、前記半導体装置の周辺回路部とセル部とを対比させて半導体装置の製造方法を説明する。尚、同一の構成要素には同じ参照符号を付し、詳細な説明は省略する。
【0046】
先ず、この発明の第1実施形態を説明する。図1(a)〜(d),図2(a)は、この発明の第1実施形態による半導体装置の製造方法を示す断面図である。
【0047】
例えばp型シリコン基板である半導体基板100上に、例えば熱酸化法により酸化膜(SiO2)等のゲート絶縁膜1を形成する。このゲート絶縁膜1に、例えば多結晶シリコン膜等のゲート電極材料を堆積し、必要であれば例えばイオン注入法により燐またはヒ素等の不純物をこのゲート電極材料に添加する。次に、例えば熱酸化法等によりゲート電極材料上に酸化膜3を形成し、さらに例えば窒化膜等の絶縁膜4を酸化膜3上に堆積する。
【0048】
この後、例えばリソグラフィー法とRIE法などの異方性エッチング技術とを用いて、絶縁膜4と酸化膜3とゲート電極材料とをエッチングして、ゲート電極2を形成する。さらに、例えば熱酸化法等により後酸化膜3’をゲート電極2の側面に形成する。例えばイオン注入法によりヒ素等の不純物を基板100に添加して、ソースまたはドレイン拡散層8を形成する。
【0049】
次に、加工されたゲート電極2を覆うように、例えば窒化膜等の絶縁膜6を堆積する。この後、例えばRIE等の異方性エッチング技術を用いて絶縁膜4およびゲート絶縁膜1上の絶縁膜6を除去し、ゲート電極2および絶縁膜4の側壁に絶縁膜6を残存させて、側壁絶縁膜6を形成する。図1(a)は、この段階における半導体装置の断面を示す。ここまでの工程は、従来と同様の工程である。
【0050】
次に、従来と異なり、例えばBPSG(Borophosphosilicate glass )膜等の絶縁層7を例えば50nm程度の膜厚だけ堆積する。さらに、例えばヒ素等の不純物を、この絶縁層7を通してイオン注入して、基板100に添加する。この後、適宜熱処理を行い、拡散層9を形成する。図1(b)は、この段階における半導体装置の断面を示す。尚、前記絶縁層7は、この第1実施形態においては、ゲート間スペースを埋めない程度の厚さで堆積される。
【0051】
このイオン注入の際、ゲート電極2の側壁部分では絶縁層7の垂直方向の厚さが厚いため、この側壁部分がマスクとなり、不純物はゲート電極2からある距離を隔てた領域にイオン注入される。一般に、この距離は絶縁層7の堆積膜厚にほぼ比例するため、絶縁層7の膜厚を適切に設定することにより、拡散層9の領域端とゲート電極2との間の距離dを調節することが可能となる。また、絶縁層7を通過して基板100に不純物が到達するように、絶縁層7の膜厚に応じてイオン注入の加速電圧を適切に設定する必要がある。
【0052】
次に、例えばBPSG等の層間絶縁膜10を堆積し、必要であれば熱処理等により層間絶縁膜10を平坦化する。図1(c)は、この段階における半導体装置の断面を示す。前述の拡散層9を形成するための熱拡散工程を、例えばこの平坦化の熱工程等と同時に行うことも可能である。
【0053】
この後、レジスト膜11を塗布し、レジスト膜11に開口を形成する。例えばRIE等の異方性エッチング技術により、このレジスト膜11をマスクとして層間絶縁膜10および絶縁層7をエッチングして、コンタクトホール12を形成する。図1(d)は、この段階における半導体装置の断面を示す。
【0054】
この時、層間絶縁膜10および絶縁層7のエッチング速度が絶縁膜4および側壁絶縁膜6のエッチング速度よりも早くなるようにエッチング条件を設定する。その結果、図1(d)に示すように、コンタクトホール12をゲート電極2に対して自己整合的に形成することができる。さらに、層間絶縁膜10および絶縁層7のエッチング速度がゲート絶縁膜1のエッチング速度よりも早くなるようにエッチング条件を設定する。その結果、基板100がエッチングされて損傷が生じ、例えばリーク電流が増大する等の問題を防止することができる。これらの条件を満足する絶縁膜材料として、例えば絶縁膜4および側壁絶縁膜6として窒化膜を、絶縁層7および層間絶縁膜10としてBPSG膜を用いることができる。
【0055】
また、絶縁層7と層間絶縁膜10とを例えばBPSG等の同一の絶縁膜材料を用いて形成することにより、エッチング条件を容易に設定することが可能となる。
【0056】
この後、例えばNH4F等を用いたウェットエッチングによりコンタクトホール12領域のゲート酸化膜1を除去して基板100を露出する。次に、例えばタングステン等の導電性材料を用いて配線層13を形成する。このようにして、図2(a)に示すような半導体装置が完成する。
【0057】
このように、本実施形態では、ソースまたはドレイン拡散層9を形成する前に絶縁層7を堆積し、この絶縁層7の加工を行わずに、絶縁層7を通して基板100に不純物をイオン注入することに特徴がある。また、コンタクトホール12を形成する時に、このイオン注入のマスクとして使用された絶縁層7を層間絶縁膜10と共にエッチングして、コンタクトホール12領域の絶縁層7を除去することに特徴がある。
【0058】
このように、本実施形態では、絶縁層7の膜厚を適切に設定することにより、拡散層9とゲート電極2との間の距離dを調節して、トランジスタの実効チャネル長を確保することができ、トランジスタの性能の劣化を防止することができる。
【0059】
また、コンタクトホール12を形成する時に、コンタクトホール12領域の絶縁層7を除去することにより、コンタクトホール12の面積を確保することができるため、コンタクト抵抗の増加を防止することが可能となる。
【0060】
従来は、ゲート電極2の側壁に形成された側壁絶縁膜6をマスクとしてイオン注入を行い、この側壁絶縁膜6を除去せずに残存させていた。このため、実効チャネル長を確保するために側壁絶縁膜6の膜厚を厚くすると、コンタクトホール12の面積が縮小されてコンタクト抵抗が増大し、コンタクトホール12の面積を確保するために側壁絶縁膜6の膜厚を薄くすると、拡散層9がゲート電極2の下方に深く拡散して実効チャネル長が縮小されてしまうという問題があった。これに対して、本実施形態の製造方法によれば、イオン注入のマスクとして使用される絶縁層7をコンタクトホールを形成する時に除去するため、実効チャネル長を確保するために厚い絶縁層7を形成した場合にもコンタクトホールの面積が縮小されることはない。このようにして、実効チャネル長とコンタクト面積の両者を十分に確保する構造を実現することができる。
【0061】
また、絶縁層7と層間絶縁膜10を同一の材料を用いて形成する場合には、コンタクトホール12を形成する時に、1層の層間絶縁膜が形成されている場合と同様にエッチングを行うことができる。そのため、エッチング条件を容易に設定することができ、従来の製造方法に比べて、工程が複雑になることはない。
【0062】
さらに、コンタクトホール12を開口する時に、絶縁層7および層間絶縁膜10のエッチング速度が、絶縁膜4および側壁絶縁膜6およびゲート絶縁膜1のエッチング速度に比べて早くなるような材料とエッチング条件を設定する。これにより、ゲート電極2上の絶縁膜4またはゲート電極2の側壁に形成された側壁絶縁膜6がエッチングされてゲート電極2と配線層13とが短絡されることを防止し、また、基板100がエッチングにより損傷を受けて、例えばリーク電流が増大する等の問題を回避することができる。また、例えば、絶縁層7、層間絶縁膜10は、BPSG膜に限られるものではなく、PSG(Phosphosilicate glass )膜、BSG膜等を使用することも可能である。
【0063】
さらに、本実施形態では、イオン注入のマスクとなる絶縁層7を堆積した後に、基板100上の絶縁層7を除去しゲート電極2の側壁部分のみにこの絶縁層7を残存させるエッチングを行わない。このため、オーバーエッチングにより例えばゲート酸化膜1がエッチングされて基板100が露出し、さらに基板100がエッチングされて基板100が損傷を受けることはない。これにより、基板100の損傷によるリーク電流の増加を抑制することができる。
【0064】
また、実効チャネル長とコンタクトホールの面積をともに確保するために、イオン注入のマスクとしての絶縁層7をゲート電極2の側壁に残存させるエッチングを行い、イオン注入を行った後にこの絶縁層7を除去することも可能である。しかし、この場合、ゲート酸化膜1の膜厚がオーバーエッチングにより減少するため、基板100が露出する可能性が高くなる。
【0065】
これに対して、本実施形態では、絶縁層7をゲート電極2の側壁に残存させゲート絶縁膜1上の絶縁層7を除去するためのエッチングを行わないため、基板100に対する損傷を従来と同等にすることが可能である。
【0066】
また、本実施形態では、イオン注入のマスクとなる絶縁層7をゲート電極2の側壁部分のみに残存させるためのエッチングを行わないため、ゲート電極2上の絶縁膜4上に堆積された絶縁層7はエッチングされない。このため、このようなエッチングにより絶縁膜4が露出し、オーバーエッチングにより絶縁膜4の膜厚が減少したり、エッチングにより損傷等を受けることを防止することができる。その結果、絶縁膜4に対する損傷を従来と同等にすることが可能となり、絶縁膜4の絶縁性を確保し、ゲート電極2と配線層13の短絡を防止することができる。
【0067】
また、従来の製造方法では、絶縁膜6をエッチングして、イオン注入のマスクとなる側壁絶縁膜6を形成しているので、側壁絶縁膜6の幅は絶縁膜6のエッチング量のばらつきに影響されていた。このため、特に熱処理温度の低温化等により拡散層9の拡散が抑制された場合に、拡散層9とゲート電極2との間の距離dを制御性良く形成することが困難となる可能性がある。
【0068】
これに対して、本実施形態では、絶縁膜7をエッチングしてイオン注入のマスクを形成することはない。ゲート電極2の側壁に形成される絶縁膜の厚さは、堆積膜厚にのみ影響され、エッチング量のばらつきには影響されない。このため、拡散層9をゲート電極2に対して自己整合的に制御性よく形成することが可能となり、ばらつきの小さい高性能のトランジスタを製造することが可能となる。
【0069】
なお、拡散層9を形成する不純物は、拡散層8と同じ導電型を有するものであれば同種である必要はない。また、拡散層9の濃度はトランジスタの性能等により適宜設定することができる。ただし、トランジスタの短チャネル効果を抑制するためには、拡散層8と基板100との接合深さは浅い方が好ましく、接合抵抗を低減するためには、拡散層9と基板100との接合深さは深い方が好ましいため、一般に拡散層9の接合深さは拡散層8の接合深さより深いことが望ましい。また、拡散層9が横方向に拡散してトランジスタの実効チャネル長を短縮しないように、拡散層9の領域端は拡散層8の端よりもチャネル領域の外側にあることが望ましい。例えば、図3(a)に示すように、拡散層9は側壁絶縁膜6の外側のみに形成されていることが好ましい。しかし、図3(b)に示すように、拡散層9がチャネル部に向けて伸びて側壁絶縁膜6の内側まで拡散し、拡散層9と側壁絶縁膜6とが重なるように形成されていても構わない。
【0070】
ここで、図3(a)に示すように、拡散層9の領域端が側壁絶縁膜6の外側にある場合、拡散層9の領域端と側壁絶縁膜6の端との間の距離aをオフセット量と呼ぶ。このオフセット量は、不純物種、イオン注入の深さ、熱工程の温度及び時間等により決定される拡散層の拡散深さと、イオン注入のマスクである絶縁層7の膜厚と、側壁絶縁膜6の膜厚とに依存する。
【0071】
次に、この発明の第2実施形態を図4(a)〜(d)を参照して説明する。
【0072】
この第2実施形態では、拡散層9と側壁絶縁膜6との間のオフセット量aと、拡散層9の接合深さとを別個に設定することができる。
【0073】
まず、上述の第1実施形態と同様に、ゲート電極2を加工し、拡散層8を形成し、側壁絶縁膜6を形成した後に、絶縁層7を所望の膜厚だけ堆積する。絶縁膜7を堆積するまで、第1実施形態と同様である。図4(a)は、この段階における半導体装置の断面を示す。
【0074】
この後、第1実施形態と異なり、例えばRIE等の異方性エッチング技術を用いて絶縁層7をエッチングし、基板100上の絶縁層7の膜厚を薄くする。次に、例えばイオン注入法により、ヒ素等の不純物を基板100に添加する。この後、第1実施形態と同様に、適宜熱工程を行い、ソースまたはドレイン拡散層9を形成する。図4(b)は、この段階における半導体装置の断面を示す。
【0075】
さらに、第1実施形態と同様に、層間絶縁膜10、コンタクトホール12、配線層13を形成して、図4(c)に示すような半導体装置が完成する。
【0076】
このように、この第2実施形態では、ソースまたはドレイン拡散層9を形成するためのイオン注入の前に、異方性エッチング技術により絶縁層7をエッチングして、ゲート絶縁膜1上の絶縁層7の膜厚を薄くしている。この結果、イオン注入の加速電圧を高くすることなく、基板100の深い領域へも容易にイオン注入することが可能となる。一般に、拡散層9の深さを深く形成した場合には、拡散層9の横方向の拡散も大きくなる。このため、特に深い拡散層9を形成したい場合には、トランジスタの実効チャネル長が短くなることを防止するために、側壁絶縁層7の膜厚を厚くすることが望ましい。しかし、上述の第1実施形態では、絶縁層7を加工せずに、この絶縁層7を通過して不純物を基板100にイオン注入する。そのため、絶縁層7の膜厚を厚くした場合には、深い拡散層を形成するためには高加速電圧でイオン注入する必要がある。これに対して、本実施形態では、絶縁層7をエッチングして基板100上の絶縁層7の膜厚を薄くすることにより、深いイオン注入を容易に行うことができる。さらに、異方性エッチング技術を用いているため、ゲート電極2の側壁部分に残存する絶縁層7の膜厚の減少を防止できる。このように、本実施形態では、ゲート電極2の側壁部分には膜厚の厚い絶縁層7を残存させながら、基板100上の絶縁層7を薄くすることができ、所望の深さとオフセット量を有する拡散層9を形成することが可能となる。すなわち、拡散層9の深さとゲート電極に対するオフセット量dとを互いに無関係に設定し、容易に拡散層9を形成することが可能となる。
【0077】
なお、エッチング後にゲート絶縁膜1上に残存される絶縁層7の膜厚は、イオン注入の深さと使用可能な加速電圧とを考慮して設定される。すなわち、イオン注入の深さが深い場合、または使用可能な加速電圧が小さい場合には、残膜厚を薄くする必要がある。絶縁層7のエッチング量は、この残膜厚と堆積時の膜厚との差となる。
【0078】
さらに、例えば図4(b)に示すように、ゲート絶縁膜1上に絶縁層7を残存させることにより、ゲート絶縁膜1がエッチングされて基板100が露出し、損傷を受けることを防止できる。
【0079】
また、図4(d)に示すように、ゲート電極2の側壁部分のみに絶縁層7を残存させ、ゲート絶縁膜1上の絶縁層7をすべてエッチング除去することも可能である。この場合、基板100に損傷が生じることを防止するために、絶縁層7に対するエッチング速度が、ゲート絶縁膜1に対するエッチング速度に比べて大きくなるように膜の材料とエッチング条件を設定することが望ましい。
【0080】
また、ゲート電極2と配線層13の短絡をさらに確実に防止するために、コンタクトホール12を形成した後に、このコンタクトホール12の側壁にさらに側壁絶縁膜6’を形成することも可能である。このような製造方法を、この発明の第3実施形態として説明する。
【0081】
以下、この第3実施形態を図5(a)〜(c)を参照して説明する。
【0082】
コンタクトホール12を形成するまでは、前述の第1実施形態と同様にして行う。図5(a)は、図1(d)と同様の状態を示している。
【0083】
次に、レジスト膜11を除去する。その後、前述の第1実施形態と異なり、窒化膜等の絶縁膜6’を例えば全面に形成する。RIE等の異方性エッチング技術を用いて、コンタクトホール12領域のゲート絶縁膜1上の絶縁膜6’を除去してゲート絶縁膜1を露出し、ゲート電極2の側壁、絶縁膜4の側壁および層間絶縁膜10の側壁に絶縁膜6’を残存させて側壁絶縁膜6’を形成する。図5(b)は、この段階における半導体装置の断面を示す。この時、コンタクトホール12を形成する時と同様に、基板100に損傷を与えることを防止するために、絶縁膜6’のエッチング速度がゲート絶縁膜1のエッチング速度よりも早くなるように、エッチング条件を設定することが望ましい。絶縁膜6’として、例えば窒化膜等の絶縁膜4と同様の材料を用いることができる。
【0084】
この後は、前述の第1実施形態と同様に、コンタクトホール12領域のゲート絶縁膜1を除去して基板100を露出し、配線層13を形成する。図5(c)は、この段階における半導体装置の断面を示す。
【0085】
このように、本実施形態では、コンタクトホール12を開口した後に、このコンタクトホール12の側壁に側壁絶縁膜6’を形成することが特徴である。前述の第1実施形態または第2実施形態では、コンタクトホール12を開口する時に、層間絶縁膜10の側壁面または側壁絶縁膜6が損傷を受ける可能性があるが、この第3実施形態によれば、このような損傷を受けた層間絶縁膜10または側壁絶縁膜6の側壁面を側壁絶縁膜6’により覆うため、絶縁性をより向上させることが可能となる。
【0086】
また、この第3実施形態では、ゲート電極2の側壁に、側壁絶縁膜6および側壁絶縁膜6’の2つの絶縁膜が形成される。このため、コンタクトホール12の面積を確保するために、これらの側壁絶縁膜6または側壁絶縁膜6’の膜厚を薄くすることが望ましい。
【0087】
次に、この発明の第4実施形態を図6(a)〜(c),図7(a),(b)を参照して説明する。
【0088】
この第4実施形態は、側壁絶縁膜6を形成せず、コンタクトホール12を開口した後にコンタクトホール12の側壁に形成された側壁絶縁膜6’のみにより、ゲート電極2と配線層13との間の短絡を防止するものである。
【0089】
ゲート電極2を加工し、拡散層8を形成するまでは、前述の第3実施形態と同様に行う。図6(a)は、この段階における半導体装置の断面を示す。
【0090】
この後、前述の第3実施形態と異なり、側壁絶縁膜を形成せずに、例えばBPSG等の絶縁層7を例えば50nm程度の膜厚だけ堆積する。次に、前述の第3実施形態と同様にして、例えばヒ素等の不純物を、ゲート絶縁膜1上の絶縁層7を通して基板100にイオン注入する。適宜熱処理を行い、拡散層9を形成する。図6(b)は、この段階における半導体装置の断面を示す。拡散層9を形成するためのイオン注入を行う前に、第2実施形態と同様に、異方性エッチング技術を用いて絶縁層7を薄くしても良い。
【0091】
この後、前述の第3実施形態と同様に、層間絶縁膜10を全面に形成する。さらに、コンタクトホール領域が開口されたレジスト膜11を形成し、このレジスト膜11をマスクとして、例えば異方性エッチング技術を用いて層間絶縁膜10と絶縁層7とをエッチングし、コンタクトホール12を形成する。図6(c)は、この段階における半導体装置の断面を示す。この時、層間絶縁膜10および絶縁層7のエッチング速度が絶縁膜4のエッチング速度よりも早くなるようにエッチング条件を設定することにより、図6(c)に示すように、コンタクトホール12をゲート電極2に対して自己整合的に形成することができる。さらに、層間絶縁膜10および絶縁層7のエッチング速度がゲート絶縁膜1のエッチング速度よりも早くなるようにエッチング条件を設定することにより、基板100がエッチングされて損傷が生じ、例えばリーク電流が増大する等の問題を防止することができる。これらの条件を満足する絶縁膜材料として、例えば絶縁膜4として窒化膜を、絶縁層7および層間絶縁膜10としてBPSG膜を用いることができる。
【0092】
次に、前述の第3実施形態と同様に、例えば窒化膜等の絶縁膜6’を全面に堆積する。例えばRIE等の異方性エッチング技術を用いて、絶縁膜6’をエッチングし、コンタクトホール12領域のゲート絶縁膜1を露出させ、ゲート電極2の側壁、絶縁膜4の側壁及び層間絶縁膜10の側壁に側壁絶縁膜6’を残存させる。図7(a)は、この段階における半導体装置の断面を示す。
【0093】
この後、コンタクトホール12領域のゲート絶縁膜1を除去し、例えばタングステン等を用いて配線層13を形成する。この結果、図7(b)に示すような半導体装置が完成する。
【0094】
このように、この第4実施形態では、ゲート電極2の側壁に側壁絶縁膜を形成せずにコンタクトホール12を開口し、このコンタクトホール12を開口した後に、側壁絶縁膜6’を形成することに特徴がある。
【0095】
この第4実施形態によれば、前述の第3実施形態が有する効果に加えて、側壁絶縁膜6’のみにより、ゲート電極2と配線層13との間の短絡を防止するため、側壁絶縁膜6および側壁絶縁膜6’をゲート電極2の側壁に形成していた第3実施形態よりも、コンタクトホール12の面積を確保することが可能となる。
【0096】
次に、この発明の第5実施形態を図8(a)〜(d),図9(a)〜(c)を参照して説明する。この第5実施形態は、ゲート電極2と配線層13の短絡を確実に防止することを目的とする。
【0097】
まず、前記第4実施形態と同様にして、ゲート電極2を加工し、拡散層8を形成する。図8(a)は、図6(a)と同様の状態を示している。なお、ここで前記第3実施形態と同様にゲート電極2の側壁絶縁膜6を形成してもよい。
【0098】
この後、第4実施形態と異なり、絶縁層7を形成する前に、ゲート電極2を覆うように、例えば窒化膜等のゲート保護絶縁膜5を堆積する。図8(b)は、この段階における半導体装置の断面を示す。
【0099】
次に、第4実施形態と同様に、全面に絶縁層7を形成し、この絶縁層7およびゲート保護絶縁膜5を通してイオン注入を行い、拡散層9を形成する。図8(c)は、この段階における半導体装置の断面を示す。
【0100】
なお、ここで前記第2実施形態と同様に、絶縁層7を異方的にエッチングし、ゲート電極2の側壁部分に絶縁層7を残存させてもよい。図8(d)は、絶縁層7を異方的にエッチングした場合の半導体装置の断面を示す。
【0101】
次に、第4実施形態と同様に、例えばBPSG等の層間絶縁膜10を堆積し、必要であれば平坦化を行う。さらに、層間絶縁膜10上にコンタクトホール領域が開口されたレジスト膜11を形成し、例えばRIE等の異方性エッチング技術により、このレジスト膜11をマスクに層間絶縁膜10および絶縁層7をエッチングして、開口部12を形成する。図9(a)は、この段階における半導体装置の断面を示す。この際、層間絶縁膜10および絶縁層7のエッチング速度が、ゲート保護絶縁膜5のエッチング速度に比べて大きくなるように、エッチング条件を設定する。
【0102】
続いてゲート保護絶縁膜5を、例えばRIE等の異方性エッチング技術によりエッチングし、コンタクトホール領域12のゲート絶縁膜1を露出する。この時、ゲート保護絶縁膜5のエッチング速度が、ゲート絶縁膜1のエッチング速度に比べて大きくなるように、エッチング条件を設定することが望ましい。このようにすることにより、ゲート絶縁膜1が保護膜となり、基板100がエッチングされ損傷を受けることを防止することができる。
【0103】
この後、前述の第4実施形態と同様に、レジスト膜11を除去し、例えば窒化膜である絶縁膜6を開口部12の側壁に形成する。さらに、コンタクトホール領域のゲート絶縁膜1を除去して基板100を露出させ、配線層13を形成する。図9(b)は、この段階における半導体装置の断面を示す。
【0104】
なお、この実施形態では、層間絶縁膜10を開口した後に続けてゲート保護絶縁膜5をエッチングしているが、レジスト膜11を除去し、全面に絶縁膜6を堆積し、例えばRIE等の異方性エッチング技術を用いて絶縁膜6およびゲート保護絶縁膜5を同時にエッチングしてコンタクトホール領域のゲート絶縁膜1を露出させてもよい。この後は、前述の方法と同様にして、ゲート絶縁膜1を除去し、配線層13を形成する。図9(c)は、このようにして形成された半導体装置の断面を示す。
【0105】
また、コンタクトホール領域のゲート絶縁膜1を露出した後に、必要であれば、イオン注入法を用いて、不純物を基板100に添加し、コンタクト抵抗を低減することも可能である。
【0106】
以上説明したように、この第5実施形態では、絶縁層7を堆積する前に、あらかじめゲート保護絶縁膜5によりゲート電極2を覆うことに特徴がある。
【0107】
一般に、RIE等の異方性エッチング技術を用いた場合においても、エッチング条件のばらつきなどにより、わずかであるが横方向にエッチングが進む場合がある。このため、側壁絶縁膜6を形成せずにコンタクトホール12を開口する前述の第4実施形態では、層間絶縁膜10および絶縁膜7をエッチングしてコンタクトホール12を形成する時に、ゲート電極2の側面の後酸化膜3’およびゲート電極2の側面がエッチングされる可能性がある。
【0108】
これに対して、本実施形態では、層間絶縁膜10および絶縁膜7をエッチングする時に、ゲート電極2がゲート保護絶縁膜5により覆われているため、ゲート電極2がエッチングされる可能性がなく、ゲート電極2を確実に保護することができる。さらに、層間絶縁膜10及び絶縁層7のエッチング速度を、ゲート保護絶縁膜5のエッチング速度に比べて大きくすることにより、ゲート電極2を確実に保護することが可能となる。
【0109】
なお、本実施形態におけるゲート保護絶縁膜5を前記第1実施形態に適用することも可能である。
【0110】
次に、この発明の第6実施形態を図10(a)〜(c),図11(a),(b)を参照して説明する。
【0111】
先ず、シリコン基板である半導体基板100上に、ゲート絶縁膜1を形成する。このゲート絶縁膜1に、ゲート電極材料を堆積し、その上部に窒化膜等の絶縁膜4を堆積する。
【0112】
この後、ゲートのパターニングを行った上で、異方性エッチング技術とを用いて、絶縁膜4とゲート電極材料とをエッチングして、ゲート電極2を形成する。さらに、後酸化膜3をゲート電極2の側面に形成する。
【0113】
次に、絶縁性膜を用いて第1の側壁絶縁膜6を形成し、例えばイオン注入法によりヒ素等の不純物を基板100に添加して、ソースまたはドレイン拡散層(第1のsource/drain拡散層)8を形成する。この時の半導体装置の断面を図10(a)に示す。尚、前記ソース又はドレイン拡散層8の形成は、前記側壁絶縁膜6の形成前に行っても良い。
【0114】
次に、絶縁膜14を保護膜として堆積し、更に、この上に絶縁層7をゲート間を埋めない程度の膜厚だけ堆積する。この段階での半導体装置の断面図を図10(b)に示す。ここでは、絶縁膜14には例えばSiN等が、絶縁層7にはBPSG等、それぞれ異なる種類の材料を適用することができる。
【0115】
この後、前記絶縁層7をエッチングして第2の側壁絶縁膜(サイドウォール)7を形成する。この段階での半導体装置の断面図を図10(c)に示す。
【0116】
この第2の側壁絶縁膜7を形成する際には、前記半導体基板100を保護するための絶縁膜14に対し、前記第2の側壁絶縁膜7に使用される絶縁膜を選択的にエッチングできるRIE条件を適用する。ここで、選択的にエッチングを行い、絶縁膜14を残すことにより、以降のエッチング工程での基板へのダメージを軽減し、層間絶縁膜から基板への不純物の拡散を防止することができる。以上の作用を達成するためには、例えば、半導体基板100の保護膜(絶縁膜14)としてはSiNを、この保護膜上の第2の側壁絶縁膜7には、BPSG等を適用することができる。
【0117】
側壁絶縁膜7が形成された後、第2のソース又はドレイン拡散層9が形成される。この段階の半導体装置の断面を図11(a)に示す。
【0118】
この状態から更に、層間絶縁膜10を堆積し、コンタクトホール12を形成するためのRIEが行われる。RIEが行われた後に、コンタクトホール12底部のゲート絶縁膜1が除去され、配線層13が形成された段階の半導体装置の断面を図11(b)に示す。前記コンタクトホール12を自己整合的に形成するためには、ゲート上絶縁膜4に対して、層間絶縁膜10を選択的にエッチングすることのできるRIE条件を適用する。このためには、ゲート上絶縁膜4にSiNを、層間絶縁膜10にBPSG等を適用することができる。
【0119】
以上、この第6実施形態では、半導体基板100の保護膜として絶縁膜14が堆積された後、この絶縁膜14とは異なる種類の絶縁膜で第2の側壁絶縁膜を形成することに特徴がある。これにより、拡散層9とゲート電極2との間の距離を調節することができ、トランジスタの実効チャネル長を確保することができ、トランジスタの性能の劣化を防止することができる。
【0120】
更に、コンタクトホール12を形成する場合には、このコンタクトホール12の領域の絶縁層7及び第2の側壁絶縁膜14を除去することができる。従って、コンタクトホール12の面積を十分確保することができ、コンタクト抵抗の増加を防止することができる。
【0121】
又、この第6実施形態によればゲート酸化保護膜として絶縁膜14を用い、層間絶縁膜と同種の膜である絶縁膜(側壁絶縁膜)7をイオン注入マスクとして用いている。これにより、コンタクトホールを形成するためにレジストが塗布されても、このレジストによる不純物の拡散を防止することができる。
【0122】
又、ソース/ドレイン拡散層を、側壁絶縁膜7の膜厚とは無関係に設定することが可能となる。
【0123】
次に、この発明の第7実施形態を図12(a)〜(c)を参照して説明する。
【0124】
この第7実施形態は、前述した第1実施形態と基本的には同じ工程であるが、絶縁層7の堆積量、即ち、膜厚が異なっている。
【0125】
図12(a)に示されるように、ゲート電極2及び絶縁膜4の側壁には側壁絶縁膜6が形成される(第1実施形態,図1(a))。この後、BPSG膜等の絶縁層7が堆積されるが、前記第1実施形態では図1(b)に示されるように、ゲート間を埋めない程度に堆積される。一方、この第7実施形態では、絶縁層7は、図12(b)に示されるようにゲート間を埋めるように堆積される。
【0126】
絶縁層7が堆積された後の工程は、前記第1実施形態と同様であり、図12(c)に示されるように層間絶縁膜10が堆積される。
【0127】
この第7実施形態では、前述したように、前記第1実施形態に比べて膜厚が厚い。従って、後に、レジスト膜11等が塗布されても、半導体基板100に対する不純物の影響を、前記第1実施形態に比較してより少なくすることができる。
【0128】
次に、この発明に係る第8実施形態を図13(a)〜(c)を参照して説明する。
【0129】
この第8実施形態は、前述した第7実施形態に類似した工程を経るが、図面に示されるように、絶縁層7の下層に絶縁膜14が設けられているところが特徴である。
【0130】
図13(a)に示されるように、ゲート電極2及び絶縁膜4の側壁には側壁絶縁膜6が形成される(第1実施形態,図1(a))。この後、SiN膜等を用いて絶縁膜14が形成され、更にこの絶縁膜14上にBPSG等を用いて絶縁層7が堆積される。但し、この絶縁層7は、図13(b)に示されるようにゲート間を埋めるように堆積される。
【0131】
絶縁層7が堆積された後の工程は、前記第1実施形態と同様であり、図13(c)に示されるように層間絶縁膜10が堆積される。
【0132】
この第8実施形態によれば、前記第7実施形態と同様に前記第1実施形態に比べて絶縁層7が厚く、更に、絶縁層7の下層には、この絶縁層とは異なる材料の絶縁膜14が形成されている。
【0133】
従って、後に、コンタクトホール形成のために、レジスト膜11等が塗布されても、半導体基板100に対する不純物の影響を少なく抑えることができる。
【0134】
次に、前述した各種実施形態を用いて、周辺回路部とセル部とを含む、DRAMに代表される半導体装置全体の製造方法の各種実施形態を説明する。ここでは、半導体装置の周辺回路部とセル部とを対比させて説明する。
【0135】
一般に、DRAM等の半導体記憶素子では、メモリセルを集積するコア領域(セル部)のパターン密度は非常に高いが、例えばこれらのメモリセルを駆動する周辺回路領域(周辺回路部)のパターン密度は低い。また、パターン密度が低い領域に形成されるトランジスタは、チャネル部分とコンタクトホールとの間の距離が一般に長いため、この部分の寄生抵抗を低減するために、深いソースまたはドレイン拡散層を形成することが望ましい。一方、パターン密度が高い領域に形成されるトランジスタは、短チャネル効果の抑制および素子分離耐圧の向上のために、一般に浅いソースまたはドレイン拡散層を形成することが望ましい。
【0136】
先ず、第9実施形態を図14(a)〜(f),図15(a)〜(d)を参照して説明する。これらの図面には、それぞれ、左側にセル部の、右側に周辺回路部の断面図を示す。即ち、図14(a),(c),(e),図15(a),(c)は、セル部を、図14(b),(d),(f),図15(b),(d)は周辺回路部を示す。
【0137】
この第9実施形態では、このように異なる構造を有するトランジスタを、前述した第4実施形態を用いて簡単に形成する。
【0138】
まず、前述の第4実施形態と同様にして、ゲート電極2を加工し、ソースまたはドレイン拡散層8を形成する。図14(a),(b)は、この段階における半導体装置の断面を示す。
【0139】
次に、前述の第4実施形態と同様にして、例えばBPSG膜等の絶縁層7を全面に堆積する。次に、第4実施形態と異なり、全面にレジスト膜11を塗布し、フォトリソグラフィ技術を用いて、図14(c),(d)の周辺回路部の断面図に示されるように、深いソースまたはドレイン拡散層9を形成する周辺回路部のレジスト膜11を除去する。続いて、例えばイオン注入法により、例えばヒ素等の不純物を、絶縁層7を通して基板100の深いソースまたはドレイン拡散層を形成する領域に添加する。図14(c),(d)はこの段階におけるセル部及び周辺回路部の半導体装置の断面を示す。この後、レジスト膜11を除去し、適宜熱処理を行い、拡散層9を形成する。
【0140】
この時、前述のように寄生抵抗を低減する目的で拡散層9を形成する場合は、拡散層9は、例えば拡散層8より深く形成することが望ましい。この場合、ゲート電極2の側壁に形成された絶縁層7がマスクとなって深いソースまたはドレイン拡散層9のためのイオン注入が行われるので、拡散層9はゲート電極2の下方内側へ深く拡散することがなく、実効チャネル長を低減しない。
【0141】
この後、全面に層間絶縁膜10を堆積し、必要であれば平坦化を行う。次に、全面にレジスト膜11’を塗布し、フォトリソグラフィ技術を用いて、セル部の、ゲート電極2に自己整合的に形成されるコンタクトホール部分に対応する開口部をレジスト膜11’に形成する。例えばRIE等の異方性エッチング技術を用いて層間絶縁膜10および絶縁層7をエッチングして、ゲート絶縁膜1を露出し、開口部12を形成する。図14(e),(f)は、この段階における半導体装置の断面を示す。この時、前記第4実施形態で述べたように、層間絶縁膜10および絶縁層7に対するエッチング速度が、絶縁膜4およびゲート絶縁膜1に対するエッチング速度に比べて大きくなるように、エッチング条件を設定することが望ましい。こうして、ゲート電極2と配線層13とが短絡することと、基板100がエッチングにより損傷を受けることとを防止できる。
【0142】
さらに、レジスト膜11’を除去し、全面にレジスト11膜’’を塗布する。フォトリソグラフィ技術を用いて、周辺回路部の、ゲート電極2に自己整合的に形成する必要のないコンタクトホール部分に対応する開口部をレジスト膜11’’に形成する。例えばRIE等の異方性エッチング技術を用いて層間絶縁膜10および絶縁層7をエッチングして、ゲート絶縁膜1を露出し、開口部12’を形成する。図15(a),(b)は、この段階における半導体装置の断面を示す。この時は、層間絶縁膜10および絶縁層7に対するエッチング速度が、ゲート絶縁膜1に対するエッチング速度に比べて大きくなるように、エッチング条件を設定することが望ましい。このようにして、基板100がエッチングにより損傷を受けることを防止できる。
【0143】
この後、レジスト膜11’’を除去し、前記第4実施形態と同様にして、開口部12および開口部12’’の側壁に絶縁膜6’を形成し、ゲート絶縁膜1を除去し、配線層13を形成する。図15(c),(d)は、この段階における半導体装置のセル部及び周辺回路部の断面を示す。
【0144】
以上のように、この第9実施形態では、例えば周辺回路部等のパターン密度の低い領域に形成されるトランジスタのみに、深いソースまたはドレイン拡散層9を形成することに特徴がある。
【0145】
このような拡散層9を形成することにより、周辺回路部のトランジスタの寄生抵抗を低減することができる。また、この拡散層9を形成する際、前述の第4実施形態と同様に、ゲート電極2の側壁の絶縁膜7がイオン注入のマスクとなる。そのため、拡散層9によりトランジスタの実効チャネル長が短くなることを防ぐことができる。
【0146】
また、この第9実施形態では、イオン注入のマスクとして使用された絶縁層7を、コンタクトホール12を開口する時に、層間絶縁膜10と共に除去するため、コンタクトホール12領域の面積が縮小することを防止することができる。特に、本実施形態に示すように、パターン密度の高い領域(セル部)と低い領域(周辺回路部)が混在する場合には、パターン密度の高い領域に形成されたトランジスタのコンタクトホールの面積を大きくして、コンタクト抵抗を低減することが可能となり、高性能の半導体装置を製造することが可能となる。
【0147】
さらにこの第9実施形態では、ゲート電極2に対して自己整合的に形成されるコンタクトホール12と、それ以外のコンタクトホール12’を、それぞれ別個のエッチングにより形成している。そのため、それぞれのエッチング条件を別個に設定することができ、ゲート電極2上の絶縁膜4や基板100のエッチングを防止することができる。コンタクトホール12、12’を同時に開口する場合に比べて、ゲート電極2と配線層13との短絡や基板100の損傷などの問題を、より容易に避けることができる。
【0148】
また、絶縁層7と層間絶縁膜10が同一の材料で形成されていると、コンタクトホール12を開口する工程とコンタクトホール12’を開口する工程において、エッチングを容易に行うことができる。よって、これらの膜を同一の材料で形成することが望ましい。
【0149】
次にこの発明の第10実施形態を図16(a)〜(d)を参照して説明する。
【0150】
前述の第9実施形態ではセル部のコンタクトホールと周辺回路部のコンタクトホールを別個にエッチングすることによって形成している。一方、この第10実施形態では、パターン密度が高い領域(セル部)と低い領域(周辺回路部)が混在する半導体装置において、それらの領域のコンタクトホール12およびコンタクトホール12’の開口を同時に行う。図16には、前記図14及び図15と同様に、左側にセル部、右側に周辺回路部を示す。即ち、図16(a),(c)はセル部を、図16(b),(d)は周辺回路部を示す。
【0151】
この第10実施形態では、層間絶縁膜10を形成する工程までは上述の第9実施形態と同様であるので詳細な説明は省略する。次に、レジスト膜11を全面に塗布し、フォトリソグラフィ技術を用いて、セル部のコンタクトホール部分と周辺回路部のコンタクトホール部分に対応する開口部をレジスト膜11に形成する。ここでは、層間絶縁膜10及び絶縁膜7をエッチングし、開口部12、12’を形成する。図16(a),(b)はこの段階における半導体装置のセル部及び周辺回路部それぞれの断面を示す。前記第8実施形態では、周辺回路部のコンタクトホール12’は、ゲート電極2に対して自己整合的に形成されなかったが、本実施形態では、パターン密度によらずコンタクトホール12、12’共に、ゲート電極2に対して自己整合的に形成される。
【0152】
この後、前記第8実施形態と同様に、開口部12、12’の側壁に絶縁膜6’を形成し、配線層13を形成する。図16(c),(d)は、この段階における半導体装置のセル部及び周辺回路部それぞれの断面を示す。
【0153】
このように、この第9実施形態では、周辺回路部、即ちパターン密度の低い領域においてもコンタクトホール12’をゲート電極2に自己整合的に形成することに特徴がある。これにより、セル部、即ちパターン密度が高い領域にコンタクトホールを開口するときのエッチング条件と、周辺回路部にコンタクトホールを開口するときのエッチング条件とを同一にすることができる。このため、前述の第9実施形態では2回に分けて形成されていたコンタクトホールを1回で形成することが可能となり、工程を簡略にすることができる。
【0154】
なお、前述の第9実施形態においても、ゲート電極に自己整合的に形成されるコンタクトホールとゲート電極に自己整合的ではなく形成されるコンタクトホールとを、同一のエッチング条件を用いて開口することができる場合には、これらのコンタクトホールを同時に形成しても良い。
【0155】
次に、この発明の第11実施形態を図17(a)〜(d)を参照して説明する。
【0156】
この第11実施形態では、パターン密度が高いセル部とパターン密度が低い周辺回路部とが混在する半導体装置の拡散層9を、前述の第2実施形態と同様に、より容易に形成するものである。図17(a)〜(d)に示される半導体装置の断面図は、前記図14〜図16の各図面と同様に、左側にセル部、右側に周辺回路部を示す。即ち、図17(a),(c)はセル部を、図17(b),(d)は周辺回路部を示す。
【0157】
第11実施形態では、前述の第9実施形態と同様にして、ゲート電極2、拡散層8、絶縁層7が形成される。更に、全面にレジスト膜11を塗布し、フォトリソグラフィ技術を用いて拡散層9を形成する領域、即ち周辺回路部のレジストを除去する。
【0158】
この後、前記第9実施形態と異なり、第2実施形態と同様にして、例えばRIE等の異方性エッチング技術を用いて、絶縁層7をエッチングする。図17(a),(b)は、この段階における半導体装置の断面を示す。このエッチングにより、拡散層9を形成する領域のゲート絶縁膜1を露出しても構わないし、同図に示されるように、絶縁層7を残存させても構わない。次に、例えばイオン注入法により、ヒ素等の不純物を基板100の拡散層9を形成する領域に添加する。この後、適宜熱処理を行い拡散層9を形成する。
【0159】
この後、前述の第9実施形態と同様に、層間絶縁膜10、コンタクトホール12及び12’、側壁絶縁膜6’、配線層13を形成する。図17(c),(d)は、この段階における半導体装置のセル部及び周辺回路部それぞれの断面を示す。
【0160】
前述の第9実施形態では、拡散層9を形成するために、不純物を絶縁層7を通して基板100にイオン注入する必要があり、絶縁層7の膜厚が厚い場合には、イオン注入の加速電圧を非常に高くする必要がある。このため、不純物が基板100に到達しない可能性があったり、深い拡散層9を形成することが困難な場合がある。それに対し、この第11実施形態によれば、異方性エッチング技術により、ゲート電極7の側壁には絶縁層7を残存させ、拡散層9を形成する領域上の絶縁層7をエッチングすることができる。そのため、前述の第9実施形態と比べて、深い拡散層9を容易に形成することができる。
【0161】
なお、この第11実施形態では、レジスト膜11を塗布しパターニングした後に絶縁層7のエッチングを行ったが、この順序は逆にして絶縁膜7をエッチングした後にレジスト膜11を形成してもよい。
【0162】
次に、この発明の第12実施形態を図18(a)〜(f),図19(a)〜(d),図20(a)〜(d)を参照して説明する。これらの図面では、前記第9〜第11実施形態において用いたように、左側にセル部を、右側に周辺回路部を示す。即ち、図18(a),(c),(e),図19(a),(c),図20(a),(c)はセル部を、図18(b),(d),(f),図19(b),(d),図20(b),(d)は周辺回路部を示す。
【0163】
この第12実施形態では、半導体装置のセル部に対しては前記第7実施形態を適用し、周辺回路部に対しては前記第6実施形態を適用する。
【0164】
先ず、シリコン基板である半導体基板100上に、ゲート絶縁膜1を形成する。このゲート絶縁膜1に、ゲート電極材料を堆積しこのゲート電極材料上に酸化膜3を形成し、その上部に窒化膜等の絶縁膜4を堆積する。
【0165】
この後、ゲートのパターニングを行った上で、異方性エッチング技術とを用いて、絶縁膜4とゲート電極材料とをエッチングして、ゲート電極2を形成する。さらに、後酸化膜3’をゲート電極2の側面に形成する。
【0166】
次に、絶縁性膜を用いて第1の側壁絶縁膜6を形成し、例えばイオン注入法によりヒ素等の不純物を基板100に添加して、ソースまたはドレイン拡散層(第1のsource/drain拡散層)8を形成する。この時の半導体装置のセル部及び周辺回路部の断面を図18(a),(b)に示す。尚、前記ソース又はドレイン拡散層8の形成は、前記側壁絶縁膜6の形成前に行っても良い。
【0167】
次に、例えばSiN膜等の絶縁膜14を全面に堆積した後、更に、この絶縁膜14とは異なる種類の材料で、例えばBPSG等を用いた絶縁膜7が堆積される。但し、この絶縁膜7は、セル部のゲート間が埋まり、且つ周辺回路部のゲート間は埋まらない程度の厚さで堆積される。この段階の半導体装置のセル部及び周辺回路部を図18(c),(d)に示す。
【0168】
この後、周辺回路部に対してエッチングを行い、絶縁膜7をエッチングして第2の側壁絶縁膜7を形成する。この際、全面にレジスト膜11を塗布し、フォトリソグラフィ技術を用いて、周辺回路部のみ、レジスト膜11が除去される。この段階におけるセル部及び周辺回路部の半導体装置の断面を図18(e),(f)に示す。
【0169】
更に、例えばイオン注入法により、例えばヒ素等の不純物を、絶縁層7を通して基板100の周辺回路部に添加する。この後、レジスト膜11を除去し、適宜熱処理を行い、拡散層9を形成する。図19(a),(b)はこの段階におけるセル部及び周辺回路部の半導体装置の断面を示す。
【0170】
この後、全面に層間絶縁膜10を堆積し、必要であれば平坦化を行う。次に、全面にレジスト膜11’を塗布し、フォトリソグラフィ技術を用いて、セル部の、ゲート電極2に自己整合的に形成されるコンタクトホール部分に対応する開口部をレジスト膜11’に形成する。例えばRIE等の異方性エッチング技術を用いて層間絶縁膜10および絶縁層7をエッチングして、ゲート絶縁膜1を露出し、開口部12を形成する。この後、接続孔領域のゲート絶縁膜1を除去して基板100を露出する。図19(c),(d)は、この段階における半導体装置の断面を示す。この時、層間絶縁膜10および絶縁膜14に対するエッチング速度が、絶縁膜4およびゲート絶縁膜1に対するエッチング速度に比べて大きくなるように、エッチング条件を設定することが望ましい。こうして、ゲート電極2と配線層13とが短絡することと、基板100がエッチングにより損傷を受けることとを防止できる。
【0171】
さらに、レジスト膜11’を除去し、再度、全面にレジスト11膜’’を塗布する。フォトリソグラフィ技術を用いて、周辺回路部の、ゲート電極2に自己整合的に形成する必要のないコンタクトホール部分に対応する開口部をレジスト膜11’’に形成する。例えばRIE等の異方性エッチング技術を用いて層間絶縁膜10および絶縁層7をエッチングして、ゲート絶縁膜1を露出し、開口部12’を形成する。この後、接続孔領域のゲート絶縁膜1を除去して基板100を露出する。図20(a),(b)は、この段階における半導体装置の断面を示す。この時は、層間絶縁膜10および絶縁層7に対するエッチング速度が、ゲート絶縁膜1に対するエッチング速度に比べて大きくなるように、エッチング条件を設定することが望ましい。このようにして、基板100がエッチングにより損傷を受けることを防止できる。
【0172】
この後、レジスト膜11’’を除去し、開口部12および開口部12’’の側壁に絶縁膜6’を形成する。この後、周辺回路部の開口部12’’に露出するゲート絶縁膜1を除去し、配線層13を形成する。図20(c),(d)は、この段階における半導体装置のセル部及び周辺回路部の断面を示す。
【0173】
以上のこの第12実施形態によれば、半導体装置のセル部は前述した第7実施形態による、周辺回路部は第6実施形態による特徴を備えるように形成される。
【0174】
従って、セル部では、コンタクトホール形成のために、レジスト膜が塗布されても、半導体基板100に対する不純物の影響を少なく抑えることができる。又、周辺回路部では、コンタクトホールを形成するためにレジストが塗布されても、このレジストによる不純物の拡散を防止することができる。又、ソース/ドレイン拡散層を、側壁絶縁膜7の膜厚とは無関係に設定することが可能となる。更には、コンタクトホール形成時には、側壁絶縁膜7が除去されるため、コンタクトホールの面積を十分に確保することができる。
【0175】
次に、この発明に係る第13実施形態を図21(a)〜(d)を参照して説明する。
【0176】
この第13実施形態は、前述した第12実施形態の周辺回路部に対してもSACを適用したものである。従って、前記図19(c),(d)に示される工程までは、前述した第12実施形態と同様となるので詳細な説明は省略する。
【0177】
セル部に対してコンタクトホールが形成され、ゲート酸化膜が除去された後、レジスト膜11’’が塗布され、周辺回路部に対して開口部12’が自己整合的に形成される。更に、開口部12’に露出するゲート酸化膜1が除去される。この工程の図面を図21(a),(b)に示す。
【0178】
この後、配線層16が図21(c),(d)に示されるように形成される。
【0179】
次に、この発明の第14実施形態を図22(a)〜(d)を参照して説明する。
【0180】
この第14実施形態は、前述した第12実施形態のセル部及び周辺回路部に対して動じにコンタクトホールを形成することを特徴とする。従って、前記図19(a),(b)に示される工程までは、前述した第12実施形態と同様であるので詳細な説明は省略する。
【0181】
周辺回路部に拡散層9が形成された後、レジスト膜11’’が塗布され、周辺回路部及びセル部双方に対して開口部12,12’が自己整合的に同時に形成される。こ後、露出したゲート酸化膜1がエッチングされる。この工程の図面を図22(a),(b)に示す。
【0182】
この後、配線層16が図22(c),(d)に示されるように形成される。
【0183】
次に、この発明に係る第15実施形態を図23(a)〜(f),図24(a)〜(d)を参照して説明する。
【0184】
尚、ここでは、周辺回路部において形成されるトランジスタが、nチャネル又はpチャネルのいずれかのみであることを仮定する。
【0185】
この第15実施形態では、前記第12実施形態と同様に、半導体装置のセル部に対しては前記第8実施形態を適用し、周辺回路部に対しては前記第6実施形態を適用する。
【0186】
図23(a),(b)に示される図面は、前述した第12実施形態と同様の過程で形成された半導体装置の断面図を示す。
【0187】
次に、前述の第6実施形態と同様にして、例えばSiN膜等の絶縁膜14を全面に堆積し、この上にBPSG等を用いて絶縁層7を形成する。但し、この絶縁層7は、セル部のゲート間が埋まり、且つ周辺回路部のゲート間は埋まらない程度の厚さで堆積される。この段階の半導体装置のセル部及び周辺回路部を図23(c),(d)に示す。
【0188】
この後、周辺回路部の絶縁層7に対してエッチングを施し、図23(e),(f)に示されるように、絶縁層7による側壁絶縁膜7を形成する。
【0189】
この後、レジスト膜などを塗布することなく、例えばイオン注入法により、例えばヒ素等の不純物を、絶縁膜14を通して基板100の周辺回路部及びセル部に添加する。これにより周辺回路部では拡散層9が形成されるが、セル部では絶縁層7及び絶縁膜14がマスクとなり拡散層9は形成されない。図24(a),(b)はこの段階におけるセル部及び周辺回路部の半導体装置の断面を示す。
【0190】
この後、前記第12実施形態と同様にコンタクトホールを、セル部及び周辺回路部に形成し、露出したゲート酸化膜を除去して配線層13を形成する。図24(c),(d)は、この段階における半導体装置のセル部及び周辺回路部の断面を示す。
【0191】
以上、この第15実施形態によれば、周辺回路部において形成されるトランジスタが、nチャネル又はpチャネルのいずれかのみである場合には、拡散層9を形成する際に前述した第12実施形態に比べて、レジスト膜を塗布する必要がなくなる。
【0192】
次に、この発明の第16実施形態を図25(a)〜(f),図26(a)〜(d),図27(a)〜(d)を参照して説明する。
【0193】
この第16実施形態では、前記第12実施形態において、絶縁膜7がセル部のゲート間を埋めないように形成された場合の実施形態である。図25(a)〜(f),図26(a)〜(d),図27(a)〜(d)に示される各工程は、前記第12実施形態の図18(a)〜(f),図19(a)〜(d),図20(a)〜(d)における工程と同様であるので詳細な説明は省略する。
【0194】
この第16実施形態によれば、周辺回路部には前記第6実施形態を適用できる。セル部に対しては、ゲート間を埋めない程度に絶縁膜7が形成される。
【0195】
なお、この発明は、上記の実施形態に限定されることはない。例えば、前述した各実施形態では、パターン密度の高い領域の拡散層とパターン密度の低い領域の低濃度拡散層を同時にイオン注入により形成したが、これらの領域の拡散層をそれぞれ別個の工程で形成してもよい。
【0196】
さらに、前記第9実施形態ではこの発明の第2実施形態に示した方法を用いてパターン密度の高い領域と低い領域の混在する半導体装置を形成したが、例えば前記第12実施形態のように、この発明の第1ないし第8実施形態に示した方法、もしくはこれらを組み合わせた方法を用いて、パターン密度の高い領域と低い領域とが混在する半導体装置を製造することが可能である。
【0197】
以上のように、前述した実施形態に開示された方法を適宜組み合わせて実施することが可能であり、その趣旨を逸脱しない範囲で種々変形して実施することができる。
【0198】
なお、この発明をトレンチキャパシタ構造またはスタックキャパシタ構造のメモリセルを有するDRAMに適用することも可能である。この場合、一般にメモリセル領域のパターン密度は高く、メモリセルを構成するトランジスタは拡散層9を必要としない。このため、前述の実施形態におけるパターン密度の高い領域のトランジスタの製造方法を適用して、メモリセルを構成するトランジスタを形成することができる。
【0199】
【発明の効果】
このように、この発明をDRAMに適用することにより、周辺回路等を構成する微細なトランジスタの実効チャネル長を確保し、さらに、メモリセル等のパターン密度の高い領域においてコンタクトホールの面積を確保することが可能となる。
【図面の簡単な説明】
【図1】この発明の第1実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図2】この発明の第1実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図3】この発明の第1実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図4】この発明の第2実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図5】この発明の第3実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図6】この発明の第4実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図7】この発明の第4実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図8】この発明の第5実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図9】この発明の第5実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図10】この発明の第6実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図11】この発明の第6実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図12】この発明の第7実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図13】この発明の第8実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図14】この発明の第9実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図15】この発明の第9実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図16】この発明の第10実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図17】この発明の第11実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図18】この発明の第12実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図19】この発明の第12実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図20】この発明の第12実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図21】この発明の第13実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図22】この発明の第14実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図23】この発明の第15実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図24】この発明の第15実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図25】この発明の第16実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図26】この発明の第16実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図27】この発明の第16実施形態による半導体装置の製造方法の各工程での半導体装置の構造を示す断面図。
【図28】従来の半導体装置の製造方法の各ステップでの半導体装置の構造を示す断面図。
【図29】従来の半導体装置の構造を示す断面図。
【符号の説明】
1…ゲート絶縁膜、2…ゲート電極、3…酸化膜、4,5,6,6’,7,14…絶縁膜、8,9…拡散層、10…層間絶縁膜、11…レジスト膜、12,12’…接続孔(コンタクトホール)、13…配線層、100…基板。

Claims (18)

  1. 半導体基板上に形成されたゲート絶縁膜上に、上部に第1の絶縁膜が積層された複数のゲート電極を所定のゲート電極間隔で形成する工程と、
    このゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、
    前記ゲート電極の側壁に側壁絶縁膜を形成する工程と、
    前記側壁絶縁膜を覆うように、第2の絶縁膜を形成する工程と、
    前記側壁絶縁膜上の第2の絶縁膜をマスクとしてイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、
    前記半導体基板の上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜および前記側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記層間絶縁膜および前記第2の絶縁膜を、前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記露出された半導体基板の表面と接続された配線層を形成する工程とを具備することを特徴とする半導体装置の製造方法。
  2. 前記第2の絶縁膜を形成する工程により前記第2絶縁膜が形成された後、少なくとも前記第2の拡散層が形成される領域上の前記第2の絶縁膜を異方性エッチングによりエッチングする工程を具備することを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記第2の絶縁膜を形成する工程は、前記ゲート絶縁膜、前記第1の絶縁膜、及び前記側壁絶縁膜の露出面全面に前記第2の絶縁膜を形成する工程を含み、前記第2の拡散層を形成する工程は、前記第2の絶縁膜を通してイオン注入を行い、前記第2の拡散層を形成する工程を含むことを特徴とする請求項1記載の半導体装置の製造方法。
  4. 前記半導体装置の製造方法は、前記第2の絶縁膜を形成するに先立ち、前記ゲート電極を覆うように第3の絶縁膜を全面に形成する工程を具備し、前記開口部を形成する工程は、前記層間絶縁膜及び前記第2の絶縁膜を、これらの絶縁膜に対するエッチング速度が前記第3の絶縁膜に対するエッチング速度より大きくなるようにエッチングして前記ゲート電極に自己整合的に前記第3の絶縁膜を露出する開口部を形成する工程を含むことを特徴とする請求項1記載の半導体装置の製造方法。
  5. 半導体基板上に形成されたゲート絶縁膜上に、上部に第1の絶縁膜が積層された複数のゲート電極を所定のゲート電極間隔で形成する工程と、
    このゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、
    前記第1の絶縁膜の側面と上面、及び前記ゲート電極の側面に、第2の絶縁膜を形成する工程と、
    前記ゲート電極の側壁の第2の絶縁膜をマスクとしてイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、
    前記半導体基板上の全面に層間絶縁膜を形成する工程と、
    前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記層間絶縁膜および前記第2の絶縁膜を、前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記開口部の側壁および前記ゲート電極の側壁に第3の絶縁膜を形成する工程と、
    前記第3の絶縁膜が側壁に形成された前記開口部に導電材料を形成する工程とを具備することを特徴とする半導体装置の製造方法。
  6. 前記第1の拡散層を形成する工程により前記第1の拡散層が形成された後、前記第2の絶縁膜を形成する工程により前記第2の絶縁膜が形成される前に、前記ゲート電極の側壁に側壁絶縁膜を形成する工程を具備することを特徴とする請求項記載の半導体装置の製造方法。
  7. 前記第2の絶縁膜を形成する工程により前記第2絶縁膜が形成された後、少なくとも前記第2の拡散層が形成される領域上の前記第2の絶縁膜を異方性エッチングによりエッチングする工程を具備することを特徴とする請求項記載の半導体装置の製造方法。
  8. 前記第2の絶縁膜を形成する工程は、前記ゲート絶縁膜、及び前記第1の絶縁膜の露出面全面に前記第2の絶縁膜を形成する工程を含み、前記第2の拡散層を形成する工程は、前記第2の絶縁膜を介してイオン注入を行い、前記第2の拡散層を形成する工程を含むことを特徴とする請求項記載の半導体装置の製造方法。
  9. 前記第2の絶縁膜を形成するに先立ち、前記ゲート電極を覆うように第の絶縁膜を全面に形成する工程を具備し、前記開口部を形成する工程は、前記層間絶縁膜及び前記第2の絶縁膜を、エッチングして前記ゲート電極と前記第の絶縁膜を露出する工程を含むことを特徴とする請求項記載の半導体装置の製造方法。
  10. 半導体基板上に形成されたゲート絶縁膜上に、上部に第1の絶縁膜が積層された複数のゲート電極を所定のゲート電極間隔で形成する工程と、
    このゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、
    前記ゲート電極の側壁に第1の側壁絶縁膜を形成する工程と、
    前記第1の絶縁膜および前記第1の側壁絶縁膜を覆うように、第2の絶縁膜を形成する工程と、
    前記第2の絶縁膜上の、前記ゲート電極の側壁に相当する部分に第2の側壁絶縁膜を形成する工程と、
    前記第2の側壁絶縁膜をマスクとしてイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、
    前記半導体基板の上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜、前記第2の絶縁膜、および前記第2の側壁絶縁膜のエッチング速度が前記第1の絶縁膜および第1の側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記層間絶縁膜、前記第2の絶縁膜、及び前記第2の側壁絶縁膜を選択的にエッチングして前記ゲート電極に自己整合的に開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記開口部に導電材料を形成する工程とを具備することを特徴とする半導体装置の製造方法。
  11. 前記第2の絶縁膜を形成する工程により前記第2絶縁膜が形成された後、少なくとも前記第2の拡散層が形成される領域上の前記第2の絶縁膜をエッチングする工程を具備することを特徴とする請求項10記載の半導体装置の製造方法。
  12. 前記第2の絶縁膜を形成する工程は、前記ゲート絶縁膜、前記第1の絶縁膜、及び前記第1の側壁絶縁膜の露出面全面に前記第2の絶縁膜を形成する工程を含み、前記第2の拡散層を形成する工程は、前記第2の絶縁膜を通してイオン注入を行い、前記第2の拡散層を形成する工程を含むことを特徴とする請求項10記載の半導体装置の製造方法。
  13. 前記第2の絶縁膜を形成するに先立ち、前記ゲート電極を覆うように第3の絶縁膜を全面に形成する工程を具備し、前記開口部を形成する工程は、前記層間絶縁膜及び前記第2の絶縁膜を、エッチングして前記ゲート電極に自己整合的に前記第3の絶縁膜を露出する開口部を形成する工程を含むことを特徴とする請求項10記載の半導体装置の製造方法。
  14. 半導体基板上に形成されたゲート絶縁膜上の第1領域及び第2領域に、上部に第1の絶縁膜が積層されたゲート電極を、前記第1領域におけるゲート電極間隔が前記第2領域におけるそれより狭くなるように形成する工程と、
    前記ゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、
    前記ゲート電極を覆うように、第2の絶縁膜を形成する工程と、
    前記第2の絶縁膜の内、前記ゲート電極の側面に形成された部分をマスクとして、前記第2領域のみにイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、
    前記半導体基板の上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第1領域の、前記層間絶縁膜および前記第2の絶縁膜を、前記第1領域の前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に第1の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第2領域の、前記層間絶縁膜および前記第2の絶縁膜を選択的にエッチングして隣接するゲート電極間の領域に第2の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記開口部に導電材料を形成する工程とを具備することを特徴とする半導体装置の製造方法。
  15. 前記第1の開口部を形成する工程と前記第2の開口部を形成する工程は、同時に行われ、これにより前記第1の開口部と前記第2の開口部が同時に形成されることを特徴とする請求項14記載の半導体装置の製造方法。
  16. 所望の領域上の前記第2絶縁膜を、異方性エッチングによりエッチングする工程を具備することを特徴とする請求項14記載の半導体装置の製造方法。
  17. 半導体基板上に形成されたゲート絶縁膜上の第1領域及び第2領域に、上部に第1の絶縁膜が積層されたゲート電極を、前記第1領域におけるゲート電極間隔が前記第2領域におけるそれより狭くなるように形成する工程と、
    前記ゲート電極をマスクとして前記半導体基板に第1の拡散層を形成する工程と、
    前記ゲート電極の側壁に第1の側壁絶縁膜を形成する工程と、
    前記第1領域上のゲート電極間がほぼ埋まるように、第2の絶縁膜を形成する工程と、
    前記第2領域における、前記ゲート電極の側壁に相当する部分の前記第2の絶縁膜上に第2の側壁絶縁膜を形成する工程と、
    前記第2の側壁絶縁膜をマスクとして、前記第2領域にイオン注入を行い、前記半導体基板に第2の拡散層を形成する工程と、
    前記半導体基板の上に層間絶縁膜を形成する工程と、
    前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜および前記第1の側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第1領域の、前記層間絶縁膜および前記第2の絶縁膜を、前記第1領域の前記ゲート電極間隔よりも広い範囲で選択的にエッチングして前記ゲート電極に自己整合的に第1の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記層間絶縁膜および前記第2の絶縁膜のエッチング速度が前記第1の絶縁膜、前記第1の側壁絶縁膜、および前記第2の側壁絶縁膜のエッチング速度に比べて速くなるようにエッチング条件を設定し、前記第2領域の、前記層間絶縁膜および前記第2の絶縁膜を選択的にエッチングして隣接するゲート電極間の領域に第2の開口部を形成して、この開口部底部の半導体基板の表面を露出させる工程と、
    前記第1及び第2の開口部に導電材料を形成する工程とを具備することを特徴とする半導体装置の製造方法。
  18. 前記第1の開口部を形成する工程と前記第2の開口部を形成する工程は、同時に行われ、これにより前記第1の開口部と前記第2の開口部が同時に形成されることを特徴とする請求項17記載の半導体装置の製造方法。
JP15846497A 1996-06-19 1997-06-16 半導体装置の製造方法 Expired - Fee Related JP3795634B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15846497A JP3795634B2 (ja) 1996-06-19 1997-06-16 半導体装置の製造方法
US08/878,208 US6078073A (en) 1996-06-19 1997-06-18 Semiconductor apparatus formed by SAC (self-aligned contact) method and manufacturing method therefor
US09/585,627 US6483138B1 (en) 1996-06-19 2000-06-02 Semiconductor apparatus formed by SAC (self-aligned contact)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-158379 1996-06-19
JP15837996 1996-06-19
JP15846497A JP3795634B2 (ja) 1996-06-19 1997-06-16 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH1070191A JPH1070191A (ja) 1998-03-10
JP3795634B2 true JP3795634B2 (ja) 2006-07-12

Family

ID=26485513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15846497A Expired - Fee Related JP3795634B2 (ja) 1996-06-19 1997-06-16 半導体装置の製造方法

Country Status (2)

Country Link
US (2) US6078073A (ja)
JP (1) JP3795634B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785274B2 (en) 2009-06-01 2014-07-22 Fujitsu Semiconductor Limited Method for manufacturing semiconductor device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121716A (ja) * 1997-10-20 1999-04-30 Fujitsu Ltd 半導体装置及びその製造方法
JP3114864B2 (ja) * 1998-04-16 2000-12-04 日本電気株式会社 半導体基板における微細コンタクトおよびその形成方法
KR100284535B1 (ko) * 1998-06-17 2001-04-02 윤종용 반도체장치의자기정렬콘택형성방법
US6245629B1 (en) * 1999-03-25 2001-06-12 Infineon Technologies North America Corp. Semiconductor structures and manufacturing methods
KR100308619B1 (ko) * 1999-08-24 2001-11-01 윤종용 반도체 장치용 자기 정렬 콘택 패드 형성 방법
JP2001127174A (ja) 1999-10-25 2001-05-11 Mitsubishi Electric Corp 半導体装置
KR100338933B1 (ko) * 1999-11-02 2002-05-31 박종섭 반도체 소자의 콘택 형성 방법
US6306759B1 (en) * 2000-09-05 2001-10-23 Vanguard International Semiconductor Corporation Method for forming self-aligned contact with liner
JP2002151686A (ja) * 2000-11-15 2002-05-24 Nec Corp 半導体装置およびその製造方法
KR100346843B1 (ko) * 2000-12-07 2002-08-03 삼성전자 주식회사 층간절연막 형성 방법 및 이를 이용한 반도체 소자의 제조방법
KR100464416B1 (ko) * 2002-05-14 2005-01-03 삼성전자주식회사 증가된 유효 채널 길이를 가지는 반도체 소자의 제조 방법
TWI250579B (en) * 2003-12-22 2006-03-01 Hynix Semiconductor Inc Method for fabricating semiconductor device
KR100680948B1 (ko) * 2004-07-21 2007-02-08 주식회사 하이닉스반도체 반도체 소자의 스토리지 노드 콘택 형성방법
US7361587B1 (en) * 2004-09-02 2008-04-22 Spansion, Llc Semiconductor contact and nitride spacer formation system and method
US7572727B1 (en) 2004-09-02 2009-08-11 Spansion Llc Semiconductor formation method that utilizes multiple etch stop layers
US20060189080A1 (en) * 2005-02-21 2006-08-24 Hynix Semiconductor Inc. Method for fabricating semiconductor device
KR100623175B1 (ko) * 2005-05-30 2006-09-13 삼성전자주식회사 스택형 반도체 장치 및 그 제조 방법
KR100695431B1 (ko) * 2005-06-22 2007-03-15 주식회사 하이닉스반도체 반도체 소자의 컨택홀 형성방법
JP4205734B2 (ja) * 2006-05-25 2009-01-07 エルピーダメモリ株式会社 半導体装置の製造方法
US20080023748A1 (en) * 2006-07-27 2008-01-31 Promos Technologies Pte. Ltd. Self-aligned contacts to source/drain regions
JP2010205908A (ja) * 2009-03-03 2010-09-16 Toshiba Corp 半導体装置およびその製造方法
US8258578B2 (en) * 2009-08-31 2012-09-04 Advanced Micro Devices, Inc. Handshake structure for improving layout density
KR102472133B1 (ko) 2016-09-22 2022-11-29 삼성전자주식회사 집적회로 소자
KR102622412B1 (ko) * 2019-07-05 2024-01-09 삼성전자주식회사 관통 홀을 포함하는 반도체 패키지 및 이의 제조 방법
US11600519B2 (en) * 2019-09-16 2023-03-07 International Business Machines Corporation Skip-via proximity interconnect

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338034A (ja) * 1989-07-04 1991-02-19 Sharp Corp 半導体装置の製造方法
US4997790A (en) * 1990-08-13 1991-03-05 Motorola, Inc. Process for forming a self-aligned contact structure
JP2994128B2 (ja) * 1991-03-04 1999-12-27 シャープ株式会社 半導体装置の製造方法
EP0540276B1 (en) * 1991-10-31 1997-09-24 STMicroelectronics, Inc. A self-aligned contact process
US5356834A (en) * 1992-03-24 1994-10-18 Kabushiki Kaisha Toshiba Method of forming contact windows in semiconductor devices
US5338700A (en) * 1993-04-14 1994-08-16 Micron Semiconductor, Inc. Method of forming a bit line over capacitor array of memory cells
US5401681A (en) * 1993-02-12 1995-03-28 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells
JP3252518B2 (ja) * 1993-03-19 2002-02-04 ソニー株式会社 ドライエッチング方法
JP3238820B2 (ja) * 1994-02-18 2001-12-17 富士通株式会社 半導体装置
US5545584A (en) * 1995-07-03 1996-08-13 Taiwan Semiconductor Manufacturing Company Unified contact plug process for static random access memory (SRAM) having thin film transistors
US5591664A (en) * 1996-03-20 1997-01-07 Taiwan Semiconductor Manufacturing Company Ltd. Method of increasing the capacitance area in DRAM stacked capacitors using a simplified process
US5702972A (en) * 1997-01-27 1997-12-30 Taiwan Semiconductor Manufacturing Company Ltd. Method of fabricating MOSFET devices
US5763312A (en) * 1997-05-05 1998-06-09 Vanguard International Semiconductor Corporation Method of fabricating LDD spacers in MOS devices with double spacers and device manufactured thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785274B2 (en) 2009-06-01 2014-07-22 Fujitsu Semiconductor Limited Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
US6483138B1 (en) 2002-11-19
JPH1070191A (ja) 1998-03-10
US6078073A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP3795634B2 (ja) 半導体装置の製造方法
US6448618B1 (en) Semiconductor device and method for manufacturing the same
JP2512216B2 (ja) 半導体装置の製造方法
JP4086926B2 (ja) 半導体装置及びその製造方法
US6939765B2 (en) Integration method of a semiconductor device having a recessed gate electrode
US7436017B2 (en) Semiconductor integrated circuit using a selective disposable spacer
US6930347B2 (en) Semiconductor memory device having electrical connection by side contact
KR100414220B1 (ko) 공유 콘택을 가지는 반도체 장치 및 그 제조 방법
US6271065B1 (en) Method directed to the manufacture of an SOI device
KR100424241B1 (ko) 비휘발성 반도체 기억 장치의 제조 방법
JP3803960B2 (ja) 半導体メモリ素子の製造方法
JP3445965B2 (ja) 半導体装置およびその製造方法
KR100681720B1 (ko) 반도체 디바이스 및 그 제조 방법
JP2004095745A (ja) 半導体装置およびその製造方法
JPH05166835A (ja) 自己整合ポリシリコン接触
US6852581B2 (en) Methods of manufacturing a semiconductor device having increased gaps between gates
JP4266089B2 (ja) 半導体記憶装置の製造方法
JP4309070B2 (ja) 不揮発性半導体記憶装置およびその製造方法
KR101024771B1 (ko) 매립 워드라인을 갖는 반도체 소자 및 그 제조 방법
JP4672197B2 (ja) 半導体記憶装置の製造方法
JPH08236720A (ja) 半導体装置の製造方法
JPH07106557A (ja) 半導体装置およびその製造方法
JPH1197529A (ja) 半導体装置の製造方法
JP3079534B2 (ja) 半導体メモリ装置
JPH06244415A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees