JP3749933B2 - 微生物増殖の迅速な定量化の方法 - Google Patents
微生物増殖の迅速な定量化の方法 Download PDFInfo
- Publication number
- JP3749933B2 JP3749933B2 JP52541494A JP52541494A JP3749933B2 JP 3749933 B2 JP3749933 B2 JP 3749933B2 JP 52541494 A JP52541494 A JP 52541494A JP 52541494 A JP52541494 A JP 52541494A JP 3749933 B2 JP3749933 B2 JP 3749933B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- pixel
- colony
- pixels
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 102
- 230000000813 microbial effect Effects 0.000 title claims description 37
- 238000011002 quantification Methods 0.000 title description 4
- 238000012545 processing Methods 0.000 claims description 23
- 239000001963 growth medium Substances 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 14
- 238000011081 inoculation Methods 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 4
- 238000007689 inspection Methods 0.000 claims description 3
- 239000002609 medium Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 24
- 239000002253 acid Substances 0.000 description 19
- 238000013480 data collection Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 9
- 230000010354 integration Effects 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 8
- 238000011109 contamination Methods 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 239000002054 inoculum Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007793 ph indicator Substances 0.000 description 2
- ZPLCXHWYPWVJDL-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)methyl]-1,3-oxazolidin-2-one Chemical compound C1=CC(O)=CC=C1CC1NC(=O)OC1 ZPLCXHWYPWVJDL-UHFFFAOYSA-N 0.000 description 1
- HSHNITRMYYLLCV-UHFFFAOYSA-N 4-methylumbelliferone Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2C HSHNITRMYYLLCV-UHFFFAOYSA-N 0.000 description 1
- FRPHFZCDPYBUAU-UHFFFAOYSA-N Bromocresolgreen Chemical compound CC1=C(Br)C(O)=C(Br)C=C1C1(C=2C(=C(Br)C(O)=C(Br)C=2)C)C2=CC=CC=C2S(=O)(=O)O1 FRPHFZCDPYBUAU-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- WWAABJGNHFGXSJ-UHFFFAOYSA-N chlorophenol red Chemical compound C1=C(Cl)C(O)=CC=C1C1(C=2C=C(Cl)C(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 WWAABJGNHFGXSJ-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- XJRPTMORGOIMMI-UHFFFAOYSA-N ethyl 2-amino-4-(trifluoromethyl)-1,3-thiazole-5-carboxylate Chemical compound CCOC(=O)C=1SC(N)=NC=1C(F)(F)F XJRPTMORGOIMMI-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012569 microbial contaminant Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- -1 non-inoculated areas Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011867 re-evaluation Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/36—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/808—Optical sensing apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Sustainable Development (AREA)
- Biomedical Technology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
本発明は、接種された表面の微生物コロニーの自動カウントに関する。より詳しくは、本発明の方法は、コロニー増殖の特徴化された兆候の変化を早期に検出することにより、接種された表面の微生物コロニーを、早期に検出することとカウントすることとを備える。
背景技術
たとえばペトリ皿内での、微生物コロニーの増殖をカウントする種々の方法およびデバイスが知られている。訓練された実験作業員により、人手でコロニーをカウントすることがよく知られている。この方法は、達成されたカウントの精度に限界があるとともに、人手によるカウントという時間のかかるやっかいな仕事を実行するために熟練した作業員を用いることに関連するコストなどの多くの欠点を有する。
これらの問題は、培養されたペトリ皿内の微生物コロニーの早期検出が必要なときには、さらに問題となる。早期検出は製造者にとって非常に役に立つ。なぜなら、早期検出によって、製造者は、スクラップすなわち無駄な製品となる可能性のあるものの製造を中止することができ、また、追加の出費となるそれらの汚染された製品のさらなる処理を回避できるからである。
早期検出の有益な適用の一例は、食品製品における微生物の検査である。製品の汚染レベルを示す微生物コロニーのカウントを得るために、製品サンプルが抜き取られて、培養デバイスが接種されて、24時間またはそれ以上の時間をかけて培養される。もし、サンプルが過度の汚染を示すと、多くの場合には、製品を廃棄しなければならない。培養後6から12時間の範囲内で過度の汚染についての信頼できる早期検出および定量化が可能となれば、製造者に歓迎されるであろう。なぜなら、それによって処理の早い段階で汚染された製品を確認でき、それによって、廃棄されるべき製品と汚染された処理装置を通ることによって汚染されているかもしれない追加の製品とを処理するときにこうむる追加出費を回避することができるからである。
技術者は培養デバイスを用いて過度の汚染の早期検出を実行することができるが、自動検出システムとは対照的に、カウントを与える技術者を有することに関連する欠点がある。
早期コロニー増殖の重要な指標は、増殖速度、すなわち培養デバイスの連続する読み取り間の変化である。人である技術者が増殖速度を正確に測ること、あるいは、数百個にもなる可能性のある培養デバイスに対して、そのすべてをたった一人の技術者が監視して、増殖の兆候のわずかの間の変化を区別することは、不可能でないとしても、困難である。また、コロニーのカウントを与える技術者を雇うことは、一般的には比較的コストがかかり、早期検出に関連してさらに作業が困難になると、そのコストはさらに一層高くなるものと予想することができる。
微生物コロニーをカウントする自動システムは知られているが、一般的には、十分に培養された増殖培養基、すなわち、24時間またはそれ以上かけて培養された増殖培養基のトータルカウントを与えるようにされている。この公知のシステムは、2つの基本的なカテゴリーに分けることができる。
第1のカテゴリーは、ハードウエアの電気回路またはデジタルコンピュータとともにカメラまたはビデオ装置を用いるシステムを含む。このシステムは、培養デバイスの全体的な光吸収を計測することによって、培養デバイス内のコロニーの個数をカウントし、または、培養デバイスの全体的な汚染レベルを検出するシステムを含む。このようなシステムの例は、欧州特許出願公開第0 301 600号明細書、ペリー氏の米国特許第3,811,036号明細書、ミヤケ氏他の米国特許第5,003,611号明細書、仏国特許出願公開第2 602 074号明細書に開示されている。
これらのシステムは、上記したように、たとえば24時間またはそれ以上の比較的長い時間をかけて培養された、培養デバイス内のコロニーをカウントするようにデザインされている。これらのシステムは、ひとつの培養デバイスについてコロニーの信頼できる早期カウントを与えるようには、デザインされていない。
自動カウントシステムの第2のカテゴリーは、カウント処理を実行するために、一般的には、ひとつの配列の光電検出器とハードウエアの電気回路とを用いる。これらのシステムは、一般的には、コロニーが存在するか存在しないかを表示する信号を与える。これらは、コロニーの強度、すなわちインターバル間の増殖速度に関する情報を与えない。システムはコロニーの増殖を決定するために用いられる指示薬の変動する強度の徴候を示すことができないので、それらのシステムは、微生物コロニーの早期検出とカウントとについて、特に役に立つという訳ではない。
公知の自動カウントシステムは、十分に培養された培養デバイスについてコロニーをカウントするように、または、培養デバイスの全体的な光吸収を計測することにより培養デバイス内の全体の汚染レベルを検出するように、または、コロニー増殖の兆候の強さを計測することなく単にコロニーをカウントするように、デザインされているので、微生物コロニーの正確な早期カウントを行なう自動化された方法は、知られていない。
しかし、信頼できる早期検出とカウントとは、コロニー増殖の1またはそれ以上の特徴化された徴候におけるわずかの間の変化を監視することによって、達成されることが可能である。このような徴候は、微生物コロニーによって増殖中に生成される酸や酵素のような目に見えない指示薬や、裸眼で見ることができる、あるいは見ることができない他の兆候を含むことが可能である。
したがって、コロニー増殖の特徴化された兆候における変化を早期に検出することによって、接種された培養デバイスにおける微生物コロニーの早期検出および定量化を備える方法に対するニーズが存在する。
発明の要旨
本発明の方法は、本発明の早期検出の利点を与えるため、培養の早い段階におけるコロニー増殖の特徴化された兆候の変化に依存している。撮像ステップ中に収集されたデータは、特徴化された兆候における微妙な変化の検出を強調するため、本発明の方法に従って処理される。
本発明による好ましい方法において用いられる培養デバイスは、増殖中に微生物コロニーにより形成される酸の存在により引き起こされる特定の色変化を生じる。コロニー増殖の徴候として培養期間の早い段階においてたよられているのは、この色変化である。
本発明で開示されたデータ収集およびその処理の方法は、コロニー増殖の早期検出に特に有利である。この方法は、公知の自動システムおよび検出方法では達成不可能であり、また、人の技術者により合理的に繰り返されることができない。
好ましい方法において、酸領域は各微生物コロニーのまわりを囲み、各酸ゾーンに関連する色変化は高感度ビデオ装置を用いて検出される。そして、収集されたデータは、微生物コロニーの信頼できる早期定量化を与えるため、本発明のイメージ処理方法にしたがって、処理される。
本発明によるこの方法のこれらのおよび他の種々の特徴と利点とは、以下の詳細な説明および関連図面を読むと、明らかとなるであろう。
【図面の簡単な説明】
図1は、本発明による方法を実行するためのイメージ処理システムの好ましい実施例の略図である。
図2は、本発明による方法で用いられるペトリフィルム(PETRIFILM、商標)プレートの斜視図である。
図3は、本発明による方法のデータ収集部のひとつの好ましい実施例を表したフローチャート図である。
図4及び5は、本発明による方法のイメージ処理部のひとつの好ましい実施例を表したフローチャート図である。
図6A及び6Bは、本発明のひとつの好ましい方法により処理された、評価された時間経過イメージの略図である。
図7は、さらに処理を受けた図6Bのイメージの略図である。
図8は、さらに処理を受けた図7のイメージの略図である。
好ましい方法の詳細な発明
以下、本発明による好ましい方法と変形例の方法との説明を行なう。説明では、この好ましい方法と変形例の方法との種々の特徴を図示する図1〜8を参照する。
図1は、本発明による好ましい方法を実行するための好ましいシステムの構成要素を図示した略図である。図示したように、システム10は、メインプロセッサ12と、ビデオディスプレイおよび/またはプリンタのような連携する出力デバイス14とを含む。メインプロセッサ12は、光源16を制御する電源18を、制御する。メインプロセッサ12は、レンズ22とフィルタアタッチメント24とを含むビデオカメラ20も、制御する。カメラ20の下には、キャリア30が配置される。このキャリア30は、微生物を増殖させる複数の培養デバイス32を保持するようにデザインされている。
キャリア30および培養デバイス32の上面を照明するために用いられるライト16は、好ましくは、ゼネラルエレクトリックにより供給される標準的な直線状の15ワット蛍光管である。もっとも、必要により、多くの他の光源を代わりに用いることが可能である。代わりの光源のひとつとして考えらえるものは、環リング形状の蛍光管であろう。
電源18は、連続した強度のちらつきのない照明を供給するため、ライト16に供給される電気エネルギを制御するランプコントローラである。好ましい電源18は、50kHzの周波数で蛍光管16に電気エネルギを供給する。好ましい電源は、テキサス州リチャードソンにあるメルコンから入手可能であるメルコンFZ0416−2である。
本発明による好ましい実施例を実行するために用いられるカメラ20は、カリフォルニア州ウエストレイクビレッジにあるスペクトラソースインスツルメンツからの型番MCD220である。このカメラ20は、熱ノイズをできるだけ小さくするためにペルチエ冷却され、ピクセルあたり12ビットでイメージをメインプロセッサ12に供給し、192×165ピクセルの解像度を有する。好ましいレンズ22は、好ましいカメラ20に関して互換性がある標準Cマウントズームレンズである。レンズ22は、所望の視野に焦点が合うように調整される。
メインプロセッサ12は、好ましくは、486プロセッサを有するIBM互換のPCである。もっとも、データを制御して検索するために十分な計算容量及び能力を有する任意の適切なマイクロプロセッサを代わりに用いることができる。
好ましい方法は反射された光の特定波長の検出を含むので、レンズ22はまた、好ましくは、一対のバンドパスフィルタ24を備える。このバンドパスフィルタ24は、培養デバイス32から反射された光を通すために、カメラ20と培養デバイス32との間に置かれることが可能である。好ましい方法において、このバンドパスフィルタ24は、マサチューセッツ州ホリストンにあるコリオンから入手可能である。
好ましい方法を実行するために用いられる好ましいフィルタは、スペクトルピークが650nmでありバンド幅が40nmである赤フィルタである。第2の好ましいフィルタは、スペクトルピークが550nmでありバンド幅が40nmである緑フィルタである。フィルタのバンド幅は、撮影のために、SN比、すなわちコントラストを最適化するとともに、カメラ20の積分時間をできるだけ小さくするように選択される。
以下に述べるように、フィルタ24の選択は、コロニーの増殖の特定の徴候に基づいて使用に適したイメージを得るために、培養デバイス32に存在しているコロニーと、他のフィルタに置換すること(あるいは、全くフィルムを使用しないこと)とにより表される特性によって決まる。究極のフィルタ選択は、当業者によく知られるようになるであろうから、さらに説明しないことにする。
複数の培養デバイス32を保持するようにデザインされたキャリア30は、好ましくは、不透明材料で形成される。好ましい実施例において、不透明材料は、イメージの曇りをできるだけ小さくするために、各培養デバイス32において撮像される領域の背景色に一致するか、または単に黒い。
複数の培養デバイスを含むキャリア30の使用は、システム10が、位置ずれを生じる可能性のあるオペレータによるハンドリングなしに複数の培養デバイス32を監視でき、および/または、培養デバイス32の汚染物質の追加をモニタできるという利点がある。キャリア30はまた、誤った結果に導く可能性のある培養基の移動を防ぐ。キャリア30は選択任意であるが、上記した利点により、好ましいシステム10において用いられることが理解されるであろう。
ひとつの実施例において、キャリア30は各培養デバイス32の培養領域の非常に近くに位置する位置合わせマーク34を含む。位置合わせマーク34は、キャリア30がデータ収集時間の間に移動されるとき、撮像システム10が連続するイメージ間で高い繰り返し精度を与えるための位置合わせポイントとして適している。
培養デバイス32を培養するために熱を与える加熱面36が、キャリア30の下にある。好ましくは、キャリア30および加熱面36の全体アセンブリは、キャリア30の培養デバイス32のそれぞれについてデータ収集ポイント間を正確かつ繰り返し可能に移動するために、x−yテーブル(図示せず)に取り付けられる。
位置合わせマーク34は、撮像装置を通じて位置合わせを与えるために使用されることが可能であるが、x-yテーブルの繰り返し可能な位置決めは、データ収集ポイント間に位置合わせを与えるために、位置合わせマーク34の代わりに、用いられる。好ましいx−yテーブルは、xおよびyの両方向に1ピクセル幅より小さい精度で繰り返し可能に位置決めする。
培養デバイスの微生物コロニーをカウントする好ましいシステム10および方法は、ともに、主として、ミネソタ州セントポールの3Mカンパニーから入手可能なペトリフィルムプレートのような使捨て培養デバイス用に、デザインされている。さらに詳しくは、本発明による好ましい方法は、食品その他の製品のサンプルにおける微生物の存在を検出するために用いられるあるバージョンのペトリフィルムプレートを用いるように、デザインされている。好ましいプレートは、増殖する微生物コロニーを囲むより高いpHの領域において目に見える色変化を生じるようにデザインされている。好ましいプレートにおいて、色の変化は、プレートの培養領域に配置されたフェノールレッドコーティングによって生じる。このプレートは、コロニーによって作られた酸に反応して、赤い背景に黄色に着色されたエリアを作る。
しかし、撮像システム10に対する適切な変形に関しては、本発明による方法において好ましいプレートに代えて、ペトリフィルムコリフォームカウント(PCC)プレートや標準ペトリ皿のような他の培養デバイス32を用いることができることが、理解されるであろう。
本発明による好ましい実施例において使用するための(また、培養デバイスとして上記で参照された)ペトリフィルムプレート32のひとつの実施例は、図2に表されている。プレート32は、ダム44が配置されるベース42を含む。ダム44は、プレート32の培養領域にくぼみを与えるために用いられる。好ましくは、柔軟なカバー46がプレート32の一端に沿って取り付けられる。
ペトリフィルムプレートのような微生物を培養するための使い捨てデバイスのより完全な説明については、読者は、ハンセン氏他による米国特許第4,565,783号明細書を参照されたい。この明細書は、このようなデバイスに関するその開示を参照するために、本明細書に組み込まれている。好ましいペトリフィルムプレートの化学反応は、マック氏他により1993年5月14日に出願された米国特許出願第08/062,311号明細書に、より完全に開示されている。
フォームダム44の色が白く、培養エリア48に対して反射率が高いのでカメラ20により生成されるイメージの“ブルーミング”または“きらめき”を引き起こす可能性があるため、上記されたキャリア30は、ペトリフィルムプレート32の本商業的実施例に対して特に役立つ。ブルーミングは、イメージ及びその後のイメージ処理の品質を著しく低下する可能性がある。この理由により、フォームダムはブルーミングをできるだけ少なくするため、好ましい方法ではキャリア30を用いてマスクされる。
使用に際して、上記されたペトリフィルムプレートのような培養デバイス32は、微生物汚染物質について食品サンプルその他の物質を検査するために用いられる。そのプロセスにおいて、プレート32の培養領域48は、標準接種手順を用いて検査されるべき材料を接種され、プレート32は検査されたサンプルに存在する微生物の個数を決定するために培養される。微生物が増殖するにつれて、それらは、好ましいプレート32に配置されたフェノールレッド指示薬と化学反応を引き起こす酸を作り出す。この変化により、通常の赤い培養面48に黄色エリアがいつかは現れるようになる。そして、この黄色エリアは、検査されたサンプル内の汚染物質のレベルを決定するために、カウントされる。
本検査方法は、培養デバイス32のそれぞれについてコロニーカウントの正確な兆候を与えるため、24時間の培養期間に頼っている。本発明による方法の特別な利点は、コロニー増殖の初期段階で生成される色変化を強調するために、着色されたイメージをフィルタに通して処理することによって汚染されたサンプルの早期検出を与えることができる点である。早期検出によって、接種後6から12時間の間に、ユーザーは微生物コロニーの正確なカウントを得ることができるはずであることを意味する。
好ましい方法における培養デバイス32は、好ましいプレート32におけるフェノールレッド指示薬の化学反応を用いるが、本発明によるシステム10および方法に対する適切な変形に関しては、標準的なペトリ皿及び細菌培養基のような多くの他の培養デバイスを代わりに用いることが可能であることが理解されるであろう。
さらに、好ましい方法のアルゴリズムを用いて早期コロニーカウントを与えるために微生物増殖の他の指示薬を用いることが可能であろう。他のタイプの指示システムは、ニュートラルレッド、フェノールレッド、ブロモチモールブルー、ブロモクレゾールパープル、クロロフェノールレッド、ブロモクレゾールグリーン、ヒドロオキシピラニネトリスルホン酸(HPTS)のような代わりの発色指示薬を含むことができる。また、4-メチル-ウンベリフェロン(4-MU)を用いる蛍光のような他の非発色指示薬が適切な照明、フィルタリング、データ収集装置とともに使用されることも可能である。さらに、好ましい方法は可視光に頼っているが、本発明の好ましい方法を実行するために紫外線および赤外線領域を含む任意の放射線を用いることができることが、理解されるであろう。
コロニー増殖の上記の代わりの指示薬のいずれかを用いる好ましい方法の適用は、イメージデータを収集するために用いられるプロセスに対する調整とともに実行されることが可能であろう。しかし、本発明の方法は、早期コロニー増殖を指示できる収集されたイメージデータの任意の適切なセットに適用するようにデザインされている。
好ましい方法の説明の以下の部分は、明確のために、データ処理部とイメージ処理部とに分けられている。
データ収集
さて、図1を参照すると、本発明による好ましい方法において、多数の培養デバイス32は接種され、培養のためにキャリア32に配置される。好ましい方法において、培養デバイス32は、微生物により汚染物質を検査される食品サンプルや他の同様な製品を、接種される。
好ましい早期検出システムは、12時間以内の培養で、より好ましくは接種後6時間から8時間の期間内で、完全なコロニーカウントを与える。好ましい方法において、培養デバイス32は、初期には、約2時間培養され、このときに、上記した撮像システム10を用いて各培養デバイス32からイメージが収集される。
図3は、本発明による好ましい方法のデータ収集ステップを図示している。この方法において、培養エリア48を、キャリア30のマスクと、またはマスクが使用されなければフォームダム44と、区別するために、マスクイメージが撮像される(ステップ52参照)。
また、マスクイメージは、培養エリア48におけるノイズがコロニー倍殖の徴候として誤って認識されることを排除するために、使用されることも可能である。ノイズは、培養基の穴、泡、食品物質、非接種エリア、ダスト、その他の物すなわち培養エリア48の背景において不連続となる条件からなる可能性があるであろう。マスクイメージを用いてノイズの検出を強調するために、好ましくは、システム10は、マスクイメージとコロニーイメージ(以下に説明される)のために使用される上からの照明に加えて、下からの照明を備える。
しかし、好ましい方法において、本質的には、マスクイメージは、接種されたエリア48を、まわりを囲んでいるキャリア30やフォームダム44と区別するために使用される。各培養デバイスの接種されたエリア48の外側境界を示すことによって、そうする。
適切なイメージを与えるために、好ましい方法においてカメラ20によって撮像されるマスクイメージは、ピークスペクトル値が650nmでバンド幅が40nmの赤フィルタ24を使用する。好ましプレート32の培養エリア48は(プレート32のフェノールレッドにより)赤いので、赤フィルタが用いられ、たとえば、好ましい赤フィルタを通して見ると培養エリア38は白いように見える。
好ましい方法において、イメージの最も高いレベルのコントラストを短い積分時間を保つ必要とつり合わせるために、レンズ22の絞りが適切に設定されて、約3秒の積分時間を用いて、カメラ20はマスクイメージを撮像する。
積分時間の決定は、光源16の強度とフィルタ22のバンド幅とを含む多数の変数により影響される。好ましくは、積分時間は、カメラ20のCCDにおける熱ノイズの影響をできるだけ少なくするため(上記した条件を考慮しながら)できるだけ小さくする。
好ましいカメラ20は、192×165ピクセル配列の各イメージを収集する。好ましいカメラ20は、各イメージにピクセルあたり12ビットを与え、それにより、各ピクセルには、カメラ20の各ピクセルにおいて検出される光の強さに基づいて0から4095までのひとつの値が割り当てられる。値が0のピクセルは黒い対象(カメラ20の対応するピクセルに光が実質的に戻らない)に対応し、値が4095のピクセルは完全に白い対象(カメラ20の対応するピクセルを完全に飽和する)に対応する。
マスクイメージの赤フィルタのために、キャリア30のマスク部分は、カメラ20に対して黒く見え、ピクセルはゼロに近い値を全体的に有する。マスクイメージに対するフィルタリングは、培養エリア48とキャリア30のマスクとの間のコントラストを強調するように選択される。その結果、培養エリアとマスクとの間のピクセル値には、好ましくは、はっきりした相違があり、それによって、システム10が2つのエリアを区別できるようになる。
好ましいマスクイメージにおいて、1000〜1500またはそれ以下の値を有するピクセルに9999の値が割り当てられ、キャリア30のマスクにあることを示す。ピクセルがマスクにあるかどうかを決定するために用いられる値は、積分時間、フィルタリング、照明、マスクと培養エリア48とのコントラストのような種々の要因に基づいて、変更可能である。正確な値は、予め決定されるか、実際のデータに基づいて適切な統計学的方法または他の方法により、各培養デバイス32について確立されることが可能である。
値のいかんに拘わらずコロニー増殖を示すもとのとして考慮されるべきでないのはどのピクセルかを示すためにコロニーイメージを処理するときに、そのマスクイメージは、9999の値が割り当てられたマスクに対応するピクセルとともに、用いられることができる。また、マスクイメージは、コロニーイメージの位置合わせを与えるためにも、用いられることが可能である。マスクイメージは、マスク(またはフォームダム44)と培養エリア48との間の境界を示すことによって、位置合わせのために使用されることが可能である。もし、マスクイメージが位置合わせのために使用されるべきであれば、好ましくは、マスクは、システムがコロニーイメージ間の回転を補償できるようにするために、非円形状である。
システムは、(上記したように)キャリア30の位置合わせマーク34を、または培養エリア48の端を用いることができるが、好ましい方法は、カメラ20の下でキャリア30を移動するために用いられるx-yテーブルの精度に頼る。x-yテーブルは、好ましいカメラ20を用いるとき、xおよびyの両方向に1ピクセルの寸法より小さい繰り返し位置決め精度を有し、その結果、さらに位置決めすることは余分となるであろう。
マスクイメージが収集された後、第1のコロニーイメージは、好ましい方法において、接種後2時間で、収集される(図3のステップ54参照)。第1のコロニーイメージは、少なくとも初期時間の間に培養デバイス32が培養されて培養基があるレベルの適切な平衡に達することができた後に、収集される。
好ましい方法において、第1のコロニーイメージは、カメラ20のレンズ22の前に配置された緑フィルタ24を用いて初期の2時間の培養時間の後に収集される。この緑フィルタは、好ましくは、スペクトルピークが550nmでバンド幅が40nmである。この緑フィルタは、好ましい方法において用いられる好ましい培養デバイス32で増殖する微生物コロニーによって作り出される黄色に対して感度がよい。
緑フィルタを通された第1のコロニーイメージが得られるとき、好ましいカメラ20は、好ましくは、コントラストをできるだけ大きくするために絞りが適切に設定されて40ミリ秒の積分時間を用いて操作される。赤フィルタを通されたマスクイメージを撮像するときにイメージコントラストをできるだけ大きくすることとカメラ20によって形成されるノイズをできるだけ小さくすることとに関する同じ条件が、緑フィルタを通された第1のコロニーイメージを撮像されるときにも、適合する。
好ましい方法において、赤及び緑フィルタ24はフィルタホイール(図示せず)に取り付けられる。フィルタホイールは、所望のフィルタリングを提供するためにレンズの前でフィルタを動かす。このようなデバイスは当業者によく知られており、さらに詳細な説明を行わないこととする。
好ましい緑フィルタおよびカメラを用いることによって、第1のコロニーイメージが収集され、そのイメージの各ピクセルは、カメラ20の各ピクセルで検出された光の強度に基づいて、0と4095との間の値が割り当てられる。赤フィルタを通されたマスクイメージと同様に、0の値を有するピクセルは(カメラ20の対応するピクセルに光を実質的に全く戻さない)黒い対象に対応し、4095の値を有するピクセルは(カメラ20の対応するピクセルを完全に飽和させる)完全に白い対象に対応する。
また、好ましい緑フィルタを通されたイメージは、培養エリア48においてノイズを識別するためにも、使用されることが可能である。ノイスは増殖された培養基のボイドやクラック、接種中に形成された泡、接種物質などからなる可能性がある。培養中に見える可能性がある、増殖された培養基のボイドやクラックをできるだけ少なくするために、湿った環境を与えること、すなわち、培養エリア48からの蒸発を制限するために培養中のペトリフィルムプレートの端をシールすることは、都合がよいかもしれない。
また、マスクイメージを収集するために使用される赤フィルタと同様、コロニーイメージを収集するために使用される緑フィルタと組み合わせて偏向フィルタを用いることも、都合がよいかもしれない。偏向フィルタは、デバイス32の上の柔軟なカバー46(図2参照)によって引き起こされる反射を減少させることができる。たとえば、偏向フィルタが光源を覆って配置され、偏向フィルタがカメラレンズを覆って配置されることができる。代わりに、培養デバイス32に対して反射防止の柔軟なカバー46を備えてもよい。
あるいは、付加的なノイズイメージが、(好ましい方法において)40nmのバンド幅を有する450nmフィルタを用いて、各時点で収集されることが可能である。マスクイメージとコロニーイメージとについて議論された同じ条件が、任意のノイズイメージに適合する(たとえば、積分時間とコントラストとのバランスなど)。好ましい450nmのフィルタは、ゲル(すなわち、培養基)の厚さにおける変化、特に割れやボイドに敏感であるので、選択される。しかし、450nmフィルタとイメージとは、微生物増殖を検出するために使用される色変化に対して敏感でない。第1のコロニーイメージが収集された後、予め決定されたタイムインターバルの間に、培養デバイス32は培養される(図3のステップ56参照)。その後に、緑フィルタを用いて第2のコロニーイメージが収集される(ステップ58)。コロニーイメージ間の好ましいタイムインターバルは、60分である。その結果、第2コロニーイメージが培養デバイス32の接種後3時間で収集される。インターバルの長さは、微生物コロニーの増殖速度、pH指示薬の感度、接種物のpH、およびイメージシステム10の感度に基づいて、変えることが可能である。受け入れ可能な精度を与える最も低い周波数(最も長いインターバルに対応する)が好ましい。なぜなら、システム10がモニタできる培養デバイス32の数は、各培養デバ32についてのデータ収集の周波数に反比例するからである。
また、第1のコロニーイメージと同様に、第2のコロニーイメージも、上記のように撮像された赤いフィルタを通されたマスクイメージにおいて9999の値が割り当てられたピクセルを除いて、0〜4095の範囲の値を有するピクセルからなる。
イメージ処理
第1および第2コロニーイメージが収集された後、それらのイメージを分析して培養デバイス32に現れる微生物コロニーのカウントを与えるために、本発明による好ましい方法のイメージ処理部が用いられる。好ましいイメージ処理方法におけるステップは、図4及び5のフローチャートに表されている。
以下では好ましい方法のイメージ処理部のひとつの繰り返しだけが説明されるが、この方法は、上記したように、任意の数の連続するタイムインターバルで収集された一連のコロニーイメージを分析するために用いられるであろうということが、理解されるであろう。
好ましい方法の好ましいイメージ処理部は、“多すぎてカウントできない”(TNTC)という結果を培養デバイスが生じるかどうかを決定するステップ60から開始する。TNTC決定は、第1コロニーイメージのすべてのピクセルについての平均ピクセル値と第2コロニーイメージについての平均ピクセル値とを決定することによって行なわれる(赤フィルタを通されたマスクイメージにおいて9999の値を割り当てられたピクセルを含まない)。
第1および第2コロニーイメージについての平均ピクセル値が比較され、平均ピクセル値の差が予め決められたTNTCしきい値を越えているならば、培養デバイスはTNTC結果を生じるであろうという決定がなされる。
好ましいTNTCしきい値は15%である。すなわち、第2コロニーイメージの平均ピクセル値が第1コロニーイメージの平均ピクセル値より15%またはそれ以上越えているならば、TNTC決定がなされる。TNTCしきい値は、データ収集時間の間のタイムインターバルやコロニー指示薬の化学反応などの多くの要因に基づく変動に支配されることが理解されるであろう。
第1および第2コロニーイメージがTNTC決定を示さないならば、好ましい方法のイメージ処理部の次のステップ62は、第1コロニーイメージの各ピクセルの値を第2コロニーイメージの対応するピクセル値から差し引くことである。
この引き算ステップ62の結果は、第1および第2コロニーイメージが収集された時間に対応して連続するタイムインターバルで収集されたコロニーイメージの各ピクセルについての強度差を示す未加工の時間経過イメージである。好ましい処理において、赤フィルタを通されたマスクイメージにおいて9999の値が割り当てられたピクセルは、その値を9999に設定することによって、未加工の時間経過イメージにおいてマスクされる。
次のステップ64は、50と600との間の値を有する未加工の時間経過イメージにおけるそれらのピクセルの再評価である。相対的に小さい値(50)はMINDIFFとして以下で参照され、大きい値(600)は、MAXDIFFとして参照される。MINDIFFおよびMAXDIFF内のピクセルは、0と4095との間の値を有するように、直線的に再評価される。換言すると、MINDIFFピクセル(50の値を有する)は再評価されて4095に設定され、MAXDIFFのピクセル(600の値を有する)は再評価されて0に設定される。上記範囲の両極端の間にある値を有するピクセルは、直線的に再評価されて、0〜4095の範囲内の値となる。
さらに、第1および第2コロニーイメージ間のMINDIFF値を下回る差を示す未加工の時間経過イメージのこれらのピクセルは、すべて、4095の値(白に対応する)を割り当てられ、順に、イメージの背景に対応する。選択されたMINDIFF値より小さい差は、システム10によって割り当てられたピクセル値の誤差マージン(すなわち、ノイズフロア)内であると決定されるので、これらのピクセルは背景を割り当てられる。第1および第2コロニーイメージ間のピクセル値の間の差は十分小さく、それだけで、ピクセル値の差を無視してそれらに培養エリアの背景を割り当てることができる。
MAXDIFFの値より大きい差を有するピクセルは、すべて0(黒に対応する)に設定される。なぜなら、好ましい方法において、ピクセル値のそのような差は、分析されているタイムインターバルの間にその位置で酸の著しい集中が形成されたことを示すからである。この変化は、一般には、増殖する微生物コロニーの中央を表すであろう。
上記された直線再評価ステップ64は、第1および第2コロニーイメージ間のインターバルにおいて表れた変化を示すグレースケール化されたイメージを与える。この直線的に再評価されたイメージは、“評価された時間経過イメージ”ということにする。この評価された時間経過イメージは、以下に述べるようにコロニーカウントを決定するためにさらに処理される。
上記されたピクセル値の直線的再評価に対する変形例は、ルックアップテーブルを用いて、MINDIFFとMAXDIFFの範囲内に入る未加工の時間経過イメージのピクセルに、予め決定されたテーブルに基づいて4095〜0の範囲の値を割り当てることであろう。しかし、ルックアップテーブルの使用は、上記された直線的再評価処理に比べて、表示する目的に対して遅く、その結果、直線的再評価は好ましい方法で用いられている。
未加工の時間経過イメージを再評価するために用いられるMINDIFFおよびMAXDIFFの値は、微生物コロニーの増殖速度、指示薬のpH感度、接種物のpH、撮像システム10の感度のような多くの要因に基づいて変動する可能性があることが、理解されるであろう。このように、MINDIFF〜MAXDIFFの範囲は調整可能であり、その最適範囲は一般的には実験を通じて決定されなければならないであろうということが、理解されるであろう。
さらに、直線的再評価ステップは選択任意であり、ビデオモニタでの時間経過イメージの表示を強調するために好ましい方法においては使用されることが理解されるであろう。その結果、イメージを表示することなく微生物コロニーのカウントだけを与えるようにデザインされるならば、未加工の時間経過イメージは、再評価することなく、処理されることが可能であろう。
好ましい方法において用いられた評価される時間経過イメージが形成された後、次のステップ66は、酸ゾーンの中心でありしたがってコロニーの中心であるピクセルはどれであるかを決定するために、評価された時間経過イメージを処理することである。コロニーの中心にあると決定されたこれらのピクセルは、“ヒットピクセル”ということにする。ヒットピクセルが識別された後、これらは、評価された時間経過イメージにおいてピクセルのマトリックスを包囲するために、ステップ68で拡大される。そして、互いに重なりあったこれらのマトリックスは、ステップ70で集めてかたまりにされ、個々の微生物コロニーの境界を識別するため、ステップ72で各クラスターすなわちかたまりのまわりにサークルが形成される。
新しいコロニーに対応する新しい酸ゾーンだけが決定される最初の繰り返しの後に、イメージ処理体系のその後の繰り返しは、より詳細を以下で説明される拡大体系を用いて、既に識別されたコロニーを拡大するステップ74を備える。
この処理の好ましい新しいコロニーの検出部は、図4のフローチャートと図6A及び6Bの略図との両方に示されている。最初のステップ66は、評価された時間経過イメージにおける各ピクセルを検査してどれがヒットピクセルであるかを決定する。マスクイメージにおいて9999の値を割り当てられたこれらのピクセルは、各培養エリア48を取り囲むキャリア30のマスクにあるので、検査されない。
さらに、ノイズイメージが収集されるならば(好ましい方法において450nmを用いる)、それらはコロニーイメージと同様に処理され、データ収集時間の間に(根本的には乾燥のために)培養基に変化が生じたかどうかを決定する。そうするために、第1のノイズイメージは、第2のノイズイメージから引き算され、時間経過ノイズイメージを形成する。“ノイズ”しきい値を越える差を示すこれらのピクセルには、9999の値が割り当てられ、これらはノイズであると考えられる領域内にあることを示す。このイメージは、培養エリア48内のノイズ部を示し、マスクイメージとともに使用されて、微生物コロニーカウントを決定するときにどのピクセルが無視されるべきであるかを示す。好ましい方法において、ノイズしきい値は25である。もっとも、この値は変動する対象となり、一般的には実験を通じて設定されなければならないであろうということが、理解されるであろう。
ステップ66は、以下にさらに詳細に説明される。本質的に、評価された時間経過イメージの各ピクセルは、局所最小の中心(好ましい方法においては、第1および第2コロニーイメージ間の著しい変化を示す未加工の時間経過イメージにおける局所最小値に対応する)であるか否かを決定するために検査される。局所最小であれば、ピクセルが新しいコロニーの中心の近くまたは近傍にあり、好ましい方法においてヒットピクセルとして識別されるべきであることを示すであろう。
図6Aの略図を参照すると、各ピクセル100は、あるレベルの“暗”を有するピクセルだけが検査されることを保証するために、好ましい方法において、まず、酸ゾーンしきいレベルに対して検査される。このフィルタリングは、明の酸ゾーンしきいレベルのまたはそれを越えるピクセルが酸ゾーンに一般的には配置されないので、処理する必要をできるだけ少なくするのに役立ち、処理時間がこれらのピクセルを検査することに浪費されないであろう。
好ましい方法において、酸ゾーンしきい値は、3600より小さいか等しい。この3600という値は、実験により確立されたものであり、たとえば、微生物コロニーの増殖速度、pH指示薬の感度、接種物のpH、撮像システム10の感度に基づいて変動する可能性があることが、理解されるべきである。
酸ゾーンしきいレベルより小さいか等しいと評価された時間経過イメージのピクセルは十分に暗く、さらに以下に説明するようにこれらが局部最小であるかどうかを決定するために検査される。
ピクセル100が上記の条件に適合すると識別された後、ピクセル100のすぐ隣の4つの北(N1)、南(S1)、東(E1)および西(W1)の隣接ピクセルも検査されて、これらが、ピクセル100について検査を続けるために十分に暗いかどうかを決定する。好ましい方法において、これらのピクセル(N1,S1,E1,W1)が検査されて、その4個のうちの少なくとも3個が酸ゾーンしきいレベル、すなわち好ましい実施例においては3600より小さいか等しい値を有するかどうかを決定する。
これらの隣接するピクセル(N1,S1,E1,W1)の少なくとも3個が酸ゾーンしきいレベルより小さいか等しい値を有するならば、中央のピクセル100についてのさらなる検査が正当化される。もしこの検査が不合格であれば、ピクセル100が通過されてヒットピクセルとして分類されることはあり得ない。
もし、上記された第2の条件に適合したならば、すべての4個の隣接するピクセル(N1,S1,E1,W1)は、再び検査され、中央のピクセル100の値より大きいかまたは等しいかどうかを決定する。もし、すべての4個の隣接するピクセル(N1,S1,E1,W1)が中央のピクセル100の値より大きいか等しい値を有するならば、中央のピクセル100は、検査されたこれらのなかで最も暗いピクセルであり、したがって、コロニーの中央に対応する局所最小である。この検査が通過されなければ、ピクセル100はヒットピクセルとして分類されることはあり得ない。
もし、すべての4個の直ぐ隣が中央のピクセル100より大きいか等しい値を有するならば、中央のピクセルが可能性のある局所最小であることを保証するため、さらなる検査が実行される。この検査は、中央のピクセル100の直ぐ隣のピクセル(N1,S1,E1,W1)から1段移動されたピクセル(N2,S2,E2,W2)を用いる。これらのピクセル(N2,S2,E2,W2)の4個のすべてが、これらに対応する、中央のピクセル100と境界をなすすぐ隣の隣接のピクセル(N1,S1,E1,W1)より大きいか等しい値を有することを保証するために、これらのピクセル(N2,S2,E2,W2)が検査される。
もし、ピクセル(N2,S2,E2,W2)の少なくとも1個がそれに対応するすぐ隣の隣接ピクセル(N1,S1,E1,W1)より大きいか等しい値を有するならば、少なくとも1方向に中央のピクセル100から外側に、ピクセル値の勾配が存在する。それは中央のピクセル100をダークスポットと識別し、少なくとも1方向外側の2個のピクセルは暗さの程度が小さい。
もし、上記のすべての検査に適合すれば、隣接するすべての(N1,S1,E1,W1)は、それらのいずれもが9999の値を有しないことを保証するために、検査される。もし、検査されたピクセルのいずれかひとつが9999の値を有するならば、中央のピクセル100はヒットピクセルとしては分類されない。なぜなら、それは、マスクの近くの培養エリアの端、または、ノイズエリアの近くにあり、いずれの場合も、にせものの読み取りにより局所最小の誤った決定となる可能性があるからである。
好ましい方法は、上記されたように4つのコンパス方向にピクセルを検査することに頼っているが、任意の他の方向のピクセルが上記された方法の方向に沿って検査されることも可能であり、本発明は上記された方法そのものに限定されるべきではない。
最後に、中央のピクセル100から最も近い既に識別されたコロニー端までの距離が(もし存在すれば)計算される。この距離が予め決められた最小距離(MINDIST)より大きいならば、中央のピクセル100は、ヒットピクセルとして識別されることが可能である。もし、この距離がMINDIFFより小さいか等しければ、中央のピクセル100はヒットピクセルとして識別されることができない。存在している微生物コロニーに接近しすぎているからである。
好ましい方法において、MINDISTは、3.1ピクセルに設定される。この値は、コロニーの拡大しているひとつの酸ゾーンにおいて多数の局所最小を誤検出することをできるだけ少なくするため、実験を通じて決定された。MINDIST値は、それだけで、コロニー増殖速度、指示薬の感度、システムの感度、イメージが収集されるときの周波数などの多数の要因に基づいて、変わり得ることが理解されるであろう。
上記した検査にすべて適合すると、中央のピクセル100はステップ66でヒットピクセルとして分類される。ここで、上記処理の結果を示す図6Bを参照すると、いくつかのヒットピクセル100,110,120,130,140は、上記された方法を用いて局所最小として識別された。
コロニーを識別するためにヒットピクセル100,110,120,130,140を用いるクラスリング処理すなわち集めてかたまりにする処理の例は、図7の略図において見ることができる。より詳しくは、ピクセル100はマトリックス102を包囲するために拡大され、ピクセル110はマトリックス112を包囲するため拡大される。同様に、残りの各ヒットピクセル120,130,140は、対応する3×3マトリックス122,132,143にそれぞれ拡大される。
図示されたように、マトリックス102および112はともに重なり、その結果、ヒットピクセル100および110は互いに集まってかたまりとなる。3×3マトリックスは、拡大を実行するために使用されるので、各ヒットピクセル100,110,120,130,140は、8つの隣接する結合部に基づいて、重なり合っている隣接部(もし、存在すれば、)を用いて分類される。
ヒットピクセル100,110,120,130,140が拡大されてかたまりにされた後、サークルが各クラスすなわちかたまりを包囲するためにつくられる。このサークルは、識別されたコロニー1,2及び3の境界を識別するために使用される。培養デバイス32において拡大する酸ゾーン内のコロニーの重複カウントを防ぐために、サークルは実際のコロニーよりわずかに大きくすることが好ましい。
このとき、アルゴリズムは、微生物コロニー1,2及び3を識別することになる。60分のインターバルを用いてかつ2時間で撮像を開始する好ましい方法において、このコロニーカウントは、培養後3時間の時点(緑フィルタを通された第2のコロニーイメージが収集される時点に対応する)で決定されるであろう。
また、好ましい方法は、識別されることが可能なコロニーの最大個数について限界(MAXNOという)を含んでいる。もし、MAXNOより大きいコロニーの個数がカウントされると、培養デバイスはTNTC(すなわち、多すぎてカウントできない)デバイスとして表示されるべきであるから、最大値が設定される。このTNTC決定は、オペレータに、汚染が著しいサンプルが発見されたことを警告する。好ましい方法における実際のMAXNOは、100である。それは、実験を通じて決定され、培養デバイスの寸法、撮像システムの解像度などの多くの要因に基づいて、変わり得る。
本発明による好ましいイメージ処理方法は、より早期に評価された時間経過イメージにおいて識別されたコロニーの拡大を含む。たとえば、もし、コロニー1,2及び3が(培養後)2時間と3時間との間に現れる初期の評価された時間経過イメージにおいて識別されたならば、連続する評価された時間経過イメージは、3時間と4時間とに収集された緑フィルタを通されたコロニーイメージを用いて形成されるであろう。そして、連続する評価された時間経過イメージは、初期の評価された時間経過イメージにおいて識別されたコロニーが拡大されるべきであるかどうかを決定するために用いられるであろう。
この処理の拡大部は、連続する評価された時間経過イメージを形成するために用いられたタイムインターバル中にコロニー増殖を示すかどうかを決定するために、(初期の評価された時間経過イメージにおいて識別された)既知のコロニーの端にあるピクセルを検査することを本質的に含む。
好ましい拡大処理において、すぐ近くに接近している他のコロニーを巻き込むポイントにコロニーを拡大することを避けるために、プライオリティリストが使用さる。すべての新しいコロニーが上記されたように識別されると、処理を開始するときの計算順であるプライオリティリストの一番最後にそれが追加される。
たとえば、コロニー1は拡大しているかどうかを決定するために、最初に分析されるであろう。好ましい方法において、最初の検査は、各コロニーを形成するサークルの円周の内側に丁度ある4つの内部ピクセル150a,152a,154a及び156aの値を決定することを含む。
この4つのピクセルは、コロニー1を形成するサークルの中央からNSEW方向に大略位置するように、選択される。もっとも、任意の数の方向に位置する任意の個数のピクセルが検査されることが可能であることが、理解されるであろう。
次のステップは、それぞれが、上記の識別されたピクセル150a,152a,154a及び156aを(径方向に)丁度越えて位置する外側ピクセル150b,152b,154b及び156bのそれぞれの値を決定することを含む。これらの外側ピクセルは、好ましくは、検査されているコロニーの円周の丁度外側にある。
上記の識別されたピクセルの各対の値は、コロニーが識別されたピクセルの方向に拡大しているかどうかを決定するために比較される。もし、外側ピクセル(150b,152b,154b及び156b)が、対応する内側ピクセル(150a,152a,154a及び156a)より大きいか等しい値を有するならば、コロニーはその方向に拡大している。
好ましい方法において、4対のピクセルの少なくとも2対は、コロニーが拡大される前に拡大を示さなければならない。図8に示されたように、コロニー1はこの検査に適合する。なぜなら、内側と外側とのピクセル対の全てが拡大を示すからである。したがって、コロニー1は外側へ拡大し、好ましい方法において、その径は1ピクセル増加される。この値は、予想される増殖速度、データ収集間のインターバルなどの多くの要因に基づいて、大きくなり得る。
このとき、コロニー1は、ここでは2-3-1と決めらえれたプライオリティリストの一番最後に移動される。そして、コロニー2が分析されて、内側および外側ピクセル160a/160b,162a/162b,164a/164b及び166a/166bを用いて拡大する検査に適合するかどうかを決定する。図8に示されたように、コロニー2は、検査に適合せず、拡大されず、したがって、優先リストの一番上に残る。
そして、コロニー3は、拡大するかどうかを決定するために、分析されるであろう。図示したように、内側及び外側ピクセル170a/170b及び176a/176bの2対が拡大を示し、その結果、コロニー3は拡大を包囲するために拡大させる。拡大後、コロニー3は、優先リストの一番下に移動して、このとき2-1-3となるであろう。
好ましい方法は、各コロニーの径をRADMAXとして参照される値に制限する。好ましい方法において、RADMAXは50ピクセルに設定される。もっとも、この値は、撮像システムの解像度、培養デバイスの寸法、微生物増殖速度などの多くの要因に基づいて変わり得ることが理解されるであろう。
アルゴリズムにおいてこの時点で、トータルカウントは3コロニーとして表示される。インターバル間に拡大するこれらのコロニー、たとえばクラスター1および3だけが、確認されたコロニーとして識別されることが可能であると考えられる。識別されたが増殖を示さなかったコロニー2は、その後に増殖を示すときに確認されるようになる可能性がある未確認コロニーとして、識別されることが可能である。しかし、好ましい方法において、すべてのコロニーは、拡大挙動を示すかどうかにかかわらず、トータルカウントにカウントされる。
コロニーカウントの表示の後に、システム10は、再びリセットして、次のタイムインターバルの間培養デバイス32を培養し、その後、コロニーイメージを収集する方法は、新しいコロニーを識別して存在するコロニーを拡大するために、そのイメージを処理するステップにしたがって繰り返される。
上記処理の1つの繰り返しを通じて説明されたが、異なる時間に収集されたデータは上記されたのとほとんど同様にして処理されるであろうということが、理解されるであろう。重要な唯一の変更点は、処理の1つの繰り返しにおいて識別されたコロニー内にあるピクセルが、システムの処理のスピードアップのために、後のイメージにおいて無視されてよいことであろう。
Claims (2)
- 接種された培養基内の微生物コロニーを接種から6乃至12時間以内に検出し、カウントする方法であって、
a) 上記培養基を有する培養デバイスを撮像してマスクイメージを獲得し、
b) 上記接種された培養基外にあるマスクイメージのピクセルを識別するために上記マスクイメージを処理し、
c) 上記マスクイメージ内のノイズピクセルを識別するために上記マスクイメージを処理し、
d) 上記ステップb)、c)で識別されたピクセルに背景の値を割り当て、
e) 上記培養デバイスを撮像し、上記背景の値を有するピクセルを除外して第1のコロニーイメージを獲得し、
f) あるタイムインターバルの間、上記培養基を培養し、
g) 上記培養デバイスを撮像し、上記背景の値を有するピクセルを除外して第2のコロニーイメージを獲得し、
h) 上記第2のコロニーイメージから第1のコロニーイメージを差し引くことを含め、上記第1及び第2のコロニーイメージを処理して未加工の時間経過イメージを生成し、
i) 上記未加工の時間経過イメージを再評価して、評価された時間経過イメージを生成し、
j) ヒットピクセルを識別するため、
1)局所最小を識別し、
2)中央のピクセルの値をしきい値と比較して検査し、
3)上記中央のピクセルに直接隣接する近隣ピクセルが上記中央のピクセルの値よりも大きな値であることを保証するために少なくとも2つの近隣ピクセルを検査し、
4)上記各近隣ピクセルに隣接し、上記中央のピクセルの反対側にある1つ隔たった隣接ピクセルが、上記隣接する近隣ピクセルの値よりも大きな値を有していることを保証するために上記1つ隔たった隣接ピクセルを検査し、
5)上記検査を満たした各中央のピクセルをヒットピクセルと分類すること、を含めて、上記評価された時間経過イメージを処理し、
k) 上記第1と第2のコロニーイメージの間に上記培養基に現れた微生物コロニーを識別するため上記ヒットピクセルを集めてかたまりにし、
l) 上記培養基内の上記微生物コロニーの合計カウントを提供すること、
の各ステップを含む方法。 - 接種された培養基内の微生物コロニーを接種から6乃至12時間以内に検出し、カウントする方法であって、
a) 上記培養基を撮像して第1のコロニーイメージを獲得し、
b) あるタイムインターバルの間、上記培養基を培養し、
c) 上記培養基を撮像して第2のコロニーイメージを獲得し、
d) 上記第2のコロニーイメージから第1のコロニーイメージを差し引くことにより上記第1及び第2のコロニーイメージを処理して未加工の時間経過イメージを生成し、
e) 上記未加工の時間経過イメージ内で局所最大であるヒットピクセルを識別するため、
1)中央のピクセルの値をしきい値と比較して検査し、
2)上記中央のピクセルに直接隣接する近隣ピクセルが上記中央のピクセルの値よりも小さな値であることを保証するために少なくとも2つの近隣ピクセルを検査し、
3)上記各近隣ピクセルに隣接し、上記中央のピクセルの反対側にある1つ隔たった隣接ピクセルが、上記隣接する近隣ピクセルの値よりも小さな値を有していることを保証するために上記1つ隔たった隣接ピクセルを検査し、
4)上記検査を満たした各中央のピクセルをヒットピクセルと分類すること、の各ステップを含めて上記未加工の時間経過イメージを処理し、
f) 上記第1と第2のコロニーイメージの間に上記培養基に現れた微生物コロニーを識別するため上記ヒットピクセルを集めてかたまりにし、
g) 上記培養基内の上記微生物コロニーの合計カウントを提供すること、
の各ステップを含む方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6167893A | 1993-05-14 | 1993-05-14 | |
US08/061,678 | 1993-05-14 | ||
PCT/US1994/003717 WO1994026870A1 (en) | 1993-05-14 | 1994-04-05 | Method for rapid quantification of microorganism growth |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08510123A JPH08510123A (ja) | 1996-10-29 |
JP3749933B2 true JP3749933B2 (ja) | 2006-03-01 |
Family
ID=22037392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52541494A Expired - Fee Related JP3749933B2 (ja) | 1993-05-14 | 1994-04-05 | 微生物増殖の迅速な定量化の方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US5510246A (ja) |
EP (1) | EP0698084B1 (ja) |
JP (1) | JP3749933B2 (ja) |
AU (1) | AU6700494A (ja) |
DE (1) | DE69411268T2 (ja) |
WO (1) | WO1994026870A1 (ja) |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995016768A1 (en) * | 1993-12-17 | 1995-06-22 | Minnesota Mining And Manufacturing Company | Automated incubating and imaging system for a disposable microorganism culturing device |
US5694478A (en) * | 1994-12-15 | 1997-12-02 | Minnesota Mining And Manufacturing Company | Method and apparatus for detecting and identifying microbial colonies |
EP0745683B1 (en) * | 1995-05-31 | 2001-08-16 | Horiba, Ltd. | Process for measuring microbial activity state |
US6002789A (en) * | 1997-06-24 | 1999-12-14 | Pilot Industries, Inc. | Bacteria colony counter and classifier |
ES2137879B1 (es) * | 1997-12-02 | 2000-08-16 | Francisco Soria Melguizo S A | Sistema analizador de imagenes producidas por reacciones bacterianas. |
US5976827A (en) | 1997-12-12 | 1999-11-02 | Akzo Nobel, N.V. | Sensor device for detecting microorganisms and method therefor |
US5912115A (en) * | 1997-12-12 | 1999-06-15 | Akzo Nobel, N.V. | Evacuated sensor device for detecting microorganisms in blood samples, and method thereof |
DE19828688B4 (de) * | 1998-01-20 | 2004-07-15 | Anton Steinecker Maschinenfabrik Gmbh | Gärprozeß-Steuerung und Gärgefäß |
WO1999040176A1 (fr) * | 1998-02-03 | 1999-08-12 | Hakuju Institute For Health Science Co., Ltd. | Procede d'inspection de micro-organismes et autres, et unite de detection |
US6251624B1 (en) | 1999-03-12 | 2001-06-26 | Akzo Nobel N.V. | Apparatus and method for detecting, quantifying and characterizing microorganisms |
US6232091B1 (en) | 1999-08-11 | 2001-05-15 | Artann Laboratories | Electrooptical apparatus and method for monitoring cell growth in microbiological culture |
US6472166B1 (en) * | 2000-02-17 | 2002-10-29 | Wardlaw Partners Lp | Method for determining the effects of a growth-altering agent on a microbial colony |
US6756225B2 (en) | 2000-12-08 | 2004-06-29 | 3M Innovative Properties Company | Automated imaging and harvesting of colonies on thin film culture devices |
US20040092001A1 (en) * | 2001-03-01 | 2004-05-13 | 3M Innovative Properties Company | Automated imaging and harvesting of colonies on thin film culture devices |
EP1428018B1 (en) | 2001-09-06 | 2010-06-09 | Straus Holdings Inc. | Rapid and sensitive detection of molecules |
US7351574B2 (en) * | 2002-11-27 | 2008-04-01 | 3M Innovative Properties Company | Loading and ejection systems for biological growth plate scanner |
US20040102903A1 (en) * | 2002-11-27 | 2004-05-27 | Graessle Josef A. | Biological growth plate scanner |
US7319031B2 (en) * | 2002-11-27 | 2008-01-15 | 3M Innovative Properties Company | Mounting platform for biological growth plate scanner |
US20040101954A1 (en) * | 2002-11-27 | 2004-05-27 | Graessle Josef A. | Back side plate illumination for biological growth plate scanner |
US7298885B2 (en) * | 2002-11-27 | 2007-11-20 | 3M Innovative Properties Company | Biological growth plate scanner with automated image processing profile selection |
US7496225B2 (en) * | 2003-09-04 | 2009-02-24 | 3M Innovative Properties Company | Biological growth plate scanner with automated intake |
US7298886B2 (en) | 2003-09-05 | 2007-11-20 | 3M Innovative Properties Company | Counting biological agents on biological growth plates |
EP1937829A4 (en) * | 2005-09-26 | 2011-08-03 | Rapid Micro Biosystems Inc | CASSETTE CONTAINING A GROWTH MEDIUM |
JP5115552B2 (ja) * | 2007-03-19 | 2013-01-09 | 株式会社ニコン | 観察装置および波長制限フィルタ |
US9834748B2 (en) | 2007-07-09 | 2017-12-05 | 3M Innovative Properties Company | Modular system and method for detecting microorganisms |
BRPI0906086A2 (pt) * | 2008-03-04 | 2015-07-07 | 3M Innovative Properties Co | Método, sistemas e meio legível por computador. |
WO2009111301A1 (en) * | 2008-03-04 | 2009-09-11 | 3M Innovative Properties Company | Information management in automated processing of biological growth media |
CN102224260B (zh) | 2008-09-24 | 2015-11-25 | 施特劳斯控股公司 | 用于检测分析物的试剂盒和装置 |
US20100112630A1 (en) * | 2008-11-03 | 2010-05-06 | Scott Martell Boyette | Methods for measuring microbiological content in aqueous media |
US8481302B2 (en) * | 2008-11-03 | 2013-07-09 | General Electric Company | Total bacteria monitoring system |
JP5925200B2 (ja) * | 2010-06-30 | 2016-05-25 | スリーエム イノベイティブ プロパティズ カンパニー | 微生物検出システム及び方法 |
FR2964980B1 (fr) * | 2010-09-22 | 2014-05-16 | Commissariat Energie Atomique | Dispositif de detection et d'imagerie d'elements biocontaminants |
HUE036509T2 (hu) | 2011-11-07 | 2018-07-30 | Rapid Micro Biosystems Inc | Kazetta sterilitási vizsgálathoz |
FR2987922B1 (fr) * | 2012-03-06 | 2014-04-18 | Commissariat Energie Atomique | Procede et dispositif de comptage d'objets |
US10407707B2 (en) | 2012-04-16 | 2019-09-10 | Rapid Micro Biosystems, Inc. | Cell culturing device |
JP6036201B2 (ja) * | 2012-11-13 | 2016-11-30 | 大日本印刷株式会社 | 培地情報登録システム、コロニー検出装置、プログラム及び衛生管理システム |
CN104870650B (zh) | 2012-12-20 | 2018-09-11 | 3M创新有限公司 | 区别图像中的微生物菌落的方法 |
WO2014099644A1 (en) | 2012-12-20 | 2014-06-26 | 3M Innovative Properties Company | Method of detecting gas-producing microbial colonies |
US9784961B2 (en) | 2013-03-08 | 2017-10-10 | Church & Dwight Co., Inc. | Sperm motility test device and method |
US20140256032A1 (en) * | 2013-03-08 | 2014-09-11 | Church & Dwight Co., Inc. | Light scattering sperm assesment device and method |
JP6337885B2 (ja) * | 2013-04-17 | 2018-06-06 | 大日本印刷株式会社 | コロニー検出装置、培地情報登録システム、プログラム及び衛生管理システム |
KR101463005B1 (ko) * | 2013-10-15 | 2014-11-18 | (주)한국해양기상기술 | 특정 파장에 대한 형광 특성을 갖는 미생물 검사방법 |
JP2015139417A (ja) * | 2014-01-29 | 2015-08-03 | 大日本印刷株式会社 | 培地情報登録システム、コロニー検出装置、衛生管理システム、及び、プログラム |
US10200625B2 (en) | 2014-01-30 | 2019-02-05 | Bd Kiestra B.V. | System and method for image acquisition using supervised high quality imaging |
JP6344098B2 (ja) * | 2014-07-10 | 2018-06-20 | 大日本印刷株式会社 | コロニー検出システム、コロニー検出方法、及び、プログラム |
FR3028866B1 (fr) | 2014-11-26 | 2018-03-09 | bioMérieux | Procede, systeme et produit-programme d'ordinateur pour determiner la croissance de micro-organismes |
FR3062133B1 (fr) * | 2017-01-23 | 2022-06-17 | Interscience | Procede et appareil de comptage de colonies |
FR3067110A1 (fr) * | 2017-06-01 | 2018-12-07 | Centre National De La Recherche Scientifique (Cnrs) | Dispositif et procede de detection et d'imagerie d’elements biocontaminants |
EP3476928A1 (en) * | 2017-10-27 | 2019-05-01 | Envall Consulting AB | Detection of bacterial growth |
FR3075825B1 (fr) | 2017-12-21 | 2022-01-21 | Biomerieux Sa | Procede et systeme d'identificationdu type de gram d'une bacterie |
FR3075824B1 (fr) * | 2017-12-21 | 2022-01-14 | Biomerieux Sa | Procede d'identification d'une levure ou d'une bacterie |
WO2019204784A1 (en) | 2018-04-19 | 2019-10-24 | First Light Biosciences, Inc. | Detection of targets |
CN111175300A (zh) * | 2020-01-30 | 2020-05-19 | 上海市奉贤区中心医院 | 一种细菌耐药性产生实时观测系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3493772A (en) * | 1967-05-29 | 1970-02-03 | Palo Alto Medical Research Fou | Bacterial counting machine and method |
US3736432A (en) * | 1971-03-22 | 1973-05-29 | Varian Associates | Bacterial colony counting method and apparatus |
US3764480A (en) * | 1971-08-25 | 1973-10-09 | Armour & Co | Measuring surface bacteria |
US3811036A (en) * | 1972-09-19 | 1974-05-14 | Artek Syst Corp | Micro-biological colony counter |
CA1024425A (en) * | 1972-11-17 | 1978-01-17 | William E. Cunningham | Automatic determination of the concentration of bacteria in liquids |
DE2443410C3 (de) * | 1974-09-11 | 1981-10-01 | Artek Systems Corp., Farmingdale, N.Y. | Vorrichtung zum Zählen mikrobiologischer Kolonien |
US4116775A (en) * | 1976-05-03 | 1978-09-26 | Mcdonnell Douglas Corporation | Machine and process for reading cards containing medical specimens |
US4118280A (en) * | 1976-05-03 | 1978-10-03 | Mcdonnell Douglas Corporation | Automated microbial analyzer |
JPS5733592A (en) * | 1980-08-01 | 1982-02-23 | Fujisawa Pharmaceut Co Ltd | Equipment for identifying bacteria |
JPS59187777A (ja) * | 1983-04-11 | 1984-10-24 | Hitachi Electronics Eng Co Ltd | コロニ−自動スクリ−ニング装置 |
US4536239A (en) * | 1983-07-18 | 1985-08-20 | Nicolet Instrument Corporation | Multi-layer circuit board inspection system |
US4637053A (en) * | 1984-05-03 | 1987-01-13 | Spiral System Instruments, Inc. | Computer assisted biological assay system |
US4700298A (en) * | 1984-09-14 | 1987-10-13 | Branko Palcic | Dynamic microscope image processing scanner |
US5229849A (en) * | 1984-09-17 | 1993-07-20 | University Of Delaware | Laser doppler spectrometer for the statistical study of the behavior of microscopic organisms |
US4724543A (en) * | 1985-09-10 | 1988-02-09 | Beckman Research Institute, City Of Hope | Method and apparatus for automatic digital image analysis |
JPH0661091B2 (ja) * | 1985-09-10 | 1994-08-10 | 株式会社東芝 | 画像処理装置 |
US4896966A (en) * | 1986-08-15 | 1990-01-30 | Hamilton-Thorn Research | Motility scanner and method |
DE3628177C2 (de) * | 1986-08-20 | 1995-01-12 | Klein Schanzlin & Becker Ag | Einlaufgehäuse für Strömungsmaschinen mit radialer Zuströmung |
US4922092A (en) * | 1986-11-26 | 1990-05-01 | Image Research Limited | High sensitivity optical imaging apparatus |
SU1434465A1 (ru) * | 1987-04-15 | 1988-10-30 | Саратовский государственный медицинский институт | Устройство дл счета микроскопических объектов |
JPS6435347A (en) * | 1987-07-31 | 1989-02-06 | Sumitomo Electric Industries | Detection of intrusion of various bacteria |
JPH01296974A (ja) * | 1988-05-23 | 1989-11-30 | Toyo Jozo Co Ltd | コロニー計数装置 |
JPH026729A (ja) * | 1988-06-25 | 1990-01-10 | Shimadzu Corp | 細胞数測定装置 |
JP2826736B2 (ja) * | 1988-08-19 | 1998-11-18 | 東亜医用電子株式会社 | 粒子の自動識別処理装置 |
GB2227346A (en) * | 1988-08-26 | 1990-07-25 | British Aerospace | Image analysis |
EP0656938B1 (en) * | 1992-07-13 | 1997-10-29 | Minnesota Mining And Manufacturing Company | A technique to count objects in a scanned image |
-
1994
- 1994-04-05 EP EP94930844A patent/EP0698084B1/en not_active Expired - Lifetime
- 1994-04-05 AU AU67004/94A patent/AU6700494A/en not_active Abandoned
- 1994-04-05 JP JP52541494A patent/JP3749933B2/ja not_active Expired - Fee Related
- 1994-04-05 DE DE69411268T patent/DE69411268T2/de not_active Expired - Lifetime
- 1994-04-05 WO PCT/US1994/003717 patent/WO1994026870A1/en active IP Right Grant
- 1994-12-15 US US08/357,761 patent/US5510246A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO1994026870A1 (en) | 1994-11-24 |
DE69411268T2 (de) | 1999-03-04 |
DE69411268D1 (de) | 1998-07-30 |
EP0698084A1 (en) | 1996-02-28 |
US5510246A (en) | 1996-04-23 |
JPH08510123A (ja) | 1996-10-29 |
AU6700494A (en) | 1994-12-12 |
EP0698084B1 (en) | 1998-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3749933B2 (ja) | 微生物増殖の迅速な定量化の方法 | |
US5694478A (en) | Method and apparatus for detecting and identifying microbial colonies | |
US5663057A (en) | Process for rapid and ultrasensitive detection and counting of microorganisms by fluorescence | |
TWI499669B (zh) | 微生物檢測方法、微生物檢測裝置及程式 | |
US5340747A (en) | Diagnostic microbiological testing apparatus and method | |
KR101900121B1 (ko) | 이미지 캡쳐 및 조명 장치 | |
CA1296081C (en) | Method for detection of the presence of undesired microorganisms | |
EP1067199A1 (en) | Method of counting microorganisms and device for accomplishing the counting | |
JP5907947B2 (ja) | 生物学的粒子のクラスターを検出するための方法 | |
US9970858B2 (en) | Method and system for detecting at least one particle in a bodily fluid, and associated method for diagnosing meningitis | |
JP2016529493A (ja) | 細胞選別方法および関連する装置 | |
JP2007071742A (ja) | 蛍光読取装置および微生物計数装置 | |
JP2000304689A (ja) | 投影観察方法、微生物検査方法および投影検出装置 | |
EP2236596A1 (en) | High fidelity colour imaging of microbial colonies | |
Kildesø et al. | Exposure assessment of airborne microorganisms by fluorescence microscopy and image processing | |
JP2003135095A (ja) | 微生物検査方法及び微生物検査装置 | |
JPH0430798A (ja) | 生菌計数方法およびその装置 | |
JP3029760B2 (ja) | 細菌検査装置と検査方法 | |
JP4477173B2 (ja) | 微生物測定方法及び装置 | |
JP5140956B2 (ja) | 微生物計数装置 | |
JP2007097582A (ja) | 微生物計数装置 | |
JP2007071743A (ja) | 蛍光読取装置および微生物計数装置 | |
JPH07135995A (ja) | 微生物の検知方法 | |
JP2002236914A (ja) | 投影検出装置 | |
Ramanathan et al. | Development of an Intelligent Robotized Machine Vision Automated System for Bacterial Growth Monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20031202 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20040126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051108 |
|
A72 | Notification of change in name of applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A721 Effective date: 20051108 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |