WO2007029821A1 - 微生物計数装置 - Google Patents

微生物計数装置 Download PDF

Info

Publication number
WO2007029821A1
WO2007029821A1 PCT/JP2006/317874 JP2006317874W WO2007029821A1 WO 2007029821 A1 WO2007029821 A1 WO 2007029821A1 JP 2006317874 W JP2006317874 W JP 2006317874W WO 2007029821 A1 WO2007029821 A1 WO 2007029821A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
microorganism
microorganisms
excitation light
dead
Prior art date
Application number
PCT/JP2006/317874
Other languages
English (en)
French (fr)
Inventor
Shigetoshi Horikiri
Yoshikazu Tashiro
Akinori Kinugawa
Kazuo Nashimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005260132A external-priority patent/JP4779518B2/ja
Priority claimed from JP2006211992A external-priority patent/JP2007097582A/ja
Priority claimed from JP2006211993A external-priority patent/JP5140956B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007029821A1 publication Critical patent/WO2007029821A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy

Definitions

  • the present invention relates to an apparatus that can be used for rapid detection of microorganisms such as environmental samples and food specimens and can accurately count viable and dead bacteria from foreign substances and other contaminants.
  • a method using a fluorescein fluorescent dye which is a fluorescent enzyme substrate, is known as an example of a method for detecting and discriminating live and dead microorganisms using a fluorescent dye.
  • Fluorescein-based fluorescent dyes when permeated through the cell membranes of cells and microorganisms, are hydrolyzed by esterase enzymes in the cytoplasm and converted into fluorescent substances having a fluorescein skeleton (such as fluorescein) to express the luminescence function To do. Therefore, a light spot generated by irradiating excitation light can be determined as a living cell or microorganism (see, for example, Patent Document 1).
  • Patent Document 1 a method using a force lucein derivative and an iodine iodide as an esterase activity index indicator has been proposed as a fluorescent dye for judging the viability of microorganisms. . This is done by staining the microorganism with the above two types of dyes, measuring the intensity of the green and red fluorescence, and comparing the intensity to determine whether it is live or dead by flow cytometry. It is to do.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-146798
  • Patent Document 2 JP 2002-291499 A
  • Patent Document 1 is a force that detects viable and dead bacteria from the fluorescence intensities of the two reagents. I can't say that. This is a common problem for esterase-degrading dyes. Depending on the type of microorganism, the expression level of the enzyme varies, and there are those that do not stain at all.Other than that, depending on the environment and activity state where the microorganism is placed This is because there is a large difference in dyeability, and it is possible to accurately detect viable bacteria only by temporary measurement results.
  • the present invention is for solving such a conventional problem, and by using a nucleic acid binding fluorescent compound having high staining ability and labeling power, an enzyme possessed by a microorganism is obtained.
  • the purpose is to provide a device capable of counting by detecting highly sensitive and sensitive microorganisms without being affected by instability factors such as activity!
  • the irradiation positions of the plurality of excitation light sources are precisely spaced on the channel.
  • a frequently used technique is to use staining reagents that can be excited with the same excitation light source and simultaneously measure different fluorescence.
  • this method not only limits the staining reagents that can be used, but also stains. Since the reagent cannot be used at an optimum excitation wavelength, there is a problem that sensitivity is lowered.
  • the present invention is for solving such a conventional problem, and can simplify the apparatus configuration by using an image receiving element that can simultaneously acquire the fluorescence intensity and the particle size.
  • images of different staining reagents can be acquired easily and easily, and can be used at the optimum wavelength, making it compact, compact and highly accurate.
  • the purpose is to provide a microbe counting apparatus.
  • the present invention is for solving such a conventional problem, and obtains chromaticity information necessary for discriminating impurities from an image having RGB information, thereby reducing the cost of the apparatus.
  • the present invention is for solving such a conventional problem.
  • the device configuration for acquiring data by reading the luminance value at each wavelength is suitable for receiving light. Since the present invention can be carried out only with the filter and the image receiving element, a microorganism counting device capable of improving accuracy can be realized with a simple and small device.
  • the fluorescence emission is caused by microorganisms or by nonspecific adsorption to foreign substances other than microorganisms.
  • the fluorescence emission is caused by microorganisms or by nonspecific adsorption to foreign substances other than microorganisms.
  • the present invention is for solving such a conventional problem, wherein luminosity information is obtained from a plurality of images to obtain chromaticity, and the fluorescence emission of the luminescent material is derived from microorganisms.
  • the purpose of the present invention is to provide a microbe counting apparatus that can evaluate the presence or absence of adverse effects due to the presence of contaminants when determining the number of microorganisms and can determine the number of microorganisms with high V accuracy. .
  • the present invention is for solving such a conventional problem, and using a fluorescent staining reagent with little crosstalk between excitation wavelengths and fluorescence wavelengths, a plurality of the respective fluorescence emissions are used.
  • a fluorescent staining reagent with little crosstalk between excitation wavelengths and fluorescence wavelengths
  • a plurality of the respective fluorescence emissions are used.
  • the method for detecting the viable and dead microorganisms the method of observing the intensity of fluorescence emitted by the fluorescent dye by microscopic observation has the advantage of microbe recognition accuracy due to the difference in skill of each worker. The error is large. Therefore, there is a need for a method for accurately detecting the luminescence state of microorganisms by preventing them from being mistakenly recognized as microorganisms and detecting them accurately.
  • the present invention is for solving such a conventional problem.
  • the color of dead bacteria The objective is to judge the subtle color difference of the contaminants such as the autofluorescent material mixed by the difference in the particles and the particles adsorbed nonspecifically.
  • An object of the present invention is to provide an apparatus for discriminating objects and counting microorganisms.
  • the present invention is for solving such a conventional problem, and by setting and comparing a threshold value with respect to a numerical value of chromaticity by an input means, it can be more objectively determined whether or not it is a microorganism.
  • An object of the present invention is to provide a microorganism counting apparatus capable of judging and counting microorganisms.
  • the present invention is for solving such a conventional problem, and luminance values of images having different wavelengths necessary for calculating chromaticity are obtained from images acquired for respective colors. By extracting the luminance value based on the coordinates, it is possible to acquire color information at the exact same position, and even with minute emission points such as microorganisms, it is possible to acquire color characteristics with high accuracy and
  • An object of the present invention is to provide a microbial counting device capable of discriminating bacteria, dead bacteria, or foreign substances other than microorganisms!
  • the present invention is for solving such a conventional problem, and when there are a plurality of cell populations, a value of a color characteristic is set for each, and judgment and classification can be performed.
  • the purpose is to provide a microbe counting device!
  • the present invention is for solving such a conventional problem, and it has no light emission intensity in blue) against the three primary colors RGB necessary for obtaining color characteristics.
  • Use fluorescent dyes measure under measurement conditions using a spectral filter that does not have transparency in the blue wavelength range, and substitute the specified value without acquiring the blue luminance value.
  • the purpose is to provide a microorganism counting device that can perform counting quickly.
  • the present invention is for solving such a conventional problem.
  • a light emission point detecting means for detecting a light emission point from an image and extracting only the data of the light emission point with the image data power excluded from the background is also provided.
  • the present invention is for solving such a conventional problem, and is provided with a microorganism judging means after the life and death judging means for judging whether the bacteria are viable or dead, and divides the processing. Therefore, it is possible to improve the accuracy by efficiently discriminating and excluding the fluorescent light derived from foreign substances similar to these from the fluorescent light derived from live bacteria and dead bacteria.
  • the present invention is for solving such a conventional problem, and displays a two-dimensional dot plot based on the brightness of the light emitting point by the life / death determining means, and displays each dot on the dot plot.
  • a boundary line is created as a classification means for classifying the plot, and after determining whether the group is a viable cell group or a dead cell group based on the area divided by the boundary line, the microbial power is determined for each plot area by the microorganism determination unit.
  • the purpose of the present invention is to provide a microbe counting apparatus that can distinguish between live and dead bacteria by judging whether it is a microbe or a contaminant.
  • the position where it appears on the plot may be slightly different depending on the sample to be measured, and it is necessary to set an optimum boundary line for each measurement.
  • the present invention is for solving such a conventional problem.
  • the created boundary line is stored, and an optimum one is selected from the stored boundary lines, or is selected.
  • the purpose of this study is to provide a device that can categorize dot plots more accurately and count microorganisms with high accuracy by further editing the adjusted boundary lines and adjusting them to the optimum state.
  • the plots may be widely distributed, or conversely, the plots may be dense, making it difficult to see the boundaries of the plot group on the dot plot. There is.
  • the present invention is for solving such a conventional problem, and by providing a display axis selection means that can select and change the logarithm and constant force of the display axis of the dot plot, the plot is expanded.
  • a display axis selection means that can select and change the logarithm and constant force of the display axis of the dot plot.
  • the logarithmic display is used.
  • the constant display is used to make it easier to see the boundaries of each group of plots.
  • the present invention is for solving such a conventional problem, and by using the total value of the luminance, which is the total amount of luminance of the pixels forming the light emitting point, as the luminance of the light emitting point of the microorganism,
  • the purpose is to provide a device that can accurately represent the luminescent state of microorganisms and accurately classify the group of live bacteria or dead bacteria to count microorganisms.
  • the present invention is for solving such a conventional problem.
  • the luminance value is set to the maximum luminance among the pixels forming the light emitting point, and the maximum luminance value necessary for calculating the chromaticity is used.
  • the purpose is to provide a microbe counting apparatus capable of counting!
  • the images may be shifted in the XY directions due to mechanical errors of the spectral filter, mechanical errors such as wavelength and fixed dimensions, and the images are integrated. At times, there is a problem that the luminescent spots do not overlap accurately and the microorganisms cannot be accurately counted.
  • the present invention is for solving such a conventional problem, and in order to correct mechanical errors, a marker capable of acquiring light emission points from a plurality of images is fixed on the surface.
  • the coordinate correction chip By using the coordinate correction chip, the image force correction value is obtained, and a coordinate correction means for correcting the image coordinates using the correction value is provided, thereby providing a microorganism counting apparatus capable of accurately counting microorganisms. Speak for the purpose of providing.
  • the present invention is for solving such a conventional problem, and displays the obtained luminescent image as a color result image by reflecting the color information of each luminescent material.
  • the purpose is to provide a microbe counting apparatus that can easily perform the work to be confirmed in (1).
  • the present invention is for solving such a conventional problem, and is provided with a display means for displaying the same color as the color characteristic of a light-emitting material determined to be a microorganism, so that it can be viewed with a fluorescence microscope. It is possible to confirm which luminescent material is judged as a microorganism when it is observed, and it is possible to easily confirm whether or not the luminescent material is a color characteristic power microorganism without being an expert.
  • the purpose is to provide a high-quality microorganism counting device!
  • the present invention is for solving such a conventional problem.
  • the counting process the number of detected objects and the result image are displayed for each imaging position, so that counting is in progress.
  • the purpose of the present invention is to provide a microbe counting apparatus capable of constructing a rapid test system that enables the next work process to be started even before results are obtained.
  • the present invention is for solving such a conventional problem, and using a collecting means for collecting microorganisms in a specimen on the surface, a mounting means for fixing the collecting means is provided. so, It is an object of the present invention to provide a device that makes it easy to accurately obtain chromaticity for each light emitting point, and that can easily and accurately count microorganisms.
  • the microorganism when a collecting means for filtering and collecting the sample is used, the microorganism can be concentrated on the surface of a membrane filter or the like, and the staining inhibitor component dissolved in the sample can be removed.
  • the objective is to provide a microbe counting device that can stably observe luminescence over time in cells and minimize the impact on the environment by using a minimal amount of fluorescent staining reagent. Yes.
  • the filter when collecting microorganisms in a specimen with a membrane filter or the like, the filter is thin and small, and therefore the upper part of the filter may be touched when trying to move the filter that has collected microorganisms. Therefore, it is difficult to handle the filter aseptically, which may interfere with the test results.
  • the present invention is for solving such a conventional problem, and by providing a frame in a microorganism collecting means such as a membrane filter, the handling property of the collecting means is improved, and the microorganisms are improved.
  • the purpose is to provide a means for collecting microorganisms that can increase the efficiency of counting and obtain stable results.
  • the present invention is for solving such a conventional problem, and a thin film having an opening area smaller than the area of the collection means open portion is formed above and Z or below the collection means. Since the microorganism can be fixed only to the central part of the collecting means, the part of the collecting part surface of the collecting means that is close to the frame, that is, the area that cannot be observed with a high-power lens is used for fixing the microorganism.
  • the purpose is to provide a means for collecting microorganisms that enables observation of all luminescent materials at a high magnification and enables high-precision counting of microorganisms.
  • the present invention is for solving such a conventional problem, and the upper opening area of the collecting means is larger than the lower opening area of the collecting means. Microorganisms can be collected only in the central part of the partial surface, and furthermore, it can be carried out by changing the size of the lower frame of the membrane filter frame without increasing the number of parts.
  • the objective is to provide a means of collecting microorganisms that enables highly accurate microbial counting and reduces costs.
  • the present invention is to solve such a conventional problem.
  • the fluorescent staining reagent is made viscous, and the reagent is attached to a luminescent material such as microorganisms.
  • Lens effect power By increasing the size of the light-emitting point on the image and increasing the brightness, it is possible to obtain sufficient brightness to count the light-emitting points even when the magnification of the magnifying lens remains small. It is an object of the present invention to provide a microorganism counting method that enables counting of microorganisms having the above.
  • the microorganism counting apparatus of the present invention includes a mounting means for placing a collecting means for collecting microorganisms, a living and dead bacteria staining reagent for staining live and dead bacteria, and a dead cell.
  • Fluorescence image acquisition means for acquiring a fluorescence image of microorganisms on the collection means stained with a dead bacteria staining reagent for staining bacteria, and a luminescent spot detected from the fluorescence image acquired by the fluorescence image acquisition means
  • a fluorescence evaluation means for determining whether the chromaticity of the light emission point detected by the light emission point detection means is any one of viable bacteria, dead bacteria, and impurities, and the fluorescence evaluation means It is characterized in that the determined viable bacteria and Z or dead bacteria are integrated and counted, and the fluorescence emission at the emission point by the fluorescent staining reagent is reduced.
  • microorganism counting apparatus that can determine whether the microorganism is derived from a microorganism or a contaminant other than the microorganism, and can detect and count viable bacteria with high accuracy from the luminescent point.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 1, characterized in that the microorganism counting apparatus includes an input means for inputting parameters used for image processing. Therefore, it is possible to easily and efficiently input an enormous number of parameters used for arithmetic processing, and a highly practical microorganism counting apparatus can be obtained.
  • the microorganism counting device is the microorganism counting device according to claim 1 or 2, wherein the fluorescence image acquisition means includes an excitation light source, a spectral filter, a magnifying lens, and an image receiving element, and the blue excitation.
  • the fluorescence image acquisition means includes an excitation light source, a spectral filter, a magnifying lens, and an image receiving element, and the blue excitation.
  • a live and dead bacteria staining reagent that emits green fluorescence and a dead bacteria staining reagent that emits red fluorescence by green excitation a green fluorescence image by blue excitation light, a red fluorescence image by blue excitation light, and green excitation light or yellow excitation light It is characterized by the fact that a red fluorescence image is acquired by the method.By acquiring a green fluorescence image by blue excitation light, it is possible to measure by reducing autofluorescence against ultraviolet light excitation. The background luminance due to home fluorescence is reduced and SN can be improved.
  • the combination of the excitation light source and spectral filter used to acquire the brightness and chromaticity of the two types of staining reagents can be minimized, so that the device configuration can be simplified and the size of the device can be reduced. And a low-cost microorganism counting apparatus can be realized.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 1 or 2, wherein the light emission point detecting means extracts the luminance, coordinates and area of the light emission point on the image.
  • it is characterized by comprising a light emission point matching means for combining the brightness value and area data of each image of the light emission points that have been verified, and after detecting the light emission point for each image and correcting the coordinates.
  • the microorganism counting device is different from the microorganism counting device according to claim 4,
  • the luminance of the red fluorescence image by the blue excitation light extracted by the light emission point extraction means is set to red luminance
  • the luminance of the green fluorescence image by the blue excitation light is set to green luminance
  • these luminance values are input from the input means.
  • It is characterized by chromaticity calculation means that calculates chromaticity for each light emission point based on the luminance of blue.
  • the fluorescence evaluation unit includes a chromaticity calculating unit that calculates chromaticity for each light emitting point, and a light emitting point.
  • the luminescent substances are classified into a group of colors close to viable bacteria and a group of colors close to dead bacteria. Effectively handle color characteristics by determining whether it is a contaminant Can, streamline determination step, it is possible to realize a microorganism counting apparatus with improved discrimination accuracy.
  • the microorganism counting device is the microorganism counting device according to claim 4, wherein the coordinate correcting means includes a green fluorescence image by blue excitation light, a red fluorescence image by blue excitation light, and the like.
  • the coordinates of the emission point of the marker in each image acquired using an image correction chip with a marker having a wavelength that can acquire the emission point in all of the red fluorescence images with green excitation light or yellow excitation light is obtained. It is characterized in that a correction value for correcting the coordinates of the image is calculated by comparison, and a correction value for correcting a mechanical error unique to each device can be easily obtained. Therefore, it is possible to realize a microbe counting apparatus with improved accuracy.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 6, wherein, in the life / death determination means, the luminance of the channel of the green fluorescence image by the blue excitation light is determined.
  • the dot plot display means displays the two-dimensional dot plot with the value as the first axis and the luminance value of the channel of the red fluorescence image by green excitation light or yellow excitation light as the second axis, and is displayed by the dot plot display means.
  • a classification means for classifying each plot into a live bacteria group or a dead bacteria group is provided, and the plotting means classifies each plot into a live bacteria group or a dead bacteria group.
  • the power of the two dyes differing in luminescence intensity.
  • This feature can be easily classified by classifying means by separately displaying live and dead bacteria on a dot plot. This makes it possible to objectively determine the distribution state of the luminescent spots in the image from the position and density of the population on the dot plot, and to select exactly what should be counted. Can be realized.
  • the luminance value to be displayed is the maximum luminance value among the light emitting points.
  • the luminance value used for chromaticity and the luminance value used for dot plot can be shared, so it is necessary for each light emitting point. Therefore, it is possible to reduce the amount of data required and reduce the amount of memory used. Therefore, it is possible to provide a microbe counting apparatus that increases the speed of calculation processing and increases the speed.
  • the microorganism counting device is the microorganism counting device according to claim 8, wherein in the dot plot display means, the luminance value to be displayed is the sum of the luminance values of the pixels forming the light emitting point.
  • the luminance information used in the dot plot is characterized by the total luminance value that is the sum of the luminance values of the pixels of the light emitting point. The amount of luminescence can be expressed with higher accuracy, and dot plot display can be performed with higher accuracy, resulting in a highly accurate microbe counting apparatus.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 8, wherein the display axis of the dot plot display means can be arbitrarily selected from logarithm and constant.
  • the display axis selection means is provided, and when the brightness changes greatly depending on the type of microorganism and the cell cycle, and the display range of the plot spreads widely, the log display is selected to select the log display. Visibility is improved and the classification accuracy by the classification means can be increased. In addition, even when the plots are close, selecting the constant display will It is possible to realize a microbe counting apparatus capable of enlarging the boundary region and classifying the viable bacteria group and the dead bacteria group with high accuracy.
  • the classification means classifies the region to which the live bacteria group belongs and the region to which the dead bacteria group belongs on the dot plot. It is characterized by having a boundary line creation means for creating a boundary line to be detected and an area judgment means for making each plot a live or dead group based on the area divided by the boundary line.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 12, wherein the boundary line storing means for storing the boundary line created by the boundary line creating means, and a plurality of boundary lines.
  • Fluorescent staining reagent with a plurality of different wavelengths characterized by the provision of a boundary line selection means that makes it possible to select the optimal boundary line from the stored boundary lines.
  • the optimal boundary line is selected from the boundary lines stored for each microbial population.
  • the microorganism counting apparatus according to claim 14 is provided with boundary line editing means for editing the boundary line selected by the boundary line selecting means, in addition to the microorganism counting apparatus according to claim 13. Even if there is a slight difference in dot plots for each specimen, the boundary line can be finely adjusted to obtain a more accurate classification result. I can get it.
  • the microorganism counting device is the microorganism counting device according to claim 12, wherein, in the boundary line creating means, an arbitrary point on the outer periphery of the dot plot is on the outer periphery.
  • the feature is that a polygonal line with another arbitrary point as the end point is created as the boundary line.
  • the boundary line can be easily created with a cursor, etc. Since the end point is on the outer periphery, the entire region on the dot plot can be reliably classified by the boundary line, so that a simple and highly accurate microbe counting apparatus can be realized.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 6, wherein the microorganism judging means individually designates each of the live bacteria group and the dead bacteria group input from the input means. It is characterized by comparing the chromaticity threshold value and the chromaticity of the luminescent point to determine whether it is live, dead or contaminated, and is close to the color of live Contaminants and contaminants close to the color of dead bacteria can be prevented from being mistakenly measured as microorganisms. Furthermore, by making a judgment with a threshold, it is possible to make a more objective judgment. A bio-counter is obtained.
  • the microorganism counting device is the microorganism counting device according to claim 4, wherein the light emission point matching means designates the fixed distance specified by the input means from the coordinates of the light emission points of one image. This is characterized in that the light emission point of the other image within the range is collated as the same light emission point, and this is a case where the position of the pixel is slightly shifted for each image. In addition, it is possible to achieve a microbe counting apparatus that can accurately match images and reduce detection errors of viable bacteria.
  • the microorganism counting device is the microorganism counting device according to claim 4, wherein the light emission point matching unit assigns the light emission point data for each image to the RGB channel.
  • the microorganism counting device is characterized by the provision of a result image output means for outputting in the form of a color image.
  • the obtained luminescent image is displayed in color based on the color information, so that it can be used for confirmation work with a microscope! Since it becomes easy to compare the image with the image of the microscope, the accuracy of the confirmation work of the luminescent material can be improved.
  • it is easy for non-experts to find microorganisms from phosphors providing a microorganism counting device for a microorganism testing system that shortens testing time and improves the accuracy of measurement accuracy control. Can do.
  • the microorganism counting apparatus is the microorganism counting apparatus according to claim 16, further comprising display means for displaying a color of chromaticity for determining that the microorganism has been input by the input means.
  • display means for displaying a color of chromaticity for determining that the microorganism has been input by the input means.
  • the image correction chip according to claim 20 has a light emitting point in all of the green fluorescence image by blue excitation light, the red fluorescence image by blue excitation light, and the red fluorescence image by green excitation light or yellow excitation light. This is characterized by the fact that a marker having a wavelength capable of acquiring a red color is fixed on the surface, a green fluorescence image by blue excitation light, a red fluorescence image by blue excitation light, and a red color by green excitation light or yellow excitation light.
  • images are acquired using markers that can acquire fluorescent images for all three types of images, and the positional relationship of the markers for each image is compared. By obtaining the difference in the coordinates in the XY directions, an image correction chip for realizing an image correction method that can easily calculate the deviation width of these images can be provided.
  • the collection means for collecting microorganisms according to claim 21 includes a support frame for fixing the membrane filter, and the upper and lower filter opening areas are larger than the lower opening area. Since the center of gravity of the opening is coaxial, microorganisms can be collected only near the center of the membrane filter. Therefore, with a high magnification contact objective lens, the frame is objective near the frame of the membrane filter. Force that cannot be observed due to contact with the lens surface Microorganisms that can be observed without contacting the lens with the high-magnification contact objective lens by collecting microorganisms only near the center of the membrane filter. It is possible to realize a collection means for collecting
  • the microorganism counting method according to claim 22 is characterized in that the microorganism is counted using the microorganism counting apparatus according to claim 1, and a fluorescence image of the surface of the collecting means is obtained, Chromaticity power Judging whether the luminescent point is live, dead or contaminated, and using a microbe counting device that counts microorganisms, it is highly sensitive and can reduce measurement variations due to contaminants. A microorganism counting method can be realized.
  • the microorganism counting method according to claim 23 is the microorganism counting method according to claim 22, wherein when the microorganisms on the collecting means are stained, the viable and dead bacteria staining reagent and the dead bacteria staining reagent are viscous.
  • the reagent is attached to the surface of the microorganism, and the reagent attached to the surface of the luminescent material shows a lens effect even when the magnification of the magnifying lens is low. This enhances the fluorescence emission of the light emitting point, and can increase the area and brightness of the light emitting point on the image, so that the magnifying lens can be reduced in magnification. Therefore, it is possible to provide a method for counting microorganisms that can increase the area of one imaging, reduce the number of imaging operations, and achieve rapid imaging.
  • microorganism counting apparatus of the present invention it is possible to determine whether the fluorescence emission of the fluorescent staining reagent is derived from microorganisms or impurities other than microorganisms by the microorganism judging means.
  • an inspection system capable of quickly inspecting the presence or absence of microorganisms can be constructed, and manufacturing and distribution systems for foods, chemical products, water, etc. can be improved.
  • the fermentation process of microorganisms can be managed more reliably, and a product with stable quality can be provided.
  • fluorescence emission can be evaluated with high discrimination accuracy.
  • the objectivity of the determination can be improved.
  • a threshold value for the value indicating the color characteristic it is possible to automate the determination of the microorganism color by the microorganism determination unit.
  • a living and dead determining means for performing a step of determining whether the microorganism is a living or dead microorganism and a microorganism determining means for determining that the microorganism is a foreign substance other than the microorganism are provided separately. It is possible to efficiently determine whether it is a dead cell or a contaminant.
  • FIG. 1 is a conceptual diagram showing a microorganism counting apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 (a) The same figure showing the calculation results of the luminance and chromaticity of E. coli (b) The same figure showing the chromaticity calculation process flow (c) The same figure showing the chromaticity display means
  • FIG. 5 (a) Dot plot of luminance of luminescent materials in E. coli and tap water of Example 1 of the present invention and diagram showing classification method by viability judgment means (b) Chromaticity diagram of viable bacteria group Showing the judgment method by the microorganism judging means
  • FIG. 6 is a diagram showing dot plot display means and boundary line creation means using polygonal lines in the life / death judgment means of Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing dot plot display means and polygonal boundary line creation means in the life / death judgment means of Embodiment 3 of the present invention.
  • FIG. 9 Dot plot display means and area designation in life / death judgment means of embodiment 5 of the present invention Diagram showing classification method by
  • FIG. 10 (a) Magnified view showing the attachment of the reagent to the luminescent material of Example 6 of the present invention.
  • FIG. 10 shows the luminescence points of the luminescent material with and without the reagent attached.
  • the invention according to claim 1 of the present invention is a staining means for placing a collecting means for collecting microorganisms, a living and dead bacteria staining reagent for staining living bacteria and dead bacteria, and staining dead bacteria.
  • Fluorescence image acquisition means for acquiring a fluorescence image of microorganisms on the collection means stained with a dead bacteria staining reagent, and fluorescence image force acquired by the fluorescence image acquisition means.
  • fluorescence evaluation means for judging that the chromaticity of the light emission point detected by the light emission point detection means is any one of viable bacteria, dead bacteria, and contaminants, and the liveness judged by the fluorescence evaluation means
  • This is a microorganism counting device characterized in that bacteria and Z or dead bacteria are integrated and counted, and whether the fluorescence emission of the fluorescent staining reagent is derived from microorganisms or from contaminants other than microorganisms. Action that can improve the accuracy of judgment Yes to.
  • the invention described in claim 2 is the microorganism counting apparatus according to the invention described in claim 1, further comprising input means for inputting parameters used for image calculation processing. Since the enormous number of parameters to be used can be easily input, it is possible to process a large amount of data at once, and it has the effect of being quick.
  • the fluorescence image acquisition means includes an excitation light source, a spectral filter, a magnifying lens, and an image receiving element, and emits green fluorescence by blue excitation.
  • a live and dead bacteria staining reagent that emits and a dead bacteria staining reagent that emits red fluorescence by green excitation, green fluorescence image by blue excitation light, red fluorescence image by blue excitation light, and red fluorescence by green excitation light or yellow excitation light This is a microbe counting device characterized by acquiring images, and it can measure with reduced autofluorescence, improving the SN, and also for acquiring the luminance and chromaticity of two types of staining reagents. Since the combination of the excitation light source and the spectral filter to be used can be minimized, the apparatus configuration can be simplified and the size can be reduced.
  • the light emission point detection means includes: a light emission point extraction means for extracting luminance, coordinates and area of the light emission point on the image; A coordinate correction unit that corrects the coordinates of the light emission points on the image extracted by the light emission point extraction unit, and collates the same light emission points from a plurality of image models based on the corrected coordinates, and compares the light emission points.
  • microbe counting device characterized by comprising a light emission point matching means for combining the luminance value and area data of each image, and detecting the light emission point for each image, correcting the coordinates, and then generating the light emission point data
  • the luminance of the red fluorescent image by the blue excitation light extracted by the light emission point extraction means is set to the luminance of red, and the blue excitation light is used.
  • a microorganism characterized by comprising a chromaticity calculating means for calculating the chromaticity for each light emitting point based on the luminance of the green fluorescent image and the luminance of the blue color input from the input means. Since it is a counting device and measurement of blue luminance is omitted, the device configuration and the measurement image can be omitted, so that the device can be reduced in size and speeded up.
  • the fluorescence evaluation means includes chromaticity calculation means for calculating chromaticity for each emission point, and blue excitation light of the emission point.
  • Life / death judgment means for classifying the emission points into live or dead groups based on the brightness of the green fluorescence image by the light and the brightness of the red fluorescence image by the green or yellow excitation light, and the live or dead group It is equipped with a microbiological judgment means that judges whether the luminescent spot classified as microbial is a microorganism or a contaminant by chromaticity, and judges whether the luminescent spot is a live bacteria, dead bacteria, or a contaminant.
  • the microorganism counting device is characterized in that the counting is performed under the optimum conditions for each of live and dead bacteria, so that the counting accuracy can be improved.
  • the coordinates of the light emission points of the markers in each image obtained by using an image correction chip with a marker having a wavelength capable of obtaining a light emission point on the surface of all red fluorescent images by yellow excitation light are compared.
  • a microbe counting apparatus characterized in that a correction value for correcting coordinates is calculated. By obtaining a marker image, the operation of obtaining a correction value for each apparatus can be simplified. It has the action.
  • the luminance value of the channel of the green fluorescent image by the blue excitation light is represented by the first axis, the green excitation light or the yellow color.
  • a dot plot display means for displaying a two-dimensional dot plot with the luminance value of the channel of the red fluorescence image by the excitation light as the second axis, and each plot displayed by the dot plot display means is displayed as a viable cell group or a dead cell group.
  • a microbe counting apparatus comprising a classifying means for classifying into a fungal group, wherein the classifying means classifies the group into a live cell group or a dead cell group. From the position on the dot plot and the population density, It is possible to objectively capture the luminescent state, and to increase the accuracy of counting live and dead bacteria even when the type and state of bacteria differ from sample to sample.
  • the invention described in claim 9 is characterized in that, in the invention described in claim 8, in the dot plot display means, the luminance value to be displayed is the maximum luminance value among the light emitting points.
  • the microbe counting apparatus can reduce the amount of data by setting the luminance of the light emitting point only to the maximum luminance, and can reduce the memory usage, thereby speeding up the arithmetic processing.
  • the luminance value to be displayed is a sum total of luminance values of the pixels forming the light emitting point.
  • This is a microbe counting device characterized in that the linearity of luminance is maintained by summing the luminance of all pixels having light emission even when the luminance of the light emitting point is saturated on the pixel.
  • the dynamic range can be widened, and the accuracy of the classification of live and dead bacteria can be increased by increasing the accuracy of the plot display position on the dot plot.
  • a display axis selection means capable of arbitrarily selecting a display axis of the dot plot display means from a logarithm and a constant.
  • This is a microbe counting device characterized by the fact that it can select the optimal display axis even when plots are dispersed due to changes in the types of microorganisms and environmental conditions, or when plot groups are close to each other. Thus, it has the effect that the classification accuracy can be increased.
  • the classification means creates a boundary line for classifying the area to which the viable bacteria group belongs and the area to which the dead bacteria group belongs on the dot plot. Based on the boundary line creation means and the area divided by the boundary line! Hurry up each plot This is a microbe counting device that is equipped with an area judgment means to make a live or dead group, and creates a boundary line with a cursor etc. on a dot plot, and sets a group for each area that uses that boundary. By classifying, it has the effect that classification work can be done easily.
  • the invention according to claim 13 is the invention according to claim 12, in which the boundary line storing means for storing the boundary line created by the boundary line creating means and the plurality of boundary lines are stored.
  • This is a microbe counting device characterized by the provision of a borderline selection means that makes it possible to select the optimum borderline from the borderlines, and the position of the group of plots depends on the type, state, and environment of the microorganism. Even if it changes, the medium force of the saved boundary line can be easily classified by selecting the optimum boundary line.
  • the invention according to claim 14 is the microorganism counting apparatus according to the invention according to claim 13, further comprising boundary line editing means for editing the boundary line selected by the boundary line selecting means. Therefore, it is possible to give an accurate boundary line for each specimen and to improve the accuracy.
  • an arbitrary point on the outer periphery of the dot plot is set as a start point, and another arbitrary point on the outer periphery is set as the end point.
  • This is a microbe counting device characterized by creating a polygonal line as a boundary line.Because it can easily create a boundary line with a cursor etc., it can also create a complicated boundary line. More accurate classification means can be provided, and the accuracy can be increased.
  • the microbial threshold value and the chromaticity threshold value individually specified for each of the viable cell group and the dead cell group input by the microorganism judging unit are input means force. It is a microorganism counting device characterized by comparing the chromaticity of the light spot and judging whether it is live bacteria, dead bacteria, or contaminants. Foreign substances that are close to the color of dead bacteria can be removed from each counting target, and the accuracy can be improved.
  • the light emitting point matching means is within a fixed distance range specified by the coordinate force input means of the light emitting point of one image.
  • the microbe counting device is characterized in that the light emission point of the other image is collated as the same light emission point. Even if the pixel position of the light emission point is slightly shifted for each image, the accuracy is improved. It has the effect of being able to count well.
  • the light emission point matching means assigns the light emission point data for each image to the RGB channel and outputs it as a single color image.
  • the microbe counting apparatus is provided with an image output means, and displays the obtained luminescent image in color based on the color information, thereby performing color-coding processing for each type of luminescent spot. Viable and dead bacteria can be confirmed, thus increasing the speed of counting.
  • display means for displaying a color of chromaticity for determining that the microorganism is input by the input means.
  • This is a microbe counting device that is characterized by its ability to compare the color of the emitted light with the display color of the display means when checking the luminescent spot determined to be viable by a microscope. Since the operation can be easily performed, the operation can be performed quickly.
  • the invention according to claim 20 is characterized in that the emission point is set for all of the green fluorescence image by blue excitation light, the red fluorescence image by blue excitation light, and the red fluorescence image by green excitation light or yellow excitation light.
  • a chip for image correction characterized in that a marker having a wavelength that can be acquired is fixed on the surface, a green fluorescence image by blue excitation light, a red fluorescence image by blue excitation light, and green or yellow excitation light. It can be easily calculated from the positional relationship of the coordinate correction value force marker for correcting the mechanical displacement in the XY directions contained in the three types of red fluorescent images.
  • the invention according to claim 21 includes a support frame for fixing the membrane filter in the collecting means, wherein the upper filter opening area is larger than the lower opening area.
  • This is a collecting means for collecting microorganisms characterized by the fact that the center of gravity of the opening is coaxial, and because it can collect luminescent matter only in the central part of the membrane filter, all the luminescent matter in the microscope can be captured at high magnification. Therefore, it has the effect of increasing the counting accuracy of microorganisms.
  • the invention described in claim 22 is a microorganism counting method characterized in that the microorganism is counted using the microorganism counting apparatus of the invention described in claim 1, and a fluorescent image on the surface of the collecting means is obtained. Acquired chromaticity power Judging whether the luminescent point is live, dead, or contaminated, and using a microbe counting device that counts microbes, improves the convenience and speed of microbiological testing It has the effect of being able to do things.
  • the living and dead bacteria staining reagent and the dead bacteria staining reagent are made viscous so that
  • This is a microorganism counting method characterized by attaching a reagent to the surface, and even when the magnification is low, the reagent adhering to the surface of the luminescent material can enhance the fluorescence emission due to the lens effect and be captured in the image.
  • a low-magnification lens can be used for the magnifying lens, and the area of one imaging can be increased, and the number of imaging can be reduced to speed up the counting of microorganisms.
  • microorganisms are placed on either the front side or the back side of the observation surface of a slide glass, culture dish, multiwell plate, filtration membrane, or cell having a shape suitable for measurement.
  • a reagent such as poly-L-lysine or a polymer material with adhesiveness or adhesion such as gelatin is thinly applied to the surface, and a sample containing microorganisms is dropped and adsorbed on the surface.
  • a filtration membrane such as a membrane filter
  • the upper force liquid sample is aspirated and filtered, and microorganisms are captured and fixed on the membrane filter surface in a flat shape.
  • a filtration membrane In the present invention, it is most preferable to use such a filtration membrane because the following operations such as staining and washing can be handled easily and without losing microorganisms.
  • the membrane filter since the membrane filter is thin and small, it is not easy to handle as it is. Therefore, use a dedicated support base, a holder with a suction port, or attach a support to the membrane, an integrated device Thus, the film can be easily handled.
  • the specimen containing or possibly containing the microorganism is a liquid specimen, but when the test object is a liquid sample such as drinking water, the specimen itself is a liquid specimen.
  • the object to be inspected is a solid sample such as vegetables or meat, it can be homogenized to obtain a liquid sample, or its surface force can be collected using a cotton swab to collect cells and microorganisms. Or in a phosphate buffer solution to make a liquid sample.
  • microorganisms are collected from the surface using a cotton swab or the like and released into physiological saline or the like to obtain a liquid sample.
  • Cells and microorganisms can be trapped on the membrane filter by aspirating and pressure-filtering such a liquid specimen with a membrane filter, and in some cases, by vibrating and filtering using ultrasonic waves.
  • microorganisms are collected not only on the surface of a preparation, on the surface of a flat plate with high visible light transmission, on the gap between plates, or on adhesion. It is performed on the surface of a sheet-like or disk-shaped chip device, the surface of a flat plate medium, the surface of a petri dish, dish, multi-well plate, electrode material or adsorbent material.
  • microorganisms can be immobilized not only by physical force such as centrifugal force, electrostatic force, dielectrophoretic force, hydrophobic force, but also by adhesive components such as gelatin, antigen-antibody reaction, and ligand-receptor reaction. Biological binding forces such as can be used.
  • an appropriate concentration of a divalent metal complex, an aqueous solution in which a monovalent cation or a cationic surfactant is mixed, or the like is used.
  • the cell After the cell is mixed with the liquid sample or the cells and microorganisms from the upper part of the collecting means are contacted, it may be filtered or may be contacted with the cells and microorganisms from the lower part. Thereby, the cell membrane permeability to the fluorescent staining reagent of cells and microorganisms can be kept constant.
  • the reagent can be attached so as to cover the surface of the microbial cell after contacting the reagent with the microbial sample. And the fluorescence intensity can be increased. As a result, even when scanning a wide range at a high speed with a low magnification, it has a sufficiently strong brightness and a large surface. The luminescence image of the microorganism can be acquired by the product.
  • ethylenediamine tetraacetic acid or the like is used in a concentration range of about 0.5 to lOOmM.
  • potassium salt, sodium salt and the like can be used in a concentration range of 0.05 to 5%.
  • cationic surfactant those having low invasiveness to cells such as Tween20, Tween60, Tween80, TritonX-100 can be used, and these are in a concentration range of about 0.01 to 1%. Used in.
  • (D) polyhydric alcohols such as sorbitol and glycerin can be used in a concentration range of 10 to 70%, or silicon oil can be used. .
  • an anti-drying component is mixed, and a fixed amount of a staining reagent containing a fixed concentration of either a live or dead bacteria staining reagent, a killed bacteria staining reagent, or both is dropped onto a fixed surface.
  • Fluorescent dyes that have a nucleic acid-binding structure but are preferably used as a staining reagent for viable and dead bacteria are those that emit blue fluorescence under ultraviolet excitation, for example, 1,4-diamidino 2-phenyl.
  • Indole which emits green fluorescence, yellow-green fluorescence or yellow fluorescence with blue excitation, for example, atalidine orange, oxazole yellow, thiazole orange, SYTO9, SYTO13, SYTO16, SYTO21, SYTO24, SYBR Green I, S Polymethine cross-linked asymmetric cyanine dye compounds such as YBR Green II and SYBR Gold can be used.
  • a reagent for staining viable and dead bacteria such as hexidinium iodide that stains Gram-positive bacteria and does not stain Gram-negative bacteria.
  • any monomethine-crosslinked asymmetric cyanine such as an atrazine dimer, thiazole orange dimer, or oxazole yellow dimer may be used as long as it emits green fluorescence by blue excitation.
  • dye dimers monomethine-bridged asymmetric cyanine dye compounds such as SYTOX Green and TO-PRO-l, and those that emit red fluorescence upon green or yellow excitation include, for example, propidium iodide and hexidinium bromide.
  • Polymethine cross-linked asymmetric shears such as odors, jets, LDS—751, and SYTOX Orange Can be used.
  • these fluorescent dyes have green fluorescence, yellow-green fluorescence, yellow fluorescence, orange fluorescence, red fluorescence, etc., they do not have fluorescence intensity in the blue region, and thus acquire color characteristics. Even in this case, the microorganisms can be counted by omitting the blue light receiving means.
  • the staining reagent contains 10 to 60% w Zv glycerol, Mix one or more of 90% vZv of polyhydric alcohols such as D (—) One Mann-Torr and D (—) One Sorbitol.
  • the reagent can be adhered to the surface of the emitted light.
  • the light emission point can be enhanced by the lens effect, and sufficient luminance and area for detection can be obtained even for low magnification images.
  • glycerol used as an anti-drying agent and polyhydric alcohols such as D (—) man-tol and D (—) — sorbitol are suitable for giving viscosity.
  • a membrane filter suitable as a collecting means for example, a known filter such as a polycarbonate having a pore diameter of 0.2 m to l ⁇ m can be used. Since membrane filters are difficult to handle, such as filtration, as they are, it is appropriate to use a force to install a base or attach a frame directly to the membrane filter.
  • the apparatus is provided with mounting means. This is to set the direction of the collecting means so that the collecting means does not come off by vibration during measurement.
  • the collecting means is fixed perpendicular to the optical axis direction. Ma
  • press the stage with high flatness from the back side of the membrane filter so that constant flatness is always obtained.
  • An excitation light source and a spectral filter for irradiating a specific wavelength to the fluorescent color are used as the fluorescent image acquiring unit for acquiring the image of the surface of the collecting unit.
  • the spectral filter is composed of, for example, an excitation filter that splits the excitation light, a no-pass filter for removing the excitation light component, a light-receiving filter for extracting a specific wavelength component of the fluorescence power that also emits the sample force, and the like.
  • the Acquisition of fluorescent images includes, for example, an excitation light source for irradiating a fluorescent dye with a specific wavelength, an excitation filter for dispersing excitation light, a condensing lens for condensing excitation light to a diameter of about 3 mm, and excitation.
  • a high-pass filter for removing light components for removing light components, a light-receiving filter for extracting a specific wavelength component of fluorescence power that emits sample power, a lens unit (magnifying lens) for enlarging it, and an electrical signal for the fluorescent image This is done using a CCD or CMOS image receiving element to convert the data into a.
  • the wavelength is determined when irradiation is performed with excitation light containing a wavelength component in the vicinity of 470 nm to 510 nm. Emits fluorescence around 510nm to 540nm.
  • green excitation when an excitation light containing a wavelength component with a wavelength of 510 nm to 550 nm is irradiated, fluorescence with a wavelength of 56 Onm to 620 nm is emitted.
  • yellow excitation when excitation light containing a wavelength component having a wavelength of 540 to 580 nm is irradiated, fluorescence having a wavelength of 590 to 630 nm is emitted.
  • a blue light source can emit a wavelength of preferably around 480 nm, and a green light source preferably has a wavelength of around 530 nm.
  • those that can emit light and those that are yellow, those that can emit a wavelength around 560 nm are preferably used.
  • the excitation light component is often in a wide band, which may cause an increase in the background of the fluorescence image. Cut out and use.
  • the blue one is preferably 475 Those capable of emitting a wavelength in the vicinity of nm or those capable of emitting a wavelength in the vicinity of 535 nm are preferably used for green ones.
  • a halogen lamp or mercury lamp is used as the excitation light source, it is preferable to use an optimum spectral filter in accordance with the excitation wavelength of the staining reagent.
  • a reflective or transmissive diffraction grating having a wavelength resolution of 0.1 to 10 ⁇ m can provide an optimum angle and extract excitation light including an arbitrary wavelength.
  • the condensing lens can irradiate the membrane filter on which the fluorescently stained cells and microorganisms are spread so that the irradiation range is, for example, a constant area having a diameter of about 3 mm. Things are good. Furthermore, a more uniform excitation light can be irradiated by combining a diffuser plate for scattering light on the primary side.
  • the fluorescent light passes through the lens unit, and a charge coupled device unit such as 3CCD including three types of RGB fluorescent filters that can acquire three primary colors of red (R), green (G), and blue (B) as the image receiving device. It is obtained by taking an image that has RGB3 color power with an exposure time of 0.1 to 10 seconds. A single color CCD may be used as the image receiving element.
  • a charge coupled device unit such as 3CCD including three types of RGB fluorescent filters that can acquire three primary colors of red (R), green (G), and blue (B) as the image receiving device. It is obtained by taking an image that has RGB3 color power with an exposure time of 0.1 to 10 seconds.
  • a single color CCD may be used as the image receiving element.
  • the luminance information of the acquired color can be used as long as it is within the fluorescence wavelength range of the fluorescent dye that is the fluorescent staining reagent.
  • the maximum fluorescence wavelength is 521 nm
  • the force fluorescence spectrum extends to around 620 nm
  • the green (G) around 530 nm is image (a).
  • the red color (R) around 610 nm can be acquired as an image (b), and microbes and contaminants can be distinguished using (a) and (b).
  • the computing means is provided with bright spot removing means for removing bright spots such as missing dots and image power.
  • the image power also includes a light emission point extracting means for extracting light emission points, a coordinate correction means for correcting the coordinates of the extracted light emission points, and collating the same light emission points from a plurality of image cameras and combining the collated data (
  • a light emission point detecting means is provided which is the power of the light emission point matching means.
  • a fluorescence evaluation means which also serves as a means for judging microorganisms to discriminate whether the luminescent spot is a microorganism or a contaminant.
  • an effective area calculation means for calculating the effective area of the measured image is provided, and an input means for inputting variables used for the arithmetic processing is provided.
  • the means provided in these calculation means can be selected easily by a button or check box on the graphic user interface of the program, or by a multi-item display / selection means called a pull-down menu. Can be used.
  • the bright spot removing means is used to remove bright spots having a phenomenon called pixel missing due to pixel pixel sensitivity unevenness or a loss of sensitivity, which is seen in a receiving element such as a CCD. It is means of. If a dot-deficient luminescent spot appears on the image, it may be mistaken for the luminescent point of the microorganism, or the luminescent point of the microorganism cannot be acquired, which may cause an error. For this reason, it is necessary to remove such bright spots, but as an image for removing bright spots, a dark field image that is not irradiated with a light source is set so that the exposure time is as long or as long as the sample measurement. Acquire and obtain an image with only bright spots. Then, it is possible to delete only the bright spot by subtracting the bright spot image from each image showing the light emitting spot or filling it in comparison with the surrounding pixels. Images with such bright spots removed are used below.
  • the light emission point extraction means extracts light emission points included in the image that fall within the set area and luminance range. For example, if the area is 2 to 15 and the brightness is 15 to 255, large contaminants with an area of 16 or more can be excluded from the count. In addition, background noise (dark noise) with a luminance of 14 or less can be removed. This threshold value varies depending on the magnification of the lens, the intensity of the excitation light source, the exposure time, etc., so it is necessary to verify and confirm the value that can optimally extract microorganisms. .
  • an image including different luminance information refers to an image acquired by different light receiving filters, but there is a slight difference in coordinates between the images due to the characteristics of the light receiving filter and mechanical errors. Therefore, if the pixel coordinates of the image are collated as they are, they may not match. Therefore, coordinate correction means is provided to check the coordinates by compensating the coordinate correction value to correct the image shift, but especially for mechanical errors, the shift of the coordinate shift every time it is used due to the influence of the usage environment such as temperature and humidity. The value may change. Therefore, it is effective to use the optimum value for each measurement by updating and using the coordinate correction value for each measurement.
  • the correction value for correcting the coordinates is also acquired by reading the correction value for the position correction image force.
  • Position correction images are captured using phosphors that are reflected in all acquired wavelength ranges. If the acquired wavelengths are green and red, red fluorescent particles on the long wavelength side can be used, and the intensity of the excitation light source and the exposure time are adjusted so that the same emission intensity can be obtained. Also, in the process of automatically calculating the correction value, the number of phosphors increases as the number of phosphors increases, and it takes time, so the number of phosphors is 5 to 50 per screen. If it is within the range, the correction value can be obtained in a relatively short time of about 1 to several minutes.
  • a calibration chip is also effective in which a fine pattern or spot is formed by masking a fluorescent resin.
  • the calibration chip produced in this manner is installed in the apparatus and images are taken in the same manner as in actual measurement. This reproduces the coordinate deviation of the image that occurs due to mechanical error such as motor position control error and backlash, filter and lens manufacturing error, and optical axis shift due to manufacturing error when assembling the equipment.
  • the position accuracy can be improved by obtaining the correction value and using it for actual measurement.
  • the area of the object showing the luminescent point of the microorganism seen in the image is about 1 to 20 pixels on the image receiving element when the total of the magnifying lens system is about 200 to 300 times. This is a value taken when the diameter of one microbial cell is about 0.6 to 5 m.
  • the area of the object of the light emission point becomes large, and some objects exceed 20 pixels.
  • Such an object with a large light emitting point is detected as one object in most cases unless a special optical system such as a confocal optical system is used, and it is difficult to detect two objects separately.
  • the problem here is that when two objects have different light emission characteristics, the adjacent objects that are detected as the same object are compared when the luminance is compared by comparing the light emission points by comparing the images. If the emission brightness of microorganisms is mistakenly combined, inaccurate data that is completely different from the emission characteristics of the original microorganism may be formed.
  • the coordinates of the luminous point are the coordinates that indicate the maximum luminance value of the object, and when collating the luminous point between images, the coordinate force is limited to a very close error. It is necessary to combine only with the light emitting point having the coordinates of the other image within the range area.
  • the data combined by collation is output as a data file by the output means.
  • the luminescent spots are classified as either the live bacteria group or the dead bacteria group by the life / death determining means.
  • a parameter indicating that the luminescent point is a group of live bacteria or dead bacteria is added to the data, the process for determining whether the microorganism is a microorganism or a foreign substance is simplified, and the calculation processing program is made efficient. It can be converted.
  • the parameter is set by adding a numerical value to the data of the light emission point, such as 1 for the live bacteria group and 2 for the dead bacteria group.
  • dot plot display means for creating a dot plot from the luminance value of the live and dead bacteria staining reagent and the brightness value of the killed bacteria staining reagent in the light emission point data is provided.
  • This is a technique called a two-dimensional histogram, where the horizontal axis represents the brightness value of the viable and dead bacteria staining reagent and the vertical axis represents the brightness value of the killed bacteria staining reagent and plots it for each detected emission point.
  • This is an effective technique for visualizing how many microorganisms have a balance between the two luminescence intensities by using two types of reagents.
  • Dot plots can be displayed on the graphic user interface of the image processing program. It may be displayed when a data file of good emission points is read.
  • the maximum brightness value, average brightness value, and total brightness value of the object can be used as the brightness value, and the display axis of the plot is appropriately selected by selecting a constant or logarithm using the display axis selection means. Things can be used. It is better to display on the logarithmic axis in order to display the whole because there is a difference in brightness of 10 times or more between strong and weak fluorescence, and in some cases 100 times or more.
  • a classification means for classifying the plots on the displayed dot plot for each group.
  • the classifying means determines which area the luminescent spot is from the boundary line creating means for creating a boundary line for classifying the plot, and the viable cell area and dead cell area divided by the boundary line.
  • An area determining means for determining whether the group is a live bacteria group or a dead bacteria group is provided.
  • Boundary lines can be created with one or more lines, curves, polygonal lines, etc. freely with a cursor, etc., and are created so that the group of plots can be easily classified while viewing the plot.
  • the boundary line creation process can be performed easily and accurately by using a grid or the like so that it can be easily performed or by providing a function of trapping the outline or plot.
  • the created boundary line can be canceled or stored by the boundary line storage means, and can be repeatedly used by the boundary line selection means.
  • boundary line editing means that can be edited, such as changing some vertices of selected boundary lines or adding vertices. become.
  • a threshold value corresponding to the boundary line is calculated based on the produced boundary line.
  • the calculated threshold value is classified as a dead bacteria group on the left side of the graph and as a live bacteria group on the left side of the graph, and processed by giving parameters.
  • the luminescence point is determined to be either the live cell group or the dead cell group, the following process is performed when the luminescence point derived from impurities is separated and excluded by the microorganism determination means. The distinction between microorganisms and contaminants is made by comparing the chromaticity threshold specified by the input means with the calculated chromaticity of the emission point.
  • the chromaticity is obtained by calculating the chromaticity calculation means from the RGB luminance values.
  • Color systems such as the Lab color system, LCh color system, and XYZ color system are used as the color system indicating the color characteristics.
  • chromaticity based on the XYZ color system is used. Since the acquired brightness is in the RGB color space, the RGB value is converted to the XYZ color system using Equation 1.
  • R, G, and B in the formula indicate a red fluorescent luminance value, a green fluorescent luminance value, and a blue fluorescent luminance value, respectively.
  • the values of x and y are finally calculated as values necessary for determining whether the cells and microorganisms or impurities are present.
  • the chromaticity value calculated for each luminescent point, and each luminescent point is given a parameter for determining whether it is a viable group or a dead group. If it is, it is compared with the chromaticity threshold set for the live bacteria group, and if it is the dead bacteria group, it is compared with the chromaticity threshold set for the dead bacteria group. In each case, luminescent spots derived from contaminants are excluded. Those that are excluded as contaminants and are judged as live or dead are counted and counted.
  • the count value for each position should be displayed each time. This makes it possible to obtain an indication of the final result even during measurement. Even if the count value is large, Immediate improvement of the hygiene management process and quick decision to stop shipping can lead to work efficiency. [0184] In addition, it is preferable to display the acquired image and the color image synthesized by calculation in accordance with the display of the count result. Thus, the user determines whether the count value is correctly obtained. be able to.
  • the light emission point of the color image is displayed in a color close to the color information based on the intensity of the acquired black-and-white image, so that the image can be easily confirmed.
  • buttons on the program it is desirable to arrange buttons on the program so that black and white images indicating the respective wavelengths can be selected and displayed.
  • the total number of bacteria per unit amount (for example, lmL, lg, etc.) contained in the actually used sample is calculated.
  • the effective area area used for the image processing is obtained from the measured images by the effective area calculation means.
  • the effective area used for the measurement is obtained by a function with the correction value of the image as a variable. The effective area can be obtained first if the correction value is determined.
  • Equation 2 If the vertical length of the image is P, the horizontal length is Q, the vertical coordinate correction value is a, and the horizontal coordinate correction value is j8, the number of effective area pixels per screen is M. It is expressed as Equation 2.
  • the effective area is obtained by calculating the area per pixel from the magnification of the lens system, etc., where s is the area per pixel, N is the number of fields of view, and S is the effective area area per screen.
  • the total effective area is expressed as Equation 3.
  • the value of the surface area (for example, the total area of the membrane filter) of the fixed part of the microorganism-collecting means is calculated with respect to the obtained area. By multiplying the numerical value obtained in this way by the number of counted bacteria, the final total number of living or dead microorganisms can be calculated, and the number of bacteria can be obtained.
  • the membrane filter In order to observe the same luminescent material as the membrane filter surface force luminescence image using a microscope, first of all, the direction of the membrane filter when observing with the microscope and the image measured with the microbial counter It is important to align the direction so that it is in the same direction. If the orientations are different, the arrangement of the luminescent material seen in the microscopic image and the arrangement of the acquired luminescent image will appear different, making it difficult to specify the same field of view or the same luminescent material. Therefore, the membrane filter is provided with a frame such as grease, and a mark is placed on the frame. Similarly, a mark is placed on the microscope stage, and they are matched to each other. It ’s best to be able to align
  • this mark is provided at three or more positions asymmetrically from the center, there is only one matching direction, so that it can always be adjusted to the same position, and a slight mounting angle error can be prevented.
  • this mark is a convex part, and a concave part corresponding to this is provided in the microscope so that the convex part and the concave part engage with each other, precise adjustment can be carried out easily and efficiently. it can.
  • the sample can be filtered at the center of the membrane filter so that the sample cannot be filtered within the range of Therefore, all the luminescent materials can be observed and judged with a high-magnification objective lens.
  • the dimensions of the frame and pedestal for fixing the membrane filter are intensively adjusted.
  • the filtration part can be limited to the center part of the membrane filter.
  • the microbe counting apparatus is provided with a display means for displaying the color of the luminescent spot detected as a microorganism so that the luminescent spot determined as a microorganism can be easily confirmed from a plurality of luminescent materials observed with a microscope.
  • the display means displays a dark background color in a small window frame on the program, and an object that is a microbial cell in the color characteristics of the microorganism. This display color can be automatically changed even if the parameter is changed by linking the threshold value of the color characteristic when judging as a microorganism.
  • FIG. 1 is a conceptual diagram showing one embodiment of a microorganism counting device for favorably implementing the present invention.
  • This microbe counting apparatus 1 includes an excitation light source 2, an excitation filter 3, a condenser lens 4, a high-pass filter 5, a light receiving filter 6, a lens unit 7, and an image receiving element 8 as fluorescent image acquisition means.
  • the light is split by the pumping filter 3.
  • Spectral excitation light passes through condenser lens 4 and is set on examination table 9 Membrane filter 10 as a means of collecting microorganisms (stained with a nucleic acid-binding fluorescent dye on the membrane filter by a separate operation) Collected on the captured microorganism).
  • the excitation light emitted from the excitation light source 2 is collected by the condenser lens 4.
  • the excitation light is collected by a condenser lens 4 in a small fixed area of about 3mm in diameter. Good.
  • the fluorescence emitted by the excitation light passes through the high-pass filter 5 to remove the excitation light component, and further passes through the light reception filter 6 for extracting a specific wavelength component from the fluorescence. It reaches 8 CCD units 1 1 and is converted into an electrical signal. The signal thus obtained is converted into an image and processed by the arithmetic means 12.
  • FIG. 2 is a diagram showing a calculation process flow in the calculation means 12.
  • the light spot removing means 13, the light emitting point extracting means 14, the coordinate correcting means 15, the light emitting point collating means 16, the output means 17, the fluorescence evaluating means 18, and the effective area calculating means 19 are configured.
  • a coordinate correction image is calculated by reading a coordinate correction image.
  • a variable such as a threshold value is input, and an image from which bright spots are removed by the bright spot removing means 13 is created.
  • the light emission point extraction means 14 identifies light emission points in the image and extracts numerical data.
  • the coordinate correction means 15 corrects the coordinates.
  • the light emission point data including different luminance information is collated by the light emission point collating means 16 and combined.
  • the numerical data collected in this way is output to the data file by the output means 17 and stored.
  • the chromaticity calculation means 20 calculates the chromaticity for each light emitting point.
  • the life / death determining means 21 determines whether the luminescent point is a viable cell group or a dead cell group, and sets a flag of a live cell group or a dead cell group for each light point.
  • the microorganism judging means 22 compares the detected flag with the threshold value for judging whether the flag is a microorganism or a contaminant set for each of the live and dead bacteria groups. It is determined whether it is a contaminant or a contaminant, and finally the number of bacteria is calculated and output.
  • FIG. 3 (a) is a table showing an example of determination by the microorganism determination means. Specifically, a water sample containing E. coli is filtered through a membrane filter and stained using SYT09, a fluorescent dye as a staining reagent for viable and dead bacteria, and Probidium iodide, a fluorescent dye as a staining reagent for dead bacteria. It is a table
  • surface which shows an example of the data which acquired the single-panel monochrome CCD and the G brightness image and R brightness image in blue excitation light irradiation. At this time, the B luminance image cannot be acquired because it overlaps with the wavelength of the excitation light, so the input means force value can be substituted and used. This variable can be adjusted to an optimal value.
  • Fig. 3 (b) shows the conversion from RGB luminance to (x, y) values in the XYZ color system.
  • each RGB brightness value obtained by means of measuring RGB brightness is converted to linear RGB and gamma correction is performed.
  • the visual characteristics are further weighted, and the values of X and y are finally obtained as the values necessary to determine whether they are microorganisms or contaminants.
  • B blue
  • G green
  • R red
  • a fixed value optimized by brute force experiments Can be used instead, or a function based on the luminance value of R or G can be set.
  • the obtained chromaticity value is compared with a threshold value to determine whether it is a microorganism or a contaminant.
  • the threshold value at this time is determined by experiment.
  • FIG. 3C shows chromaticity display means.
  • the chromaticity of microorganisms is used for judgment by setting a threshold value in the bullying program. At this time, the color judged to be microorganisms is displayed.
  • the display window 24, the color display object 25, and the background 26 are arranged in the power contained in the main window 23, which is the graphic user interface of the program, or in another window. In FIG. 3 (c), the case where these are included in the main window 23 is shown.
  • the display window 24 is a closed curve such as an ellipse or a circle or a rectangle, and the display color is changed by linking to a color characteristic parameter that is determined to be a microorganism.
  • the background color is dark black for easy comparison with the microscopic image.
  • FIG. 4 (a) shows details of the collecting means.
  • a film 27 provided with holes for limiting the filtration area of the membrane filter from the upper side of the membrane filter 10 is overlapped between the upper membrane filter holding part 28 and the membrane filter base 29.
  • the filtered portion of the specimen can be limited to the central region that can be observed with the objective lens.
  • FIG. 4 (b) shows details of another embodiment of the collecting means.
  • the number of bacteria in E. coli and tap water (chlorine-removed) was measured.
  • these liquid samples were dropped with an upward force pipette of a black membrane filter having a pore diameter of 0.45 ⁇ m and a diameter of 9 mm, and the surface thereof was vapor-deposited, and suction filtered. Since the membrane filter may touch the surface as it is, it is difficult to handle. Therefore, the membrane filter was covered with a grease frame and integrated (see Fig. 4).
  • the suction filtration pressure cannot be filtered if the suction level is too weak, and if the suction level is too high Since the membrane filter may be damaged as well as causing damage to microorganisms, the pump pressure was set at around 100 to 400 Torr.
  • the pump pressure was set at around 100 to 400 Torr.
  • a filter paper or the like is sandwiched in the suction port below the membrane filter, and the suction pressure is spread to uniformly apply the suction pressure to the entire filter.
  • a small amount of surfactant diluent (Tween20 0.1%) was filtered before the liquid sample was filtered.
  • the liquid sample was filtered at 0.1 mL for E. coli and 20 mL for tap water.
  • the microorganisms collected on the membrane filter were fluorescently stained.
  • the staining reagents used were SYT024, which is a viable and dead germ staining reagent, and SYTOX Orange (both trade names), which are a germ killing staining reagent. Since these staining reagents absorb light in the air and are easy to decompose, they were adjusted to 500 M with dimethyl sulfoxide and dispensed into microtubes in small portions as stock solutions and stored. For storage, nitrogen was sealed in a microtube and stored in a dark place with a minus 20 ° C freezer.
  • the required number was thawed, and the diluted solution was added to each reagent 10 / zL so that the total volume was 1 mL, and mixed.
  • This dilute solution must have excellent reagent solubility, storage stability, cell penetration, anti-drying properties, and low autofluorescence. D-sorbitol is distilled to satisfy these conditions. Diluted to about 50% with water and mixed with Tris-HC1 and a small amount of surfactant (Tween20) was used.
  • the reagent adjusted to a final concentration of 5 ⁇ was dropped on the membrane filter where microorganisms were collected one by one, stained at room temperature for several minutes, and excess reagent was removed by suction filtration.
  • the order of staining is not limited, and the staining can be performed in the same manner regardless of whether the staining reagent is viable or dead or stained.
  • the microbe counting apparatus is the same as that shown in Fig. 1. This time, a blue light emitting diode (about 470 nm) and a green light emitting diode (about 530 nm) are used, and green is used as the light receiving filter. We used one with transparency from 30 to 550 nm and one with red transparency from 590 to 6 lOnm.
  • the light source is provided with a condensing lens so that the light beam can be easily irradiated onto the imaging range.
  • the membrane filter installation stage is provided with a detachable mechanism, and the stage member is made to have high flatness, and this is pressed against the backside force of the membrane filter to improve the flatness of the filter.
  • the focus for image acquisition can be fixed at a height that fits on the filter, eliminating the need for focus adjustment.
  • the stage with the membrane filter fixed can be moved by a motor-driven XY stage and can be moved continuously to the position specified in advance by the program.
  • the fluorescence image on the membrane filter surface was acquired using a single-plate monochrome CCD camera with an infrared cut filter installed above the membrane filter and a magnifying lens system.
  • the LED which is the excitation light
  • the light receiving filter can be switched to acquire an image of the desired wavelength.
  • Image acquisition is performed at the same position: (a) blue excitation, green fluorescence, (b) blue excitation, red fluorescence,
  • Fig. 5 (a) shows the luminance of green fluorescence due to blue excitation, which is the fluorescence wavelength of SYT024, which is a staining reagent for viable and dead bacteria, and the dead bacteria staining reagent, for the luminescent spots seen in E. coli and tap water.
  • a dot plot is created with the brightness of red fluorescence generated by green excitation, which is the fluorescence wavelength of a certain S YTOX Orange, on two axes.
  • This threshold is an example, but the threshold varies depending on the type of fluorescent dye used for staining, the concentration, and the polarity of the solution to be diluted. It ’s preferable to set it hard.
  • the appropriateness of the final number of bacteria is preferably evaluated by using a combination of appropriate culture methods and types of culture media, because some bacteria are difficult to culture.
  • Fig. 6 shows the results of setting the threshold value setting method for distinguishing between live and dead bacteria in E. coli by viability and death judgment means (example using a polygonal line as the boundary line).
  • the dot plot display means 30 that associates the data with the luminance of the first and second staining reagents on the X-axis and y-axis, and this dot plot.
  • the set polygonal line 36 was calculated on the program and the threshold value was obtained.
  • Fig. 7 shows the results of setting the threshold value setting method for distinguishing between live and dead bacteria in E. coli by viability and death judgment means (example using a polygon as the boundary). Operate the cursor 31 on the displayed dot plot display means 30 to start the polygon of the area you want to select.
  • the vertex d41 is set continuously from the point 37 and the vertex a38 through the vertex b39 and the vertex c40, and the polygon is set to match the start point at the end of the vertex.
  • the threshold value was automatically calculated for the set polygon 42, and when the area was designated as dead by the check box, the number of dead bacteria could be detected as 78.
  • Figure 8 shows the results of setting the threshold value setting method for distinguishing between live and dead bacteria in E. coli in the viability determination means (example using an ellipse as the boundary). Operate the cursor 31 on the displayed dot plot display means 30, and select the elliptical center 43, major axis 44 or minor axis 45, major axis length 46, major axis An angle of 47 was set. Ellipse a48 and ellipse b49 were set as dead and damaged, respectively. As a result, 72 dead bacteria and 9 damaged bacteria were detected.
  • the population can be defined as feature parameters indicating the characteristics of the population of microorganisms.
  • Each value indicates a variety of bacterial species and various active states.
  • comparing the values for example, even the same dead bacteria, the degree of damage, the susceptibility to microbial damage, etc. Can be compared.
  • Fig. 8 it can be estimated that the area surrounded by the oval a48, which is strongly stained with the killed bacteria reagent with a large inclination of the major axis of the ellipse, has a higher degree of damage to the killed bacteria. did it.
  • Fig. 9 shows the results of setting the threshold value setting method for distinguishing between live and dead bacteria in E. coli for viability and death judgment (example of classification method by region designation).
  • dead cells were set as A, F, K, and ⁇ , and the number of dead cells in the region was calculated. As a result, 97 cells were detected.
  • the staining reagent was mixed with highly viscous sorbitol at 60% and used.
  • the staining reagent was dropped into the microorganisms collected on the membrane filter to react, and the excess reagent was removed by suction filtration with a downward force. Pair the membrane filter surface with a microscope no-cover type When observed using an object lens, the reagent 51 adhering spherically around the luminescent material 50 was confirmed as shown in FIG. 10 (a).
  • Figure 10 (b) shows an enlarged view of part of the image acquired with the same exposure time.
  • Fig. 10 (b) Luminescent point 52 with reagent attached as shown on the right, compared with luminous point 52! Also increased.
  • the present invention is an apparatus for detecting and counting microbial live and dead bacteria from a specimen containing cells and microorganisms using fluorescent staining, and is more accurate than conventionally known apparatuses. Therefore, the present invention has industrial applicability in that it can provide a device capable of performing counting with certainty.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 本発明の課題は、微生物を含有するか含有する可能性のある検体に対し蛍光色素を用いて生菌および死菌を計数する微生物計数装置であり、従来から知られている装置と比較して正確性を向上させた装置を提供することである。その解決手段としての本発明の微生物計数装置は、微生物を捕集する捕集手段を載置する載置手段と、生菌および死菌を染色する生死菌染色試薬と死菌を染色する死菌染色試薬を用いて染色された前記捕集手段上の微生物の蛍光画像を取得する蛍光画像取得手段と、前記蛍光画像取得手段により取得された蛍光画像から発光点を検出する発光点検出手段と、前記発光点検出手段により検出された発光点の色度が生菌、死菌、夾雑物のいずれかであることを判断する蛍光評価手段を備え、前記蛍光評価手段により判断された生菌および/または死菌を積算し計数するようにしたことを特徴とするものである。

Description

明 細 書
微生物計数装置
技術分野
[0001] 本発明は、環境試料、食品検体などの微生物の迅速検出に使用される、生菌およ び死菌を異物などの夾雑物と識別して正確に計数できる装置に関する。
背景技術
[0002] 従来、蛍光色素を用いて微生物の生菌および死菌を検出し、判別する手法の一例 として蛍光性酵素基質であるフルォレセイン系蛍光色素による方法が知られている。 フルォレセイン系蛍光色素は、細胞や微生物の細胞膜を透過して取り込まれると、細 胞質内のエステラーゼ酵素群により加水分解され、フルォレセイン骨格を有する蛍光 物質 (フルォレセインなど)に変換されて発光機能が発現する。そこで励起光を照射 することで生じる光点を生きている細胞や微生物として判断することができる(例えば 、特許文献 1参照)。
[0003] 下記、特許文献 1にお!/、て、微生物の生死を判断するための蛍光色素として、エス テラーゼ活性指標指示薬である力ルセイン誘導体及びヨウ化プロビジゥムを用いた 方法が提案されている。これは、微生物を上記 2種類の色素で染色し、緑色および赤 色の蛍光強度を測定し、その強度の比較を求めることで、生菌であるか死菌であるか をフローサイトメトリーにより判断するというものである。
[0004] また、更に別の手法として、土壌や水環境などの夾雑物が多く存在する試料から、 発光物の蛍光スペクトルをもとに、細胞を判別することのできる手法が知られている( 例えば、特許文献 2参照)。
[0005] これは、干渉デジタル画像を取得できる顕微蛍光スペクトル測定装置を使用し、 C CD画像上の画素ごとに得られた分光スペクトルを元に、あら力じめ指定したスぺタト ル波形と同一な波形をもつ画素を抽出し、必要なスペクトルをもつ部分だけが表示さ れた画像を作ることができると 、うものである。これを利用すると複雑なバックグラウン ド自家蛍光をもつ夾雑物が混在するような試料であっても、目的の蛍光発光物を判 別、計測できる。 特許文献 1:特開平 11― 146798号公報
特許文献 2 :特開 2002— 291499号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記特許文献 1のような従来の方法は、 2つの試薬の蛍光強度から 生菌および死菌を検出するものである力 必ずしも全ての細胞を検出できているとは いえない。これはエステラーゼ分解性の色素に共通の課題である力 微生物の種類 によっては酵素の発現量が異なり、全く染色されないものが存在し、またそれ以外に も微生物の置かれている環境や活性状態によって染色性に大きな差があり、一時的 な測定結果だけでは正確な生菌の検出ができて 、るとは 、えな 、ためである。
[0007] 本発明は、このような従来の課題を解決するためのものであり、高い染色性、標識 力を持つ核酸結合性の蛍光性ィ匕合物を使用することで、微生物のもつ酵素活性な どの不安定要因に影響を受けることなぐ安定して高感度な微生物の検出による計 数が可能な装置を提供することを目的として!、る。
[0008] また、一般的なフローサイトメータにおいては、当業者に良く知られている事実であ るが、微生物を特定するために、蛍光強度ならびに前方散乱光を測定して蛍光強度 と粒子の大きさから微生物力どうかを判断している。そのため、装置には蛍光を検出 するための検出器の他に、散乱光を検出するための別の検出器を設ける必要が生じ 、装置構成が複雑ィ匕するという課題がある。
[0009] また、フローサイトメータにおいて複数の染色試薬と複数の励起光源を使用して微 生物の検出を行う場合、流路上に複数の励起光源による照射位置が精密に一定間 隔おかれている構成と、高い精度で粒子の流速を制御する手段を設け、複数の照射 位置を通過するために時間差で出現する同一の粒子由来の発光シグナルを同一の 粒子由来のものであるとしてデータを結合する手段と、流速を頻繁にキヤリブレーショ ンする工程が必要となる。そのため、このようなフローサイトメータは高価であり、管理 方法も複雑多岐になる。そのため、頻繁に使用される手法としては同一の励起光源 で励起することが可能な染色試薬を使用し、同時に異なる蛍光を測定するというもの である。しかし、このような手法では使用できる染色試薬に制限があるばかりか、染色 試薬を最適な励起波長で使用できないため、感度が低下するという課題がある。
[0010] また、フローサイトメータの別形態として、同一の照射位置に複数の励起光源を同 時に照射し、得られた複雑な合成蛍光スペクトル波形と、蛍光色素の標準スペクトル 波形を比較して、蛍光色素ごとのスペクトルを分離し、強度を比較することができると いうものがあり、それは当業者に良く知られている。しかし、このような手法では、装置 が高価になるうえ、既知の試料のみの評価しか行うことができず、スペクトルの同一性 を評価する事が難しい。更に未知試料において自家蛍光の多い場合や、蛍光波長 のシフトが見られるような場合には、スペクトル波形の分離が行えず、解析が困難に なるという課題がある。
[0011] 本発明は、このような従来の課題を解決するためのものであり、蛍光強度と粒子の 大きさを同時に取得できる受像素子を使用して装置構成を簡略ィ匕することができ、微 生物を捕集し、励起光源の色を切り替えることで簡便かつ容易に異なる染色試薬の 画像を取得することができ、また最適波長で使用することができるため、小型でコンパ タトかつ高精度である微生物計数装置を提供することを目的として ヽる。
[0012] また、特許文献 2のような手法の場合、干渉デジタル画像を取得する顕微蛍光スぺ タトル測定装置が非常に高価であり、また 1画面ごとに測定波長範囲を走査しなけれ ばならず、たとえメンブレンフィルタのようなろ過濃縮器具を使用しても、測定時間が 非常に長くなつてしまう為、現実的ではない。更に測定を行う間、常に強い励起光を 照射し続ける必要があるため、蛍光色素が褪色しやすぐ安定した計測を常に行うこ とが求められる微生物検査用途においては使用が困難である。
[0013] 本発明は、このような従来の課題を解決するためのものであり、 RGB情報をもった 画像から夾雑物を判別するのに必要な色度情報を取得することで、安価な装置で実 現でき、更に測定時間も極めて短くて済むため迅速検査に使用することが可能であ り、かつ蛍光色素の褪色も抑えることが可能であるために高精度である微生物計数 装置を提供することを目的として!ヽる。
[0014] また、微生物の発光物の色度情報を得るために、 2次元空間での顕微蛍光スぺタト ルを取得すると、装置構成が複雑化するため、より簡便に取得できる情報から色彩情 報を得ることが求められて 、る。 [0015] 本発明は、このような従来の課題を解決するためのものであり、各波長で取得した 画像力 各波長の輝度値を読み取ることで、データを取得する装置構成は適当な受 光フィルタと受像素子のみで実施することができるため、シンプルかつ小型な装置で 、精度を向上させることができる微生物計数装置を実現することができる。
[0016] また、蛍光染色を用いた微生物の検出方法において、蛍光発光が微生物由来な の力、もしくは微生物以外の夾雑物に非特異的に吸着したものに由来するの力 さら には自家蛍光に由来するものなの力 蛍光発光の由来を高い精度で検出することが できる手法が求められている。
[0017] 本発明は、このような従来の課題を解決するためのものであり、複数の画像から輝 度情報を取得して色度を求め、発光物の蛍光発光が微生物に由来するものであるか どうかを評価して、微生物の数を求める際の夾雑物の存在による悪影響を排除し、高 Vヽ精度で微生物の数を求めることができる微生物計数装置を提供することを目的とし ている。
[0018] また、蛍光染色を用いた微生物の検出方法において、蛍光染色による発光を特定 するための蛍光スペクトルのような指標を用いて蛍光発光の評価をより簡便に行う手 法が求められている。
[0019] 本発明は、このような従来の課題を解決するためのものであり、励起波長や蛍光波 長のクロストークが少ない蛍光染色試薬を使用して、それぞれの蛍光発光に対して、 複数の波長の画像を取得し、輝度値を求めることで、限られた励起光源や分光フィ ルタ、受像素子などの構成要素から、簡便に微生物と夾雑物とを高い精度で識別し て評価できる微生物計数装置を提供することを目的として!ヽる。
[0020] また、微生物の生菌、死菌を検出する方法において、顕微鏡観察によって蛍光色 素が発する蛍光の強度を観察する手法では、作業者ごとの熟練性の違いによる微生 物認識精度の誤差が大きい。従って、微生物の発光状態を客観的に数値化すること で夾雑物を微生物と誤認識することを防止し、精度良く検出する手法が求められて いる。
[0021] 本発明は、このような従来の課題を解決するためのものであり、微生物の発光特性 を測定し、色度や色相角などの色彩的特性を示す値にすることで、生菌、死菌の色 の違いだけでなぐ混入した自家蛍光物質や、色素が非特異的吸着した粒子などの 夾雑物の微妙な色の違いを客観的に判断し、精度良く生菌、死菌、微生物以外の夾 雑物を判別して微生物を計数するための装置を提供することを目的としている。
[0022] また、発光物の色彩的特性をもって、より簡便かつ客観的に微生物を計数できる手 法が求められている。
[0023] 本発明は、このような従来の課題を解決するためのものであり、色度の数値に対し て入力手段によって閾値を設定し比較することで、より客観的に微生物か否かを判 断し、微生物の計数を行うことができる微生物計数装置を提供することを目的として いる。
[0024] また、色彩情報を取得する方法において、発光点が非常に小さいものであった場 合、 RGBなど波長が異なる画像の輝度情報を取得するためにカラー CCDのような力 ラー情報が取得できる受像素子を使用すると、受像素子上の色感度をもつ素子が並 んで配列されていると、同一画素での色情報とはならないため、 1画素のズレが精度 に影響してしまうような微小な発光体では、正確に色彩的特性を取得することが困難 であるという課題がある。
[0025] 本発明は、このような従来の課題を解決するためのものであり、色度を算出するた めに必要な波長の異なる画像の輝度値を、それぞれの色ごとに取得した画像から座 標に基づいて輝度値を抽出することで、正確に同じ位置の色彩情報を取得すること ができ、微生物のような微小な発光点であっても、精度良く色彩的特性を取得でき、 生菌、死菌、または微生物以外の夾雑物であることを判別することができる微生物計 数装置を提供することを目的として!ヽる。
[0026] また、さまざまな複数の蛍光染色試薬を使用して、微生物の様々な状態を評価する とき、色彩的特性が様々であるため、目的の細胞集団ごとに色彩的特性の値を設定 して計数することが求められて 、る。
[0027] 本発明は、このような従来の課題を解決するためのものであり、細胞集団が複数あ つた場合に、それぞれに色彩的特性の値を設定して、判断し、分類することができる 微生物計数装置を提供することを目的として!ヽる。
[0028] また、画像から色彩的特性を求める場合、これまでは、画像データの量が膨大にな つてしまい、データの演算時間が長くかかってしまうばかりか、分光フィルタの数、撮 像枚数が増えることで、更に膨大な時間を要してしまい、迅速性を低下させてしまうこ とから、より少な 、データで精度の高 、微生物の計数方法が求められて 、る。
[0029] 本発明は、このような従来の課題を解決するためのものであり、色彩的特性を得る のに必要な RGBの三原色に対し、青色 )にあら力じめ発光強度をもたない蛍光染 色試薬を使用することや、また青色の波長域に透過性をもたない分光フィルタによる 測定条件下において測定すること、さらに青色の輝度値を取得せず、あらかじめ指 定した値を代入して使用することで、赤色 (R)および緑色 (G)のみのデータから画像 中の発光点のもつ色彩的特性を表現することを可能にし、これにより計測中のメモリ 使用量を減らすことができ、迅速に計数が行える微生物計数装置を提供することを 目的としている。
[0030] また、微生物を発光点として画像にとらえ、画像から微生物を計数する場合、膨大 な画像の画素データを効率的に扱うことが求められている。
[0031] 本発明は、このような従来の課題を解決するためのものであり、画像から発光点を 検出し、画像データ力も背景を除き、発光点のデータだけを抽出する発光点検出手 段を設けることで、膨大な画像データを短時間に扱う事ができ、迅速性を高めた微生 物計数装置を提供することができる。
[0032] また、微生物の生菌、死菌、異物などの夾雑物の!/ヽずれかであることを判断する方 法において、微生物の種類や環境の違いにより、生菌のような発光色を示す異物と、 死菌のような発光色を示す異物が存在する場合、これらの異物は一つの判断基準で 処理することは難しぐ処理方法のフローによっては精度が低下し、余計な処理が追 カロされるなど効率性を欠くという課題がある。
[0033] 本発明は、このような従来の課題を解決するためのものであり、生菌か死菌である かを判断する生死判断手段の後段に微生物判断手段を設け、処理を分割すること で、生菌ゃ死菌に由来する蛍光発光からこれらと同じような異物に由来する蛍光発 光を判別して除外することで精度を向上させ、処理工程を効率的に実行することがで きる微生物の計数装置を提供することを目的として!、る。
[0034] また、微生物の生菌、死菌、微生物以外の夾雑物の!/、ずれかであることを簡便か つ漏れがな 、ように効果的に判別することができる手法が求められて 、る。
[0035] 本発明は、このような従来の課題を解決するためのものであり、生死判断手段で発 光点の輝度に基づ 、た 2次元のドットプロットを表示し、ドットプロット上の各プロットを 分類する分類手段として境界線を作成し、境界線によって分けられた領域に基づ ヽ て生菌群か死菌群かを判断した後、微生物判断手段によってプロット領域ごとに、色 度力 微生物か夾雑物であるかを判断することによって、効果的かつ漏れがないよう に生菌、死菌の判別が行える微生物の計数装置を提供することを目的として!/、る。
[0036] また、ドットプロットは、測定する検体によってプロット上で出現する位置が微妙に異 なる可能性があり、測定ごとに最適な境界線を設定する必要がある。
[0037] 本発明は、このような従来の課題を解決するためのものであり、作成された境界線 を保存し、保存された境界線の中から最適なものを選択する事や、また選択された境 界線をさらに編集して最適な状態に調整することで、ドットプロットをより精度よく分類 し、微生物の計数を高 ヽ精度で行える装置を提供することを目的として!、る。
[0038] また、微生物の種類や増殖周期によって、プロットが広く分布している場合や、逆に プロットが密集している場合があり、ドットプロット上のプロット集団の境界が見づらくな つてしまうという課題がある。
[0039] 本発明は、このような従来の課題を解決するためのものであり、ドットプロットの表示 軸を対数と常数力も選択して変更できる表示軸選択手段を設けることで、プロットが 広がって!/、た場合には対数表示とし、逆に密集して 、る場合には常数表示とすること で、プロットの各集団の境界が見やすくなり、生菌群か死菌群かを精度よく分類して 微生物の計数が行える装置を提供することを目的として!/、る。
[0040] また、ドットプロットにおいて、微生物の発光量を正確に表現し、精度よく計数するこ とが求められている。
[0041] 本発明は、このような従来の課題を解決するためのものであり、微生物の発光点の 輝度として発光点を形成する画素の輝度の総量である輝度の合計値を用いる事で、 微生物の発光状態を正確に表現し、生菌群か死菌群かを精度よく分類して微生物 の計数が行える装置を提供することを目的として ヽる。
[0042] また、発光点から得られる膨大なデータをできるだけ省略し、演算速度を高速化す ることが求められている。
[0043] 本発明は、このような従来の課題を解決するためのものであり、輝度の値を、発光 点を形成する画素のうちの最大輝度とし、色度の算出に必要な最大輝度値とドットプ ロットとの輝度の値を共用することで、ドットプロットで使用する輝度値のデータを省略 することができ、よってメモリ使用量を減らせるため、演算処理を高速ィ匕して、迅速に 計数が行える微生物計数装置を提供することを目的として!ヽる。
[0044] また、複数の分光された画像を取得する場合、分光フィルタの機械的寸法や、波長 、固定寸法などの機械的誤差により、各画像が XY方向にずれることがあり、画像を 統合した時に正確に発光点が重ならず、微生物の正確な計数が行えな 、と 、う課題 がある。
[0045] 本発明はこのような従来の課題を解決するためのものであり、機械的な誤差を補正 するために、あら力じめ複数の画像で発光点を取得できるマーカーを表面に固定し た座標補正用チップを使用してその画像力 補正値を求め、この補正値を用いて画 像の座標を補正する座標補正手段を設けることで、正確に微生物の計数を行える微 生物計数装置を提供することを目的として ヽる。
[0046] また、微生物の計数を行う工程にお!ヽて、取得した画像を表示する場合、目的の発 光物が実際の蛍光色と異なる発光で表示されてしまうと、顕微鏡による像と同じ部分 を探すことが非常に難しくなるという課題がある。
[0047] 本発明では、このような従来の課題を解決するためのものであり、取得した発光画 像を個々の発光物の色彩情報を反映させてカラーの結果画像として表示させること で、顕微鏡で確認する作業を容易に行うことができる微生物計数装置を提供すること を目的としている。
[0048] また、微生物を蛍光染色試薬で染色し、計数する場合、蛍光顕微鏡で同じ試料を 観察し、計数が正確に行えている力、確認、評価することが必要である力 試料中の どの発光物を微生物として判断して 、るの力容易に確認できる方法が求められて!/ヽ る。
[0049] 本発明は、このような従来の課題を解決するためのものであり、微生物と判断した発 光物の色彩的特性と同じ色を表示させる表示手段を備えることで、蛍光顕微鏡で観 察した場合に、どの発光物を微生物として判断しているかを確認することができ、また 、熟練者でなくとも発光物の色彩的特性力 微生物であるかどうかを容易に確認する ことができる簡便性の高 ヽ微生物計数装置を提供することを目的として!/、る。
[0050] また、作業工程と作業工程の間で微生物の計数を行う検査の場合、一連の処理が 全て終了して力も結果が出力されるのでは、結果が得られるのに時間が力かってしま V、、次の作業工程に移ることが遅れてしまうなどの課題がある。
[0051] 本発明では、このような従来の課題を解決するためのものであり、計数の過程にお いて各撮像位置ごとに、検出オブジェクト数、結果画像を表示することで、計数の途 中であっても、各位置ごとの菌数を判断することができ、さらに画像の面積と測定する メンブレンフィルタ表面の全面積から逆算すれば、各撮像位置の菌数から最終結果 を予測することで、結果が出される前であっても次の作業工程へと移ることを可能に する、迅速な検査体制を構築することができる微生物計数装置を提供することを目的 としている。
[0052] また、染色された微生物を画像として取得する場合、微生物が媒体中に拡散して 浮遊していると、ピントが合いにくぐ精度良く輝度を取得することが難しい。更に、複 数の画像を取得して、各波長の輝度値を抽出しようとする場合にも、微生物が媒体中 に拡散していると、同じ微生物が異なる位置に写ってしまうため、各画像での微生物 の一致が難しぐ色情報を抽出できなくなるという課題がある。
[0053] また、微生物を染色する場合、検体スケールが大きい場合や、検体中の微生物濃 度が低い場合には、濃縮するための前処理を行う必要がある。例えば、水道水であ れば lOOmLあたりの菌数検査が必要であり、さらにはボトリングされた飲料であれば 、ボトル 1本の容量(例えば 500mLや 1. 8mL)での検査が必要になる。このような検 体に対しても一定の濃度の蛍光染色試薬で染色処理をする必要があるので、蛍光 染色試薬は大量に必要となるため環境負荷影響が大きぐまた検体に含まれる成分 の影響によって染色力が異なる。従って、安定して染色できるように検体成分を分離 して観察することが要求されて 、る。
[0054] 本発明は、このような従来の課題を解決するためのものであり、検体中の微生物を 表面に捕集する捕集手段を用い、捕集手段を固定できる載置手段を設けることで、 発光点ごとに色度を精度良く求めることが容易になり、簡便かつ精度の高い微生物 の計数が行える装置を提供することを目的として ヽる。
[0055] 更には、検体をろ過して捕集する捕集手段を用いた場合、メンブレンフィルタなどの 表面に微生物を濃縮し、検体中に溶解している染色阻害成分を除去することができ 、安定に細胞内での経時的な発光を観察することができ、また、最小量の蛍光染色 試薬を使うことで環境負荷影響を最小限に低下させた微生物計数装置を提供するこ とを目的としている。
[0056] また、検体中の微生物をメンブレンフィルタなどで捕集する場合、フィルタが薄く小 さ 、ために、微生物を捕集したフィルタを移動させようとした場合にフィルタ上部に触 れてしまう恐れがあり、フィルタを無菌的に取り扱うのが困難で、検査結果に支障をき たす場合がある。
[0057] 本発明は、このような従来の課題を解決するためのものであり、メンブレンフィルタな どの微生物の捕集手段に枠を設けることで、捕集手段の取り扱い性を向上させ、微 生物計数の効率が上がり、かつ、安定した結果を得る事ができる微生物の捕集手段 を提供することを目的として!ヽる。
[0058] また、メンブレンフィルタ表面を顕微鏡で観察しょうとする場合に、枠付近まで微生 物の固定に使用すると、顕微鏡の対物レンズのうち、倍率の高い焦点深度の浅いレ ンズでは、枠がレンズにあたってしまい、ピントを合わせる事ができず、低倍率でしか 観察ができなくなり、精度が低下するという課題がある。
[0059] 本発明は、このような従来の課題を解決するためのものであり、捕集手段の上方お よび Zまたは下方に、捕集手段開放部分の面積よりも小さい開口面積をもつ薄膜を 設けることで、捕集手段の中心部分にのみ微生物を固定できるようにしたため、捕集 手段の捕集部分表面のうち枠に近い部分、すなわち高倍率のレンズで観察できない 領域を微生物の固定に使用せず、中心部分のみを使用するようにしたことで、全ての 発光物を高倍率で観察でき、精度の高い微生物計数を可能にする微生物の捕集手 段を提供することを目的として!、る。
[0060] また、捕集手段の捕集部分表面を顕微鏡で観察しょうとする場合に、対物レンズが 枠に触れないようにし、かつ、捕集手段の部品点数を増やしたくない場合がある。 [0061] 本発明は、このような従来の課題を解決するためのものであり、捕集手段の上方開 口面積が、下方開口面積よりも大きいものとすることで、捕集手段の捕集部分表面の 中心部分のみに微生物を捕集することができ、更に、部品点数を増やさずにメンブレ ンフィルタの枠のうち、下側の枠の寸法を変更することで実施する事ができるため、精 度の高い微生物計数を可能にし、コストを抑えた微生物の捕集手段を提供することを 目的としている。
[0062] また、蛍光画像取得手段にお!、て微生物の発光画像を取得するとき、拡大レンズ の倍率が低すぎると、微生物の発光が小さぐ微弱であるため、微生物を画像上で十 分に輝度をもった発光点として捉えることができず、正確な計数が困難になる。一方 、これを補うために拡大レンズの倍率を大きくすると、輝度は十分に得る事ができるが 、焦点深度が浅いために焦点を得ることが困難になるば力りでなぐ一度に取得でき る面積が非常に小さくなつてしまうために、測定時間が膨大に力かってしまうため、迅 速な検査が困難になるという課題がある。
[0063] 本発明は、このような従来の課題を解決するためのものであり、微生物を染色する 際、蛍光染色試薬に粘性を持たせ、微生物などの発光物に試薬を付着させる事で、 レンズ効果力 画像上の発光点の大きさを大きくし、かつ輝度を上げることにより、拡 大レンズの倍率が小さ ヽままでも発光点を計数するのに十分な輝度を得ることができ 、迅速性をもった微生物計数を可能にする微生物計数方法を提供することを目的と している。
課題を解決するための手段
[0064] 本発明の微生物計数装置は、上記目的を達成するために、微生物を捕集する捕 集手段を載置する載置手段と、生菌および死菌を染色する生死菌染色試薬と死菌 を染色する死菌染色試薬を用いて染色された前記捕集手段上の微生物の蛍光画像 を取得する蛍光画像取得手段と、前記蛍光画像取得手段により取得された蛍光画 像から発光点を検出する発光点検出手段と、前記発光点検出手段により検出された 発光点の色度が生菌、死菌、夾雑物のいずれかであることを判断する蛍光評価手段 を備え、前記蛍光評価手段により判断された生菌および Zまたは死菌を積算し計数 するようにしたことを特徴としたものであり、蛍光染色試薬による発光点の蛍光発光が 、微生物由来であるか、微生物以外の夾雑物由来であるかを判断し、発光点の中か ら生菌を高い精度で検出し、計数することができる微生物計数装置が得られる。
[0065] また、請求項 2に記載の微生物計数装置は、請求項 1記載の微生物計数装置にお いて、画像の演算処理に用いるパラメータを入力する入力手段を備えることを特徴と したものであり、演算処理に使用する膨大な数のパラメータの入力を簡便かつ効率 的に行う事ができ、実用性の高い微生物計数装置が得られる。
[0066] また、請求項 3記載の微生物計数装置は、請求項 1または 2記載の微生物計数装 置において、蛍光画像取得手段が励起光源と分光フィルタと拡大レンズと受像素子 を備え、青色励起によって緑色蛍光を発する生死菌染色試薬と、緑色励起によって 赤色蛍光を発する死菌染色試薬を用い、青色励起光による緑色蛍光画像と、青色 励起光による赤色蛍光画像と、緑色励起光または黄色励起光による赤色蛍光画像 を取得するようにしたことを特徴としたものであり、青色励起光による緑色蛍光画像を 取得することで、紫外光励起などに対して自家蛍光を低減して測定ができるため、自 家蛍光によるバックグラウンド輝度が減少し、 SNを向上させることができる。また 2種 類の染色試薬の輝度の取得と色度の取得に使用する励起光源と分光フィルタの組 み合わせを最小限に抑える事ができるため、装置構成を簡略ィ匕することができ、小型 で低コストな微生物計数装置が実現できる。
[0067] また、請求項 4に記載の微生物計数装置は、請求項 1または 2記載の微生物計数 装置において、発光点検出手段が、画像上の発光点の輝度と座標と面積を抽出す る発光点抽出手段と、前記発光点抽出手段により抽出された画像上の発光点の座 標を補正する座標補正手段と、補正された座標をもとに複数の画像カゝら同一の発光 点を照合し、照合された発光点の各画像の輝度値と面積のデータを結合する発光点 照合手段を備えることを特徴としたものであり、画像ごとに発光点を検出して、座標を 補正したのち発光点のデータを照合し結合することで、精度よくかつバックグラウンド などのデータを持たない最小限のデータを扱う事ができるため、メモリ使用量を減ら すことによる演算速度の高速ィ匕を図ることができ、迅速性の高い微生物計数装置が 得られる。
[0068] また、請求項 5記載の微生物計数装置は、請求項 4記載の微生物計数装置にぉ 、 て、発光点抽出手段によって抽出された青色励起光による赤色蛍光画像の輝度を 赤色の輝度とし、青色励起光による緑色蛍光画像の輝度を緑色の輝度とし、これら の輝度と、入力手段から入力した青色の輝度に基づいて、発光点ごとに色度を算出 する色度算出手段を備えることを特徴としたものであり、青色の輝度を毎回取得せず に、あら力じめ標準的な試料を使用して求められた値をパラメータとして使用すること で、計測に使用する画像の種類を減らし、データ量を軽減しても色度によるデータの 判断精度を落とすことなく測定できるため、迅速かつ精度の高い微生物計数装置を 提供することができる。
[0069] また、請求項 6記載の微生物計数装置は、請求項 1または 2記載の微生物計数装 置において、蛍光評価手段が、発光点ごとに色度を算出する色度算出手段と、発光 点の青色励起光による緑色蛍光画像の輝度と緑色励起光または黄色励起光による 赤色蛍光画像の輝度に基づいて発光点を生菌群または死菌群に分類する生死判 断手段と、生菌群または死菌群に分類された発光点が微生物であるか夾雑物である ことを色度で判断する微生物判断手段を備え、発光点が生菌、死菌、夾雑物のいず れかであることを判断するようにしたことを特徴としたものであり、発光物を生菌に近 い色の集団と死菌に近い色の集団に分類し、それによつて分類された発光物に対し て微生物か夾雑物であるかを判断することで、色彩的特性を効果的に扱うことができ 、判別工程を効率化し、判別精度を高めた微生物計数装置を実現することができる。
[0070] また、請求項 7記載の微生物計数装置は、請求項 4記載の微生物計数装置にぉ 、 て、座標補正手段において、青色励起光による緑色蛍光画像と、青色励起光による 赤色蛍光画像と、緑色励起光または黄色励起光による赤色蛍光画像の全てで発光 点を取得できる波長をもったマーカーを表面に固定した画像補正用チップを用いて 取得した各画像にあるマーカーの発光点の座標を比較して画像の座標を補正する ための補正値を算出するようにしたことを特徴としたものであり、装置ごとに固有の機 械的な誤差を補正する補正値を簡便に求める事ができ、精度を高めた微生物計数 装置が実現できる。
[0071] また、請求項 8記載の微生物計数装置は、請求項 6記載の微生物計数装置にぉ 、 て、生死判断手段において、青色励起光による緑色蛍光画像のチャンネルの輝度 値を第一軸、緑色励起光または黄色励起光による赤色蛍光画像のチャンネルの輝 度値を第二軸として 2次元のドットプロットを表示するドットプロット表示手段と、前記ド ットプロット表示手段により表示された各プロットを生菌群または死菌群に分類する分 類手段を備え、前記分類手段により生菌群または死菌群に分類するようにしたことを 特徴としたものであり、生菌と死菌では 2つの染色試薬による発光強度が異なる力 こ の特徴をドットプロット上で生菌と死菌を個別に集団化して表示することで、分類手段 によってこれらを簡便に分類することができる。これにより画像中の発光点の分布状 態を、ドットプロット上の集団の位置と密度から、客観的に判断し、計数すべきものを 的確に選択することができるため、精度が高い微生物計数装置を実現する事ができ る。
[0072] また、請求項 9記載の微生物計数装置は、請求項 8記載の微生物計数装置にぉ 、 て、ドットプロット表示手段において、表示する輝度値が発光点の中の最大輝度値で あるようにしたことを特徴としたものであり、演算処理で使用する輝度情報のうち、色 度で使用する輝度値と、ドットプロットで使用する輝度値を共用することができるため 、発光点ごとに必要なデータを少なくする事ができ、メモリ使用量を減らせるため、演 算処理を高速化して迅速性を高めた微生物計数装置を提供できる。
[0073] また、請求項 10記載の微生物計数装置は、請求項 8記載の微生物計数装置にお いて、ドットプロット表示手段において、表示する輝度値が発光点を形成する画素の 輝度値を合計した合計輝度値であるようにしたことを特徴としたものであり、ドットプロ ットで使用する輝度情報を、発光点がもつ画素の輝度値を合計である合計輝度値と することで、試薬の発光量をより精度よく表現する事ができ、ドットプロット表示を精度 よく行えるため、精度の高い微生物計数装置が得られる。
[0074] また、請求項 11記載の微生物計数装置は、請求項 8記載の微生物計数装置にお いて、ドットプロット表示手段の表示軸を、対数と常数とから任意に選択することを可 能とする表示軸選択手段を設けたことを特徴としたものであり、微生物の種類や細胞 周期によって輝度が大きく変化し、プロットの表示範囲が広く拡散した場合に、対数 表示を選択する事でプロットの視認性が向上し、分類手段による分類精度を高める 事ができる。また、プロットが近接している場合にも、常数表示を選択する事で集団の 境界領域を拡大する事ができ、生菌群と死菌群を精度よく分類することができる微生 物計数装置を実現する事ができる。
[0075] また、請求項 12記載の微生物計数装置は、請求項 8記載の微生物計数装置にお いて、分類手段において、ドットプロット上に生菌群が属する領域と死菌群が属する 領域を分類する境界線を作成する境界線作成手段と、境界線によって分けられた領 域に基づいて各プロットを生菌群または死菌群とする領域判断手段を備えたことを特 徴としたものであり、ドットプロットの分類を境界線によって行い、それを境界にしたド ットプロット上の領域ごとに集団を分類する事で、視覚的に簡便に集団を分類でき、 かつ測定した検体ごとに最適な分類手段を得る事ができ、簡便性と精度を併せ持つ 微生物計数装置を提供することができる。
[0076] また、請求項 13記載の微生物計数装置は、請求項 12記載の微生物計数装置に おいて、境界線作成手段によって作成した境界線を保存する境界線保存手段と、複 数の境界線を保存した場合に保存した境界線の中から最適な境界線を選択すること を可能とする境界線選択手段を設けたことを特徴としたものであり、複数の異なる波 長をもつ蛍光染色試薬で、さまざまな種類、また細胞周期が異なる微生物集団を含 む試料を染色し、生菌を検出するとき、それぞれの微生物集団に対して保存された 境界線の中から最適な境界線を選択することによって、複雑なミクロフローラを形成し た検体であっても、簡便に精度良く生菌群と死菌群を分類することができる微生物計 数装置を実現できる。
[0077] また、請求項 14記載の微生物計数装置は、請求項 13記載の微生物計数装置に ぉ ヽて、境界線選択手段によって選択された境界線を編集する境界線編集手段を 設けたことを特徴としたものであり、検体毎のわずかなドットプロットの違いがある場合 にも、境界線を微調整してより的確な分類結果を得ることができるため、計数精度の 高 、微生物計数装置を得る事ができる。
[0078] また、請求項 15記載の微生物計数装置は、請求項 12記載の微生物計数装置に おいて、境界線作成手段において、ドットプロット外周上の任意の点を始点とし、外 周上にある別の任意の点を終点とした多角線を境界線として作成するようにしたこと を特徴としたものであり、カーソルなどで境界線を簡便に作成できると同時に、始点と 終点が外周上になるため境界線でドットプロット上の全領域を確実に分類できるため 、簡便で精度の高い微生物計数装置を実現する事ができる。
[0079] また、請求項 16記載の微生物計数装置は、請求項 6記載の微生物計数装置にお いて、微生物判断手段が、入力手段から入力した生菌群と死菌群のそれぞれに個 別に指定した色度閾値と発光点の色度を比較して、生菌、死菌、夾雑物のいずれか であることを判断するようにしたことを特徴としたものであり、生菌の色に近い夾雑物と 、死菌の色に近い夾雑物を、それぞれ微生物と誤って計測することがないようにする ことができ、さらに、閾値をもって判断する事で、より客観的に判断する事ができる微 生物計数装置が得られる。
[0080] また、請求項 17記載の微生物計数装置は、請求項 4記載の微生物計数装置にお いて、発光点照合手段が、一方の画像の発光点の座標から入力手段によって指定し た一定距離の範囲内にある他方の画像の発光点を同一の発光点として照合するよう にしたことを特徴としたものであり、微小な粒子が画像ごとに画素の位置がわずかに ずれた場合であっても、画像間で精度よく一致させる事ができ、生菌の検出ミスを低 減させた微生物計数装置を実現する事ができる。
[0081] また、請求項 18記載の微生物計数装置は、請求項 4記載の微生物計数装置にお いて、発光点照合手段において、画像ごとの発光点データを RGBのチャンネルに割 り当てて 1枚のカラー画像で出力する結果画像出力手段を設けたことを特徴としたも のであり、取得した発光画像を色彩情報に基づいてカラー表示することにより、顕微 鏡による確認作業にお!ヽて、発光画像と顕微鏡の像を比較することが容易になるた め、発光物の確認作業の正確性を向上させることができる。また熟練者でなくとも発 光物の中から微生物を探し出すことが容易になり、検査時間を短縮するとともに測定 精度管理の正確性を向上させた微生物検査システムのための微生物計数装置を提 供することができる。
[0082] また、請求項 19記載の微生物計数装置は、請求項 16記載の微生物計数装置に おいて、入力手段によって入力した生菌と判断するための色度の色を表示する表示 手段を設けたことを特徴としたものであり、微生物と判断した発光点を顕微鏡で確認 するときに、どの発光物が微生物であるのかを、表示手段の表示色と比較しながら容 易に判断することができるため、計数した粒子が生菌であるかどうかを顕微鏡によつ て確認する作業を迅速に行うことができる微生物計数装置を提供することができる。
[0083] また、請求項 20記載の画像補正用チップは、青色励起光による緑色蛍光画像と、 青色励起光による赤色蛍光画像と、緑色励起光または黄色励起光による赤色蛍光 画像の全てで発光点を取得できる波長をもったマーカーを表面に固定したことを特 徴としたものであり、青色励起光による緑色蛍光画像と、青色励起光による赤色蛍光 画像と、緑色励起光または黄色励起光による赤色蛍光画像の 3種類の画像の機械 的なズレ幅を算出するために、 3種類の画像全てで蛍光像を取得できるマーカーを 用いて画像を取得し、画像ごとのマーカーの位置関係を比較し、 XY方向の座標の 差を求める事で、これらの画像のズレ幅を容易に算出する事ができる画像補正方法 を実現するための画像補正用チップを提供することができる。
[0084] また、請求項 21記載の微生物を捕集する捕集手段は、メンブレンフィルタを固定す る支持枠を備え、上方のフィルタ開口面積が下方の開口面積よりも大きぐ上方と下 方の開口部分の重心が同軸であることを特徴としたものであり、メンブレンフィルタの 中心付近にのみ微生物を捕集できることから、高倍率の接触系対物レンズではメン ブレンフィルタの枠の近くでは枠が対物レンズ表面と接触してしまうため観察できない 力 メンブレンフィルタの中心付近にのみ微生物を捕集することで、全ての発光物を 高倍率の接触系対物レンズで枠にレンズを接触せずに観察できる微生物を捕集す る捕集手段を実現する事ができる。
[0085] また、請求項 22記載の微生物計数方法は、請求項 1記載の微生物計数装置を用 いて微生物を計数することを特徴としたものであり、捕集手段表面の蛍光画像を取得 し、色度力 発光点が生菌、死菌、夾雑物のいずれかであることを判断し、微生物を 計数する微生物計数装置を使用することで、迅速かつ夾雑物による計測バラつきを 低減した高感度な微生物計数方法を実現する事ができる。
[0086] また、請求項 23記載の微生物計数方法は、請求項 22記載の微生物計数方法に おいて、捕集手段上の微生物を染色する際、生死菌染色試薬および死菌染色試薬 に粘性を持たせ、微生物の表面に試薬を付着させることを特徴としたものであり、拡 大レンズ倍率が低い場合でも発光物の表面に付着した試薬がレンズ効果を示すこと によって発光点の蛍光発光を増強され、画像上で発光点の面積と輝度を増強させる 事ができるため、拡大レンズを低倍率ィ匕することができる。従って、一回の撮像面積 を広くとることができ、撮像回数を減らして迅速ィ匕が図られた微生物計数方法を提供 することができる。
発明の効果
[0087] 本発明の微生物計数装置によれば、微生物判断手段によって、蛍光染色試薬の 蛍光発光が、微生物由来であるか、微生物以外の夾雑物由来であるかを判別するこ とがでさる。
[0088] また、微生物有無を迅速に検査できる検査システムを構築し、食品や化成品、水な どの製造、物流システムを効率ィ匕することができる。
[0089] また、蛍光染色試薬の蛍光発光を精度良く評価することにより、より確実に微生物 だけを検出することができる。
[0090] また、微生物の検査の熟練者でなくとも、発光画像から微生物有無の判断を容易 に行うことができる。
[0091] また、発光画像の確認を容易に行うことができるため、迅速な微生物検査システム の精度を向上し、検査時間を短縮することで、効率ィ匕を図ることができる。
[0092] また、視覚的に微生物の存在を示すことで、微生物衛生管理に対する作業者の意 識を向上させることにつながり、衛生管理システムの品質を向上させることができる。
[0093] また、微生物だけを検出することにより、検査結果の確実性が向上し、微生物汚染 の少ない食品やィ匕成品、水などの製品を提供することができる。
[0094] また、微生物だけを検出することにより、より確実に微生物の発酵工程を管理するこ とができ、品質の安定した製品を提供することができる。
[0095] また、微生物だけを検出することにより、廃水や土壌などの汚染処理の工程管理が 迅速に行えるようになり、効率ィ匕された処理技術が実現できる。
[0096] また、微生物の計測のために色度、色相角、彩度、明度などの色彩的特性を使用 することで、蛍光発光を高 、判別精度で評価することができる。
[0097] また、色彩的特性を示す値に対して閾値を設けることで、判断の客観性を高めるこ とがでさる。 [0098] また、色彩的特性を示す値に対して閾値を設けることで、微生物カゝ否カゝの判別を微 生物判断手段により自動化することができる。
[0099] また、さまざまな状態や、種類、また環境状態が異なる微生物集団に対して、それ ぞれ最適な閾値を設定することによって、複雑なミクロフローラを形成した試料力 生 菌、死菌をそれぞれ集団ごとに検出することができる。
[0100] また、生菌または死菌であることを判断する工程を行う生死判断手段と、微生物と 微生物以外の夾雑物であることを判断する微生物判断手段をそれぞれ別に設けるこ とで、生菌か死菌か夾雑物かの判別を効率ィ匕することができる。
[0101] また、生菌、死菌それぞれの蛍光発光に対して、最適な色彩特性値を設定すること で、夾雑物を微生物と誤って計測しない精度を高め、より確実に微生物だけを検出 することができる。
図面の簡単な説明
[0102] [図 1]本発明の実施の形態 1の微生物計数装置を示す概念図
[図 2]同、演算手段による演算工程フローを示す図
[図 3] (a)同、 E. coliの輝度と色度の演算結果を示す図 (b)同、色度の演算 工程フローを示す図 (c)同、色度の表示手段を示す図
圆 4] (a)同、捕集手段の断面図および上面図 (b)同、その他の捕集手段の 断面図および上面図
[図 5] (a)本発明の実施例 1の E. coliと水道水中の発光物の輝度のドットプロット及び 生死判断手段による分類方法を示す図 (b)同、生菌群の色度図と微生物判 断手段による判断方法を示す図
[図 6]本発明の実施例 2の生死判断手段におけるドットプロット表示手段と多角線によ る境界線作成手段を示す図
[図 7]本発明の実施例 3の生死判断手段におけるドットプロット表示手段と多角形によ る境界線作成手段を示す図
[図 8]本発明の実施例 4の生死判断手段におけるドットプロット表示手段と楕円形によ る境界線作成手段を示す図
[図 9]本発明の実施例 5の生死判断手段におけるドットプロット表示手段と領域指定 による分類方法を示す図
[図 10] (a)本発明の実施例 6の発光物への試薬の付着を示す拡大図 同発光物に試薬が付着したものと付着していないものの発光点を示す図 符号の説明
1 微生物計数装置
2 励起光源
3 励起フィルタ
4 集光レンズ
5 ノヽィパスフィルタ
6 受光フィルタ
7 レンズユニット
8 受像素子
9 検査台
10 メンブレンフィルタ
11 CCDュ-ッ卜
12 演算手段
13 輝点除去手段
14 発光点抽出手段
15 座標補正手段
16 発光点照合手段
17 出力手段
18 蛍光評価手段
19 有効エリア算出手.
20 色度算出手段
21 生死判断手段
22 微生物判断手段
23 メインウィンドウ
24 表示ウィンドウ 色彩表示オブジェクト 冃县
フィルム
メンブレンフィルタ押さえ部 メンブレンフィルタ台座 ドットプロット表示手段 カーソル
始点
頂点 a
頂点 b
終点
多角線
始点
頂点 a
頂点 b
頂点 c
頂点 d
多角形
中心
長軸
短軸
長軸の長さ
長軸の角度
楕円形 a
楕円形 b
発光物
付着した試薬
発光点 発明を実施するための最良の形態
[0104] 本発明の請求項 1記載の発明は、微生物を捕集する捕集手段を載置する載置手 段と、生菌および死菌を染色する生死菌染色試薬と死菌を染色する死菌染色試薬 を用いて染色された前記捕集手段上の微生物の蛍光画像を取得する蛍光画像取得 手段と、前記蛍光画像取得手段により取得された蛍光画像力 発光点を検出する発 光点検出手段と、前記発光点検出手段により検出された発光点の色度が生菌、死菌 、夾雑物のいずれかであることを判断する蛍光評価手段を備え、前記蛍光評価手段 により判断された生菌および Zまたは死菌を積算し計数するようにしたことを特徴と する微生物計数装置であり、蛍光染色試薬の蛍光発光が、微生物由来であるか、微 生物以外の夾雑物由来であるかを判断する精度を高めることができるという作用を有 する。
[0105] また、請求項 2記載の発明は、請求項 1記載の発明において、画像の演算処理に 用いるパラメータを入力する入力手段を備えることを特徴とする微生物計数装置であ り、演算処理に使用する膨大な数のパラメータの入力を簡便に行えるため、一度に 大量のデータを処理する事が可能となり、迅速ィ匕できると 、う作用を有する。
[0106] また、請求項 3記載の発明は、請求項 1または 2記載の発明において、蛍光画像取 得手段が励起光源と分光フィルタと拡大レンズと受像素子を備え、青色励起によって 緑色蛍光を発する生死菌染色試薬と、緑色励起によって赤色蛍光を発する死菌染 色試薬を用い、青色励起光による緑色蛍光画像と、青色励起光による赤色蛍光画像 と、緑色励起光または黄色励起光による赤色蛍光画像を取得するようにしたことを特 徴とする微生物計数装置であり、自家蛍光を低減して測定できるため、 SNが向上し 、また 2種類の染色試薬の輝度の取得と色度の取得に使用する励起光源と分光フィ ルタの組み合わせを最小限に抑える事ができるため、装置構成を簡略化し、小型化 できるという作用を有する。
[0107] また、請求項 4記載の発明は、請求項 1または 2記載の発明において、発光点検出 手段が、画像上の発光点の輝度と座標と面積を抽出する発光点抽出手段と、前記発 光点抽出手段により抽出された画像上の発光点の座標を補正する座標補正手段と、 補正された座標をもとに複数の画像カゝら同一の発光点を照合し、照合された発光点 の各画像の輝度値と面積のデータを結合する発光点照合手段を備えることを特徴と する微生物計数装置であり、画像ごとに発光点を検出して、座標を補正したのち発 光点のデータを照合し結合することで、ノックグラウンドなどのデータを含まな 、最小 限のデータを扱う事ができるため、演算処理を行う演算手段のメモリ使用量を減らす ことによる演算速度の高速ィ匕を図ることができ、微生物計数を迅速ィ匕できるという作 用を有する。
[0108] また、請求項 5記載の発明は、請求項 4記載の発明において、発光点抽出手段に よって抽出された青色励起光による赤色蛍光画像の輝度を赤色の輝度とし、青色励 起光による緑色蛍光画像の輝度を緑色の輝度とし、これらの輝度と、入力手段から入 力した青色の輝度に基づいて、発光点ごとに色度を算出する色度算出手段を備える ことを特徴とする微生物計数装置であり、青色の輝度の計測を省略するようにしたの で、装置構成や、計測画像を省略できるため、装置の小型化と迅速ィ匕ができるという 作用を有する。
[0109] また、請求項 6記載の発明は、請求項 1または 2記載の発明において、蛍光評価手 段が、発光点ごとに色度を算出する色度算出手段と、発光点の青色励起光による緑 色蛍光画像の輝度と緑色励起光または黄色励起光による赤色蛍光画像の輝度に基 づいて発光点を生菌群または死菌群に分類する生死判断手段と、生菌群または死 菌群に分類された発光点が微生物であるか夾雑物であることを色度で判断する微生 物判断手段を備え、発光点が生菌、死菌、夾雑物のいずれかであることを判断する ようにしたことを特徴とする微生物計数装置であり、生菌、死菌ごとに最適な条件でそ の計数を行うため、計数の精度を高めることができるという作用を有する。
[0110] また、請求項 7記載の発明は、請求項 4記載の発明において、座標補正手段にお いて、青色励起光による緑色蛍光画像と、青色励起光による赤色蛍光画像と、緑色 励起光または黄色励起光による赤色蛍光画像の全てで発光点を取得できる波長を もったマーカーを表面に固定した画像補正用チップを用いて取得した各画像にある マーカーの発光点の座標を比較して画像の座標を補正するための補正値を算出す るようにしたことを特徴とする微生物計数装置であり、マーカーの画像を取得する事 で、装置ごとに補正値を求める作業を簡便化することができるという作用を有する。 [0111] また、請求項 8記載の発明は、請求項 6記載の発明において、生死判断手段にお いて、青色励起光による緑色蛍光画像のチャンネルの輝度値を第一軸、緑色励起 光または黄色励起光による赤色蛍光画像のチャンネルの輝度値を第二軸として 2次 元のドットプロットを表示するドットプロット表示手段と、前記ドットプロット表示手段によ り表示された各プロットを生菌群または死菌群に分類する分類手段を備え、前記分 類手段により生菌群または死菌群に分類するようにしたことを特徴とする微生物計数 装置であり、ドットプロット上の位置と集団の密度から、発光状態を客観的に捉えるこ とができ、検体ごとに菌の種類や、状態が異なる場合にも、生菌および死菌を計数す る精度を高める事ができるという作用を有する。
[0112] また、請求項 9記載の発明は、請求項 8記載の発明において、ドットプロット表示手 段において、表示する輝度値が発光点の中の最大輝度値であるようにしたことを特 徴とする微生物計数装置であり、発光点の輝度を最大輝度のみとすることでデータ 量を最小限にすることができ、メモリ使用量を減らせるため、演算処理を迅速化できる という作用を有する。
[0113] また、請求項 10記載の発明は、請求項 8記載の発明において、ドットプロット表示 手段にお 1、て、表示する輝度値が発光点を形成する画素の輝度値を合計した合計 輝度値であるようにしたことを特徴とする微生物計数装置であり、発光点の輝度が画 素上で飽和しても、発光を有する全画素の輝度を合計する事で、輝度の線形性を保 ち、ダイナミックレンジを広くとることができ、ドットプロット上のプロット表示位置の精度 を高める事で、生菌、死菌の分類精度を高める事ができるという作用を有する。
[0114] また、請求項 11記載の発明は、請求項 8記載の発明において、ドットプロット表示 手段の表示軸を、対数と常数とから任意に選択することを可能とする表示軸選択手 段を設けたことを特徴とする微生物計数装置であり、微生物の種類や環境状態の変 化によりプロットが分散化した場合や、プロットの集団が近接した場合にも、最適な表 示軸を選択する事で、分類精度を高める事ができるという作用を有する。
[0115] また、請求項 12記載の発明は、請求項 8記載の発明において、分類手段において 、ドットプロット上に生菌群が属する領域と死菌群が属する領域を分類する境界線を 作成する境界線作成手段と、境界線によって分けられた領域に基づ!ヽて各プロットを 生菌群または死菌群とする領域判断手段を備えたことを特徴とする微生物計数装置 であり、ドットプロット上でカーソルなどによって境界線を作成し、それを境界にした領 域ごとに集団を分類する事で、分類作業を簡便に行う事ができるという作用を有する
[0116] また、請求項 13記載の発明は、請求項 12記載の発明において、境界線作成手段 によって作成した境界線を保存する境界線保存手段と、複数の境界線を保存した場 合に保存した境界線の中から最適な境界線を選択することを可能とする境界線選択 手段を設けたことを特徴とする微生物計数装置であり、微生物の種類や状態、環境 によってプロットの集団の位置が変化した場合にも、保存された境界線の中力も最適 な境界線を選択することによって、簡便に分類が行えるという作用を有する。
[0117] また、請求項 14記載の発明は、請求項 13記載の発明において、境界線選択手段 によって選択された境界線を編集する境界線編集手段を設けたことを特徴とする微 生物計数装置であり、検体毎に的確な境界線を与える事ができ、精度を高める事が できるという作用を有する。
[0118] また、請求項 15記載の発明は、請求項 12記載の発明において、境界線作成手段 において、ドットプロット外周上の任意の点を始点とし、外周上にある別の任意の点を 終点とした多角線を境界線として作成するようにしたことを特徴とする微生物計数装 置であり、カーソルなどで境界線を簡便に作成できると同時に、複雑な境界線を作成 することができるため、より正確な分類手段を与える事ができ、精度を高める事ができ るという作用を有する。
[0119] また、請求項 16記載の発明は、請求項 6記載の発明において、微生物判断手段が 、入力手段力 入力した生菌群と死菌群のそれぞれに個別に指定した色度閾値と発 光点の色度を比較して、生菌、死菌、夾雑物のいずれかであることを判断するように したことを特徴とする微生物計数装置であり、生菌の色に近い異物と、死菌の色に近 い異物をそれぞれ計数対象から除去することができ、精度を高める事ができるという 作用を有する。
[0120] また、請求項 17記載の発明は、請求項 4記載の発明において、発光点照合手段が 、一方の画像の発光点の座標力 入力手段によって指定した一定距離の範囲内に ある他方の画像の発光点を同一の発光点として照合するようにしたことを特徴とする 微生物計数装置であり、画像ごとに発光点の画素の位置がわずかにずれた場合で あっても、精度よく計数する事ができるという作用を有する。
[0121] また、請求項 18記載の発明は、請求項 4記載の発明において、発光点照合手段に おいて、画像ごとの発光点データを RGBのチャンネルに割り当てて 1枚のカラー画 像で出力する結果画像出力手段を設けたことを特徴とする微生物計数装置であり、 取得した発光画像を色彩情報に基づいてカラー表示することにより、発光点の種類 ごとに色分け処理をすることなぐ画像中の生菌、死菌を確認する事ができ、よって計 数の迅速性を高めることができるという作用を有する。
[0122] また、請求項 19記載の発明は、請求項 16記載の発明において、入力手段によつ て入力した生菌と判断するための色度の色を表示する表示手段を設けたことを特徴 とする微生物計数装置であり、生菌と判断した発光点を顕微鏡で確認するときに、発 光物の色を表示手段の表示色と比較できるため、生菌として計数したものを顕微鏡 で探す作業を容易に行えるため、計数を迅速ィ匕できるという作用を有する。
[0123] また、請求項 20記載の発明は、青色励起光による緑色蛍光画像と、青色励起光に よる赤色蛍光画像と、緑色励起光または黄色励起光による赤色蛍光画像の全てで発 光点を取得できる波長をもったマーカーを表面に固定したことを特徴とする画像補正 用チップであり、青色励起光による緑色蛍光画像と、青色励起光による赤色蛍光画 像と、緑色励起光または黄色励起光による赤色蛍光画像の 3種類の画像に含まれる XY方向の機械的なズレを補正するための座標補正値力 マーカーの位置関係から 容易に算出する事ができる。すなわち、装置に画像補正用チップを載置するだけで 、画像の取得力 マーカーの位置の算出、補正値の算出までの一連の動作を自動 で処理させることも可能となり、画像補正の簡便性を向上させることができるという作 用を有する。また、機械的な誤差を高度な加工技術で管理することなぐ装置固有の 特性値として補正することで精密画像測定が可能となるため、簡便で低コストに微生 物計数ができるという作用を有する。
[0124] また、請求項 21記載の発明は、捕集手段において、メンブレンフィルタを固定する 支持枠を備え、上方のフィルタ開口面積が下方の開口面積よりも大きぐ上方と下方 の開口部分の重心が同軸であることを特徴とする微生物を捕集する捕集手段であり 、メンブレンフィルタの中心部分にのみ発光物を捕集できるため、顕微鏡において全 ての発光物を高倍率で観察できるため、微生物の計数精度を高める事ができるとい う作用を有する。
[0125] また、請求項 22記載の発明は、請求項 1記載の発明の微生物計数装置を用いて 微生物を計数することを特徴とする微生物計数方法であり、捕集手段表面の蛍光画 像を取得し、色度力 発光点が生菌、死菌、夾雑物のいずれかであることを判断し、 微生物を計数する微生物計数装置を使用することで、微生物検査の簡便性と迅速 性を高める事ができるという作用を有する。
[0126] また、請求項 23記載の発明は、請求項 22記載の発明において、捕集手段上の微 生物を染色する際、生死菌染色試薬および死菌染色試薬に粘性を持たせ、微生物 の表面に試薬を付着させることを特徴とする微生物計数方法であり、倍率が低い場 合でも発光物の表面に付着した試薬がレンズ効果を示すによって蛍光発光を増強し て画像に捕らえる事ができるため、拡大レンズの低倍率ィ匕が可能となり、一回の撮像 面積を広くとることができ、撮像回数を減らして微生物の計数を迅速化することができ るという作用を有する。
[0127] (実施の形態)
まず、微生物を含む試料を測定するために、スライドグラスや、培養ディッシュ、マ ルチウエルプレート、またはろ過膜や、測定に適した形状を持つセルの観察面表面 の表側、もしくは裏側の一方に微生物を固定する。固定は、ポリ—L—リジンのような 試薬や、ゼラチンなどの粘着性、付着性をもった高分子材料を表面に薄く塗布し、微 生物を含んだ試料を滴下し、表面に吸着させる。またメンブレンフィルタのようなろ過 膜の場合、上方力 液体試料を吸引してろ過し、メンブレンフィルタ表面に微生物を 平面状に捕捉し、固定する。本発明において、最も好適に実施するものとしては、こ のようなろ過膜を使用することで、以下の染色や洗浄などの操作が簡便かつ微生物 を流失することなく扱うことができるのでよい。また、メンブレンフィルタは、薄ぐ小さ いため、そのままでは取り扱いが容易でない。そのため、専用の支持台、吸引口付き のホルダーを使用したり、もしくは膜に支持体を取り付けるカゝ、一体化させたデバイス とすることで容易に膜を取り扱うことができる。
[0128] また本発明にお ヽて微生物を含有するか含有する可能性のある検体は液状検体 であるが、検査対象が飲料水などの液状サンプルの場合は、それ自体が液状検体と なる。検査対象が野菜や肉をはじめとする食材などの固体サンプルの場合は、それ をホモジナイズして液状検体としたり、その表面力 綿棒などを用いて細胞および微 生物を採取し、これを生理食塩水や燐酸緩衝液などに遊離させて液状検体としたり する。また、まな板などの調理器具などが検査対象となる場合、その表面から綿棒な どを用いて微生物を採取し、これを生理食塩水などに遊離させて液状検体とする。こ うした液状検体をメンブレンフィルタで吸引および加圧濾過、また場合によっては超 音波を利用して加振ろ過することでメンブレンフィルタ上に細胞および微生物を捕捉 することができる。
[0129] また、微生物の捕集は、メンブレンフィルタ表面以外にも、プレパラート表面や、可 視光の透過性が高ぐ平面性の高いプレートの表面や、プレートとプレートの間隙、も しくは粘着性を持ったシート状、ディスク状のチップデバイス表面、平板培地表面、も しくはシャーレやディッシュ、マルチウエルプレートなどの表面、電極材料や吸着材料 の表面などで行う。このとき、微生物の固定は、遠心力や、静電気力、誘電泳動力、 疎水力などの物理吸着力以外にも、ゼラチンなどの接着成分によるものや、抗原 -抗 体反応、リガンド'レセプターの反応などの生物的な結合力を用いることができる。
[0130] また、微生物への蛍光染色試薬の浸透性を調整するために、必要に応じて、適当 な濃度の 2価金属錯体や、 1価カチオン、カチオン性界面活性剤を混合した水溶液 などを液体試料に混合させるカゝ、もしくは捕集手段の上方カゝら細胞および微生物に 接触させた後、ろ過するか、または下方カゝら細胞および微生物に接触させてもよい。 これにより、細胞および微生物の蛍光染色試薬に対する細胞膜透過性を一定に保た せることができる。
[0131] また、蛍光染色試薬を混合する液体試料に粘性をもたせることで、微生物試料に 試薬を接触させた後、微生物細胞の表面を覆うように試薬を付着させることができ、 顕微画像上でのサイズが大きくなり、蛍光強度を増加させることができる。これにより、 低倍率で広い範囲を高速に走査する場合にも、十分に強い輝度で、かつ大きな面 積で微生物の発光像を取得することができる。
[0132] なお、 2価金属錯体としては、エチレンジァミン四酢酸などを 0. 5から lOOmM程度 の濃度範囲にて使用する。
[0133] なお、 1価カチオンとしては、カリウム塩、ナトリウム塩などを 0. 05から 5%の濃度範 囲にて使用することができる。
[0134] なお、カチオン性界面活性剤としては、 Tween20や Tween60、 Tween80、 Trito nX— 100などの細胞に対して侵襲性が低いものが使用でき、これらを 0. 01から 1% 程度の濃度範囲にて使用する。
[0135] なお、粘性を持たせる成分として、 (D) ソルビトールゃ、グリセリンなどの多価アル コール類を 10から 70%の濃度範囲で使用し、あるいはシリコンオイルなどを使用す ることがでさる。
[0136] 次に染色手段として、乾燥防止成分を混合し、生死菌染色試薬または死菌染色試 薬のいずれか、または両方を一定濃度含む染色試薬を固定表面に一定量滴下する
[0137] 蛍光色素は、核酸結合性の構造をもつが好ましぐ生死菌染色試薬として使用する ものは、紫外励起で青色蛍光を発するものであれば、例えば 1, 4ージアミジノー 2— フエ二ルインドール、青色励起で緑色蛍光または黄緑色蛍光、黄色蛍光を発するも のであれば、例えばアタリジンオレンジ、ォキサゾールイエロー、チアゾールオレンジ や、 SYTO9、 SYTO13、 SYTO16、 SYTO21、 SYTO24、 SYBR Green I、 S YBR Green II、 SYBR Goldなどのポリメチン架橋非対称シァニン色素系化合物 が使用できる。また、用途によってはグラム陽性菌を染色し、グラム陰性菌は染色さ れないヨウ化へキシジゥムなどの生死菌染色試薬を使用することも有効である。
[0138] また、死菌染色試薬としては、青色励起により緑色蛍光を発するものであれば、例 えばアタリジン 2量体、チアゾールオレンジ 2量体、ォキサゾールイエロー 2量体など のモノメチン架橋非対称シァニン色素 2量体や、 SYTOX Green、TO— PRO— l などのモノメチン架橋非対称シァニン色素系化合物、緑色励起または黄色励起によ り赤色蛍光を発するものであれば、例えばヨウ化プロビジゥム、臭化へキシジゥム、臭 ィ匕ェチジゥム、 LDS— 751、 SYTOX Orangeなどのポリメチン架橋非対称シァ- ン色素などが使用できる。
[0139] これらの蛍光色素は、緑色蛍光や黄緑色蛍光、黄色蛍光、オレンジ色蛍光、赤色 蛍光などをもつものであれば、青色の領域に蛍光強度を持たないため、色彩的特性 を取得する場合にも青色の受光手段を省略して微生物の計数を行うことができる。
[0140] なお、これらの蛍光色素は、細胞および微生物を含む試料に対して、あらかじめ 0.
1から 100 Mとなるようを混合して細胞および微生物に作用させる力、もしくは、時 間を置かずまたは適当な時間間隔を開けて所定の濃度で細胞および微生物に作用 させることとする。
[0141] なお、メンブレンフィルタ上に捕捉した細胞および微生物の表面力 測定中に乾燥 し、発光強度が変化することを防ぐための手段として、染色試薬には 10から 60%w Zvのグリセロールや、 10力ら 90%vZvの D (—)一マン-トールや D (—)一ソルビト ールなどの多価アルコール類のいずれかを 1種類以上混合させておく。
[0142] なお、ポリビュルアルコールを 10から 80%程度の適当な濃度にて試料に混合する 力 もしくは後力 ポリビュルアルコールでフィルタ表面を覆うことで、蛍光発光を比 較的安定に保存することができる。
[0143] また、蛍光染色試薬に、染色ろ過操作を阻害しな!ヽ一定の粘性を与えることで、発 光物の表面に試薬を付着させる事ができる。発光物の表面に試薬を付着させること によって、レンズ効果によって発光点を増強する事ができ、低倍率の画像であっても 、検出するのに十分な輝度と面積を得る事ができる。
[0144] なお、粘性を与える物としては、乾燥防止剤として使用するグリセロールや、 D (—) マン-トールや D (—)—ソルビトールなどの多価アルコール類が適して!/、る。
[0145] 捕集手段として適しているメンブレンフィルタとしては、例えば、孔径が 0. 2 m〜l μ mのポリカーボネート製など公知のものを用いることができる。メンブレンフィルタは 、そのままではろ過作業などの取り扱いが困難なため、台を設ける力、メンブレンフィ ルタに直接枠を取り付けたものが適している。
[0146] このような捕集手段を装置に固定するために、装置には載置手段を設ける。これは 、捕集手段の向きを定め、捕集手段が測定中に振動によって外れないようにするた めのものである。また、捕集手段は、光軸方向に対して垂直に固定するようにする。ま た、メンブレンフィルタ表面の平面性を高めるために、メンブレンフィルタの裏側より、 平面性の高いステージを押し当てることで、常に一定の平面性が得られるようにする
[0147] このような捕集手段表面の画像を取得するための蛍光画像取得手段には、蛍光色 素に対して特定の波長を照射するための励起光源、分光フィルタを使用する。分光 フィルタは、例えば、励起光を分光する励起フィルタ、励起光の成分を除去する為の ノ、ィパスフィルタ、試料力も発せられる蛍光力も特定の波長成分を取り出すための受 光フィルタなどで構成される。蛍光画像の取得は、例えば、蛍光色素に対して特定の 波長を照射するための励起光源、励起光を分光する励起フィルタ、励起光を直径 3 mm程度に集光する為の集光レンズ、励起光の成分を除去する為のハイパスフィル タ、試料力も発せられる蛍光力も特定の波長成分を取り出すための受光フィルタ、そ れを拡大する為のレンズユニット (拡大レンズ)、蛍光像を画像の電気信号に変換す るための CCDや CMOSなどの受像素子により行う。
[0148] 蛍光染色試薬として使用する蛍光色素の主な発光波長であるが、例えば、青色励 起の場合には、波長が 470nmから 510nm付近の波長成分を含む励起光を照射し た場合、波長が 510nmから 540nm付近の蛍光を発する。緑色励起の場合には、波 長が 510nmから 550nm付近の波長成分を含む励起光を照射した場合、波長が 56 Onmから 620nm付近の蛍光を発する。黄色励起の場合には、波長が 540nmから 5 80nm付近の波長成分を含む励起光を照射した場合、波長が 590nmから 630nm 付近の蛍光を発する。
[0149] そのため、検出手段である励起光源として、発光ダイオードを使用する場合、青色 のものでは、好ましくは 480nm付近の波長を発することができるもの、緑色のもので は、好ましくは 530nm付近の波長を発することができるもの、黄色のものでは、好まし くは 560nm付近の波長を発することができるものを使用する。
[0150] なお、発光ダイオードを使用する場合、励起光の成分が広帯域に渡る場合が多ぐ 蛍光画像のバックグラウンドの増加の要因となりうるため、適切な分光フィルタを使用 して、特定の波長成分を切り出して使用する。
[0151] また、励起光源としてレーザーを用いる場合には、青色のものでは、好ましくは 475 nm付近の波長を発することができるもの、緑色のものでは、好ましくは 535nm付近 の波長を発することができるものを使用する。
[0152] また、励起光源としてハロゲンランプや水銀ランプを使用する場合には、染色試薬 の励起波長に合わせて最適な分光フィルタを使用するのがよい。また、 0. 1から 10η mの波長分解能を有する反射型や透過型の回折格子により、最適な角度を与え、任 意の波長を含む励起光を取り出すことができる。
[0153] 集光レンズは、蛍光染色された細胞および微生物が展開されているメンブレンフィ ルタに対し、照射範囲が、例えば直径が 3mm程度の一定面積となるよう励起光を照 射することができるものがよい。さらに光を散乱させるための拡散板などを一次側に 組み合わせることでより均一な励起光を照射することもできる。
[0154] サンプルに照射された励起光により発生した蛍光は、ハイパスフィルタを通過するこ とで、色彩的特性は損なわれず、効果的に励起光由来の光成分がカットされる。
[0155] 当該蛍光はレンズユニットを通し、受像素子としての赤色 (R)、緑色 (G)、青色 (B) の 3原色を取得できる RGB3種類の蛍光フィルタを含む 3CCDなどの電荷結合素子 ユニットを用いて露光時間 0. 1秒から 10秒程度の露光時間で RGB3色力もなる画像 撮影することにより取得される。なお、受像素子として単板カラー CCDを用いてもよい
[0156] 取得する色の輝度情報は、蛍光染色試薬である蛍光色素の蛍光波長範囲であれ ば、使用可能である。例えばシァニン色素である SYBR Greenの場合、極大蛍光 波長は 521nmである力 蛍光スペクトルは 620nm付近まで広がっており、生死菌染 色試薬として使用した場合、 530nm付近の緑色 (G)を画像 (a)、 610nm付近の赤 色 (R)を画像 (b)として取得することができ、(a)、 (b)を使用して微生物と夾雑物との 判別が行える。
[0157] また、単板モノクロ CCDや CMOSを使用した場合、適切な受光フィルタを切り替え て使用することで、必要な波長の輝度情報を含む画像を取得することができる。この とき、別の利点として、同一の CCDを使用することで、異なる CCDによる感度特性の 差の影響は全く受けずに測定を行うことが可能となり、感度補正を行う工程を省略す ることがでさる。 [0158] これらの操作により取得された複数の蛍光画像は、演算手段であるマイコンや外部 端末上のプログラムによって処理される。
[0159] 演算手段には、画像力もドット欠けなどの輝点を除去するための輝点除去手段を設 ける。また、画像力も発光点を抽出するための発光点抽出手段、抽出した発光点の 座標を補正する座標補正手段、複数の画像カゝら同一の発光点を照合し、照合された データを結合 (統合)する発光点照合手段力 なる発光点検出手段を設ける。さらに 、結合されたデータを出力する出力手段があり、色度を算出する色度算出手段と、染 色試薬の輝度より微生物の生死を判別する生死判断手段と、そして色彩的特性を表 す変数によって発光点が微生物もしくは夾雑物であることを判別する微生物判断手 段力もなる蛍光評価手段を設ける。また、測定した画像の有効面積を算出する有効 エリア算出手段を設け、そしてそれらの演算処理に使用する変数を入力する入力手 段を設ける。
[0160] これらの演算手段に備えられた手段は、プログラムのグラフィックユーザーインター フェース上に、ボタンやチェックボックスで選択したり、またプルダウンメニューと呼ば れる多項目の表示、選択手段によって容易に選択し、使用することができる。
[0161] まず、輝点除去手段であるが、これは CCDなどの受像素子に見られる画素ピクセ ルの感度ムラや、感度消失した部分によるドット欠けと呼ばれる現象を有する輝点を 除去するための手段である。ドット欠けの輝点が画像上に現れると、微生物の発光点 と間違える恐れがあるか、または微生物の発光点を取得できない原因となり、誤差の 要因となりうる。そのためこのような輝点は除去する必要があるが、輝点除去用の画 像として、光源を照射しない暗視野画像を、露光時間をサンプル測定と同程度カゝもし くは長めに設定して取得し、輝点のみが写っている画像を得る。そして発光点を写し た各画像から輝点画像を減算したり、周辺画素と比較して埋めてしまうことにより、輝 点のみを削除することが可能となる。そのようにして輝点を除去した画像を以下にお いて使用する。
[0162] 発光点抽出手段で、画像中に含まれる発光点のうち、設定された面積、輝度の範 囲に該当するものを抽出する。例えば、面積を 2から 15、輝度を 15から 255とすると、 面積が 16以上であるような大きい夾雑物はあら力じめカウントから除外することができ 、また輝度が 14以下のバックグラウンドノイズ (暗ノイズ)を除去することができる。この 閾値は、レンズの倍率や、励起光源の強度、露光時間などにより最適な値が変化す るため、微生物を最適に抽出できる値は、あら力じめ検証して確認することが必要で ある。
[0163] なお、最大輝度を示した座標の (x、 y)の値、 RGBの値ととも〖こ、輝度も数値として 同時に抽出される。この処理は、汎用的な画像処理ソフトウエアである Image Pro Plusなどを使用して実行できる。また、同様の処理を組み込んだプログラムを使用す ることちでさる。
[0164] 次に発光点照合手段によって、抽出された発光点の数値データと、異なる輝度情 報を含む同位置の発光点の数値データとが、座標をもとに比較、照合され、結合され る。
[0165] このとき、異なる輝度情報を含む画像とは、異なる受光フィルタで取得された画像の ことを指すが、画像間では受光フィルタの特性や、機械的誤差に起因する座標ズレ がわずかに生じる為、そのまま画像のピクセル座標を照合した場合、一致しないこと がある。そこで、一方の座標に画像ズレを補正する座標補正値を補って照合させる 座標補正手段を設けるのだが、特に機械的誤差については温湿度などの使用環境 の影響により、使用するごとに座標ズレの値が変化してしまう場合がある。そのため、 座標補正値を測定毎に更新して使用することで、測定ごとに最適な値を使用すること が有効である。
[0166] 座標を補正するための補正値は、あら力じめ取得した位置補正用画像力も補正値 を読み取ることにより取得する。位置補正用画像は、取得する全ての波長域におい て写りこむ蛍光体を使用して撮像する。取得する波長が緑色と赤色であれば、長波 長側の赤色の蛍光粒子が使用でき、同程度の発光強度が得られるように励起光源 の強度と露光時間を調節して撮影を行う。また、補正値を自動で算出させるような処 理の場合には、蛍光体の個数が多くなると演算する数も多くなり、時間がかかってし まうため、蛍光体の個数が画面あたり 5から 50個の範囲内であれば、 1から数分程度 と比較的短時間で補正値を求めることができる。蛍光体の個数がこのような個数にな るように、蛍光粒子の懸濁液を一定量メンブレンフィルタにろ過することにより、位置 補正用画像を取得するための座標補正用チップを作製する。また、これを校正用チ ップとして長期的に繰返し使用したい場合には、蛍光粒子を高分子などで固定する 力 金属蒸着することによって金属薄膜で覆ってしまうことにより固定しておくこと。こ れにより蛍光粒子は繰返し使用しても外れずに位置が一定になる。また、校正用チッ プとしては、その他にも、蛍光性の榭脂をマスキングして微小パターンやスポットを形 成させるなどしたものも有効である。
[0167] このようにして作製された校正用チップは、装置に設置されて実際の計測と同じよう にして画像を撮像する。これにより、モーターの位置制御誤差やバックラッシュなどの 機械的誤差、フィルタやレンズの製造誤差、装置を組み上げる際の製造誤差に由来 する光軸のズレなどで発生する画像の座標ズレを再現した画像を取得し、その補正 値を求めて実際の計測で使用することで、位置精度が高められる。
[0168] 画像中に見られる微生物の発光点を示すオブジェクトの面積は、拡大レンズ系の 合計が 200から 300倍程度のときは、受像素子上で 1から 20ピクセル程度になる。こ れは微生物の細胞 1個の直径が 0. 6から 5 m程度であるときに撮像された値である 。一方、微生物細胞が 2から複数個繋がっていた場合、発光点のオブジェクトの面積 は大きくなり、 20ピクセルを越えるものも見られる。このような大きな発光点のオブジェ タトは、共焦点光学系などの特殊な光学系を使用しない限りは、殆どの場合一つの オブジェクトとして検出され、二つのオブジェクトを分離して検出することが難しい。こ のとき問題となるのは、二つのオブジェクトが異なる発光特性をもつ場合に、各画像 を比較して発光点を照合して輝度を結合したときに、同一のオブジェクトとして検出さ れる、隣り合った微生物の発光輝度を誤って結合してしまうと、本来の微生物の発光 特性とは全く異なる不正確なデータが形成されてしまうという恐れがあることである。 そのような事例を防止するためには、発光点の座標をオブジェクトの最大輝度値を示 す座標とし、画像間の発光点を照合するときは、その座標力 非常に近傍に限定さ れた誤差範囲エリア内にあるもう一方の画像の座標をもつ発光点とのみ結合されるよ うにすることが必要である。
[0169] 同一の発光点のオブジェクトとして抽出されているものであっても、照合した場合に 一致しないことがありうる。そのとき結合する輝度データが存在しなくなってしまうこと を防止するために、照合するもう一方の画像に一致する発光点が検出されな力つた 場合に、もう一方の画像中の同じ座標のピクセルの輝度値を抽出し、この値を結合さ せることが有効である。これにより、発光点が一方の画像でしか抽出されなかった場 合でも、輝度情報を欠如させることなぐ精度よく照合データを作成することができる ことになる。
[0170] また、最終菌数の検出精度にも関連するが、生菌と死菌が繋がって存在している場 合、上記のような工程を持たせなければ、オブジェクトを死菌として検出してしまう可 能性があるが、上記のような工程より生菌と死菌が繋がったものとして検出することが できるようになり、培養法などとの相関性が向上することに繋がる。
[0171] 照合されて結合されたデータは、出力手段によりデータファイルとして出力される。
この時点でデータファイルとして保存することで、この後の工程を一度にまとめて処理 することも可能となるため、演算プログラムの構成が効率化される。この工程は、各撮 像位置ごとに実施され、全ての撮像位置を走査したのちに、各撮像位置の出力ファ ィルを読み込んで、全領域の照合データの作成に使用される。
[0172] 発光点の輝度情報をもつデータファイルに対して、生死判断手段によって発光点 が生菌群であるか、もしくは死菌群であるかいずれかに分類される。このとき、発光点 が生菌群、もしくは死菌群であることを示すパラメータをデータに付加することで、以 降の微生物か夾雑物かを判断する処理が簡略化され、演算処理プログラムを効率化 することができる。尚、パラメータとは生菌群であれば 1、死菌群であれば 2であるとい うように、発光点のデータに数値を付加することにより行うこととする。
[0173] 生菌群であるか死菌群であるかを判断する為には、以下のようにグラフを使用する ことが望ましい。まず、発光点のデータのうち、生死菌染色試薬の輝度値と、死菌染 色試薬の輝度値から、ドットプロットを作成するドットプロット表示手段を設ける。これ は、横軸に生死菌染色試薬の輝度値、縦軸に死菌染色試薬の輝度値をとり、検出さ れた発光点毎にプロットしていくもので、 2次元ヒストグラムとも呼ばれる手法であり、 2 種類の試薬によってどのような 2つの発光強度のバランスをもった微生物の集団がど のくらい存在するのかを可視化するのに有効な手法である。尚、ドットプロットの表示 は、画像処理を行うプログラムのグラフィックユーザーインターフェース上に行うことが 良ぐ発光点のデータファイルを読み出した場合に表示させるようにするとよい。輝度 値として使用する値は、オブジェクトの最大輝度値や、平均輝度値、合計輝度値を使 用することができ、プロットの表示軸は、表示軸選択手段によって常数、対数を選択 して適切なものを使用できる。蛍光強度は強いものと弱いものとで 10倍以上、場合に よれば 100倍以上の輝度の差があることが多ぐ全体を表示するためには対数軸で 表示するほうがよい。し力しながら、プロットは近接している場合が多ぐある一部分を 拡大して見たい場合や、近接したプロットを境界線で分ける場合には、常数軸で表 示しているほうがよい場合がある。そこで、表示軸選択手段を設けて表示軸を対数と 常数で切り替えることができるようにすることで、 、ずれの場合にも必要に応じて使用 することができる。
[0174] 次に、表示されたドットプロット上のプロットを集団ごとに分類する分類手段を設ける 。分類手段は、プロットを分類するための境界線を作成する境界線作成手段と、境界 線によって分けられた生菌領域、死菌領域から、発光点がどちらの領域であるかを判 断し、生菌群か死菌群であるかを判断する領域判断手段を備える。境界線は、 1本な いし複数本の直線や曲線、多角線などをカーソルなどで自由に作成することができる ものとし、プロットを見ながら、プロットの集団を分類しやすいように作製する。なお、 境界線の作製工程は、簡単に行えるようにグリッドなどを使用したり、輪郭やプロット にトラップさせるような機能を持たせると容易であり、かつ正確に行うことができる。
[0175] また、多角線を境界線とする場合には、線が交差しないように、一方の方向のみに 作製可能とすると確実である。
[0176] 作製した境界線は、取り消すことや、境界線保存手段によって保存することができる ようにし、境界線選択手段によって繰り返し使用することができるようにする。また、選 択した境界線の頂点を一部変更したり、頂点を追加するなど、編集する事ができる境 界線編集手段を設けることで、検体ごとに更に適切な分類結果を得る事ができるよう になる。
[0177] 次に、作製した境界線をもとに、境界線に相当する閾値を算出する。算出された閾 値に対して、グラフの上、左側にあるものが死菌群、反対が生菌群として分類し、パラ メータを与えて処理する。 [0178] 発光点が生菌群か死菌群のいずれかに判断された後、微生物判断手段によって 夾雑物由来の発光点を分離除外する場合は、以下の処理を行う。微生物と夾雑物 の判別は、入力手段によって指定された色度の閾値と、算出された発光点の色度を 比較する事によってなされる。
[0179] 色度は、 RGBの輝度値より色度算出手段によって演算されて得られる。色彩的特 長を示す表色系としては、 Lab表色系や、 LCh表色系、 XYZ表色系などの表色系が 使用される。ここでは XYZ表色系に基づいた色度を用いる。取得される輝度は RGB の色空間のものであるため、この RGBそれぞれの輝度値から、 XYZ表色系への変 換が数式 1によって行われる。
[0180] (数式 1)
X=0. 3933 XR/255 + 0. 3651 X G/255 + 0. 1903 X B/255
Y=0. 2123 XR/255 + 0. 7010 X G/255 + 0. 0858 Χ Β/255
Z = 0. 0182 XR/255 + 0. 1117 X G/255 + 0. 9570 Χ Β/255
Figure imgf000040_0001
y=Y/ (X+Y+Z)
[0181] 式中の R、 G、 Bはそれぞれ赤色蛍光輝度値、緑色蛍光輝度値、青色蛍光輝度値 であることを示す。これにより細胞および微生物または夾雑物かの判断に必要な値と して、最終的に x、 yの値が算出される。
[0182] 発光点毎に算出された色度の値であるが、発光点にはそれぞれ生菌群であるか死 菌群であるかを判別するためのパラメータが与えられており、生菌群であった場合に は、生菌群に対して設定された色度閾値と比較し、死菌群であった場合には、死菌 群に対して設定された色度閾値と比較して、それぞれの場合において夾雑物に由来 する発光点が除外される。夾雑物が除外され、生菌、死菌として判断されたものは、 積算され、カウントされる。
[0183] ポジションごとのカウント値は、その都度表示させることが良ぐこれにより計測途中 であっても最終結果の目安を得ることができるようになり、カウント値が多い場合など であっても、直ちに衛生管理工程の改善や、迅速な出荷停止判断に移れるため、作 業の効率ィ匕につなげられる。 [0184] また、取得した画像、演算して合成したカラー画像もカウント結果の表示に合わせ て表示させることが良ぐこれにより、カウント値が正しく求められる画像であるかを使 用者が判断することができる。
[0185] カラー画像の発光点は、取得した白黒画像の強度をもとに色彩情報に近い色で表 示されることで、画像確認を容易に行えるようになる。また、カラー画像に加え、それ ぞれの波長を示す白黒画像も選択して表示できるよう、プログラム上のボタンなどを 配しておくことがよい。
[0186] 次に、このカウント値をもとに、実際に使用した検体に含まれる単位量あたり(例え ば、 lmLや lgなど)の菌数の総数を算出する。そのためには、測定した画像のうち、 画像処理して使用した有効エリア面積を有効エリア算出手段にて求める。測定に使 用した有効エリアは、画像の補正値を変数とした関数で求められる。尚、有効エリア 面積は、補正値が決まっていれば先に求める事もできる。
[0187] 画像の縦の長さを P、横の長さを Q、縦方向の座標補正値を a、横方向の座標補 正値を j8とすると、 1画面あたりの有効エリア画素数 Mは数式 2のように表される。
[0188] (数式 2)
M = (P- a ) x (Q- |8 )
[0189] また、有効エリア面積は、レンズ系の倍率などから、画素あたりの面積を求め、画素 あたりの面積を sとするとし、測定視野数を Nとして、 1画面あたりの有効エリア面積 Sと 全有効面積は数式 3のように表される。
[0190] (数式 3)
S = M X s
全有効面積: S X N
[0191] 得られた面積に対して、微生物の捕集手段の固定部分の表面積 (例えば、メンブレ ンフィルタの全面積)の値を割り返す。これにより得られた数値を、カウント菌数に掛 け合わせることで、最終的な、微生物の生菌または死菌の総数を算出し、菌数を求 めることができる。
[0192] 以上のようにして発光物の検出を行った後、迅速検査の場合には、検出された発 光物が微生物であるかどうか顕微鏡などを用いて判断し、結果の妥当性を評価する ことが必要である。そのため、測定に使用したメンブレンフィルタなどを蛍光顕微鏡で 観察する。
[0193] 顕微鏡を使用して、メンブレンフィルタ表面力 発光画像の発光物と同じものを観 察するためには、まず顕微鏡で観察する際のメンブレンフィルタの向きと、微生物計 数装置で測定した画像の向きとが同じ方向になるように揃えることが重要である。向き が異なると、顕微鏡像に見られる発光物の集団と、取得した発光画像との配置が異 なって見えてしまうため、同一の視野や同一の発光物を特定するのが困難になる。そ こで、メンブレンフィルタに榭脂などの枠を設け、その枠に目印をつけ、同様に顕微 鏡のステージにも目印をつけてそれらを合わせることで、顕微鏡の像と、微生物計数 装置の像を揃えることができるようにするのがよ 、。
[0194] 尚、この目印は 3箇所以上、中心から非対称に設けると、一致する向きは一つしか なく必ず同じ位置に合わせられるようになり、僅かな載置角度の誤差も防止できる。
[0195] さらに、この目印を凸部とし、顕微鏡にステージにこれに対応する凹部を設け、凸部 と凹部がかみ合うようにはめるようにすれば、精密な調整が、簡便に、効率的に実施 できる。
[0196] また、メンブレンフィルタ表面のうち計測領域の全領域を、 100倍程度の高倍率の 対物レンズで観察する場合、メンブレンフィルタの枠がメンブレンフィルタ表面よりも 高いと、高倍率の対物レンズは焦点深度が浅いため、レンズと枠が接触してしまい、 枠付近のメンブレンフィルタ表面は、焦点があわないために観察することが困難にな る。また、メンブレンフィルタの面積が直径 lcm程度と小さければ、ほぼ中心部分でし か焦点が合わなくなってしまい、発光物の判断が困難である。そこで、メンブレンフィ ルタの面積をやや大きくし、メンブレンフィルタの枠とレンズが接触することなく観察が 行えるように、枠力も一定の距離を隔てた範囲において検体をろ過できるように、また 枠から一定の距離の範囲内では検体をろ過できないように、メンブレンフィルタの上 方もしくは下方から中心部に穴を設けたフィルムを重ね合わせるようにすれば、メンブ レンフィルタの中心部分において検体をろ過できるようになり、よって、全ての発光物 が高倍率の対物レンズで観察でき、判断することができるようになる。
[0197] また、同様の目的で、メンブレンフィルタを固定する枠と台座の寸法をあら力じめ調 整し、メンブレンフィルタ下方の台座の孔径を、メンブレンフィルタ上方の枠のフィルタ 押さえ部分よりも小さくすることで、ろ過部分をメンブレンフィルタの中心部分に限定さ せることがでさるよう〖こなる。
[0198] 顕微鏡で観察される複数の発光物から、微生物として判断した発光点を容易に確 認できるように、微生物として検出している発光点の色を表示する表示手段を微生物 計数装置に設ける。表示手段は、プログラム上で小さなウィンドウ枠内に背景を暗黒 色で、その中に微生物細胞とするオブジェクトを微生物の色彩特性で表示する。この 表示色は、微生物として判断する時の色彩的特性の閾値の値をリンクさせておくこと で、パラメータを変更した場合でも、表示色を自動で変更することができる。
[0199] 以上の手法を用いて、試料中や細胞培養液に含まれていた微生物の生死を判別 し夾雑物と分離して、計数することができるのである。
[0200] 図 1は、本発明を好適に実施するための微生物計数装置の一態様を示す概念図 である。この微生物計数装置 1は、蛍光画像取得手段として励起光源 2、励起フィル タ 3、集光レンズ 4、ハイパスフィルタ 5、受光フィルタ 6、レンズユニット 7、受像素子 8 を含む。励起光源 2から発せられた励起光から目的の波長を取り出すために励起フ ィルタ 3で分光する。分光された励起光は集光レンズ 4を経て検査台 9にセットされた 微生物を捕集する捕集手段としてのメンブレンフィルタ 10 (別途の操作によりメンブレ ンフィルタ上に核酸結合性の蛍光色素で染色された微生物を捕捉してあるもの)上 に集光される。励起光源 2から発せられた励起光は、集光レンズ 4によって集光され る力 その際、集光レンズ 4によって励起光は直径 3mm程度の微小な一定面積に集 光されるようにするのがよい。励起光により発する蛍光は、励起光成分を除去するた めにハイパスフィルタ 5を経て、さらに蛍光から特定の波長成分を取り出すための受 光フィルタ 6を経て、レンズユニット 7により拡大され、受像素子 8である CCDユニット 1 1に到達し、電気信号化される。これにより得られた信号は画像化され、演算手段 12 によって画像処理される。
[0201] 図 2は、演算手段 12における演算工程フローを示した図である。輝点除去手段 13 、発光点抽出手段 14、座標補正手段 15、発光点照合手段 16、出力手段 17、蛍光 評価手段 18、そして有効エリア算出手段 19から構成されている。 [0202] まず座標補正用画像を読み込んで座標補正値を算出する。次に閾値などの変数 を入力し、輝点除去手段 13によって輝点を除去した画像を作成する。続いて、発光 点抽出手段 14により画像中の発光点を特定し、数値データを抽出する。画像によつ ては座標補正手段 15により座標を補正する。異なる輝度情報を含む発光点のデー タは、発光点照合手段 16によって照合し、結合される。これにより集合された数値デ ータは、出力手段 17によってデータファイルに出力され、保存される。データフアイ ルに対して、色度算出手段 20によって、発光点ごとに色度を算出する。そして生死 判断手段 21によって発光点が生菌群であるか死菌群であるかを判別し、発光点毎 に生菌群もしくは死菌群のフラグを立てる。微生物判断手段 22により、検出したフラ グにつ 1、て、生菌群と死菌群のそれぞれに対して設定した微生物であるか夾雑物で あるかを判断するための閾値と照合して微生物であるか夾雑物であるかを判別し、最 終的に菌数を算出し、出力する。これらの処理は画像処理をプログラミングされたマ イコン等で実行でき、外部接続した端末などによって操作されるソフトウェアと通信し て行うことちできる。
[0203] 図 3 (a)は、微生物判断手段における判断の一例を示す表である。具体的には、 E . coliを含む水検体をメンブレンフィルタにろ過し、生死菌染色試薬としての蛍光色 素である SYT09と、死菌染色試薬としての蛍光色素であるヨウ化プロビジゥムを用 いて染色したものを、単板モノクロ CCDと、青色励起光照射における G輝度画像と R 輝度画像を取得したデータの一例を示す表である。このとき、 B輝度画像は、励起光 の波長と重なるために取得できな 、ので、入力手段力 数値を代入して使用して ヽ る。この変数は、最適な値に調整することができる。
[0204] 図 3 (b)に示される動作は、 RGBの輝度から、 XYZ表色系の(x、 y)の値への変換 を示す。この工程はまず、 RGBの輝度を測定する手段によって取得された RGBそれ ぞれの輝度値から、リニア RGBへの変換、ガンマ補正がなされる。これにさらに視覚 的特性を重み付けし、微生物または夾雑物かの判断に必要な値として、最終的に X、 yの値が求められる。このとき、例えば光学フィルタによって青色(B)をカットし、緑色( G)および赤色 (R)のみが取得されるような条件の場合には、青色の感度は得られな いものとして、 Bの輝度値については、あら力じめ実験によって最適化された固定値 をかわりに使用することや、または Rまたは Gの輝度値による関数を設定して使用す ることもできる。これにより得られた色度の値に対して閾値と比較することで、微生物 であるか夾雑物であるかを判別する。なお、このときの閾値は実験により決定する。
[0205] 図 3 (c)は、色度の表示手段を示す。微生物の色度は、あら力じめプログラム上で 閾値を設定しておいて判断に使用するが、このとき微生物と判断される色彩が表示さ れる。プログラムのグラフィックユーザーインターフェースとなるメインウィンドウ 23に含 まれる力、もしくは別ウィンドウにて、表示ウィンドウ 24、色彩表示オブジェクト 25、背 景 26が配置される。図 3 (c)では、これらがメインウィンドウ 23に含まれる場合を示す 。表示ウィンドウ 24は、楕円形、円形などの閉曲線や矩形などであり、微生物と判断 する色彩特性のパラメータとリンクして表示色が変更される。背景色は、顕微鏡画像 と比較しやすいよう、暗黒色になっている。
[0206] 図 4 (a)は、捕集手段の詳細を示す。メンブレンフィルタ 10の上方よりメンブレンフィ ルタのろ過面積を中心に限定するための穴を設けたフィルム 27を、上方のメンブレン フィルタ押さえ部 28と、メンブレンフィルタ台座 29の間に重ねたものである。これによ り、検体のろ過部分を、対物レンズで観察可能な中心領域に限定することができるよ うになる。
[0207] 図 4 (b)は、捕集手段の別様態の詳細を示す。メンブレンフィルタ押さえ部 28の孔 径よりも、メンブレンフィルタ台座 29の孔径を小さくとることで、メンブレンフィルタの中 心部分に検体のろ過部分を限定することができるようになる。なお、上方と下方の開 口部分の重心は同軸であるのがよ 、。
実施例
[0208] (実施例 1)
図 1に示す微生物計数装置を用いて、 E. coliを含む菌液と、水道水 (塩素除去済 み)の中の菌数を測定した。まず、これらの液体試料を、孔径が 0. 45 ^ m,直径 9m mの黒色メンブレンフィルタに表面を金属蒸着したものの上方力 ピペットにて滴下し 、吸引ろ過した。メンブレンフィルタは、そのままでは表面に触れてしまう恐れがあり、 扱いにくいため、周囲を榭脂枠で覆い、一体化させたものを使用した(図 4を参照の こと)。吸引ろ過圧は、吸引の程度が弱すぎるとろ過できず、吸引の程度が高すぎると 微生物へのダメージとなってしまうばかりか、メンブレンフィルタが破損することがある ため、 100から 400Torr付近のポンプ圧に設定して行った。メンブレンフィルタ上に 液体試料をろ過するとき、計数のしゃすさや、精度の点から、微生物などの発光物は できるだけ均一に分散させる必要がある。そのため、メンブレンフィルタのろ過性能を 均一にするために、メンブレンフィルタ下方の吸引口にろ紙などを挟み、吸引圧を拡 散して、吸引圧がフィルタ全体に均一に力かるようにして行った。また、それとは別に 、メンブレンフィルタのポアの通過抵抗を減少させるため、液体試料をろ過する前に、 少量の界面活性剤希釈液 (Tween20 0. 1%)をろ過した。液体試料は、 E. coli菌 液の場合は 0. lmL、水道水の場合は 20mLろ過した。
[0209] 続いてメンブレンフィルタ上に捕集された微生物に対して、蛍光染色を行った。染 色試薬は、生死菌染色試薬である SYT024と、死菌染色試薬である SYTOX Ora nge (いずれも商品名)を使用した。これらの染色試薬は、空気中で光を吸収して分 解しやすいため、ジメチルスルホキシドにて 500 Mに調整し、少量ずつマイクロチ ユーブに分注してストック液とし、保管した。保管は、マイクロチューブ内に窒素を封 入し、マイナス 20°Cのフリーザーにて暗所保管した。必要本数を解凍し、それぞれの 試薬 10 /z Lに対して希釈液を全量が lmLになるようにカ卩え、混合した。この希釈液 は、試薬の溶解性、保存性、細胞への浸透性、乾燥防止性に優れ、低自家蛍光性 である必要があるが、このような条件を満たすものとして、 D—ソルビトールを蒸留水 で 50%程度に希釈し Tris— HC1と少量の界面活性剤 (Tween20)を混合したものを 使用した。
[0210] 終濃度 5 μ Μに調整した試薬は、 1種類ずつ微生物が捕集されたメンブレンフィル タ上方力 滴下し、常温にて数分間染色し、余剰の試薬は吸引ろ過にて除去した。 染色順序は限定されず、生死菌染色試薬、死菌染色試薬いずれから行っても同様 に染色することができる。
[0211] 染色したのち、余剰試薬を吸引によってできる限り除去した後、メンブレンフィルタ を微生物計数装置に設置し、計測を行った。
[0212] 微生物計数装置は、図 1に記載されたものであるが、今回、青色発光ダイオード (約 470nm)と、緑色発光ダイオード (約 530nm)を使用し、受光フィルタとして緑色は 5 30から 550nmに透過性をもつものと、赤色は 590から 6 lOnmに透過性を持つもの を使用した。なお、光源には、光束を撮像範囲に照射しやすいよう集光レンズを設け ている。
[0213] また、メンブレンフィルタの設置ステージには着脱可能な機構を設け、さらにステー ジ部材を平面性が高 、ものとし、これをメンブレンフィルタの裏側力 押し当てること で、フィルタの平面性を高め、かつ画像取得のためのピントがフィルタ上に合う高さに 固定できるようにし、ピント調節を不要とした。メンブレンフィルタを固定したステージ は、モーター駆動の XYステージにより移動可能であり、プログラムによってあらかじ め指定した位置への移動を連続的に行うことができるものとした。
[0214] メンブレンフィルタ表面の蛍光画像の取得は、メンブレンフィルタの上方に設置され た赤外カットフィルタを施した単板モノクロ CCDカメラと、拡大レンズ系にて行った。 画像を取得する際には、励起光となる LEDが点灯して照射され、受光フィルタを切り 替えて目的の波長の画像を取得できるものとし、これらのカメラ、光源、フィルタ、およ びステージは、動作をプログラムされたマイコンを使用して制御されるものとした。
[0215] 画像の取得は、同一の位置で (a)青色励起、緑色蛍光、 (b)青色励起、赤色蛍光、
(c)緑色励起、赤色蛍光、の 3種類の画像を、露光時間が 0. 1から 3秒程度で連続 的に取得し、ステージによって次の撮像領域に移動し、同様に画像を取得するものと した。また、測定の最初には、発光ダイオードを点灯させずに画像を取得し、ドット欠 けのみを含む画像を取得してぉ 、た。
[0216] 画像を全て取得した後、演算手段によりドット欠けの除去、発光点の抽出、照合が 行われ、発光点ごとに輝度値を求めたデータを作成した。
[0217] 図 5の(a)は E. coliと水道水中にみられる発光点について、生死菌染色試薬であ る SYT024の蛍光波長である青励起による緑蛍光の輝度と、死菌染色試薬である S YTOX Orangeの蛍光波長である緑色励起による赤蛍光の輝度を 2軸におき、ドッ トプロットを作成したものである。
[0218] このとき、任意に設定できる境界線として、 cが y= 100、 dが x=yのような直線を設 定し、 cより小さぐかつ dより小さい領域を生菌群、それ以外の領域を死菌群として指 定し、該当する領域の発光点に対してフラグを立て、発光点の分類を行った。 [0219] 次に、生菌群として分類された発光点データの集団を、 XYZ表色系における色度 データのうち、 Xと yの値をグラフ上にプロットした(図 5の(b) )。このとき、 E. coli生菌 力 く 0. 37、y>0. 54の領域に分布していたのに対し、水道水中の発光物は xが 0 . 3力ら 0. 6、y力^). 3力ら 0. 6と幅広い領域に分布していることが確認された。このと き、閾値は、 E. coliの値を参考に設定し、 Xは e = 0. 37、 yは f=0. 54として、 x< e、 y > fの領域に分類された集団を微生物として判別し、水道水中に含まれる夾雑物と 区別した。その結果、検出された発光点のうち夾雑物に由来する発光点の大半を分 離することができ、水道水では図 5の(a)のとおり生死判断手段によって生菌群として 100個の発光点から 32個の発光点が抽出されたが、さらに図 5の (b)によってそのう ちの 8個が微生物の生菌であると判別することができた。
[0220] この閾値は一例であるが、染色に使用する蛍光色素の種類や、濃度、希釈する溶 液の極性などによっても閾値は変わることから、使用が想定される環境に最も適した 値をあら力じめ設定しておくことが好ま 、。
[0221] なお、最終菌数の妥当性については、培養困難である菌も存在する為、適切な培 養方法、培地の種類を複数組み合わせて使用し、評価することが望ましい。
[0222] (実施例 2)
図 6は E. coliについての、生死判断手段における生菌と死菌を判別するための閾 値の設定方法の設定結果である (境界線として多角線を用いた例)。照合されて結合 された発光点の輝度情報のうち、第 1と第 2の染色試薬の輝度を X軸と y軸にとり、デ ータを対応させたドットプロット表示手段 30と、さらにこのドットプロット上において、力 一ソル 31を操作して、プロットを分類するための閾値を設定するための多角線の始 点 32、頂点 a33、頂点 b34、終点 35を設定した。設定された多角線 36は、プロダラ ム上で演算され、閾値が求められた。判別を行い、計数した結果、生菌群 120個、死 菌群 80個として簡便に測定することができた。
[0223] (実施例 3)
図 7は E. coliについての、生死判断手段における生菌と死菌を判別するための閾 値の設定方法の設定結果である (境界線として多角形を用いた例)。表示したドットプ ロット表示手段 30に対して、カーソル 31を操作して、選択したい領域の多角形の始 点 37と、頂点 a38から頂点 b39と頂点 c40を経て頂点 d41を連続的に設定し、頂点 の最後は、始点と一致させて多角形を設定した。設定された多角形 42に対して、閾 値が自動的に算出され、領域をチェックボックスで死菌として指定したところ、死菌数 は 78個として検出できた。
[0224] (実施例 4)
図 8は E. coliについての、生死判断手段における生菌と死菌を判別するための閾 値の設定方法の設定結果である (境界線として楕円形を用いた例)。表示したドットプ ロット表示手段 30に対して、カーソル 31を操作して、選択したい領域の楕円形の中 心 43と、長軸 44または短軸 45と、長軸の長さ 46と、長軸の角度 47を設定した。楕円 形 a48と楕円形 b49を、それぞれ死菌、損傷菌として設定したところ、死菌数が 72個 、損傷菌が 9個であると検出された。この集団ごとに楕円の中心座標と長軸の長さと 角度の数値を抽出することで、これらを微生物の集団の特性を示す特徴パラメータと して集団を定義できる。それぞれの値は、様々な菌種や、様々な活性状態のものを 示すものであり、値を比較することによって、例えば同じ死菌であっても、損傷度合い や、微生物の損傷のしゃすさなどを比較することが可能となる。図 8の場合、楕円の 長軸の傾きが大きぐ死菌染色試薬で強く染色された楕円形 a48で囲まれた領域の 方が、死菌の損傷度が高いものであると推定することができた。
[0225] (実施例 5)
図 9は E. coliについての、生死判断手段における生菌と死菌を判別するための閾 値の設定方法の設定結果である (領域指定による分類方法の例)。表示したドットプ ロット表示手段 30に対して、あらかじめ縦横を N= 5、 M = 5、合計 25領域に分割し、 輝度がそれぞれ 50ずつになるようあらかじめ各領域に番地を設け、それぞれに番号 (A〜Y)を定めた。次に、プロット結果から、死菌領域を A、 F、 K、 Ρとして設定して、 領域内の死菌数を算出したところ、 97個が検出された。
[0226] (実施例 6)
染色試薬に粘性の高いソルビトールを 60%になるように混合し、使用した。メンブレ ンフィルタ上に捕集された微生物に染色試薬を滴下して反応させ、余剰試薬を下方 力 吸引ろ過して除去した。メンブレンフィルタ表面を顕微鏡のノーカバータイプの対 物レンズを使用して観察すると、図 10 (a)のように発光物 50の周囲に球状に付着し た試薬 51が確認された。また、同一の露光時間で取得した画像の一部を拡大したも のを図 10 (b)に示す。図 10 (b)右のように試薬が付着して!/ヽな 、発光点 52と比べて 、図 10 (b)左のように試薬が付着している発光点 52は面積が大きぐ輝度も増加した 。一方、同一の輝度となるように露光時間を調整した結果、試薬が付着しているもの は 200ミリ秒で所定の輝度が得られたのに対して、試薬が付着していないものは所定 の輝度を得るためには 800ミリ秒必要であり、露光時間が 4倍異なった。
産業上の利用可能性
本発明は、細胞および微生物を含んだ検体から蛍光染色を用いて微生物の生菌 および死菌を検出して計数するための装置であって、従来から知られている装置と 比較してより正確性を持たせた計数を行うことができる装置を提供することができる点 において産業上の利用可能性を有する。

Claims

請求の範囲
[1] 微生物を捕集する捕集手段を載置する載置手段と、生菌および死菌を染色する生 死菌染色試薬と死菌を染色する死菌染色試薬を用いて染色された前記捕集手段上 の微生物の蛍光画像を取得する蛍光画像取得手段と、前記蛍光画像取得手段によ り取得された蛍光画像から発光点を検出する発光点検出手段と、前記発光点検出 手段により検出された発光点の色度が生菌、死菌、夾雑物のいずれかであることを 判断する蛍光評価手段を備え、前記蛍光評価手段により判断された生菌および Zま たは死菌を積算し計数するようにしたことを特徴とする微生物計数装置。
[2] 画像の演算処理に用いるパラメータを入力する入力手段を備えることを特徴とする 請求項 1記載の微生物計数装置。
[3] 蛍光画像取得手段が励起光源と分光フィルタと拡大レンズと受像素子を備え、青 色励起によって緑色蛍光を発する生死菌染色試薬と、緑色励起によって赤色蛍光を 発する死菌染色試薬を用い、青色励起光による緑色蛍光画像と、青色励起光による 赤色蛍光画像と、緑色励起光または黄色励起光による赤色蛍光画像を取得するよう にしたことを特徴とする請求項 1または 2記載の微生物計数装置。
[4] 発光点検出手段が、画像上の発光点の輝度と座標と面積を抽出する発光点抽出 手段と、前記発光点抽出手段により抽出された画像上の発光点の座標を補正する座 標補正手段と、補正された座標をもとに複数の画像力 同一の発光点を照合し、照 合された発光点の各画像の輝度値と面積のデータを結合する発光点照合手段を備 えることを特徴とする請求項 1または 2記載の微生物計数装置。
[5] 発光点抽出手段によって抽出された青色励起光による赤色蛍光画像の輝度を赤 色の輝度とし、青色励起光による緑色蛍光画像の輝度を緑色の輝度とし、これらの 輝度と、入力手段力 入力した青色の輝度に基づいて、発光点ごとに色度を算出す る色度算出手段を備えることを特徴とする請求項 4記載の微生物計数装置。
[6] 蛍光評価手段が、発光点ごとに色度を算出する色度算出手段と、発光点の青色励 起光による緑色蛍光画像の輝度と緑色励起光または黄色励起光による赤色蛍光画 像の輝度に基づいて発光点を生菌群または死菌群に分類する生死判断手段と、生 菌群または死菌群に分類された発光点が微生物であるか夾雑物であることを色度で 判断する微生物判断手段を備え、発光点が生菌、死菌、夾雑物のいずれかであるこ とを判断するようにしたことを特徴とする請求項 1または 2記載の微生物計数装置。
[7] 座標補正手段にお!、て、青色励起光による緑色蛍光画像と、青色励起光による赤 色蛍光画像と、緑色励起光または黄色励起光による赤色蛍光画像の全てで発光点 を取得できる波長をもったマーカーを表面に固定した画像補正用チップを用いて取 得した各画像にあるマーカーの発光点の座標を比較して画像の座標を補正するた めの補正値を算出するようにしたことを特徴とする請求項 4記載の微生物計数装置。
[8] 生死判断手段において、青色励起光による緑色蛍光画像のチャンネルの輝度値を 第一軸、緑色励起光または黄色励起光による赤色蛍光画像のチャンネルの輝度値 を第二軸として 2次元のドットプロットを表示するドットプロット表示手段と、前記ドット プロット表示手段により表示された各プロットを生菌群または死菌群に分類する分類 手段を備え、前記分類手段により生菌群または死菌群に分類するようにしたことを特 徴とする請求項 6記載の微生物計数装置。
[9] ドットプロット表示手段にぉ 、て、表示する輝度値が発光点の中の最大輝度値であ るようにしたことを特徴とする請求項 8記載の微生物計数装置。
[10] ドットプロット表示手段において、表示する輝度値が発光点を形成する画素の輝度 値を合計した合計輝度値であるようにしたことを特徴とする請求項 8記載の微生物計 数装置。
[11] ドットプロット表示手段の表示軸を、対数と常数とから任意に選択することを可能と する表示軸選択手段を設けたことを特徴とする請求項 8記載の微生物計数装置。
[12] 分類手段において、ドットプロット上に生菌群が属する領域と死菌群が属する領域 を分類する境界線を作成する境界線作成手段と、境界線によって分けられた領域に 基づいて各プロットを生菌群または死菌群とする領域判断手段を備えたことを特徴と する請求項 8記載の微生物計数装置。
[13] 境界線作成手段によって作成した境界線を保存する境界線保存手段と、複数の境 界線を保存した場合に保存した境界線の中から最適な境界線を選択することを可能 とする境界線選択手段を設けたことを特徴とする請求項 12記載の微生物計数装置。
[14] 境界線選択手段によって選択された境界線を編集する境界線編集手段を設けたこ とを特徴とする請求項 13記載の微生物計数装置。
[15] 境界線作成手段において、ドットプロット外周上の任意の点を始点とし、外周上にあ る別の任意の点を終点とした多角線を境界線として作成するようにしたことを特徴と する請求項 12記載の微生物計数装置。
[16] 微生物判断手段が、入力手段から入力した生菌群と死菌群のそれぞれに個別に 指定した色度閾値と発光点の色度を比較して、生菌、死菌、夾雑物のいずれかであ ることを判断するようにしたことを特徴とする請求項 6記載の微生物計数装置。
[17] 発光点照合手段が、一方の画像の発光点の座標から入力手段によって指定した 一定距離の範囲内にある他方の画像の発光点を同一の発光点として照合するように したことを特徴とする請求項 4記載の微生物計数装置。
[18] 発光点照合手段にぉ 、て、画像ごとの発光点データを RGBのチャンネルに割り当 てて 1枚のカラー画像で出力する結果画像出力手段を設けたことを特徴とする請求 項 4に記載の微生物計数装置。
[19] 入力手段によって入力した生菌と判断するための色度の色を表示する表示手段を 設けたことを特徴とする請求項 16記載の微生物計数装置。
[20] 青色励起光による緑色蛍光画像と、青色励起光による赤色蛍光画像と、緑色励起 光または黄色励起光による赤色蛍光画像の全てで発光点を取得できる波長をもった マーカーを表面に固定したことを特徴とする画像補正用チップ。
[21] メンブレンフィルタを固定する支持枠を備え、上方のフィルタ開口面積が下方の開 口面積よりも大きぐ上方と下方の開口部分の重心が同軸であることを特徴とする微 生物を捕集する捕集手段。
[22] 請求項 1記載の微生物計数装置を用いて微生物を計数することを特徴とする微生 物計数方法。
[23] 捕集手段上の微生物を染色する際、生死菌染色試薬および死菌染色試薬に粘性 を持たせ、微生物の表面に試薬を付着させることを特徴とする請求項 22記載の微生 物計数方法。
PCT/JP2006/317874 2005-09-08 2006-09-08 微生物計数装置 WO2007029821A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005260132A JP4779518B2 (ja) 2005-09-08 2005-09-08 蛍光読取装置および微生物計数装置
JP2005-260132 2005-09-08
JP2005-260131 2005-09-08
JP2005260131 2005-09-08
JP2005-261544 2005-09-09
JP2005261544 2005-09-09
JP2006-211992 2006-08-03
JP2006211992A JP2007097582A (ja) 2005-09-08 2006-08-03 微生物計数装置
JP2006-211993 2006-08-03
JP2006211993A JP5140956B2 (ja) 2005-09-09 2006-08-03 微生物計数装置

Publications (1)

Publication Number Publication Date
WO2007029821A1 true WO2007029821A1 (ja) 2007-03-15

Family

ID=37835936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317874 WO2007029821A1 (ja) 2005-09-08 2006-09-08 微生物計数装置

Country Status (1)

Country Link
WO (1) WO2007029821A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318468A (zh) * 2018-05-05 2018-07-24 哈尔滨索飞永诚科技有限公司 一种用于对液体样品中荧光染料染色微粒进行快速计数的计数系统
CN110849855A (zh) * 2019-12-02 2020-02-28 杭州特隆基因技术有限公司 一种基于人工智能的活体细菌定量检测的方法
WO2020161364A1 (es) * 2019-02-05 2020-08-13 Fundació Institut De Ciències Fotòniques Dispositivo óptico para la detección de emisión de fluorescencia
CN113155578A (zh) * 2017-12-29 2021-07-23 乔治洛德方法研究和开发液化空气有限公司 一种丝状微生物的染色方法及其用途
WO2022241243A1 (en) * 2021-05-13 2022-11-17 Fluid-Screen, Inc. Techniques for detection and quantification of live and dead bacteria in a fluid sample

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059943U (ja) * 1998-12-17 1999-07-13 サッポロビール株式会社 フィルタサポートおよび微生物補集用濾過装置
WO2004019019A1 (en) * 2002-08-21 2004-03-04 Amersham Biosiciences Uk Limited Fluorescence reference plate
JP2004121143A (ja) * 2002-10-04 2004-04-22 Sysmex Corp 菌計数方法および菌計数装置
JP2005048105A (ja) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置
JP2005065570A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd 生菌検出方法および生菌計数装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059943U (ja) * 1998-12-17 1999-07-13 サッポロビール株式会社 フィルタサポートおよび微生物補集用濾過装置
WO2004019019A1 (en) * 2002-08-21 2004-03-04 Amersham Biosiciences Uk Limited Fluorescence reference plate
JP2004121143A (ja) * 2002-10-04 2004-04-22 Sysmex Corp 菌計数方法および菌計数装置
JP2005048105A (ja) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置
JP2005065570A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd 生菌検出方法および生菌計数装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155578A (zh) * 2017-12-29 2021-07-23 乔治洛德方法研究和开发液化空气有限公司 一种丝状微生物的染色方法及其用途
CN108318468A (zh) * 2018-05-05 2018-07-24 哈尔滨索飞永诚科技有限公司 一种用于对液体样品中荧光染料染色微粒进行快速计数的计数系统
CN108318468B (zh) * 2018-05-05 2024-01-16 哈尔滨索飞永诚科技有限公司 一种用于对液体样品中荧光染料染色微粒进行快速计数的计数系统
WO2020161364A1 (es) * 2019-02-05 2020-08-13 Fundació Institut De Ciències Fotòniques Dispositivo óptico para la detección de emisión de fluorescencia
CN110849855A (zh) * 2019-12-02 2020-02-28 杭州特隆基因技术有限公司 一种基于人工智能的活体细菌定量检测的方法
WO2022241243A1 (en) * 2021-05-13 2022-11-17 Fluid-Screen, Inc. Techniques for detection and quantification of live and dead bacteria in a fluid sample

Similar Documents

Publication Publication Date Title
JP4779518B2 (ja) 蛍光読取装置および微生物計数装置
RU2402006C1 (ru) Устройство, способ и компьютерная программа для измерений
US10803290B2 (en) Classifier construction method and method for determining life or death of cell using same
US7186990B2 (en) Method and apparatus for detecting and imaging the presence of biological materials
JP2008187935A (ja) 微生物計数装置および点検用チップ
US9933415B2 (en) Internal focus reference beads for imaging cytometry
JP2008187935A5 (ja)
WO2003012397A1 (fr) Puce collectrice de micro-organismes, trousse collectrice de micro-organismes, methode de quantification de micro-organismes, specimen destine a confirmer l&#39;etat normal d&#39;un appareil de quantification de micro-organismes et ledit appareil de quantification de micro-organismes
JP4967280B2 (ja) 微生物計数装置
JP2008014689A (ja) 蛍光読取装置および位置補正用チップ
KR100753616B1 (ko) 미생물의 검사 장치 및 검사 방법
JP4487985B2 (ja) 微生物計量装置
WO2007029821A1 (ja) 微生物計数装置
US20200379227A1 (en) Method For Analyzing Fluorescent Particles in an Immunoassay
CN114651201A (zh) 用于细胞计数测量的系统和方法
US20080259321A1 (en) System and Method for Rapid Reading of Macro and Micro Matrices
JP4590902B2 (ja) 糸状菌計量方法
US6979828B2 (en) Method and apparatus for immediately determining microorganism
JP2007006709A (ja) 発光物の判別方法
JP4792880B2 (ja) 微生物計数方法および微生物計数装置
JP2007097582A (ja) 微生物計数装置
JP5140956B2 (ja) 微生物計数装置
JP3740019B2 (ja) 微生物計量装置
JP2006333812A (ja) 微生物計量方法および微生物計量装置
JP2006174751A (ja) 有芽胞細菌計量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783234

Country of ref document: EP

Kind code of ref document: A1