JP3705807B2 - 化学反応を行うための反応器及び方法 - Google Patents

化学反応を行うための反応器及び方法 Download PDF

Info

Publication number
JP3705807B2
JP3705807B2 JP51230895A JP51230895A JP3705807B2 JP 3705807 B2 JP3705807 B2 JP 3705807B2 JP 51230895 A JP51230895 A JP 51230895A JP 51230895 A JP51230895 A JP 51230895A JP 3705807 B2 JP3705807 B2 JP 3705807B2
Authority
JP
Japan
Prior art keywords
container
reactor
vessel
cover
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51230895A
Other languages
English (en)
Other versions
JPH09510907A (ja
Inventor
ストラウス,クリストファー・ロイ
トレイナー,ロバート・ウィリアム
レイナー,ケヴィン・デーヴィッド
ソーン,ジョン・スタンリー
Original Assignee
コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガナイゼーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガナイゼーション filed Critical コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガナイゼーション
Publication of JPH09510907A publication Critical patent/JPH09510907A/ja
Application granted granted Critical
Publication of JP3705807B2 publication Critical patent/JP3705807B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

技術分野
本発明はマイクロ波エネルギーを用いて化学反応を行うための方法及び装置に関する。本発明は化学合成又は動力学実験に特に適している。
本明細書中、“化学反応”という用語は1個以上の物質内又は物質間の少なくとも1つの化学結合を作成及び/又は切断して1個以上の新しい物質を製造することを含むプロセスを意味する。
背景技術
誘電正接が高くマイクロ波に効率良くカップリングできる少なくとも1つの溶媒又は反応体が反応媒質に含まれる場合には、マイクロ波エネルギーを用いることによって化学反応の速度を高め反応時間を何オーダーも短くできることが知られている。しかしながら、このように反応時間が加速されている場合には、特に密封反応容器中では、高温及び高圧の発生が通常起こり、そのマイクロ波加熱装置には有効な反応モニター設備(facilities)、コントロール設備及び安全設備を取り付ける必要がある。
本出願者らの先の国際出願No.PCT/AU89/00437(公開No.WO 90/03840)には、マイクロ波により開始された化学反応を連続ベースで行うための、反応モニター設備及びコントロール設備が組み込まれた実験用フロースルー(flow-through)ユニットが開示されている。しかしながら、この公知のユニットのモニター及びコントロール設備はマイクロ波放射ゾーンの外に位置している。その上、この公知のユニットは連続的プロセスに適していないために、実験上の実用性を満たしていない。
反応容器内の温度及び圧力をモニターする設備を含む、バッチベースで化学反応を行うための装置が、コンステイブル、ラナー、ソムロ及びストラウス(D. Constable, K. Raner, P. Somlo and C. Strauss)により論文“有機合成及び動力学実験に適した新規マイクロ波反応器”,Journal of Microwave Power and Electromagnetic Energy, Vol. 27 No. 4, 1992, pages 195-198に開示されている(この開示は相互参考文献としてここに組み込む)。この反応器では、圧力及び温度モニター用付属部品の付いたスクリューキャップ式の蓋を持つ反応容器がマイクロ波キャビティ内に備えつけられている。この反応容器には中にスターラーバーも入っており、それはマイクロ波キャビティの外側から磁力によって回転される。
コンステイブルら(Constable et al.)の反応器はマイクロ波放射ゾーン内に反応条件をモニターする設備を含んではいるが、そのコントロール可能な入力はマイクロ波の電力レベルだけである。従ってコンステイブルら(Constable et al.)の反応器では、例えば、反応生成物を調節しながら冷却したり、又は反応経過中に容器内容物に加えたり又は一部取り出したりすることは不可能である。
発明の開示
本発明の目的は、化学反応を行うための、コンステイブルら(Constable et al.)の反応器の特徴に加えてコントロールできるという特徴を具体化したマイクロ波反応器及び方法を提供することにある。
本発明によれば、マイクロ波放射の作用下で化学反応を行うための反応器であって、化学反応用の物質を入れる容器を含み、当該容器が化学反応経過中に当該物質によって作られる内部圧力に耐えるように適合されており、当該適合が容器内容物にマイクロ波エネルギーが加えられた時の容器内容物をモニターする手段を含むカバーを備えていることを含み、このカバーが容器内容物中に浸漬する熱交換手段の支持体としてもはたらく反応器が提供される。
好ましくは上記容器はマイクロ波キャビティ中に置かれる。或いは、マイクロ波放射を上記カバーに付属する手段によって容器内部に導入してもよい。
熱交換手段は当該物質を予備加熱するか又は必要に応じて例えば化学反応の進行中、最も多くは発熱を伴う反応の進行中、若しくは反応用の加熱段階が終了した際に当該内容物を冷却するためのものである。
好ましくは、容器内容物をモニターする手段は温度及び/又は圧力を測定する手段を含む。
本発明は第二の面として化学反応を行うための方法を提供し、その方法は以下を含む:
(i)高圧及び高温に耐えるように適合された容器に、少なくとも1つの反応体又は反応体/溶媒混合物を充填し、該反応体若しくは溶媒又はそれらと混合されたサスセプターがマイクロ波エネルギーを吸収できること、
(ii)化学反応が起きるのに十分なマイクロ波エネルギーを上記容器に加えること、及び
(iii)反応生成物を容器内で加圧下に留まっている間にそこに浸漬された熱交換手段によって急速に冷却すること。
本発明は第三の面として化学反応を行うための方法を提供し、その方法は以下を含む:
(i)高圧及び高温に耐えるように適合された容器に、加熱されると発熱性の反応を起こす少なくとも1つの反応体又は反応体/溶媒混合物を充填し、該反応体若しくは溶媒又はそれらと混合されたサスセプターがマイクロ波エネルギーを吸収できること、
(ii)発熱性化学反応が起きるのに十分なマイクロ波エネルギーを加えること、及び
(iii)反応経過中に、容器内容物を容器内で加圧下に留まっている間にそこに浸漬された熱交換手段によって冷却すること。
上記の本発明の第二及び第三の面について言及したサスセプターは、反応流体がマイクロ波エネルギーを容易に吸収しない場合に使用することができる。すなわち、サスセプターとはマイクロ波吸収体である物質であって、マイクロ波エネルギーを吸収することによって加熱され、その熱を伝導により周囲の反応流体に移す。適当なサスセプターとしては炭素、磁鉄鉱、マグヘマイト及びクロム塩類が挙げられる。
本発明はさらに第四の面として化学反応を行うための方法を提供し、その方法は以下を含む:
(i)高圧及び高温に耐えるように適合された容器に、周囲温度ではマイクロ波エネルギーの不良吸収体であり加熱時にはマイクロ波エネルギーの良吸収体である少なくとも1つの反応体又は反応体/溶媒混合物を充填すること、
(ii)熱交換手段を容器内容物に浸漬し、容器を密封し、該熱交換手段にマイクロ波吸収性物質を充填すること、
(iii)熱交換手段内の媒質を加熱しそれによって容器内容物を加熱するのに十分なマイクロ波エネルギーを加え、それによって当該内容物が次第にマイクロ波エネルギーを吸収すること、及び
(iv)化学反応が起きるのに十分なマイクロ波エネルギーを容器内容物に加え続けること。
好ましくは上記熱交換手段はコールドフィンガー構造を含む。
熱交換手段内のマイクロ波吸収性物質(又はサスセプター)は例えば、水、ジメチルスルホキシド若しくはエチレングリコール、又は他のいずれの適当な媒質でもよい。
本発明の反応器はさらに、マイクロ波加熱の間に反応容器に物質を加えるか又は反応容器からそれを取り出すための設備を含んでいてもよい。好ましくは2個以上のそのような設備が備わっていて、物質を同時に加えたり取り出したりできる。
【図面の簡単な説明】
本発明の態様を、単に実例として、付随の図面に関して述べる:
図1は、本発明の態様である装置の略図である。
図2は、マイクロ波キャビティ内の本発明の反応容器の図解である。
図2Aは、図2の装置の一部を詳細に示したものである。
図3A、3B、3C及び3Dは、図2の反応容器の付属部品の詳細を示す;及び
図4は、本発明の加熱及び冷却能の実例を示したグラフである。
本発明を実施するための最良の様式
図1に本発明の態様である装置の配置を概略図として示す。例示の装置は、マグネトロン11に電力を可変式で供給するための可変式発電装置10を含む。この配置から、選択された電力設定で、又は温度フィードバックコントロールを受ける場合のようにマグネトロンパワーを変えて、マグネトロンを作動させることができる。電力供給源は“ナショナル発電機モデルNL 10320”でもよく、マグネトロンは1.2kW、2450MHzユニットでもよい。マグネトロン11によって発生されたマイクロ波は導波管12によってマイクロ波キャビティ閉鎖容器(エンクロージャー)13に伝達される。閉鎖容器13は調節ノブ64に接続した装填調節装置14(又は図2に示すような電気モーター65に接続したモードスターラー)を含んでもよい。
マイクロ波閉鎖容器13は、種々のモニター及びコントロール手段を備えたカバー16を持つ反応容器15を含む。これらのモニター及びコントロール手段(以下に詳細に述べる)は、圧力測定用集成装置17、安全バルブ集成部品18、サンプリング設備19及び温度測定用集成装置20を含む。圧力及び温度測定用の集成装置は両方ともコンピューター21に接続してデータロッギングを行ってもよい(図1は圧力測定用集成装置がコンピューター21に接続されているように図示していないことに注意)。本発明は又、フィードバック温度及び/又は圧力測定に基づく電力供給のコンピューター調節を包含する。すなわち、この装置は温度及び/又は圧力値が予め選択できて、そのように選択された値に従って入力エネルギーを変動させることができるコントロール設備を含んでもよい。
反応容器15は反応混合物23中の温度勾配を最小にするためにスターラーバー22を含んでいてもよい。バー22は、モーター22bにより回転される磁石22aによって磁気駆動される。このような適当な磁気スターラーは国際特許出願No.PCT/AU92/00454(国際公開No.WO 93/05345)に開示されている。磁石22aは、例えば図2に示すようにマイクロ波フィールド内に位置する場合、マイクロ波フィールドから遮蔽する必要がある。
反応容器15のカバー16は、このカバーを通り容器15中に伸びて反応混合物23中に浸漬する熱交換手段24の支持体にもなっている。
図2は反応容器及びマイクロ波キャビティ構造を詳細に示す断面図である。この構造は、密封反応容器中で発生しうる高圧に耐えられなければならない。図2に例示するように、マイクロ波閉鎖容器13はその上壁及び下壁中の開口部間に伸びたアルミナシリンダー25を含む。シリンダー25の下部末端は、シリンダー25に隣接し取り囲んでいる閉鎖容器13の下部壁を覆っているプレート27中の開口部内にはめ込まれたカバー26上に支えられている。カバー26はプレート27に固定されている(例えば、プレート27にオーバーラップするカバー26の周辺フランジ26aを貫くねじによる。このようなねじは図示していないが、27aと表している部位に位置することになる)。例えばPTFE製の、シャフト28はカバー26を貫いて、電気モーター22bを磁石22aに結合させてスターラーバー22を反応容器15中で回転させる。カバー26は又、アルミナ台29を支えて、反応容器15の底を支えている。
アルミナシリンダー25に隣接し取り囲んでいる閉鎖容器13の上部壁は、下部プレート27に類似のプレート30により覆われている。プレート30を横切って伸びる直交ビーム(梁)31及び32並びにプレート27を横切って伸びる直交ビーム33及び34は閉鎖容器13の反対側の壁の上まで伸び、それにより閉鎖容器13のそれぞれの側で長いボルトによって締めて合わせることができる。このように閉鎖容器のそれぞれの側で、ビーム31及び33はボルト35によって連結されビーム32及び34はボルト36によって連結されている。プレート27及び30、並びに連結された直交ビーム31-33、32-34は反応容器付近の構造を強化して、反応容器15内の高圧に耐える助けとなり、起こりうる爆発を抑えている。これに関連して、反応容器15に備えられたプレート30の中央開口部は、アルミナシリンダー25の上部リムが入るくぼみ37aを含む。
反応容器15はアルミナシリンダー25内の台29の上に支えられている。容器15の外側の直径はシリンダー25の内側の直径よりもごくわずかに小さく、シリンダー25の壁の厚みは容器15が化学反応の間に容器内に発生する高圧に耐えられるような適当な支えとなるに十分な厚みでなければならない。或いは、アルミナシリンダー25のような構造部材の代わりに、外部圧力源から容器15の外部表面にその中で発生する内部圧力に等しい圧力を供給するような装置を使用することもできる。
容器15はシリンダー25の上部リム表面上に位置するリップ15aを含む。容器15は好ましくは不活性材料、例えばポリエーテルエーテルケトン(PEEK)で作成されているとよい。
反応容器15のカバー16は不活性材料、例えばPEEKでできたドーム37を含み、このドームはねじ40によって接着されている2枚のプレート38及び39の間に固定されている。ドーム37は下部プレート39中の開口部内に位置し、上部プレート38はプレート39及びドーム37の両方の上に広がっており、従ってプレート38はドーム37の形状に対応する中央ドーム型断面を持つ。図2Aに例示するように、ドーム37の下部表面は容器15のリム15aの上部表面上に広がっており、O-リングシール62がPEEKドーム37の面取り37bによって作られる空間内で両者の間に挿入されている。この構造によって、反応容器の封じ込め表面が完全に不活性材料から成ることになる。又、図2Aに示すように、O-リングシール62はくぼみ37a内でアルミナシリンダー25とプレート30の間に挿入されている。シリンダー25の外側リムの面取り25aによってシール62が入る空間が作られる。
カバー集成部品16はプレート38及び39を貫いてプレート30に至る着脱式ねじ(表示せず)によって適所に固定してもよい。カバー16を含むドーム37並びにプレート38及び39は容器15内で発生する高圧に耐えるように十分な強度を持たなければならないことが認められる。
図2に示すようにカバー16に取り付けられた熱交換手段24は“コールドフィンガー”構造を含む。これは、例えば石英又は他の適当な不活性材料でできているチューブ41から成り、このチューブはドーム37を貫いて反応容器15内に伸び、反応混合物23中に浸漬される。チューブ41の下方末端は閉じており上方部分は管状マウント42中に取り付けられている。管状マウント42の下方部分42aはカバー16のプレート38中にねじ込み装着されている。石英チューブ41は流入口末端41aからチューブ41の閉鎖下方末端まで熱交換媒質(例えば、冷水)を通すためのチューブを含む。この閉鎖下方末端から上記媒質はチューブ41の中(送込チューブ及び石英フィンガー41の間の環状通路の内部)を上り41bでこの熱交換手段から流出する。
例示したコールドフィンガー型熱交換手段の代わりに、例えばコイル状熱交換器のような他の構造を本発明に利用することもできる。これは冷却用の表面領域がより広く得られるという利点があるが、同時により入り組んだものとなる;すなわち、これは洗浄がより困難であるために、連続して使用した際に容器15内に反応混合物が混入する危険性がより高くなる。一般に、コールドフィンガー型熱交換器が他の型よりも好ましい。又、石英以外の材料もこの熱交換器に使用でき、例えばステンレス鋼のような金属を状況によって使用することもできる。この熱交換手段が容器15中での化学反応に影響を及ぼすか又は混入することのない材料で構成されていることが重要である。
熱交換手段24の他に、カバー16は圧力測定用集成装置17、安全バルブ集成部品18、サンプリング設備19及び温度測定用集成装置20を含む。図2に示した断面図には安全バルブ18又は温度測定用集成装置20が示されていないことを注意されたい。
圧力測定用集成装置17を図3Aに例示する。これは43bでカバープレート38中にねじ込み装着された管状取り付け部品43を含む。管状取り付け部品43はライナー44を含み、これは例えばPEEKでできていて、PEEKドーム37内の通路48を経て容器15に連絡する通路44aを中央に持つ。取り付け部品43には拡張頭部43aがあり、その中にライナー44の拡張頭部分44bが位置する。ライナー44の拡張頭部分44bは通路44aと連絡するチャンバー45を画定する。チャンバー45の壁の一つは、例えばフルオロエチレンポリマーのような不活性材料でできたダイヤフラム46により画定され、このダイヤフラムは取り付け部品43の頭部43aにねじ47aによって取り付けられたもう一つの取り付け部品47と取り付け部品43の間に装着されている。取り付け部品47は圧力変換器17a(図2に示されているが図3Aには示されていない)の取り付けに適合している。ダイヤフラム46と圧力変換器17aの間のキャビティは水のような液体が充填されている。
図3Aから、容器内容物に接する封じ込み表面は圧力測定用集成装置を含めて全て不活性材料から成ることが認められる。容器15中に発生する圧力の検出は通路48及び44a、チャンバー45並びにダイヤフラム46により行われ圧力変換器17aによって変換される。
カバー16における温度測定用集成装置20を図3Bに例示する。これは直径の小さなチューブ58を含み、このチューブは例えば石英でできていて、反応容器15内に位置する密閉末端58aを持つ。石英チューブ58は、カバー16のプレート38中にねじ込み装着された管状取り付け部品59を貫いて、同時にそれによって支えられている。チューブ58は取り付け部品59の外部末端の中に入れられたゴムシート60によって取り付け部品59の中に保たれている。ゴムシート60は、ファイバー光学温度計の光ファイバー(図3Bには表示せず)が通るようにチューブ58の内部に通じる小さな開口部61を含む。
光ファイバーはチューブ58の内部で反応容器15中に伸びており、温度検出用の熱感受性燐光体チップを含む。このファイバーのもう一方の端はアナライザー/ディスプレーユニット20a(図1参照)に接続され、これが今度はコンピューター21に接続されていてもよい。ラクストロン755型マルチチャンネルフルオロプティックサーモメーターが本発明における使用に適している。もっとも、赤外検出集成装置、外装サーモカップル又はガスサーモメーターのようなマイクロ波フィールド内への設置に適した他のタイプの温度計も本発明に使用できる。
図3Cは反応容器15に対するサンプリング設備19を例示している。この設備は小さな直径のチューブ54(外径が例えば約1.6mm)を含み、このチューブは不活性材料、例えばPEEKでできていて、プレート38中にねじ込み装着された管状取り付け部品55を貫いている。不活性材料、例えばPEEKでできているライナー57の一方の端はドーム37中のくぼみの中に位置し、取り付け部品55の外側の端の中にねじ込み装着されたナット56がライナー57のもう一方の端を圧迫してライナーをドーム37中に確実に圧締り嵌めさせる。PEEKチューブ54は容器15内の反応混合液中に伸びる(図1参照)。チューブ54の外側の部分はバルブによって封止されている(図1中の19a参照)。
サンプリング設備19により、反応混合物にマイクロ波が照射されて化学反応が進行している間にバルブ19aを開けることによって反応混合物の一部を容器15から取り出すことができる。或いは、反応中に反応体又は溶媒を混合物に加えることができる。このような反応体又は溶媒の添加には、この添加物を容器内に押し出すために反応容器15内の圧力よりも高い圧力をチューブ54に加える必要がある。サンプリング設備19は不活性ガス送入口として使用することもできる。これを行う集成装置は当業者に周知であり、従ってここでは詳細に記載しない。
カバー16には2個以上のサンプリング設備19を組み込んでもよい。例えばそのような設備を2個持つ場合、化学反応が容器15内で進行している間に、反応体又は溶媒を一方のサンプリングチューブから反応混合物に加え、もう一方のサンプリングチューブから反応生成物を取り出すことができる。
安全バルブ集成装置を図3Dに例示する。これは標準タイプの集成装置で、調整ばねバイアス集成装置49を含む。このばねバイアス集成装置はバルブシート50上で作用し、このシートの反対側の表面はドーム37を通過する通路52を通じて高圧領域に連絡している。この安全バルブ集成装置の重要な点は封じ込み表面が全て不活性材料から成るということである。よって、図3Dに例示するようにこの集成装置はドーム37とバルブシート50の間に伸びた不活性材料(例えばPEEK)でできたライナー53を含む。バルブシート50も不活性材料、例えばPTFEでできている。
化学反応の間に反応容器15内に高圧が発生するならば、反応容器15及びカバー16の部品及び取り付け部品はこのような圧力に十分耐えられるだけの強度を持つことに加えて有効に密封されている必要がある。図2及び3に例示するように、そのような密封は適当な不活性材料で作られたO-リング62を使用することにより達成することができる。一般に、O-リング62を容器15及びカバー16のドーム37の間、並びにドーム37、ねじ取り付け部品及びカバー16内の挿入物の間を封止するために使用するべきである。さらに、反応容器内に発生する高温及び高圧は反応体が接触しうる材料が反応へ混入する危険性を増大させる。従って上述のように、そのような材料は全て、この装置を使用して行う個々のいずれの反応においても非混入性でなければならない。一般に、反応体が接触しうる部品は全て、例えばPEEK、石英又はPTFEのような不活性材料から作られていなければならない。カバー26、プレート27及び30、並びにカバー部品(プレート38及び39、取り付け部品42、43、55、59など)のような他の部品はステンレス鋼でできていてもよい。
再び図2について述べると、マイクロ波閉鎖容器13中への導波管開口部は63に示されており、キャビティへのモードスターラーが14に例示されている。モードスターラー14はモーター65によって公知の様式で連続的に回転されてもよい。或いはモードスターラー14を手動調整ノブ(例えば、図1中に示されたノブ64)に接続して、例えば導波管12中で供給及び反射マイクロ波パワーを測定することによって決定された特定の角度に設定してもよい。すなわち、導波管12は、供給及び反射マイクロ波パワー測定する計器を伴い、ノブ64によりモードスターラー14を供給パワーが最大になり反射パワーが最小になる位置に調整することができる装置を含んでいてもよい。
図2に例示した態様では、キャビティ13の寸法は高さ175mm、幅200mm及び長さ400mmである。アルミナシリンダー25は外径70mm、内径50mm及び長さ200mmである。反応容器15は表示容量100ml、外径50mm、内径44mm及び長さ103mmである。カバー16は外径130mm、厚み15mm及び、ドーム部分の内半径が55mmである。コールドフィンガー41の寸法は、フィンガー部分が外径15mm、壁の厚み1.5mm及び長さ160mmで、頭部分が外径20mm及び長さ60mmである。この態様で、温度250℃及び圧力10,000kPa(100Atmos.)が容器15の内部に達成された。しかしながら、反応容器の容量並びに本発明の装置の最高温度及び圧力定格には使用された材料及び安全要素によって決定される実際上の制限があることは明らかであるが、本発明が上記のサイズ又は操作パラメーターによって制限されるものではないことは理解すべきである。
図4のグラフは、図2の態様のバッチ式反応器の加熱及び冷却能力を例示している。このグラフから容器内容物(水)が約2.5分で温度230℃まで急速に加熱され、この温度に約6.5分間保たれた後、冷却液がコールドフィンガー熱交換器中を通過することによって約2分間で約30℃まで急速に冷却されたこと(すなわち、約200℃の温度低下)が示される。反応後の容器内容物の冷却の他に、熱交換手段を容器内容物の予備加熱に使用することもできる。このような予備加熱工程は、加熱されるまでマイクロ波エネルギーをあまり吸収しない物質の場合に特に有用である。
特に加熱された時にのみマイクロ波エネルギーを良く吸収するようになる物質に、コールドフィンガー熱交換器を使用するもう一つの様式は、水のように周囲温度でマイクロ波エネルギーの良好な吸収剤である物質で熱交換器を充填し、(例えば水で)充填された熱交換器及び反応用の物質(類)が容器15内に含まれるように装置を組み立て、この集成部品にマイクロ波を照射することである。この使用法では、熱交換器内の物質が最初に加熱され、これが次に伝導及び対流によって容器内の反応用物質(類)を加熱して、それ(ら)をマイクロ波で直接加熱されるのに十分なだけマイクロ波の吸収性を高める。マイクロ波により容器15内の物質(類)を連続的に加熱することによって、その物質(類)中に化学反応が起きる。
上記のいずれの使用法においても、コールドフィンガー熱交換手段はサイホン手段又は内容物を“吹き出す”加圧手段によって、内容物を空にすることができる。
典型的には、本発明の反応器内で100mLのスケールで200℃、5分間反応させると、加熱及び冷却プロセスはそれぞれ約2.5分しか必要でないため、全体時間としてわずか10分後には反応を終了できる。
本発明の有用性を例を挙げて説明するために、図2に示したような装置を使用する反応の例を以下に述べる。
実施例1−冷却を目的としたコールドフィンガー(41)の使用
2-アリルフェノールの製造
アリルフェニルエーテル(2.0g)及び水(60mL)の混合物を、磁気スターラーバーを入れたPEEK容器に加えた。この容器を反応器の中に入れ、カバーを封止した。10分かけて混合物を242℃まで加熱し(圧力3.3MPa)、この温度に10分間保ち、その後コールドフィンガーを用いて50℃まで急速に冷却した。できた混合物をジエチルエーテルで抽出した(3 x 50mL)。有機抽出液を乾燥させ(MgSO4)、濃縮して2-アリルフェノール(1.7g)を得た。GC/MS及び1H NMRスペクトルで測定した純度は87%であった。
GC/MS:m/z(rel.int.%) 134(M+,100),133(41),119(38),115(41),107(25),105(30),91(63),89(11),79(29),78(27),77(55),66(11),65(15),63(18),55(11),53(16),52(14),51(38),50(20)。
実施例2−冷却を目的としたコールドフィンガー(41)の使用
ルピン・バイオマス(Lupin Biomass)の糖化
1% H2SO4(100mL)中の乾燥ルピン殻(粒子サイズ500μm、10g、52質量%のセルロースを含む)の懸濁液を攪拌しながらマイクロ波条件下で加熱した。温度を120秒で30℃から215℃まで上げて30秒間維持し(圧力約2MPa)、その後コールドフィンガーによって50℃まで急速に下げた。200℃以上の時間は1分だった。セルロースのグルコースへの転化は39%であった。
実施例3−冷却を目的としたコールドフィンガー(41)の使用
カルボンの異性化
クロロベンゼン/1,4-ジオキサン(容量比4:1;75mL)中のp-トルエンスルホン酸(1.4g)及びカルボン(11.3g)の混合物を180℃で35分加熱した後、コールドフィンガーを用いて急速に冷却し、10% NaOH溶液で抽出した(3 x 100mL)。合わせた水性抽出液をCH2Cl2で洗浄し(2 x 100mL)、濃H2SO4を滴下混合して中和し、CH2Cl2で抽出した(3 x 100mL)。有機抽出液を飽和NaHCO3(100mL)で洗浄し、MgSO4で乾燥して減圧濃縮し、カルバクロールを得た(9.6g;85%)。
ウィルゲロット反応例
実施例4−アセトフェノンからのフェニルアセトアミドの製造
ピリジン(15mL、14.67g、185.5mmol)及びアンモニア水(28%;20mL)中のイオウ(15g、58.4mmol)の懸濁液にアセトフェノン(10g、83.3mmol)を加えた。該混合物を攪拌しながら急速に185℃まで加熱し、この温度を10分間維持した後、コールドフィンガーを用いて急速に冷却した。(減圧)濃縮によって固体(32g)を得て、これをエーテル(80mL)に懸濁し、濾過して固体を回収した。この固体をエーテルで洗浄(2 x 10mL)した後、沸騰水(約1L)に懸濁して濾過した。得られた濾液を続いてジクロロメタン(500mL)で抽出し、有機相を留去した。残渣をジクロロメタンから再結晶し(活性炭で脱色)、乾燥(減圧/P2O5)させてアセトアミドを無色フレークとして得た;m.p.157-158℃(8.1g、72%)。
νmax 3364m,3192m,1640s,1498w,1456w,1418m,1290m,1204w,1184w,1156w,1136w,1136w,1074w,746m,700m,583w,534w,474w cm-1
1H n.m.r.(d6DMSO):δ 3.37,s;6.91,bs;7.1-7.35,m;7.48,bs。
13C n.m.r.(d6DMSO):δ 42.22,126.14,128.03,128.95,136.39,172.16。
マススペクトル(CI):m/z 136(M+1,100%),92(17),91(17)。
実施例5−スチレンからのフェニルアセトアミドの製造
イオウ(15g、58.4mmol)、ピリジン(15mL、14.67g、185.5mmol)、アンモニア水(28%;20mL)、スチレン(8.66g,83.3mmol)及び4-t-ブチルカテコール(0.23g、1.69mmol)の混合物を10分間170℃に加熱した後、コールドフィンガーを用いて急速に冷却した。フェニルアセトアミドが後処理の後に得られた(5.7g、51%)。1H n.m.r.又は13 n.m.r.スペクトルから不純物は検出されなかった。
実施例6−4'-ヒドロキシフェニルアセトアミドの製造
イオウ(15g、58.4mmol)、i-プロパノール(15mL、11.78g、196mmol)、アンモニア水(28%;20mL)及び4'-ヒドロキシアセトフェノン(11.30g、83.1mmol)の混合物を20分間210℃に加熱した後、コールドフィンガーを用いて急速に冷却し、できた混合物を減圧濃縮した。残渣をエーテルで摩砕し(3 x 50mL)、得られた固体を沸騰水で摩砕した(1 x 500mL、2 x 250mL)。合わせた水相を留去し、残渣を水から再結晶した(活性炭で脱色)。結晶を濾過して回収し冷水(20mL)及びエーテル(20mL)で洗浄した後、乾燥(減圧/P2O5)させて4'-ヒドロキシフェニルアセトアミドを黄色粉末として得た;m.p.171-173℃(7.35g、59%)。
νmax(KBrウェファー)3700-2200bs,1635s,1510m,1430s,1360m,1310w,1290m,1230s,1200m,1175m,1115m,1100m,1015w,925w,885m,855m,820s,795s,670s,565w,525m,495w cm-1
1H n.m.r.(d6DMSO):δ 3.27,s;6.71,m;6.85,bs;7.08,m;7.39,bs;9.26,bs。
13C n.m.r.(d6DMSO):δ 41.44,114.93,126.62,129.94,155.81,172.86。
マススペクトル(CI):m/z 152(M+1,100%),135(9),134(5),121(6),107(45)
実施例7−4'-ヒドロキシフェニルアセトアミドの合成
イオウ(15g、58.4mmol)、i-プロパノール(15mL、11.78g、196mmol)、アンモニア水(28%;20mL)及び4'-アセトキシアセトフェノン(14.83g、83.3mmol)の混合物を20分間210℃に加熱した後、コールドフィンガーを用いて急速に冷却した。後処理及び再結晶して4'-ヒドロキシフェニルアセトアミドを得た(7.60g、61%)。
実施例8−4'-メトキシフェニルアセトアミドの製造
イオウ(15g、58.4mmol)、i-プロパノール(15mL、11.78g、196mmol)、アンモニア水(28%;20mL)及び4'-メトキシアセトフェノン(12.50g、83.3mmol)の混合物を20分間210℃に加熱した後、コールドフィンガーを用いて急速に冷却した。冷却した混合物を濃縮し、残渣の半固体をエーテルで摩砕した(3x 30mL)。残存固体を水から再結晶し(活性炭で脱色)、得られた4'-メトキシフェニルアセトアミドの無色板状結晶を減圧乾燥した(8.5g、62%)。
1H n.m.r.(d6DMSO):δ 3.31,s;3.74,s;6.85,m;7.19,m;7.43。
13C n.m.r.(d6DMSO):δ 41.28,54.89,113.49,128.34,129.94,157.76,172.62。
マススペクトル(CI):m/z 166(M+1,100%),151(5),149(6)。
実施例9−4'-エトキシフェニルアセトアミドの製造
イオウ(15g、58.4mmol)、ピリジン(15mL)、アンモニア水(28%;20mL)及び4'-エトキシアセトフェノン(13.65g、83.3mmol)の混合物を20分間190℃に加熱した後、コールドフィンガーを用いて急速に冷却した。得られた混合物を濃縮し、残渣の半固体をエーテルで摩砕した(3 x 30mL)。残渣固体を沸騰水に懸濁し(5 x 300mL)濾過した。合わせた水相を続いてジクロロメタンで抽出した。溶媒を除去した後に得られた残渣をエタノールから再結晶し(活性炭で脱色)、4'-エトキシフェニルアセトアミドを得た(9.2g、62%)。
1H n.m.r.(d6DMSO):δ 1.36,t;3.32,s;4.02,q;6.88,m;7.18,m;7.45。
13C n.m.r.(d6DMSO):δ 14.68,41.62,62.89,114.08,128.31,130.01,167.46,172.64。
マススペクトル(CI):m/z 166(M+1,100%),151(5),149(6)。
実施例10−サンプリング設備(19)の使用
(2-メトキシエチル)ベンゼンの製造
磁気スターラーバーを備えたPEEK容器に入った(2-ブロモエチル)ベンゼン(2.0g)及びメタノール(60mL)の混合物を反応器内に置き、カバーを封止した。この混合物を攪拌しながら10分かけて149℃に加熱し(1.08MPa)、この温度に2時間保った。サンプルを定期的に取り出し、分析した。その後混合物を冷却した。1時間後の(2-メトキシエチル)ベンゼンへの転化は50%であり、2時間後には80%に増加した。
GC/MS:m/z(rel.int.%) 136(M+,13),104(8),91(28),77(6),65(11),63(4),51(9),50(4),45(100)。
1H NMR(CDCl3;200MHz):δ 7.23,m,5H,Ar;3.6,t,2H,-CH2-O-CH3;3.4,s,3H,-O-CH3;2.9,t,2H,Ar-CH2-。
実施例11−反応中の物質添加及び取り出し(例:サンプリング設備(19)経由)
6-ブロモヘキス-1-エンの製造
1,6-ジブロモヘキサン(30mL、48g)をPTFE反応容器に磁気スターラーバーと共に入れた。外径が3mmの流出口チューブをカバー集成部品に接続して反応器をセットした。上記ジブロミドを150℃に加熱し、ヘキサメチルホスホラストリアミド(HMPTA;約3mL)をカバー集成部品に取り付けた第二のチューブを通してシリンジによって加えた。その後、容器内容物を200℃に加熱し、HMPTA(42mL)をシリンジを通して滴下混合した。粗生成物を取り出し用チューブを通じて蒸留し、冷却フラスコ中に回収し、その後再蒸留して6-ブロモヘキス-1-エンを得た(15.6g、49%)。
1H NMR(CDCl3;200MHz):δ 1.56,m,2H,CH2;1.85,m,2H,CH2;2.10,m,2H,CH2;3.41,t,J=7Hz,2H,CH2Br;4.85-5.10,m,2H,=CH2;5.80,m,1H,=CH。シー及びキム(Kenneth J. Shea and Jang-Seob Kim)が“化学反応性に対する圧力の影響;MCPBAエポキシ化におけるねじり変形二重結合の相対的反応性”Journal of The American Chemical Society, Vol.114, No.8, 1992, pages 3044-3051に報告したものに一致する。
実施例12−予備加熱器としてのコールドフィンガーの使用
4-t-ブチルシクロヘキサノールの脱水
(a)コールドフィンガー内の液体をマイクロ波エネルギーを加えて加熱して用いる方法(すなわち、サスセプターとしての作用)
マイクロ波反応器を、反応容器内に窒素環境を維持することを除いて6-ブロモヘキス-1-エンの製造の場合と同様に設定した。石英コールドフィンガーに水を充填し、PTFE反応容器にcis-及びtrans-4-t-ブチルシクロヘキサノール(40g、256.4mmol)並びにピロ硫酸カリウム(20g)の微粉砕混合物を充填した。その後マイクロ波パワーを加えてコールドフィンガー内の水を加熱して沸騰させ、その後反応温度が上がり始めた。マイクロ波エネルギーによって反応を175℃に加熱し、約10分間この温度を維持して二相性蒸留液を回収した。この蒸留の間、コールドフィンガー内の水は過剰に供給されたマイクロ波エネルギーを吸収する“ダミー負荷”として作用し、反射パワーを低下させた。有機層を分離して水で洗浄し(4 x 10mL)、乾燥させた(MgSO4)。生成物(22.3g)は4-t-ブチルシクロヘキセン(89%:GC分析)及び3-t-ブチルシクロヘキセン(11%:GC分析)から成っていた。
13C NMR(CDCl3;50MHz):4-t-ブチルシクロヘキセン δ 23.93,26.71,26.78,27.11,32.22.44.11,126.78,127.31。
3-t-ブチルシクロヘキセン δ 22.87,24.43,25.22,27.43,32.67.45.90,127.91,129.25。
(b)外部で予備加熱されコールドフィンガー内を流れる液体を用いる方法
マイクロ波反応器を、実施例12(a)と同様に設定した。容器にcis-及びtrans-4-t-ブチルシクロヘキサノール(40g)並びにピロ硫酸カリウム(20g)の混合物を充填した。高温(150-160℃)の液体をコールドフィンガーに通し、容器内容物を75℃に予備加熱した後、マイクロ波パワーを加えた。マイクロ波エネルギーによって反応を175℃に加熱し、この温度を維持して蒸留液を回収した。実施例12(a)と同様に後処理して、4-t-ブチルシクロヘキセンを主成分とする液体(27g)を得た。
実施例13−反応の温度を調節するための冷却を目的としたコールドフィンガーの使用
4-t-ブチルシクロヘキサノールの4-t-ブチルシクロヘキサノンへの酸化
酢酸(50mL)及び水(10mL)中の酸化クロム(VI)(10g,100mmol)の溶液をマイクロ波反応容器中に置いた。液体(-35℃)をコールドフィンガー中に循環させ、容器内容物の温度が約-5℃になった時点で、酢酸(25mL)中の4-t-ブチルシクロヘキサノール(9g,64.1mmol)の溶液を加えた。冷却液のコールドフィンガー中の循環を維持し、マイクロ波パワーを加えて反応の温度を25℃まで上げた。温度を25-28℃の範囲に1時間保ち、その後、冷却流を停止し、反応容器内容物を15分間110℃に加熱した。次いで20℃まで冷却した。メタノール(5mL)及び水(20mL)を加えた。生成物の水蒸気蒸留を行い、蒸留液をCH2Cl2処理して4-t-ブチルシクロヘキサノンを白色結晶として得た。この生成物は以下のEI/MS(70eV)を示した:154(M+ 11%),98(54),83(21),69(16),57(100)
比較のために、酢酸(15mL)中の4-t-ブチルシクロヘキサノール(4.5g)の溶液を、水(5mL)及び酢酸(25mL)中の酸化クロム(VI)(5g)の溶液に、冷却することなく周囲温度で加えた。コントロールされていない激しい発熱性の反応が起こり、混合物の温度は10秒で105℃まで上昇した。
ここに述べる本発明は、明確に記載されている変更又は修正以外の変更又は修正も容易に受けることが認められ、添付の請求項に規定される本発明の意図及び範囲に含まれるそのような全ての変更又は修正を本発明が含むことを理解すべきである。

Claims (23)

  1. マイクロ波エネルギーの作用下で化学反応を行うための反応器であって、化学反応用の物質を入れる容器を含み、当該容器が化学反応経過中に当該物質によって作られる内部圧力に耐えるように適合されており、当該容器は容器内容物にマイクロ波エネルギーが加えられた時の容器内容物をモニターする手段を含むカバーを備え、このカバーが容器内容物中に浸漬する熱交換手段の支持体としてもはたらく反応器。
  2. 熱交換手段がコールドフィンガー型の熱交換器である、請求項1に記載の反応器。
  3. 熱交換手段が閉鎖末端を持つ熱交換チューブを含む、請求項1に記載の反応器。
  4. 当該チューブが当該閉鎖末端の直前で終点となる直径のより小さな送込チューブを含み、当該送込チューブが熱交換液を熱交換手段中に送り込むためのものであり、当該熱交換液が当該送込チューブとそれを囲む熱交換チューブの間に画定される環状通路を経て熱交換手段から出ていく、請求項3に記載の反応器。
  5. 当該熱交換チューブが当該カバーから実質的に垂直に伸びている、請求項3に記載の反応器。
  6. 当該熱交換チューブがコイル状部分を含む、請求項3に記載の反応器。
  7. 容器内容物をモニターするための手段が圧力測定用手段を含む、請求項1に記載の反応器。
  8. 圧力測定用手段が当該カバー中にねじ込み装着された取り付け部品及び該取り付け部品上に装着された圧力変換器を含み、当該取り付け部品、当該容器内部と当該変換器との間で圧力を伝達させるための通路を備えた、請求項1に記載の反応器。
  9. 容器内容物をモニターするための手段が温度測定用手段を含む、請求項1に記載の反応器。
  10. 温度測定用手段が、当該容器内に位置する密閉末端を持つ直径の小さなチューブが装着されていて同時に当該カバー中にねじ込み装着されている取り付け部品を含み、直径の小さな当該チューブがファイバー光学温度計である光ファイバーを含む、請求項9に記載の反応器。
  11. 当該カバーが圧力操作可能な安全バルブ集成部品をさらに含む、請求項1に記載の反応器。
  12. 当該カバーが、前記容器内容物にマイクロ波エネルギーが加えられている間に物質を加えるか又は当該容器から反応生成物を取り出すためのサンプリング手段をさらに含む、請求項1に記載の反応器。
  13. 前記サンプリング手段は、カバー内にねじ込み装着される取り付け部品を備え、前記取り付け部品には、端部が開放された直径の小さなチューブが装着され、前記チューブは、前記容器内部に延び出しており、且つ、前記取り付け部品から延びて、前記チューブを封止するために前記容器の外部に配置されたバルブ手段に連絡している、請求項12に記載の反応器。
  14. 当該カバーが2個のサンプリング手段を含み、化学反応の経過中に当該サンプリング手段の一方を経て物質を容器に加えことができ、もう一方の当該サンプリング手段を経て反応生成物を容器から取り出すことが同時にできる、請求項12に記載の反応器。
  15. 当該容器がマイクロ波キャビティ中に置かれ、当該カバーが当該キャビティの外側に位置する、請求項1に記載の反応器。
  16. 当該カバーがマイクロ波エネルギーを当該容器の内部に導入するための手段をさらに含む、請求項1に記載の反応器。
  17. 当該キャビティが、当該容器及び当該カバーの近傍に、キャビティを強化するための構造的手段を含む、請求項15に記載の反応器。
  18. 当該容器を当該内部圧力に耐えるように適合させるために、当該容器を、その周囲を囲む支持体手段の中に設置する、請求項1に記載の反応器。
  19. 当該容器を当該内部圧力に耐えるように適合させるために、当該容器の外部表面に圧力を加える手段を備えた、請求項1に記載の反応器。
  20. 化学反応を行うための方法であって、
    (i)高圧及び高温に耐えるように適合された容器に、少なくとも1つの反応体又は反応体/溶媒混合物を充填し、該反応体若しくは溶媒又はそれらと混合されたサスセプターがマイクロ波エネルギーを吸収できるようにする工程と、
    (ii)化学反応が起きるのに十分なマイクロ波エネルギーを上記容器に加える工程と、
    (iii)反応生成物を容器内で加圧下に留まっている間にそこに浸漬された熱交換手段によって急速に冷却する工程とを含む方法。
  21. 当該化学反応がウィルゲロット反応である、請求項20に記載の方法。
  22. 化学反応を行うための方法であって、
    (i)高圧及び高温に耐えるように適合された容器に、加熱されると発熱性の反応を起こす少なくとも1つの反応体又は反応体/溶媒混合物を充填し、該反応体若しくは溶媒又はそれらと混合されたサスセプターがマイクロ波エネルギーを吸収できるようにする工程と、
    (ii)発熱性化学反応が起きるのに十分なマイクロ波エネルギーを加える工程と、
    (iii)反応経過中に、容器内容物を容器内で加圧下に留まっている間にそこに浸漬された熱交換手段によって冷却する工程とを含む方法。
  23. 化学反応を行うための方法であって、
    (i)高圧及び高温に耐えるように適合された容器に、周囲温度ではマイクロ波エネルギーの不良吸収体であり加熱時にはマイクロ波エネルギーの良吸収体である少なくとも1つの反応体又は反応体/溶媒混合物を充填する工程と、
    (ii)熱交換手段を容器内容物に浸漬し、容器を密封し、該熱交換手段にマイクロ波吸収性媒質を充填する工程と、
    (iii)熱交換手段内の媒質を加熱するのに十分なマイクロ波エネルギーを容器に加え、それによって当該容器内容物が次第にマイクロ波エネルギーを吸収し始め、加熱され始めるようにする工程と、
    (iv)化学反応が起きるのに十分なマイクロ波エネルギーを容器内容物に加え続ける工程とを含む方法。
JP51230895A 1993-10-28 1994-10-27 化学反応を行うための反応器及び方法 Expired - Fee Related JP3705807B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2072 1981-12-23
AUPM207293 1993-10-28
PCT/AU1994/000659 WO1995011750A1 (en) 1993-10-28 1994-10-27 Batch microwave reactor

Publications (2)

Publication Number Publication Date
JPH09510907A JPH09510907A (ja) 1997-11-04
JP3705807B2 true JP3705807B2 (ja) 2005-10-12

Family

ID=3777310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51230895A Expired - Fee Related JP3705807B2 (ja) 1993-10-28 1994-10-27 化学反応を行うための反応器及び方法

Country Status (12)

Country Link
US (1) US5932075A (ja)
EP (1) EP0725678B1 (ja)
JP (1) JP3705807B2 (ja)
KR (1) KR100318550B1 (ja)
AT (1) ATE204512T1 (ja)
AU (1) AU677876B2 (ja)
CA (1) CA2174841C (ja)
DE (1) DE69428048T2 (ja)
DK (1) DK0725678T3 (ja)
ES (1) ES2162870T3 (ja)
PT (1) PT725678E (ja)
WO (1) WO1995011750A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954267A (zh) * 2010-08-20 2011-01-26 同济大学 一种可用于负载型燃料电池催化剂制备的微波反应器

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29608738U1 (de) * 1996-05-14 1997-09-18 Lex, Wolfgang, 82041 Deisenhofen Einrichtung zur Untersuchung der Zersetzung und/oder von Reaktionen einer chemischen Substanz
DE19700499B4 (de) * 1996-12-23 2005-06-02 Mikrowellen-Systeme Mws Gmbh Vorrichtung zum Behandeln chemischer Substanzen durch Erhitzen
DE19700530B4 (de) * 1997-01-09 2007-09-06 Perkin Elmer Bodenseewerk Zweigniederlassung Der Berthold Gmbh & Co. Kg Vorrichtung zur Durchführung naßchemischer Reaktionen unter Druck
US6061926A (en) * 1997-11-05 2000-05-16 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of The Environment Controlled energy density microwave-assisted processes
US6258329B1 (en) * 1998-04-20 2001-07-10 Cem Corporation Microwave transparent vessel for microwave assisted chemical processes
CN1087648C (zh) * 1999-03-10 2002-07-17 中国科学院金属研究所 一种微波化学反应装置
ATE257961T1 (de) * 2000-05-08 2004-01-15 Personal Chemistry I Uppsala Verfahren zur durchführung von mehreren chemischer reaktionen, set und system dazu
US20040024493A1 (en) * 2000-05-08 2004-02-05 Magnus Fagrell Method, system, and sub-system, for processing a chemical reaction
US6753517B2 (en) 2001-01-31 2004-06-22 Cem Corporation Microwave-assisted chemical synthesis instrument with fixed tuning
US6886408B2 (en) * 2001-01-31 2005-05-03 Cem Corporation Pressure measurement in microwave-assisted chemical synthesis
US6607920B2 (en) 2001-01-31 2003-08-19 Cem Corporation Attenuator system for microwave-assisted chemical synthesis
US6676905B2 (en) * 2001-06-07 2004-01-13 Aventis Pharmaceuticals Inc. Multi-well plate with perimeteral heat reservoir
US6644536B2 (en) * 2001-12-28 2003-11-11 Intel Corporation Solder reflow with microwave energy
ES2192980B2 (es) * 2002-01-16 2006-06-01 Baucis, S.A. Mezcladora-secadora-reactor por microondas.
US7282184B2 (en) * 2002-04-19 2007-10-16 Cem Corporation Microwave assisted chemical synthesis instrument with controlled pressure release
US6744024B1 (en) * 2002-06-26 2004-06-01 Cem Corporation Reaction and temperature control for high power microwave-assisted chemistry techniques
US6867400B2 (en) * 2002-07-31 2005-03-15 Cem Corporation Method and apparatus for continuous flow microwave-assisted chemistry techniques
US7144739B2 (en) * 2002-11-26 2006-12-05 Cem Corporation Pressure measurement and relief for microwave-assisted chemical reactions
WO2004054707A1 (en) * 2002-12-18 2004-07-01 Biotage Ab Method and apparatus for control of chemical reactions
GB0311959D0 (en) * 2003-05-23 2003-06-25 Glaxo Group Ltd Energy delivery system
US7393920B2 (en) 2003-06-23 2008-07-01 Cem Corporation Microwave-assisted peptide synthesis
US6989519B2 (en) * 2003-09-02 2006-01-24 Cem Corporation Controlled flow instrument for microwave assisted chemistry with high viscosity liquids and heterogeneous mixtures
US7041947B2 (en) * 2003-09-02 2006-05-09 Cem Corporation Controlled flow instrument for microwave assisted chemistry with high viscosity liquids and heterogeneous mixtures
US7481979B2 (en) * 2004-04-20 2009-01-27 Akribio Corp. Multiport cofinger microreactor stopper and device
WO2005102510A1 (ja) * 2004-04-20 2005-11-03 Sanko Chemical Industry Co., Ltd. マイクロ波を応用した化学反応装置
US7148456B2 (en) * 2004-09-15 2006-12-12 The Penn State Research Foundation Method and apparatus for microwave phosphor synthesis
KR100627634B1 (ko) * 2005-07-18 2006-09-25 한국화학연구원 연속교반식 반응기를 이용한 다공성 물질 및 혼합금속산화물의 연속적 제조방법 및 연속적 제조 장치
CN101437606A (zh) * 2006-03-16 2009-05-20 圣玛丽亚费代里科技术大学 用于提取存在于大气样本的毒性有机化合物的装置
JP2008104930A (ja) * 2006-10-24 2008-05-08 Orion Mach Co Ltd マイクロ波反応装置
US20110189056A1 (en) * 2007-10-11 2011-08-04 Accelbeam Devices, Llc Microwave reactor
CN101855365A (zh) * 2007-11-30 2010-10-06 科贝特研究私人有限公司 热循环装置
US20100044210A1 (en) * 2008-08-20 2010-02-25 The Board Of Regents Of The University Of Texas System METHOD OF DIGESTING CELLULOSE TO GLUCOSE USING SALTS AND MICROWAVE (muWAVE) ENERGY
EP2331930A1 (en) * 2008-09-05 2011-06-15 The Government Of The U.S.A, As Represented By The Secretary, Dept. Of Health And Human Services Device and method for microwave assisted cryo-sample processing
US20100126987A1 (en) * 2008-11-25 2010-05-27 Zhylkov Valerie S Device for transfer of microwave energy into a defined volume
US8946605B2 (en) * 2008-12-02 2015-02-03 Zhejiang Twrd New Material Co., Ltd. Microwave heating device and its application in chemical reactions
CA2757989A1 (en) 2009-04-08 2010-10-14 Accelbeam Devices Llc Microwave processing chamber
DE102009031059A1 (de) * 2009-06-30 2011-01-05 Clariant International Ltd. Vorrichtung zur kontinuierlichen Durchführung chemischer Reaktionen bei hohen Temperaturen
JP5762167B2 (ja) 2010-08-25 2015-08-12 キヤノン株式会社 マイクロ波反応装置およびこの装置を用いた高分子化合物の製造方法
RU2461543C1 (ru) * 2011-06-10 2012-09-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ получения парацетамола
CN102650575B (zh) * 2012-04-13 2013-11-27 宣达实业集团有限公司 剧毒介质取样方法及其装置
JP6224983B2 (ja) * 2012-10-25 2017-11-01 四国計測工業株式会社 危険物施設に設置可能なマイクロ波化学反応装置
CN112439374A (zh) * 2019-08-30 2021-03-05 唐山纳源微波热工仪器制造有限公司 一种高温高压微波化学反应器
KR102401044B1 (ko) * 2020-09-02 2022-05-23 동국대학교 산학협력단 세슘 납 할라이드 페로브스카이트 입자의 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1191916A (en) * 1915-12-08 1916-07-18 Gulf Refining Co Process of and apparatus for chlorinating.
US1523563A (en) * 1922-06-16 1925-01-20 Walter O Snelling Photochemical process
US1746731A (en) * 1929-01-21 1930-02-11 Koehler William Process for the disintegration of matter
US2958638A (en) * 1958-04-24 1960-11-01 Exxon Research Engineering Co Reaction container for carrying out radiation induced chemical reactions
US3116978A (en) * 1958-08-01 1964-01-07 Montedison Spa Apparatus for preparing carboxylic acids and derivatives thereof by carbonylation
DE1245917B (de) * 1965-03-19 1967-08-03 Badische Anilin- S. Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein Verfahren und Vorrichtung zur Durchführung fotochemischer Reaktionen
NL7509305A (nl) * 1974-08-07 1976-02-10 British Petroleum Co Werkwijze voor het tot stand brengen van chemische reacties.
CA1174882A (en) * 1981-02-23 1984-09-25 Charles J. Kramer Plane grating polarizing beamsplitter
GB2140258A (en) * 1983-04-06 1984-11-21 Kenneth George Barnes Microwave heating apparatus
US4507188A (en) * 1983-12-21 1985-03-26 Thiokol Corporation Ultraviolet curable formulations containing urethane acrylate monomers
US4946797A (en) * 1986-06-13 1990-08-07 Cem Corporation Microwave-based Kjeldahl method
AU635903B2 (en) * 1988-10-10 1993-04-08 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for continuous chemical reactions
US5204065A (en) * 1989-03-01 1993-04-20 Terry Floyd High pressure and high temperature digestion vessel
US5033541A (en) * 1989-11-17 1991-07-23 Cetac Technologies, Inc. Double pass tandem cooling aerosol condenser
JP2632239B2 (ja) * 1990-10-31 1997-07-23 日亜化学工業株式会社 半導体結晶膜の成長方法および装置
DE4108766C2 (de) * 1991-03-18 1996-08-01 Knapp Guenter Univ Prof Dipl I Vorrichtung zum Erhitzen von Substanzen unter Entstehung hoher Drücke im Mikrowellenfeld
JPH0596124A (ja) * 1991-10-02 1993-04-20 Hitachi Ltd ガス純化装置
ZA934078B (en) * 1992-06-19 1994-02-03 Csir Method of carrying out solid/gas exothermic reaction
FR2697448B1 (fr) * 1992-10-30 1995-06-16 Moulinex Sa Dispositif de conduite d'opérations chimiques.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954267A (zh) * 2010-08-20 2011-01-26 同济大学 一种可用于负载型燃料电池催化剂制备的微波反应器

Also Published As

Publication number Publication date
DE69428048D1 (de) 2001-09-27
EP0725678A4 (en) 1997-07-23
EP0725678B1 (en) 2001-08-22
US5932075A (en) 1999-08-03
AU677876B2 (en) 1997-05-08
CA2174841C (en) 2004-12-07
ES2162870T3 (es) 2002-01-16
WO1995011750A1 (en) 1995-05-04
CA2174841A1 (en) 1995-05-04
DK0725678T3 (da) 2001-12-10
PT725678E (pt) 2002-02-28
AU8053294A (en) 1995-05-22
EP0725678A1 (en) 1996-08-14
DE69428048T2 (de) 2002-06-06
ATE204512T1 (de) 2001-09-15
JPH09510907A (ja) 1997-11-04
KR100318550B1 (ko) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3705807B2 (ja) 化学反応を行うための反応器及び方法
Berlan Microwaves in chemistry: another way of heating reaction mixtures
EP0437480B1 (en) Method and apparatus for continuous chemical reactions
Cablewski et al. Development and application of a continuous microwave reactor for organic synthesis
Strauss et al. Developments in microwave-assisted organic chemistry
JP4145335B2 (ja) マイクロ波を応用した化学反応装置
la Hoz et al. Review on non-thermal effects of microwave irradiation in organic synthesis
JP5342097B2 (ja) 低温マイクロ波支援有機化学合成のための方法及び器具
US6867400B2 (en) Method and apparatus for continuous flow microwave-assisted chemistry techniques
WO2016091157A1 (zh) 一种使用同轴裂缝天线的微波反应装置及其应用
Horikoshi et al. Microwave-assisted organic syntheses: microwave effect on intramolecular reactions–the Claisen rearrangement of allylphenyl ether and 1-allyloxy-4-methoxybenzene
EP2382039B1 (en) Microwave apparatus
Goncalo et al. Contribution of microwaves in organic synthesis: statement of a methodology for the microwave-induced preparation of benzofuran-2 (3 H)-one and its comparison with classical heating
Sawada et al. Microwave-specific effect on enantioselective reactions
Yang et al. Influence of the Product Polarity on Temperature Profiles in the Micro-wave-assisted Claisen Rearrangement
CN112774249B (zh) 一种微型化微波固液微萃取装置的制作方法
US20060151493A1 (en) Method and apparatus for control of chemical reactions
CN106925196A (zh) 一种高黏度流体的微波加热装置
CN207085372U (zh) 一种小型微波加热连续精馏装置
WO2005113133A1 (ja) 冷却式マイクロ波化学反応装置
JP5403232B2 (ja) 容器内での放電を抑制したマイクロ波照射方法及び装置
GB647705A (en) Improved method of and apparatus for carrying out chemical reactions
KR970010331B1 (ko) 연속 화학반응을 위한 방법 및 장치
AU635903B2 (en) Method and apparatus for continuous chemical reactions
Matsuzawa et al. A continuous flow microwave-assisted microreactor system

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20031208

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees