WO2016091157A1 - 一种使用同轴裂缝天线的微波反应装置及其应用 - Google Patents

一种使用同轴裂缝天线的微波反应装置及其应用 Download PDF

Info

Publication number
WO2016091157A1
WO2016091157A1 PCT/CN2015/096711 CN2015096711W WO2016091157A1 WO 2016091157 A1 WO2016091157 A1 WO 2016091157A1 CN 2015096711 W CN2015096711 W CN 2015096711W WO 2016091157 A1 WO2016091157 A1 WO 2016091157A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
microwave
reaction
coaxial
power
Prior art date
Application number
PCT/CN2015/096711
Other languages
English (en)
French (fr)
Inventor
宋恭华
林盛杰
彭延庆
李钰
王圣伟
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2016091157A1 publication Critical patent/WO2016091157A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C241/00Preparation of compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C241/04Preparation of hydrazides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00141Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves

Definitions

  • the invention belongs to the field of microwave chemistry.
  • the present invention relates to a microwave chemical reaction apparatus using coaxial crack antennas and applications thereof, and more particularly to microwave chemical reactors and their amplification and applications. Background technique
  • the microwave refers to an electromagnetic wave having a frequency of 300 MHz to 300 GHz. Compared with the conventional heating method, the microwave has the characteristics of high heating speed, high thermal efficiency, and uniform heating. Microwave heating does not need to directly contact the material, and the high frequency reciprocating motion of the dipole molecules inside the material produces a similar "internal friction heat" to raise the temperature of the material. Without any heat conduction process, the inside and outside of the material can be simultaneously heated.
  • microwave chemical reaction devices there are two kinds of microwave chemical reaction devices in various microwave chemical reaction devices at home and abroad.
  • One is a reactor made of microwave transparent material (such as polytetrafluoroethylene or quartz glass). Directly placed in the cavity to receive microwave radiation. Due to the limitation of the volume of the microwave cavity, the depth of penetration of the microwave in the reaction medium, and the price of the microwave transparent medium, the microwave mode of the radiation mode is only suitable for small-scale microwave chemical reactions in the laboratory, and it is difficult to amplify and For practical industrial production; another method of feeding microwaves in a chemical reaction system is to use the opening at the top of the microwave waveguide to radiate microwaves into the reactor.
  • the radiant opening at the top of the waveguide is made of microwave transparent material (such as ceramic or poly Tetrafluoroethylene) sealed.
  • microwave transparent material such as ceramic or poly Tetrafluoroethylene
  • the microwave field distribution in the chemical reaction device is not uniform, and the reaction medium near the radiation port is heated to absorb more microwave energy, and the temperature is high. Where the microwave radiation is less, the temperature is lower, causing a large temperature difference throughout the reaction device, which directly affects the effect of the chemical reaction.
  • CN 102949974 A discloses a microwave heating device for feeding microwave energy by probe into a reactor, and the microwave is emitted around the probe as a center, which improves the uniformity of microwave radiation to some extent.
  • the patent found that although the upper end of the microwave probe is well heated, there are peaks and troughs of microwave field strength on the side of the probe, indicating the microwave field on the side. The distribution is not uniform. Therefore, when the device is used in a large-scale reaction system, since the amount of material located on the side of the probe accounts for a large proportion of the total amount of material, the field distribution unevenness around the microwave probe is chemically reactive. The impact will be more prominent.
  • a microwave reaction apparatus comprising a microwave heating apparatus and a reactor; wherein the microwave heating apparatus comprises a microwave generating and transmitting device and a coaxial slit antenna;
  • the generating and transmitting device comprises a microwave power source, a circulator, a dummy load, a microwave power detecting device, a coaxial converter, and a microwave tuning device;
  • the coaxial slit antenna is coupled to a coaxial converter and is probed from either end of the reactor to feed microwave energy into the reactor.
  • the microwave is converted into a coaxial transmission form by a circular waveguide or a rectangular waveguide.
  • the dummy load is a water load, an air load, or the like.
  • the microwave power detecting device is a directional coupler or the like.
  • the microwave tuning device includes a three-screw adapter, a terminal shorting adapter, and the like.
  • the coaxial slit antenna is sealed into the reactor where it is sealed.
  • the flange seal, the splicing seal, the thread seal or other means commonly used in chemical equipment can be used for sealing.
  • the depth of the coaxial slit antenna probed into the reactor depends on the reaction conditions, the size of the reactor, and the amount of processing.
  • the coaxial slit antenna is probed into the reactor to a depth such that the material in the reactor covers the top end of the coaxial slit antenna and the crack on the outer conductor.
  • the reactor is provided with a pressure detector and a temperature detector.
  • the reactor is provided with a condensing reflux device.
  • the coaxial slit antenna includes an inner conductor and an outer conductor; wherein the outer conductor has at least one crack.
  • the microwaves are radiated from the cracks on the outer conductor and the antenna tip into the reactor.
  • the number of cracks depends on the reaction conditions, the size of the reactor, and the amount of treatment.
  • the crack is 1-100.
  • the inner conductor is a metal rod; and the outer conductor is a metal tube.
  • the inner conductor is longer or shorter than the outer conductor, or the inner conductor is the same length as the outer conductor.
  • the inner conductor is longer than the outer conductor by a length of one quarter of the operating wavelength.
  • the inner conductor and the outer conductor are filled with a dielectric material
  • the dielectric material may be selected from the group consisting of: polytetrafluoroethylene, polyetheretherketone, polypropylene, ceramic, plexiglass, quartz glass or Other materials.
  • an antenna protection cover is disposed around the outer conductor, and the antenna cover material may be selected from the group consisting of: polytetrafluoroethylene, polyetheretherketone, polypropylene, ceramic, plexiglass, quartz glass or the like. material.
  • the coaxial slit antenna is stainless steel, copper, iron, aluminum, silver, lead, nickel, or an alloy thereof; and/or the reactor is metal, non-metal, metal, and non-metal Composite material or a combination of the above materials.
  • the metal is stainless steel, copper, iron, aluminum, silver, lead, nickel, or an alloy thereof.
  • the non-metal is polytetrafluoroethylene, polyetheretherketone, polypropylene, ceramic, plexiglass, quartz glass or other materials.
  • the reactor comprises an atmospheric reactor and a pressurized reactor; or the reactor comprises a batch reactor and a continuous reactor; or the reactor comprises a stirred reactor, inside Circulating reactor and external circulation reactor.
  • the pressurized reactor has a pressure of 100 bar.
  • the temperature is 500 ° C in the reactor.
  • the reactor when the reactor is a continuous reactor, the reactor is provided on the main body There are inlet and outlet.
  • a flow guiding cylinder is disposed in the reactor.
  • a draft tube is disposed on one or more sides of the reactor.
  • the coaxial slit antenna may be located in the reactor body or in the draft tube.
  • the reactor is a single reactor or is formed in series or in parallel for a plurality of reactors, wherein each reactor has at least one coaxial slit antenna.
  • a second aspect of the present invention provides a microwave heating apparatus including a microwave generating and transmitting device and a coaxial crack antenna;
  • the microwave generating and transmitting device includes a microwave power source, a circulator, a dummy load, and a microwave power a detecting device, a coaxial converter, a microwave tuning device;
  • the coaxial slit antenna is connected to the coaxial converter.
  • a third aspect of the invention provides the use of the microwave reaction apparatus of the first aspect of the invention for effecting a reaction using microwaves for heating.
  • the microwave source may be microwaves of various frequencies; preferably, for microwave sources having frequencies of 5800 MHz, 2450 MHz, and 915 MHz, efficient use of microwave energy can be achieved.
  • FIG. 1 is a schematic view showing the structure of a microwave heating apparatus of the present invention.
  • FIG. 2 is a schematic view of a coaxial slit antenna and its connection to a reactor.
  • Figure 3 is a schematic view showing the structure of a batch type microwave reactor.
  • Figure 4 is a schematic diagram of a reactor of a continuous reactor.
  • Figure 5 is a schematic view showing the structure of an internal circulation reactor.
  • Figure 6 is a schematic view showing the structure of the external circulation reactor.
  • Figure 7 is a schematic view showing the structure of a stirred reactor in which two (or more) antennas are connected in parallel.
  • Figure 8 is a schematic diagram showing the structure of an internal circulation reactor in which two (or more) antennas are connected in parallel.
  • Figure 9 is a schematic view showing the structure of an internal circulation reactor in which two (or more) antennas are connected in parallel.
  • Figure 10 is a schematic view showing the structure of an external circulation reactor in which two (or more) antennas are connected in parallel.
  • Figure 11 is a schematic view showing the structure of an external circulation reactor in which two (or more) antennas are connected in parallel.
  • Figure 12 is a schematic view showing the structure of a continuous reactor in which two (or more) antennas are connected in parallel. detailed description
  • the inventors have invented a microwave reaction device using a coaxial slit antenna for the first time through extensive and intensive research.
  • the device can be applied to a variety of reactors, such as batch reactors or continuous reactors, atmospheric reactors or pressurized reactors, stirred reactors, internal circulation reactors or external circulation reactors; It can be used for transmission and conversion of microwaves of various frequencies, and the microwave energy conversion efficiency is high. Further, the microwave distribution uniformity in the reactor of the microwave reaction apparatus of the present invention is remarkably improved, and the reaction yield is not significantly lowered in the process of multiplying the reaction scale, which is very suitable for a large-scale reaction process. On this basis, the inventors completed the present invention.
  • Microwave reactor such as batch reactors or continuous reactors, atmospheric reactors or pressurized reactors, stirred reactors, internal circulation reactors or external circulation reactors; It can be used for transmission and conversion of microwaves of various frequencies, and the microwave energy conversion efficiency is high. Further, the microwave distribution uniformity in the reactor of the microwave reaction apparatus of the present invention
  • the present invention provides a microwave reaction apparatus comprising a microwave heating apparatus and a reactor.
  • the microwave heating device comprises a microwave generating and transmitting device and a coaxial crack antenna.
  • the microwave generating and transmitting device comprises a microwave power source, a circulator, a dummy load (such as a water load, etc.), a microwave power detecting device (such as a directional coupler, etc.), a coaxial converter, a microwave tuning device (such as a three-screw adapter, Terminal short-circuit adapter, etc.).
  • the microwave reaction apparatus of the present invention is shown in FIG.
  • the reaction device may comprise the following parts: microwave power source (1), circulator (2), water load (3), directional coupler (4), three screw adapter (5), coaxial converter (6) , terminal shorting adapter (7), coaxial crack antenna (8) and reactor (also called heater) (9).
  • the basic principle of the microwave energy transmission method is as follows:
  • the microwave is output by the microwave power source; the three-port circulator is unidirectionally isolated from the transmission system; the directional coupler samples and verifies the microwave incident and reflected current, and transmits the signal to the indicator; the three-screw adapter matches and adjusts the transmission system
  • the coaxial converter converts the microwave energy into a coaxial antenna output; the terminal short-circuit adapter adjusts the coupling point of the microwave energy; a small amount of microwave energy that is not converted to the coaxial output is reflected to the three-port circulator, the ring
  • the device has a one-way isolation function, and the reflected power is transmitted to the water load. The cooling water is absorbed and will not be transferred to the magnetron and its service life will be lost.
  • the microwave is converted into a coaxial transmission form through a circular waveguide or a rectangular waveguide, and is probed into the reactor through the coaxial crack antenna, and the microwave energy is radiated from the center to the periphery, thereby realizing uniform distribution of the microwave. .
  • the coaxial crack antenna of the present invention comprises: an outer conductor (81), a crack (also called a radiant port) (82), an inner conductor (83), and an antenna protective cover (84). Specifically, as shown in Figure 2.
  • the coaxial crack antenna of the present invention can be probed into the reactor from any direction according to the design of the reactor, and the cracks on the top and outer conductors of the antenna should be covered when filling the material.
  • the coaxial crack antenna of the present invention is made of one or alloy of stainless steel, copper, iron, nickel, lead, aluminum or silver, and the coaxial antenna is probed into the reactor by using a dielectric material (for example, polytetrafluoroethylene, Polyetheretherketone, polypropylene, ceramic, plexiglass, quartz glass, etc. are sealed as a protective cover to prevent antenna cracks from directly contacting the reaction solution.
  • a protective cover made of a material such as polytetrafluoroethylene, ceramic, quartz glass or the like is used to cover a portion of the coaxial antenna that is probed into the reactor.
  • the antenna protection cover can be fixed to the reactor wall, and the fixing method includes a gasket seal, a flange seal, a thread seal or the like, or can be directly fixed around the antenna, and the fixing method includes a gasket seal, a thread seal, and a method. Blue seal or other means.
  • the antenna needs to be sealed into the reactor.
  • the sealing method can be flange sealing, splicing sealing, thread sealing or other methods commonly used in chemical equipment.
  • the coaxial crack antenna of the invention has a simple structure, consists of inner and outer conductors, the inner conductor is a metal rod, and the outer conductor is a metal tube, and a dielectric material is used between the two (for example, polytetrafluoroethylene, polyetheretherketone, polypropylene) , ceramic, plexiglass, quartz glass, etc.), the outer conductor is provided with several cracks as radiation ports, and microwave energy is radiated from the cracks on the outer conductor and the antenna tip to the reaction system.
  • the size and distance of the crack are designed according to the frequency or wavelength of the microwave;
  • the distance between the cracks is designed according to a half operating wavelength, and by adjustment, the valleys and peak positions of the microwave waveform are radiated outward at the crack, and the remaining microwaves are radiated outward through the tip of the antenna.
  • the inner conductor of the top end of the coaxial crack antenna is longer than the outer conductor by a quarter of an operating wavelength.
  • the outer conductor of the coaxial slit antenna is provided with 1 to 100 cracks.
  • the coaxial crack antenna of the invention is improved from "point radiation" of the conventional antenna to "line radiation", which realizes uniform radiation of the microwave on the antenna, increases the uniformity of the microwave distribution in the reactor, and significantly improves The utilization efficiency of microwaves.
  • the material of the heater or the reactor of the present invention may be a metal, non-metal, metal and non-metal composite material or a combination of the above materials, and the form thereof may be designed into various forms according to requirements.
  • the reactor form mainly comprises an agitated reactor, an internal circulation reactor and an external circulation reactor.
  • the agitated reactor radiates microwaves by one or more coaxial slit antennas, and mass transfer is achieved by a stirrer, such as a high temperature and high pressure reactor commonly used in the industry.
  • the internal circulation reactor radiates microwaves by one or more coaxial slit antennas, and at least one or more guide tubes are disposed inside the reactor. Under normal pressure conditions, when the liquid in the reactor boils, the liquid inside and outside the guide tube produces a certain density difference, causing a circulation, thereby achieving mass transfer.
  • the internal circulation reactor is as shown in FIG. 5, and comprises a coaxial slit antenna disposed in the reactor body (91), and a flow guiding tube (92) is disposed in the reactor body.
  • an antenna protection cover (84) is disposed outside the coaxial crack antenna.
  • the internal circulation reactor is as shown in FIG. 8 , and includes two (similarly, two or more) coaxial crack antennas disposed in the reactor body, and disposed in the reactor body. There is a draft tube surrounding the two coaxial crack antennas, and each of the coaxial crack antennas is respectively provided with an antenna protection cover.
  • the internal circulation type reactor comprises two (similarly, two or more) coaxial slit antennas disposed in the reactor body as shown in FIG. 9, and the reactor main body is provided with Two (similarly, two or more) guide tubes, each of which surrounds each of the coaxial slit antennas, and an antenna cover is disposed outside each of the coaxial slit antennas.
  • the outer circulation reactor is similar to the inner cycle except that at least one or more draft tubes are disposed outside the reactor. Under normal pressure conditions, when the liquid in the reactor boils, the center tube and the outer tube produce a certain density difference, causing a circulation, thereby achieving mass transfer. Under pressure, the circulation can be induced by a transfer pump.
  • the coaxial crack antenna is placed in two ways.
  • At least one antenna is placed in the main body of the reactor, at least one guiding tube is disposed outside, the main body of the reactor is used as a liquid elevating tube, and the outer diversion tube is used as a downcomer; the other is at least externally disposed on the reactor.
  • a draft tube At least one antenna is placed on the outer draft tube.
  • the reactor body serves as a downcomer and the outer draft tube serves as a riser.
  • the external circulation reactor is as shown in FIG. 6, which comprises a coaxial slit antenna, which is placed in the reactor body (93), and a draft tube (94) is disposed outside the reactor, coaxial An antenna cover (84) is disposed outside the crack antenna.
  • the external circulation reactor is as shown in FIG. 10, and comprises two (similarly, two or more) coaxial slit antennas placed in the reactor body, and the reactor is externally disposed. There are two (similarly, one or more) draft tubes, and an antenna protection cover is disposed outside the coaxial crack antenna.
  • the external circulation reactor is as shown in FIG. 11 , and includes two (similarly, two or more) coaxial slit antennas respectively placed on the outside of the reactor body. (Similarly, two or more) In the draft tube, an antenna protection cover is provided outside the coaxial slit antenna.
  • the circulating reactor of the present invention comprises an inner circulation type reactor and an outer circulation type reactor, and compared with the airlift type circulation reactor, no gas is introduced to generate a density difference, and only depends on boiling.
  • the difference in density enables fast mass transfer and has a good application prospect for heterogeneous systems.
  • the microwave reaction device of the invention provides a new technical scheme for a large-scale microwave chemical reactor, and the reaction device can efficiently convert microwave energy of several kW or even several tens of kW to the output of the coaxial crack antenna, and the microwave energy is in response.
  • the device is emitted from the center to the periphery to improve the uniformity of the microwave distribution in the reactor.
  • the entire reaction system is almost at the same temperature.
  • the coaxial crack antenna of the present invention can still maintain efficient conversion during power amplification, from low power
  • the microwave heating apparatus of the present invention can employ microwaves of various frequencies; preferably, the embodiment of the present invention uses microwave sources having frequencies of 5800 MHz, 2450 MHz, and 915 MHz to achieve efficient use of microwave energy.
  • the microwave heating device of the present invention can be applied to a batch reactor or a continuous reactor, such as a high pressure reactor commonly used in chemical plants, including a stirred reactor and a tubular flow reactor, and a fluidized bed and fixed bed reaction. And so on.
  • a batch reactor or a continuous reactor such as a high pressure reactor commonly used in chemical plants, including a stirred reactor and a tubular flow reactor, and a fluidized bed and fixed bed reaction. And so on.
  • the batch reaction device can be as shown in FIG. 3, which comprises: a microwave power source (1), a circulator (2), water Load (3), directional coupler (4), three-screw adapter (5), coaxial converter (6), terminal short-circuit adapter (7), coaxial crack antenna (8), antenna protection cover (84) , reactor body (91), temperature detector (11), pressure detector (12).
  • Device use process Connect all devices according to the device diagram; put the material into the reaction kettle and fix it with the coaxial crack antenna; place the stirrer under the microwave reactor and open it to turn on the microwave power; adjust the three screw adapter and terminal
  • the short-circuiting device maximizes the incident/reflective current ratio; the reaction system is reacted by microwave radiation; the temperature and pressure in the reactor can be detected separately by the temperature detecting instrument and the pressure detecting instrument during the reaction; the microwave power is turned off after the reaction is completed.
  • the continuous reaction apparatus is similar to the batch type reaction apparatus, except that the reactor section (shown in FIG. 4), wherein the reactor body (91) is provided with at least one feed port (13) and at least one Outlet (14).
  • the microwave heating device of the present invention can be applied to a single reactor or a reactor in which a plurality of reactors are connected in series or in parallel, and the energy output can be increased by parallel irradiation of a plurality of antennas in the amplification process.
  • FIG. 5 to FIG. 12 is only a schematic diagram of the reactor, and both of them can be sealed in the same manner as the reactor shown in FIG. 3 or FIG. There are temperature detectors, pressure detectors, and so on.
  • the main advantages of the invention are:
  • a microwave reaction device which has the advantages of high microwave energy transmission efficiency and high uniformity in the reaction medium, and solves the problem of uneven energy distribution of the conventional microwave reactor.
  • the microwave reaction apparatus is particularly suitable for use in a large-scale chemical reaction process, and even if the scale of the amplification reaction is large, the energy transmission efficiency and the reaction conversion efficiency are still high.
  • the invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the experimental methods in the following examples which do not specify the specific conditions are usually in accordance with conventional conditions, for example, according to the conditions recommended by the manufacturer. Percentages and parts are by weight unless otherwise stated.
  • the size and number of cracks of the coaxial antenna are designed separately according to the size of the reaction.
  • the reactor is designed in various sizes and forms according to actual needs. The reactor size and antenna size are divided into the following four categories.
  • No. 1 microwave reactor a microwave system radiates a reactor, as shown in Figure 1, connected to a microwave reactor (where the reactor section is replaced by the structure shown in Figures 3-6); wherein the reactor volume is 600 mL ( The batch reactor treatment capacity is 200 ⁇ 450mL, the continuous reactor treatment volume is determined according to the actual situation), the microwave source frequency is 5800MHz, the power range is 0 ⁇ 3kW, the coaxial crack antenna length is 20cm, and the number of cracks is 2, the reactor type includes an atmospheric reactor and a pressurized reactor; or includes a batch reactor and a continuous reactor; or includes a stirred reactor, an internal circulation reactor, and an external circulation reactor (drainage) The number of tubes is 1).
  • No. 2 microwave reactor two sets of microwave systems radiate a reactor, as shown in Figure 1, connected to the microwave reactor (where the reactor section is replaced by the structure shown in Figure 7-12); wherein the reactor volume is
  • the reactor type includes an atmospheric reactor and a pressurized reactor; or includes a batch reactor and a continuous reactor; or includes a stirred reactor, an internal circulation reactor, and an external circulation reactor.
  • No. 3 microwave reactor Four sets of microwave systems radiate a reactor, as shown in Figure 1, connected to a microwave reactor (where the reactor section is replaced by a structure similar to that shown in Figures 7-12, unlike the No. 2 microwave reactor Yes: Four coaxial crack antennas are installed in each reactor; where the reactor volume is
  • the reactor type includes an atmospheric reactor and a pressurized reactor; or includes a batch reactor and a continuous reactor; or includes a stirred reactor, an internal circulation reactor, and an external circulation reactor.
  • No. 4 microwave reaction device Connect the microwave reaction device as shown in Fig. 1; wherein the reactor is in the form of two sets (or more) of the reactors in the third device are used in parallel (the reactants are transferred between the different reactors by the transfer pump) ), the volume of which is twice (or more) than the number three device, the reactor type includes an atmospheric reactor and a pressurized reactor; or includes a batch reactor and a continuous reactor; or includes a stirred reactor, inside Circulating reactor and external circulation reactor.
  • Example 1 Microwave distribution uniformity detection
  • a microwave agitating reactor No. 2 (in which the reactor portion was replaced by the structure shown in Fig. 7) was connected, and the coaxial antenna was probed into a batch agitating reactor equipped with a 3 L deionized water apparatus No. 2 In the middle, without stirring, turn on the microwave power under normal pressure, set the power 2x l . 5kW, adjust the three-screw adapter and the terminal short-circuit adapter to maximize the incident/reflective current ratio, and use multiple fiber-optic thermometers for the radiation process.
  • the temperature difference in the radial direction of the antenna is at most 2. 7 ° C, the maximum temperature difference in the radial direction of the antenna is 0.
  • the maximum temperature difference in the radial direction of the antenna is 2. 7 ° C
  • the maximum temperature difference of the material in the reactor was 2. 7 °C.
  • the microwave power was changed to 2x l0kW, and the maximum temperature difference of the material in the whole reactor was 3. 9 °C.
  • the No. 3 microwave reactor equipped with 40 L of deionized water was tested in the same manner (wherein the reactor section was replaced by a structure similar to that shown in Fig. 7, which is different from the No. 2 microwave reactor: where four reactors were installed in the reactor Heating uniformity of the coaxial crack antenna). The results show that the maximum temperature difference is 5.2 when the microwave power is 4x20kW. C.
  • the maximum temperature difference occurred within 30 seconds of the initial radiation, after which the temperature difference gradually decreased.
  • the above embodiment was carried out without any other method for promoting heat transfer, and the temperature distribution in the reactor was substantially uniform, and only a certain temperature difference was observed in the radial direction of the antenna. 5 ⁇ C ⁇ The maximum temperature difference of the material in the entire reactor is only 0. 5 °C.
  • the microwave reactor was connected as shown in Fig. 3 (wherein the reactor section was replaced by the structure shown in Fig. 7), high pressure nitrogen gas was introduced, and the pressure was set to 15 bar, and the stirring speed was set to At 200 rpm, turn on the microwave power source, set the power to 2 x l 0 kW, and measure the temperature with a fiber optic thermometer during the heating process. When the temperature in the reactor reaches 12 CTC, the power is adjusted so that the material maintains the temperature at about 20 min.
  • the microwave power source was turned off.
  • the vent valve was opened, the reaction vessel was disassembled, and the reaction liquid in the autoclave was treated to finally obtain 3-acetylcoumarin having an isolated yield of 94%.
  • the power was adjusted to maintain the temperature for about 20 minutes.
  • the microwave power source was turned off.
  • the vent valve was opened, the reaction vessel was disassembled, and the reaction liquid in the autoclave was treated to finally obtain 3-acetylcoumarin having an isolated yield of 92%.
  • a No. 4 microwave reactor in which four reactors in a No. 3 microwave reactor were connected in parallel
  • the microwave reaction device As shown in Fig. 3, pass high pressure nitrogen gas, set the pressure to 15 bar, set the stirring speed to 200 rpm, turn on the microwave power source, set the power to 4x4x20kW, and measure the temperature with a fiber optic thermometer during the heating process.
  • the power is adjusted so that the material maintains the temperature for about 20 minutes.
  • the microwave power source was turned off, and the reaction liquid was treated to finally obtain 2-(1-phenylethylidene)malononitrile having an isolated yield of 85%.
  • 4 mol of malononitrile, 2 mol of acetophenone and 3 L of deionized water were placed in the batch internal circulation reactor of the No. 2 microwave reactor, and the microwave reactor was connected as shown in FIG. 3 (wherein the reactor section was represented by FIG. 8 The structure shown is replaced) and connected to the condensing reflux system.
  • the microwave power source is turned on, the power is set to 2x l0kW, and the temperature is measured by a fiber optic thermometer during the heating process.
  • Fig. 8 is different from that of the second microwave reactor: where four coaxial crack antennas are installed in the reactor and connected to the condensing and recirculating system.
  • the microwave power source Under normal pressure, the microwave power source is turned on, and the power is set to 4x20 kW. The temperature is measured by a fiber optic thermometer during the heating process. After the reaction liquid boils, the power is adjusted to make the reaction liquid boil for 40 minutes. After the end of the reaction, the microwave power source was turned off, and the reaction liquid was treated to finally obtain 2-(1-phenylethylidene)malononitrile having an isolated yield of 84%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种使用同轴裂缝天线的微波反应装置及其应用。微波反应装置包括:微波加热装置和反应器(9);微波加热装置包括微波发生和传输装置以及同轴裂缝天线(8);微波发生和传输装置包括微波功率源(1)、环形器(2)、假负载、微波功率检测器件、同轴转换器(6)、微波调谐器件;同轴裂缝天线(8)连接同轴转换器(6),从反应器(9)的任意端探入,将微波馈入反应器(9)中。

Description

一种使用同轴裂缝天线的微波反应装置及其应用
技术领域
本发明属于微波化学领域。 具体地, 本发明涉及一种使用同轴裂缝天线的微波 化学反应装置及其应用, 特别涉及微波化学反应器及其放大和应用。 背景技术
微波是指频率为 300MHz〜300GHz的电磁波, 与传统的加热方式相比, 微波具 有加热速度快、 热效率高、 加热均匀等特点。 微波加热不需直接接触物料, 通过 物料内部偶极分子高频往复运动, 产生类似 "内摩擦热" 而使物料温度升高, 不 需要任何热传导过程, 就能使物料内外部同时升温。
目前国内外已有的多种微波化学反应装置中,微波能馈入化学反应体系的方式 主要有两种, 一种是将微波透明材质 (比如聚四氟乙烯或者石英玻璃) 制成的反 应器直接放入谐振腔内接受微波辐射。 由于受微波谐振腔容积、 微波在反应介质 中的渗透深度, 以及微波透明介质价格等因素的限制, 该种辐射方式的微波反应 器只适用于实验室小规模的微波化学反应, 而难以放大和用于实际工业生产; 另 一种在化学反应体系中馈入微波的方法是利用微波波导管顶端的开口将微波辐射 至反应器内, 波导管顶端的辐射口用微波透明材质 (比如陶瓷或者聚四氟乙烯) 密封。 然而, 由于微波只能从辐射口沿单一方向辐射于反应介质, 因此, 化学反 应装置内的微波场分布不均匀, 进而导致辐射口附近的反应介质因吸收较多微波 能而温度高, 而其它受微波辐射少的地方则温度较低, 造成反应装置内部各处存 在较大的温度差, 进而直接影响化学反应的效果。 此外, 也有透过在矩形或圆柱 形波导上开设的隙缝 (波导隙缝天线) 向被加热物质辐射微波能的报道, 但此类 天线属于单导体传输系统, 具有体积大、 不耐高压、 频带窄等特点。 过大的体积 限制了反应器的尺寸和内部有效空间, 空心结构使其难以承受高压, 因此适用反 应器的类型受限。 此外, 迄今为止, 未见裂缝天线用于微波化学反应过程的报道。
由此可见, 对于从反应器壁向中心辐射的微波反应装置, 微波在反应介质中传 递的过程伴随着微波能量的逐渐耗散, 在大规模反应过程中, 这种微波能量的耗 散将不可避免地导致处于不同部位反应介质受到微波辐射的强度存在显著差异, 反应体系内也因此存在较大的温度梯度, 从而严重影响反应的效果。 CN 102949974A公开了一种利用探针探入反应器而馈入微波能量的微波加热装 置, 微波以探针为中心向四周发射, 在一定程度上提高了微波辐射的均匀性。 然 而, 该专利在分析了探针上端和侧面的功率密度分布时发现, 尽管该微波探针的 上端加热良好, 但探针的侧面存在微波场强的波峰和波谷现象, 表明其侧面的微 波场分布是不均匀的, 因此, 当该装置用于大规模反应体系时, 由于位于探针侧 面的物料量在总物料量中所占比例大, 微波探针周围场分布不均匀性对化学反应 的影响将更加突出。
综上所述, 现有的微波化学反应装置在应用上还存在一定的限制和缺陷, 难以 保证高效地用于各种化学反应过程,尤其是较大规模或工业规模的化学反应过程。 发明内容
本发明的目的是为了提供一种微波辐射均匀的微波加热装置。
本发明的目的也是为了提供上述微波加热装置在化学反应工艺中的应用。
在本发明的第一方面中, 提供了一种微波反应装置, 所述装置包括微波加热装 置和反应器; 其中, 所述微波加热装置包括微波发生和传输装置以及同轴裂缝天 线; 所述微波发生和传输装置包括微波功率源、 环形器、 假负载、 微波功率检测 器件、 同轴转换器、 微波调谐器件;
所述同轴裂缝天线连接于同轴转换器, 从反应器的任意端探入, 从而将微波能 量馈入反应器中。
在另一优选例中, 所述微波通过圆形波导或者矩形波导转化为同轴传输的形 式。
在另一优选例中, 所述假负载为水负载、 空气负载等。
在另一优选例中, 所述微波功率检测器件为定向耦合器等。
在另一优选例中, 所述微波调谐器件包括三螺钉调配器、 终端短路调配器等。 在另一优选例中, 所述同轴裂缝天线探入反应器之处为密封的。 优选地, 可采 用化工设备常用的法兰密封、 悍接密封、 螺纹密封或者其它方式进行密封。
在另一优选例中, 所述同轴裂缝天线探入反应器的深度根据反应条件、 反应器 尺寸以及处理量而定。
在另一优选例中,所述同轴裂缝天线探入反应器的深度为使反应器内物料覆盖 所述同轴裂缝天线的顶端以及外导体上的裂缝。 在另一优选例中, 所述反应器上设置有压力检测仪和温度检测仪。 在另一优选例中, 所述反应器上设置有冷凝回流装置。
在另一优选例中, 所述同轴裂缝天线包括内导体和外导体; 其中, 外导体上 开设至少 1个裂缝。
在另一优选例中, 所述微波从外导体上的裂缝以及天线顶端辐射至反应器内。 在另一优选例中,所述裂缝的数量根据反应条件、反应器尺寸以及处理量而定。 在另一优选例中, 所述裂缝为 1-100个。
在另一优选例中, 所述内导体为金属棒; 所述外导体为金属管。
在另一优选例中, 所述内导体比所述外导体长或短, 或者所述内导体与所述外 导体长度相同。
在另一优选例中, 所述内导体比所述外导体长四分之一工作波长的长度。
在另一优选例中, 所述内导体和外导体之间采用介质材料填充, 所述介质材料 可选自: 聚四氟乙烯、 聚醚醚酮、 聚丙烯、 陶瓷、 有机玻璃、 石英玻璃或者其它 材料。
在另一优选例中, 所述外导体周围设置有天线保护罩, 所述天线保护罩材料可 选自: 聚四氟乙烯、 聚醚醚酮、 聚丙烯、 陶瓷、 有机玻璃、 石英玻璃或者其它材 料。
在另一优选例中, 所述同轴裂缝天线为不锈钢、 铜、 铁、 铝、 银、 铅、 镍、 或 其合金的; 和 /或 所述反应器为金属、 非金属、 金属与非金属的复合材料或上述 材料的组合的。
在另一优选例中, 所述金属为不锈钢、 铜、 铁、 铝、 银、 铅、 镍、 或其合金。 在另一优选例中, 所述非金属为聚四氟乙烯、 聚醚醚酮、 聚丙烯、 陶瓷、 有机 玻璃、 石英玻璃或者其它材料。
在另一优选例中, 所述反应器包括常压反应器和加压反应器; 或 所述反应器 包括间歇式反应器和连续式反应器; 或 所述反应器包括搅拌式反应器、 内循环式 反应器和外循环式反应器。
在另一优选例中, 所述加压反应器中, 压力 100bar。
在另一优选例中, 所述反应器中, 温度 500°C。
在另一优选例中, 当所述反应器为连续式反应器时, 所述反应器的主体上设置 有进料口和出料口。
在另一优选例中, 当所述反应器为内循环式反应器时, 所述反应器内设置有导 流筒。
在另一优选例中, 当所述反应器为外循环式反应器时, 所述反应器外一侧或多 侧设置有导流管。
在另一优选例中, 当所述反应器为外循环式反应器时, 所述同轴裂缝天线可位 于反应器主体内, 也可位于导流管内。
在另一优选例中, 所述反应器为单个反应器或为多个反应器串联或并联形成 的, 其中每个反应器至少有一根同轴裂缝天线。
本发明第二方面提供了一种微波加热装置,所述微波加热装置包括微波发生和 传输装置以及同轴裂缝天线; 所述微波发生和传输装置包括微波功率源、环形器、 假负载、 微波功率检测器件、 同轴转换器、 微波调谐器件; 所述同轴裂缝天线连 接于同轴转换器。
本发明第三方面提供了本发明第一方面所述微波反应装置的应用,用于实现利 用微波进行加热的反应。
在另一优选例中, 所述的微波源可为各种频率的微波; 优选地, 对于频率为 5800MHz , 2450MHz和 915MHz的微波源, 都能实现微波能量的高效利用。
应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文(如实施例) 中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。 限于篇幅, 在此不再一一赘述。 附图说明
图 1为本发明的微波加热装置的结构示意图。
图 2为同轴裂缝天线及其与反应器连接的结构示意图。
图 3为间歇式微波反应装置的结构示意图。
图 4为连续式反应装置的反应器示意图。
图 5为内循环式反应器结构示意图。
图 6为外循环式反应器结构示意图。
图 7为两根 (或以上) 天线并联的搅拌式反应器结构示意图。
图 8为两根 (或以上) 天线并联的内循环式反应器结构示意图。
图 9为两根 (或以上) 天线并联的内循环式反应器结构示意图。 图 10为两根 (或以上) 天线并联的外循环式反应器结构示意图。
图 11为两根 (或以上) 天线并联的外循环式反应器结构示意图。
图 12为两根 (或以上) 天线并联的连续式反应器结构示意图。 具体实施方式
本发明人经过广泛而深入的研究,首次发明了一种采用同轴裂缝天线的微波反 应装置。 该装置可适用于多种反应器, 例如间歇式反应器或连续式反应器, 常压 反应器或加压反应器, 搅拌式反应器、 内循环式反应器或外循环式反应器等; 也 可适合多种频率微波的传输和转换, 且微波能量转化效率高。 而且, 本发明的微 波反应装置的反应器内微波分布均匀性显著提高, 在反应规模成倍放大过程中, 反应产率降低并不明显, 因此非常适合大规模的反应过程。 在此基础上, 发明人 完成了本发明。 微波反应装置
本发明提供了一种微波反应装置,所述微波反应装置包括微波加热装置和反应 器。 其中, 所述微波加热装置包括微波发生和传输装置以及同轴裂缝天线。 所述 微波发生和传输装置包括微波功率源、 环形器、 假负载 (如水负载等) 、 微波功 率检测器件 (如定向耦合器等) 、 同轴转换器、 微波调谐器件 (如三螺钉调配器、 终端短路调配器等) 。
具体地,本发明所述微波反应装置如图 1所示。所述反应装置可包括如下部分: 微波功率源(1)、 环形器(2)、 水负载(3)、 定向耦合器(4)、 三螺钉调配器(5)、 同 轴转换器(6)、 终端短路调配器(7)、 同轴裂缝天线(8)以及反应器(也可称为加热 器)(9)。
本发明的微波加热装置中, 微波能量传输方法基本原理如下:
微波由微波功率源输出; 三端口环形器对传输系统进行单向隔离; 定向耦合器 对微波入射及反射电流取样和检定, 并将信号传输至指示器; 三螺钉调配器对传 输系统进行匹配调节; 同轴转换器将微波能量转换为同轴天线形式输出; 终端短 路调配器将微波能量的耦合点进行相关的调整; 少量未转换为同轴形式输出的微 波能量反射至三端口环形器, 环形器有单向隔离功能, 反射功率传输到水负载用 冷却水吸收, 并不会传输至磁控管而损耗其使用寿命。
本发明的微波加热装置中,微波通过圆形波导或者矩形波导转化为同轴传输的 形式, 并通过同轴裂缝天线探入反应器中, 微波能量从中心向四周辐射, 实现了 微波的均匀分布。
本发明所述的同轴裂缝天线包括: 外导体(81)、 裂缝 (也称为辐射口) (82)、 内导体 (83)、 天线保护罩(84)。 具体地如图 2所示。
本发明所述的同轴裂缝天线可以按照反应器的设计从任意方向探入反应器内, 装填物料时应注意把天线顶端和外导体上的裂缝覆盖住。
本发明所述的同轴裂缝天线材质为不锈钢、 铜、 铁、 镍、 铅、 铝或银中的一种 或合金, 同轴天线探入反应器的部分采用介质材料(例如聚四氟乙烯、 聚醚醚酮、 聚丙烯、 陶瓷、 有机玻璃、 石英玻璃等)密封作为保护罩, 以防止天线裂缝直接接 触反应液。 例如, 在本发明的具体实施方式中, 采用聚四氟乙烯、 陶瓷、 石英玻 璃等材料制成的保护罩将同轴天线探入反应器的部分罩起来。 另外, 所述天线保 护罩可固定于反应器壁, 固定方式包括垫片密封、 法兰密封、 螺纹密封或者其他 方式, 也可直接固定于天线四周, 固定方式包括垫片密封、 螺纹密封、 法兰密封 或者其他方式。 天线探入反应器之处需要密封, 密封方式可采用化工设备常用的 法兰密封、 悍接密封、 螺纹密封或者其它方式。
本发明所述的同轴裂缝天线结构简单, 由内外导体组成, 内导体为金属棒, 外 导体为金属管, 两者之间采用介质材料(例如聚四氟乙烯、 聚醚醚酮、 聚丙烯、 陶 瓷、 有机玻璃、 石英玻璃等)填充, 外导体上开设有几个裂缝作为辐射口, 微波能 量从外导体上的裂缝和天线顶端辐射至反应体系。 裂缝的尺寸与距离按照微波的 频率或者波长设计;
优选地, 裂缝之间的距离按照半个工作波长设计, 通过调节, 使得微波波形的 波谷和波峰位置在裂缝处向外辐射, 而剩余的微波再通过天线顶端向外辐射。
优选地, 所述的同轴裂缝天线顶端内导体比外导体长四分之一工作波长的长 度。
优选地, 同轴裂缝天线的外导体上设置有 1〜100个裂缝。
本发明所述的同轴裂缝天线从传统天线的 "点辐射"改进为 "线辐射" , 实现 了微波在天线上的均匀辐射, 增加了反应器内微波分布的均匀性, 并且显著提升 了微波的利用效率。 本发明所述的加热器或者反应器的材质可为金属、非金属、 金属与非金属的复 合材料或上述材料的组合材料, 其形式可以根据需求设计成各种形式。 优选地, 反应器形式主要包括搅拌式反应器、 内循环式反应器和外循环式反应器。
所述的搅拌式反应器由一根或者多根同轴裂缝天线辐射微波,通过搅拌器实现 质量传递, 例如工业上常用的高温高压反应釜。
所述的内循环式反应器是由一根或者多根同轴裂缝天线辐射微波,在反应器内 部设置至少一个或多个导流筒。 在常压条件下, 当反应器内液体沸腾时, 导流筒 内外的液体产生一定的密度差, 引起环流, 从而实现质量传递。
优选地, 所述的内循环式反应器如图 5所示, 其包括一根同轴裂缝天线, 设置 在反应器主体(91)内, 反应器主体内设置有一个导流筒(92), 环绕于同轴裂缝天 线的四周, 同轴裂缝天线的外部设置有天线保护罩(84)。
另一优选例中, 所述的内循环式反应器如图 8所示, 其包括两根 (类似地, 也 可以两根以上) 同轴裂缝天线设置在反应器主体内, 反应器主体内设置有一个导 流筒, 环绕于两根同轴裂缝天线的四周, 每根同轴裂缝天线的外部分别设置有天 线保护罩。
另一优选例中, 所述的内循环式反应器如图 9所示, 包含两根 (类似地, 也可 以两根以上) 同轴裂缝天线设置在反应器主体内, 反应器主体内设置有两个 (类 似地, 也可以两个以上) 导流筒, 每个导流筒分别环绕于每根同轴裂缝天线的四 周, 每根同轴裂缝天线的外部分别设置有天线保护罩。 所述的外循环式反应器和内循环相似,区别在于反应器外部设置至少一个或多 个导流管。 在常压条件下, 当反应器内液体沸腾时, 中心管与外部管内液体产生 一定的密度差, 引起环流, 从而实现质量传递。 在加压条件下, 可通过传送泵引 起环流。
优选地, 所述的外循环式反应器, 所述同轴裂缝天线放置方式有两种。 一种是 至少一根天线放置于反应器主体内, 外部设置至少一根导流管, 反应器主体作为 升液管, 外部的导流管作为降液管; 另一种是反应器外部设置至少一根导流管, 将至少一根天线放置于外部的导流管, 此时, 反应器主体作为降液管, 外部的导 流管作为升液管。
优选地, 所述的外循环式反应器如图 6所示, 其包括一根同轴裂缝天线, 置于 反应器主体(93)内, 反应器外部设置有导流管(94), 同轴裂缝天线的外部设置有 天线保护罩(84)。
另一优选例中, 所述的外循环式反应器如图 10所示, 其包括两根 (类似地, 也可以两根以上)同轴裂缝天线, 置于反应器主体内, 反应器外部设置有两根(类 似地, 也可以一根或两根以上)导流管, 同轴裂缝天线的外部设置有天线保护罩。
另一优选例中, 所述的外循环式反应器如图 1 1所示, 其包括两根 (类似地, 也可以两根以上) 同轴裂缝天线, 分别置于反应器主体外部的两根 (类似地, 也 可以两根以上) 导流管内, 同轴裂缝天线的外部设置有天线保护罩。
其中, 本发明所述的循环式反应器, 包括内循环式反应器和外循环式反应器, 相比于气升式循环反应器, 无需通入气体来产生密度差, 仅依靠沸腾时产生的密 度差就能实现快速的质量传递, 对于非均相体系有良好的应用前景。 本发明所述微波反应装置为大型微波化学反应器提供了一种新的技术方案,采 用此反应装置可以将几 kW乃至几十 kW的微波能量高效转换至同轴裂缝天线输出, 微波能量在反应器中从中心向四周发射, 提高了反应器内微波分布的均匀性, 优 选地, 若配上搅拌器的传质效果, 整个反应体系几乎处于相同温度。
本发明所述的同轴裂缝天线在功率放大过程仍能够保持高效转换, 从小功率
(如 100W) —直放大至大功率 (如 20kW ) 的过程中, 微波从波导形式转换至同轴 天线形式的效率一直维持在 80%至 90%左右。
本发明所述的微波加热装置可采用各种频率的微波; 优选地, 本发明的实施例 采用的是频率为 5800MHz、 2450MHz和 915MHz的微波源, 都能实现微波能量的高 效利用。
本发明所述的微波加热装置可适用于间歇式反应装置或者连续式反应装置,例 如化工装置中常用的高压反应釜, 包括搅拌反应器和管式流动反应器, 以及流化 床和固定床反应器等。
所述间歇式反应装置可如图 3所示, 其包括: 微波功率源(1)、 环形器(2)、 水 负载(3)、 定向耦合器(4)、 三螺钉调配器(5)、 同轴转换器(6)、 终端短路调配器 (7)、 同轴裂缝天线(8)、 天线保护罩(84)、 反应器主体(91)、 温度检测器(11)、 压力检测器(12)。
装置使用过程: 将所有器件按照装置图连接; 将物料投入反应釜内, 并与同轴 裂缝天线固定; 将搅拌器放置于微波反应器下方并打开, 开启微波功率; 调整三 螺钉调配器与终端短路调配器, 使入射 /反射电流比达到最大; 反应体系受到微波 辐射开始反应; 反应过程中可以通过温度检测仪器和压力检测仪器分别检测反应 器内温度和压力; 反应结束后关闭微波功率。
所述连续式反应装置与间歇式反应装置相似, 不同点在于反应器部分(如图 4 所示), 其中, 反应器主体(91)上, 至少设置有一个进料口(13)和至少一个出料口 (14)。
本发明所述的微波加热装置可适用于单反应器或者多反应器串联或并联的反 应装置, 在放大过程中可以通过多根天线并联辐射来增加能量输出。
另外, 需要说明的是, 上述图 5-图 12所示意的反应器仅仅是反应器的简要示 意图, 其均可采用如图 3或图 4所示的反应器一样的密闭方式, 且均可设有温度 检测仪、 压力检测仪等等。 本发明的主要优点在于:
1. 提供了一种微波反应装置, 其兼具微波能量传输效率高以及在反应介质中 均匀性高等优点, 解决了传统微波反应器能量分布不均匀的问题等。
2. 还提供了将上述装置在多种形式的反应器中的应用。 该微波反应装置尤其 适用于大规模的化学反应工艺中, 且即使放大反应规模, 能量传输效率以及反应 转化效率仍然很高。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本 发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通 常按照常规条件, 例如按照制造厂商所建议的条件。 除非另外说明, 否则百分比 和份数按重量计算。 为了本发明的研制和实验, 特设计了几种微波发生和传输装置, 单个微波源 功率最大为 0〜20kW。 同轴天线的尺寸和裂缝数量按照反应规模的不同而单独设 计, 反应器按照实际需求设计出多种大小和形式, 以反应器规模和天线尺寸划分 共有如下四大类。
一号微波反应装置: 一套微波系统辐射一个反应器, 按照图 1所示, 连接微波 反应装置(其中,反应器部分由图 3-6所示结构替换);其中,反应器容积为 600mL (间歇式反应器处理量为 200〜450mL,连续式反应器处理量根据实际情况而定), 微波源频率为 5800MHz , 功率范围为 0〜3kW, 同轴裂缝天线的长度为 20cm, 裂缝 的数量为 2个, 反应器类型包括常压反应器和加压反应器; 或包括间歇式反应器 和连续式反应器; 或包括搅拌式反应器、 内循环式反应器和外循环式反应器 (导 流管数量为 1根) 。
二号微波反应装置: 两套微波系统辐射一个反应器, 按照图 1所示, 连接微 波反应装置(其中, 反应器部分由图 7- 12所示结构替换); 其中, 反应器容积为
5L (间歇式反应器处理量为 1.5〜4L, 连续式反应器处理量根据实际情况而定) , 单个微波源频率为 2450MHz , 功率范围为 0〜10kW, 同轴裂缝天线的长度为 50cm, 裂缝的数量为 30个, 反应器类型包括常压反应器和加压反应器; 或包括间歇式反 应器和连续式反应器; 或包括搅拌式反应器、 内循环式反应器和外循环式反应器
(导流管数量为 2根) 。
三号微波反应装置: 四套微波系统辐射一个反应器, 按照图 1所示, 连接微 波反应装置(其中, 反应器部分由类似图 7-12所示结构替换, 不同于二号微波反 应装置的是: 其中每个反应器中安装有四根同轴裂缝天线); 其中, 反应器容积为
50L (间歇式反应器处理量为 12〜40L, 连续式反应器处理量根据实际情况而定) , 单个微波源频率为 915MHz , 功率范围为 0〜20kW, 同轴裂缝天线的长度为 100cm, 裂缝的数量为 60个, 反应器类型包括常压反应器和加压反应器; 或包括间歇式反 应器和连续式反应器; 或包括搅拌式反应器、 内循环式反应器和外循环式反应器
(导流管数量为 4根) 。
四号微波反应装置: 按照图 1所示, 连接微波反应装置; 其中, 反应器形式 为两套 (或以上) 三号装置中的反应器并联使用 (不同反应器之间通过传送泵传 送反应物) , 其容积为三号装置的两倍 (或以上) , 反应器类型包括常压反应器 和加压反应器; 或包括间歇式反应器和连续式反应器; 或包括搅拌式反应器、 内 循环式反应器和外循环式反应器。 实施例 1 : 微波分布均勾性检测
按照图 3所示, 连接二号微波反应装置(其中, 反应器部分由图 7所示结构替 换), 将同轴天线探入装有 3L去离子水的二号装置的间歇式搅拌式反应器中, 不 进行搅拌, 在常压下, 开启微波电源, 设定功率 2x l . 5kW, 调整三螺钉调配器与 终端短路调配器, 使入射 /反射电流比达到最大, 辐射过程用多根光纤温度计同时 检测不同位置的温度, 测得天线圆周方向上温差最大为 0. 3 °C, 天线轴向方向上 温差最大为 0. 8 °C, 天线径向方向上温差最大为 2. 7 °C, 整个反应器内物料最大温 差为 2. 7 °C。 将微波功率改为 2x l0kW, 整个反应器内物料最大温差为 3. 9°C。
按照同样的方法测试装有 40L去离子水的三号微波反应装置(其中,反应器部 分由类似图 7所示结构替换, 不同于二号微波反应装置的是: 其中反应器中安装 有四根同轴裂缝天线)的加热均匀性。 结果表明, 微波功率为 4x20kW时, 最大温 差为 5. 2。C。
按照同样的方法测试装有 80L去离子水的四号装置 (其中并联有两套三号装 置中的反应器) 的加热均匀性。 结果表明, 微波功率为 2x4x20kW时, 最大温差 为 6· 1。C 。
上述实验过程中, 最大温差出现在刚开始辐射的 30s内, 在此之后, 温差逐渐 减小。
上述实施例是在没有其他促进传热方法的前提下进行的,反应器内温度分布基 本均匀, 只有天线径向方向上有一定的温差。 在此基础上加入搅拌器促进传热, 当搅拌速度达到 lOOrpm以上时, 整个反应器内物料最大温差只有 0. 5 °C。
实施例 2 : 搅拌式反应器的应用
( 1 ) 常压应用与规模放大
将 0. 5mol苯甲醛、 0. 5mol苯乙酮、 0. 25mol氢氧化钠以及 250mL去离子水投 入一号微波反应装置的间歇式搅拌式反应器中, 按照图 3所示连接微波反应装置 并连接冷凝回流系统, 设置搅拌速度为 200rpm, 在常压下, 开启微波功率源, 设 置功率为 3kW, 加热过程用光纤温度计测量温度。 待反应液沸腾后调整功率使反 应液回流 40min, 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 88%的査尔酮。
将 5mol苯甲醛、 5mol苯乙酮、 2. 5mol氢氧化钠以及 2. 5L去离子水投入二号 微波反应装置的间歇式搅拌式反应器中, 按照图 3所示连接微波反应装置并连接 冷凝回流系统(其中,反应器部分由图 7所示结构替换),设置搅拌速度为 200rpm, 在常压下, 开启微波功率源, 设置功率为 2x l0kW, 加热过程用光纤温度计测量温 度。 待反应液沸腾后调整功率使反应液回流 40min, 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率为 89%的査尔酮。
将 25mol苯甲醛、 25mol苯乙酮、 12. 5mol氢氧化钠以及 25L去离子水投入三 号微波反应装置的间歇式搅拌式反应器中, 按照图 3所示连接微波反应装置并连 接冷凝回流系统(其中, 反应器部分由类似图 7所示结构替换, 不同于二号微波反 应装置的是: 其中反应器中安装有四根同轴裂缝天线), 设置搅拌速度为 200rpm, 在常压下, 开启微波功率源, 设置功率为 4x20kW, 加热过程用光纤温度计测量温 度。 待反应液沸腾后调整功率使反应液回流 40min, 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率为 88%的査尔酮。
将 lOOmol苯甲醛、 lOOmol苯乙酮、 50mol氢氧化钠以及 100L去离子水投入 四号微波反应装置 (其中并联有四套三号微波反应装置中的反应器) 的间歇式搅 拌式反应器中, 按照图 3所示连接微波反应装置并连接冷凝回流系统, 设置搅拌 速度为 200rpm, 在常压下, 开启微波功率源, 设置功率为 4x4x20kW, 加热过程 用光纤温度计测量温度。 待反应液沸腾后调整功率使反应液回流 40min, 反应结 束后关闭微波功率源, 处理反应液, 最终得到分离产率为 86%的査尔酮。
( 2 ) 加压应用与规模放大
将 0. 5mol水杨醛、 0. 5mol乙酰乙酸乙酯、 lmL哌啶以及 250mL无水乙醇投入 一号微波反应装置的间歇式搅拌式反应釜中, 按照图 3所示连接微波反应装置, 通入高压氮气, 设置压力为 15bar, 设置搅拌速度为 200rpm, 打开微波功率源, 设置功率为 3kW, 加热过程用光纤温度计测量温度。待反应釜内温度达到 12CTC时 调整功率使物料保持该温度大约 20min。 反应结束后关闭微波功率源, 待物料温 度降到 78°C以下时打开放空阀, 拆卸反应釜, 处理釜内反应液, 最终得到分离产 率为 95%的 3-乙酰基香豆素。
将 5mol水杨醛、 5mol乙酰乙酸乙酯、 10mL哌啶以及 2. 5L无水乙醇投入二号 微波反应装置的间歇式搅拌式反应釜中, 按照图 3所示连接微波反应装置(其中, 反应器部分由图 7所示结构替换), 通入高压氮气, 设置压力为 15bar, 设置搅拌 速度为 200rpm, 打开微波功率源, 设置功率为 2 x l 0kW, 加热过程用光纤温度计测 量温度。待反应釜内温度达到 12CTC时调整功率使物料保持该温度大约 20mi n。反 应结束后关闭微波功率源,待物料温度降到 78 °C以下时打开放空阀,拆卸反应釜, 处理釜内反应液, 最终得到分离产率为 94%的 3-乙酰基香豆素。
将 25mol水杨醛、 25mol乙酰乙酸乙酯、 50mL哌啶以及 25L无水乙醇投入三 号微波反应装置的间歇式搅拌式反应釜中, 按照图 3所示连接微波反应装置(其 中, 反应器部分由类似图 7所示结构替换, 不同于二号微波反应装置的是: 其中 反应器中安装有四根同轴裂缝天线), 通入高压氮气, 设置压力为 15bar, 设置搅 拌速度为 200rpm, 打开微波功率源, 设置功率为 4x20kW, 加热过程用光纤温度计 测量温度。 待反应釜内温度达到 12CTC时调整功率使物料保持该温度大约 20min。 反应结束后关闭微波功率源, 待物料温度降到 78 °C以下时打开放空阀, 拆卸反应 釜, 处理釜内反应液, 最终得到分离产率为 92%的 3-乙酰基香豆素。
将 l OOmol水杨醛、 l OOmol乙酰乙酸乙酯、 200mL哌啶以及 100L无水乙醇投 入四号微波反应装置 (其中并联有四套三号微波反应装置中的反应器) 的间歇式 搅拌式反应釜中, 按照图 3所示连接微波反应装置, 通入高压氮气, 设置压力为 15bar, 设置搅拌速度为 200rpm, 打开微波功率源, 设置功率为 4x4x20kW, 加热 过程用光纤温度计测量温度。 待反应釜内温度达到 12CTC时调整功率使物料保持 该温度大约 20min。 反应结束后关闭微波功率源, 待物料温度降到 78 °C以下时打 开放空阀, 拆卸反应釜, 处理釜内反应液, 最终得到分离产率为 92%的 3-乙酰基 香豆素。 实施例 3 : 内循环式反应器的应用
将 0. 4mol的丙二腈、 0. 2mol苯乙酮以及 300mL去离子水投入一号微波反应 装置的间歇式内循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器 部分由图 5所示结构替换)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功 率设置为 3kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反 应液沸腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离 产率为 85%的 2- (1-苯亚乙基)丙二腈。 将 4mol的丙二腈、 2mol苯乙酮以及 3L去离子水投入二号微波反应装置的间 歇式内循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分由图 8所示结构替换)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置为 2x l0kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液沸 腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率为 84%的 2- (1-苯亚乙基)丙二腈。
将 20mol的丙二腈、 lOmol苯乙酮以及 30L去离子水投入三号微波反应装置 的间歇式内循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分 由类似图 8所示结构替换, 不同于二号微波反应装置的是: 其中反应器中安装有 四根同轴裂缝天线)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置 为 4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液 沸腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 84%的 2- (1-苯亚乙基)丙二腈。
将 80mol的丙二腈、 40mol苯乙酮以及 120L去离子水投入四号微波反应装置 (其中并联有四套三号微波反应装置中的反应器) 的间歇式内循环式反应器中, 按照图 3所示连接微波反应装置并连接冷凝回流系统, 在常压下, 开启微波功率 源, 功率设置为 4x4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调 整功率使反应液沸腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最 终得到分离产率分别为 83%的 2- (1-苯亚乙基)丙二腈。
将 4mol的丙二腈、 2mol苯乙酮以及 3L去离子水投入二号微波反应装置的间 歇式内循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分由图 9所示结构替换)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置为 2x l0kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液沸 腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率为 84%的 2- (1-苯亚乙基)丙二腈。
将 20mol的丙二腈、 lOmol苯乙酮以及 30L去离子水投入三号微波反应装置 的间歇式内循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分 由类似图 9所示结构替换, 不同于二号微波反应装置的是: 其中反应器中安装有 四根同轴裂缝天线)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置 为 4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液 沸腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 84%的 2- (1-苯亚乙基)丙二腈。
将 80mol的丙二腈、 40mol苯乙酮以及 120L去离子水投入四号微波反应装置 (其中并联有四套三号微波反应装置中的反应器) 的内循环式反应器中, 按照图 3所示连接微波反应装置并连接冷凝回流系统, 在常压下, 开启微波功率源, 功 率设置为 4x4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率 使反应液沸腾环流 40min。 反应结束后关闭微波功率源, 处理反应液, 最终得到 分离产率分别为 84%的 2- (1-苯亚乙基)丙二腈。 实施例 4: 外循环式反应器的应用
将 0. 4mol的丙二腈、 0. 2mol苯乙酮以及 300mL去离子水投入一号微波反应 装置的间歇式外循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器 部分由图 6所示结构替换)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功 率设置为 3kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反 应液沸腾环流 30min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离 产率为 85%的 2- (1-苯亚乙基)丙二腈。
将 4mol的丙二腈、 2mol苯乙酮以及 3L去离子水投入二号微波反应装置的间 歇式外循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分由图 10所示结构替换)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置 为 2x l0kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液 沸腾环流 30min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 84%的 2- (1-苯亚乙基)丙二腈。
将 20mol的丙二腈、 lOmol苯乙酮以及 30L去离子水投入三号微波反应装置 的间歇式外循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分 由类似图 10所示结构替换, 不同于二号微波反应装置的是: 其中反应器中安装有 四根同轴裂缝天线)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置 为 4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液 沸腾环流 30min。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 84%的 2- (1-苯亚乙基)丙二腈。

Claims

将 80mol的丙二腈、 40mol苯乙酮以及 120L去离子水投入四号微波反应装置 (其中并联有四套三号微波反应装置中的反应器) 的间歇式外循环式反应器中, 按照图 3所示连接微波反应装置并连接冷凝回流系统, 在常压下, 开启微波功率 源, 功率设置为 4x4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调 整功率使反应液沸腾环流 30min。 反应结束后关闭微波功率源, 处理反应液, 最 终得到分离产率分别为 83%2- (1 -苯亚乙基)丙二腈。
将 4mol的丙二腈、 2mol苯乙酮以及 3L去离子水投入二号微波反应装置的间 歇式外循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分由图 1 1所示结构替换)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置 为 2 x l 0kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液 沸腾环流 30mi n。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 84%的 2- (1-苯亚乙基)丙二腈。
将 20mol的丙二腈、 l Omol苯乙酮以及 30L去离子水投入三号微波反应装置 的间歇式外循环式反应器中, 按照图 3所示连接微波反应装置(其中, 反应器部分 由类似图 1 1所示结构替换, 不同于二号微波反应装置的是: 其中反应器中安装有 四根同轴裂缝天线)并连接冷凝回流系统, 在常压下, 开启微波功率源, 功率设置 为 4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调整功率使反应液 沸腾环流 30mi n。 反应结束后关闭微波功率源, 处理反应液, 最终得到分离产率 为 84%的 2- (1-苯亚乙基)丙二腈。
将 80mol的丙二腈、 40mol苯乙酮以及 120L去离子水投入四号微波反应装置
(其中并联有四套三号微波反应装置中的反应器) 的间歇式外循环式反应器中, 按照图 3所示连接微波反应装置并连接冷凝回流系统, 在常压下, 开启微波功率 源, 功率设置为 4x4x20kW, 加热过程用光纤温度计测量温度。 待反应液沸腾好调 整功率使反应液沸腾环流 30min。 反应结束后关闭微波功率源, 处理反应液, 最 终得到分离产率分别为 84%的 2- (1-苯亚乙基)丙二腈。 实施例 5 : 连续式反应器的应用
按照图 3连接一号微波反应装置(其中, 反应器部分由图 4所示结构替换), 将苯甲酸乙酯和 80%水合肼的混合物(摩尔比 = 1 : 3. 5)以 50mL/min的速度从进料口 通入一号微波反应装置的加压连续式搅拌式反应器, 设置搅拌速度为 200rpm, 待 液面高过天线的裂缝后开启微波功率, 设置功率为 3kW, 待反应混合物温度达到 100°C (初始压力为 lbar , 随着反应进行压力逐渐增加) 后调解功率使温度维持 不变, 同时打开出料口以相等的流速接收反应混合物, 过程用气相色谱仪检测, 根据检测结果将前 3min的出料反混至原料釜重新进料, 将 3min以后的混合物接 收并纯化, 最终得到分离产率为 94%的苯甲酰肼。
按照图 3连接二号微波反应装置(其中, 反应器部分由图 12所示结构替换), 将苯甲酸乙酯和 80%水合肼的混合物(摩尔比 =1 : 3. 5)以 250mL/min的速度从进料 口通入二号微波反应装置的加压连续式搅拌式反应器, 设置搅拌速度为 200rpm, 待液面高过天线的裂缝后开启微波功率, 设置功率为 2x l0kW, 待反应混合物温度 达到 locrc后调解功率使温度维持不变, 同时打开出料口以相等的流速接收反应 混合物, 过程用气相色谱仪检测, 根据检测结果将前 5min的出料反混至原料釜重 新进料,将 5min以后的混合物接收并纯化,最终得到分离产率为 95%的苯甲酰肼。
按照图 3连接三号微波反应装置(其中, 反应器部分由类似图 12所示结构替 换, 不同于二号微波反应装置的是: 其中反应器中安装有四根同轴裂缝天线), 将 苯甲酸乙酯和 80%水合肼的混合物(摩尔比 =1 : 3. 5)以 IL/min的速度从进料口通入 三号微波反应装置的加压连续式搅拌式反应器, 设置搅拌速度为 200rpm, 待液面 高过天线的裂缝后开启微波功率,设置功率为 4x20kW,待反应混合物温度达到 100 °C后调解功率使温度维持不变, 同时打开出料口以相等的流速接收反应混合物, 过程用气相色谱仪检测,根据检测结果将前 lOmin的出料反混至原料釜重新进料, 将 l Omin以后的混合物接收并纯化, 最终得到分离产率为 94%的苯甲酰肼。 在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单 独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领 域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附 权利要求书所限定的范围。 权 利 要 求
I、 一种微波反应装置, 其特征在于, 所述装置包括微波加热装置和反应器; 其中, 所述微波加热装置包括微波发生和传输装置以及同轴裂缝天线; 所述微波 发生和传输装置包括微波功率源、 环形器、 假负载、 微波功率检测器件、 同轴转 换器、 微波调谐器件;
所述同轴裂缝天线连接于同轴转换器, 从反应器的任意端探入, 从而将微波能 量馈入反应器中。
2、 如权利要求 1所述的微波反应装置, 其特征在于, 所述同轴裂缝天线包括 内导体和外导体。
3、 如权利要求 1所述的微波反应装置, 其特征在于, 所述同轴裂缝天线包括 内导体和外导体; 其中, 外导体上开设至少 1个裂缝。
4、 如权利要求 2或 3所述的微波反应装置, 其特征在于, 所述内导体为金属 棒; 所述外导体为金属管。
5. 如权利要求 2或 3所述的微波反应装置, 其特征在于, 所述内导体比所述 外导体长。
6. 如权利要求 2或 3所述的微波反应装置, 其特征在于, 所述内导体和外导 体之间采用介质材料填充, 所述介质材料为低微波损耗材料。
7、 如权利要求 2或 3所述的微波反应装置, 其特征在于, 所述外导体周围设 置有天线保护罩, 所述天线保护罩材料为低微波损耗材料。
8. 如权利要求 6或 7所述的微波反应装置, 其特征在于, 所述低微波损耗材 料可选自: 聚四氟乙烯、 聚醚醚酮、 聚丙烯、 陶瓷、 有机玻璃、 玻璃或者其它材 料。
9、 如权利要求 1所述的微波反应装置, 其特征在于, 所述同轴裂缝天线为不 锈钢、 铜、 铁、 铝、 银、 铅、 镍、 或其合金的; 和 /或 所述反应器为金属、 非金 属、 金属与非金属的复合材料或上述材料的组合的。
10、 如权利要求 1所述的微波反应装置, 其特征在于, 所述反应器包括常压反 应器和加压反应器; 或 所述反应器包括间歇式反应器和连续式反应器; 或 所述 反应器包括搅拌式反应器、 内循环式反应器和外循环式反应器。
I I . 如权利要求 10所述的微波反应装置, 其特征在于, 当所述反应器为连续 式反应器时, 所述反应器的主体上设置有进料口和出料口。
12. 如权利要求 10所述的微波反应装置, 其特征在于, 当所述反应器为内循 环式反应器时, 所述反应器内设置有导流筒。
13. 如权利要求 10所述的微波反应装置, 其特征在于, 当所述反应器为外循 环式反应器时, 所述反应器外一侧或多侧设置有导流管。
14. 如权利要求 13所述的微波反应装置, 其特征在于, 所述同轴裂缝天线可 位于反应器主体内, 也可位于导流管内。
15. 如权利要求 1所述的微波反应装置, 其特征在于, 所述反应器为单个反应 器或为多个反应器串联或并联形成的,其中每个反应器至少有一根同轴裂缝天线。
16. 一种微波加热装置, 其特征在于, 所述微波加热装置包括微波发生和传输 装置以及同轴裂缝天线; 所述微波发生和传输装置包括微波功率源、 环形器、 假 负载、 微波功率检测器件、 同轴转换器、 微波调谐器件; 所述同轴裂缝天线连接 于同轴转换器。
17. 如权利要求 1-15任一项所述微波反应装置的应用, 其特征在于, 用于实 现利用微波进行加热的化学反应。
PCT/CN2015/096711 2014-12-08 2015-12-08 一种使用同轴裂缝天线的微波反应装置及其应用 WO2016091157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410747405.1 2014-12-08
CN201410747405.1A CN104383866A (zh) 2014-12-08 2014-12-08 一种使用同轴裂缝天线的微波反应装置及其应用

Publications (1)

Publication Number Publication Date
WO2016091157A1 true WO2016091157A1 (zh) 2016-06-16

Family

ID=52601877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096711 WO2016091157A1 (zh) 2014-12-08 2015-12-08 一种使用同轴裂缝天线的微波反应装置及其应用

Country Status (2)

Country Link
CN (1) CN104383866A (zh)
WO (1) WO2016091157A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383866A (zh) * 2014-12-08 2015-03-04 华东理工大学 一种使用同轴裂缝天线的微波反应装置及其应用
CN104748122A (zh) * 2015-03-26 2015-07-01 广东新优威印刷装备科技有限公司 一种等离子体焚烧垃圾处理设备
CN107661739A (zh) * 2017-11-27 2018-02-06 云南民族大学 一种带反射腔的多位微波反应器制作方法
CN108273457A (zh) * 2018-02-25 2018-07-13 云南民族大学 一种化学反应器用耐高温微波辐射器制作方法
CN113209922A (zh) * 2020-01-21 2021-08-06 中国石油化工股份有限公司 微波耦合催化反应器以及VOCs处理设备
CN114432989A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 连续内馈式微波反应装置及其应用
CN114432988A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 连续微波反应装置及其应用
CN114432990A (zh) * 2020-11-02 2022-05-06 中国石油化工股份有限公司 微波反应装置及其应用
CN112439375B (zh) * 2020-11-06 2022-06-07 天津全和诚科技有限责任公司 一种盘管式微波反应器
CN112768927A (zh) * 2021-01-22 2021-05-07 吉林大学 一种带有h型裂缝的同轴加热微波天线和集束型微波天线

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103424A (zh) * 1986-05-22 1987-12-02 电子工业部计算机系统工程研究所 利用裂缝天线馈能的微波加热器
EP0403820A1 (en) * 1989-06-19 1990-12-27 Glatt Gmbh Microwave assisted fluidized bed processor
CN1080555A (zh) * 1992-06-29 1994-01-12 天津市北洋仪器公司 医用微波加温测温装置
DE102007044764B4 (de) * 2007-09-19 2010-04-08 Neue Materialien Bayreuth Gmbh Hybridofen
US20110052456A1 (en) * 2008-03-20 2011-03-03 Sairem Societe Pour L'application Industrielle De La Recherche En Electronique Et Micro Ondes Device for electromagnetic radiation treatment of a reactive medium
WO2012051198A1 (en) * 2010-10-12 2012-04-19 Goji Ltd. Device and method for applying electromagnetic energy to a container
CN202374485U (zh) * 2011-12-20 2012-08-08 湖南省中晟热能科技有限公司 一种微波窑炉用裂缝天线
CN202386782U (zh) * 2011-12-13 2012-08-22 南京理工大学 同轴缝隙带扼流环的微波热疗天线
CN102949974A (zh) * 2012-08-31 2013-03-06 中国石油大学(北京) 一种微波加热装置及其应用
CN103813498A (zh) * 2012-11-15 2014-05-21 上海明光电子科技有限公司 微波加热装置
CN104383866A (zh) * 2014-12-08 2015-03-04 华东理工大学 一种使用同轴裂缝天线的微波反应装置及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212985A (en) * 1987-12-01 1989-08-02 Alison Microsystems Limited Slotted antenna
AU2003901390A0 (en) * 2003-03-26 2003-04-10 University Of Technology, Sydney Microwave antenna for cardiac ablation
CN1764332A (zh) * 2004-10-01 2006-04-26 精工爱普生株式会社 高频加热装置、半导体制造装置以及光源装置
CN1996666A (zh) * 2006-12-28 2007-07-11 四川大学 一种非均匀辐射单元结构的同轴缝隙天线

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103424A (zh) * 1986-05-22 1987-12-02 电子工业部计算机系统工程研究所 利用裂缝天线馈能的微波加热器
EP0403820A1 (en) * 1989-06-19 1990-12-27 Glatt Gmbh Microwave assisted fluidized bed processor
CN1080555A (zh) * 1992-06-29 1994-01-12 天津市北洋仪器公司 医用微波加温测温装置
DE102007044764B4 (de) * 2007-09-19 2010-04-08 Neue Materialien Bayreuth Gmbh Hybridofen
US20110052456A1 (en) * 2008-03-20 2011-03-03 Sairem Societe Pour L'application Industrielle De La Recherche En Electronique Et Micro Ondes Device for electromagnetic radiation treatment of a reactive medium
WO2012051198A1 (en) * 2010-10-12 2012-04-19 Goji Ltd. Device and method for applying electromagnetic energy to a container
CN202386782U (zh) * 2011-12-13 2012-08-22 南京理工大学 同轴缝隙带扼流环的微波热疗天线
CN202374485U (zh) * 2011-12-20 2012-08-08 湖南省中晟热能科技有限公司 一种微波窑炉用裂缝天线
CN102949974A (zh) * 2012-08-31 2013-03-06 中国石油大学(北京) 一种微波加热装置及其应用
CN103813498A (zh) * 2012-11-15 2014-05-21 上海明光电子科技有限公司 微波加热装置
CN104383866A (zh) * 2014-12-08 2015-03-04 华东理工大学 一种使用同轴裂缝天线的微波反应装置及其应用

Also Published As

Publication number Publication date
CN104383866A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2016091157A1 (zh) 一种使用同轴裂缝天线的微波反应装置及其应用
Strauss et al. Developments in microwave-assisted organic chemistry
JP5996736B2 (ja) 高温で化学反応を連続的に行うための装置
EP0437480B1 (en) Method and apparatus for continuous chemical reactions
CN106925195A (zh) 一种水热法制备粉体材料的装置
JP2007326013A (ja) マイクロ波化学反応容器および装置
EP2382039B1 (en) Microwave apparatus
CN208589548U (zh) 一种基于tm01模的圆波导漏波缝隙天线
CN205761155U (zh) 一种微波水热合成装置
JP2020043051A (ja) マイクロ波処理装置、マイクロ波処理方法及び化学反応方法
KR100732891B1 (ko) 연속식 마이크로파 촉매 건조 장치
CN110064353A (zh) 螺旋盘管式微波反应器
CN212092162U (zh) 一种压力反应器
CN108079900B (zh) 一种微波高压反应釜
CN104667849B (zh) 大功率微波反应器和微波连续压力反应系统
AU2008364687B2 (en) Microwave heater and its application in chemical reaction
CN202655035U (zh) 一种带有导流装置和电磁加热装置的反应釜
CN211988573U (zh) 一种大容量微波化学反应装置
CN108114664A (zh) 一种微波高压环形反应装置
RU143788U1 (ru) Установка проточного типа для алкилирования бензола
CN208975786U (zh) 一种适用连续生产的微波反应装置
CN114432990A (zh) 微波反应装置及其应用
CN111359536A (zh) 一种压力反应器
CN115999473A (zh) 一种微波微通道组合反应器及其应用
CN114432989A (zh) 连续内馈式微波反应装置及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866552

Country of ref document: EP

Kind code of ref document: A1