JP3677301B2 - セラミック回路基板及びセラミック回路基板の製造方法 - Google Patents

セラミック回路基板及びセラミック回路基板の製造方法 Download PDF

Info

Publication number
JP3677301B2
JP3677301B2 JP27153193A JP27153193A JP3677301B2 JP 3677301 B2 JP3677301 B2 JP 3677301B2 JP 27153193 A JP27153193 A JP 27153193A JP 27153193 A JP27153193 A JP 27153193A JP 3677301 B2 JP3677301 B2 JP 3677301B2
Authority
JP
Japan
Prior art keywords
ceramic
heat sink
metal member
circuit board
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27153193A
Other languages
English (en)
Other versions
JPH07131161A (ja
Inventor
晃 井本
将文 久高
譲 松本
聡浩 坂ノ上
和雅 古橋
弘 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27153193A priority Critical patent/JP3677301B2/ja
Publication of JPH07131161A publication Critical patent/JPH07131161A/ja
Application granted granted Critical
Publication of JP3677301B2 publication Critical patent/JP3677301B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、厚膜抵抗体膜やパワートランジスタ、パワーMOS電界効果トンジスタのベアチップなどの発熱電子部品を回路基板表面に搭載したセラミック回路基板上に関するものである。
【0002】
【従来の技術及びその課題】
セラミック回路基板、特に積層セラミック回路基板は、回路の小型化、高密度実装には欠くことのできないものであり、その構造は、複数積層したセラミック絶縁層間に内部配線を配置し、また、表面には所定配線を形成した後、各種電子部品などを搭載していた。この各種電子部品には、基板の表面に直接被着形成される厚膜抵抗体膜、表面配線に半田接合されるチップ抵抗器、チップコンデンサ、表面実装可能な各種電子、表面配線にボンディング接合されるICベアチップなどが挙げられる。実際の回路構成や搭載される電子部品などは、積層セラミック回路基板の用途などによっても異なるが、特に、厚膜抵抗体膜やパワートランジスタ、パワーMOS電界効果トンジスタのベアチップなどの発熱電子部品など用いる場合には、この発熱電子部品の動作中に熱が発生し、他の電子部品や回路などに誤動作を生じさせたりすることがあった。
【0003】
これらの熱を放出するための手段としては、厚膜抵抗体膜では、その有効手段がなく、実際には、厚膜抵抗体膜の周囲に充分な空間を設けていた。このため、回路基板の表面配線の高密度化が達成できないという問題点があった。
【0004】
また、積層セラミック回路基板を貫通するヒートシンク金属部材を配置することも考えられるが、基板表面にヒートシンク金属部材が露出することになり、表面配線パターンの制約などが発生してしまう。さらに、このように積層セラミック回路基板を貫通するヒートシンク金属部材を配置することは、従来の積層セラミック回路基板では実質的に不可能であった。例えば、焼成済の積層セラミック回路基板にヒートシンク金属部材が配置される貫通穴を形成し、ヒートシンク金属部材を該貫通穴に挿入・配置することは、セラミックと金属部材との接合技術が必要となり、安定的な配置を行うことは実質的に困難である。
【0005】
ヒートシンク金属部材となる金属を、積層セラミック回路基板の製造過程で形成することも考えられる。
【0006】
従来の積層セラミック回路基板は、大別して2つの製造方法がある。その1つは、1層の絶縁層となるグリーンシートに、ビアホール導体となる貫通穴を形成し、この貫通穴にビアホール導体となる導体を充填するとともに、グリーンシート表面に内部配線となる導体膜を形成する。このようなグリーンシートを所定枚数積層し、一体的に焼成していた。
【0007】
このようなグリーンシート多層方式において、回路基板の厚み方向を貫くヒートシンク金属部材を配置するためには、ビアホール導体となる貫通穴と同時に、各グリーンシートにICチップの形状に対応して、例えば0.5〜1cm角の貫通穴を形成し、この0.5〜1cm角の貫通穴にヒートシンク金属部材となる金属ペーストを充填しなくては成らない。しかし、実際には、厚みが150〜200μm程度のグリーンシートに、0.5〜1cm角の貫通穴を形成して、この貫通穴に金属ペーストを保持させながら、積層することは実質的に不可能である。
【0008】
また、今1つの製造方法は、基体上に、絶縁層となる絶縁ペーストのスクリーン印刷により形成された所定形状の絶縁膜と、内部配線となる導電性ペーストのスクリーン印刷により形成された所定形状の導体膜とを交互に印刷積層し、所定積層状態で一体的に焼成していた。
【0009】
このような印刷多層方式において、積層体の厚み方向を貫くヒートシンク金属部材を形成するためには、導電性ペーストの印刷による金属膜の積層により形成するが、特にヒートシンク金属部材となる金属膜の周辺部において、絶縁膜が重なりあうため、特に積層数が増加すると、ヒートシンク金属部材となる金属膜表面の均一性が損なわれ、絶縁層を介して厚膜抵抗体膜やパワートランジスタ、パワーMOS電界効果トンジスタのベアチップを搭載することが困難となる。
【0010】
結局、従来の積層セラミック回路基板の製造においては、回路基板にヒートシンク部材を内層することは困難であった。
【0011】
本発明は上述の問題に鑑みて案出されたものであり、その目的は、発熱電子部品からの熱の影響が少なく、さらに、表面配線の引き回しの制約がなく、発熱電子部品を安定的に搭載できるセラミック回路基板を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、積層した複数のセラミック層からなるセラミック体内にビアホール導体によって接続された複数の内部配線が配置されたセラミック回路基板であって、前記セラミック体に、表面側のセラミック層に覆われたヒートシンク金属部材を内装するとともに、前記ヒートシンク金属部材に対応するセラミック体の上面を、発熱電子部品の載置領域とし、更に、前記セラミック層中に屈伏点が600〜800℃のガラス材料を、前記ヒートシンク金属部材中に屈伏点が700〜800℃のガラス材料をそれぞれ含有させ、前記セラミック体を構成するセラミック層のうち、前記ヒートシンク金属部材を覆うセラミック層の厚みを他のセラミック層の厚みよりも薄くなしたことを特徴とするセラミック回路基板である。
また本発明は、積層した複数のセラミック層からなるセラミック体内にビアホール導体によって接続された複数の内部配線を配置し、前記セラミック体に、表面側のセラミック層に覆われたヒートシンク金属部材を内装して成るセラミック回路基板の製造方法であって、光硬化可能なモノマーを含むスリップ材を塗布して前記セラミック層となる絶縁膜を形成する工程Aと、前記絶縁膜を選択的に露光することにより前記ヒートシンク部材となる部分以外及び前記ビアホール導体となる部分以外を硬化させた後、該絶縁膜を現像処理することにより、前記ヒートシンク部材及び前記ビアホール導体が配される位置に貫通凹部を形成する工程Bと、前記光硬化可能なモノマーを含む導電性ペーストを、前記貫通凹部内及び前記絶縁膜上に印刷した後、露光し硬化させることにより前記ヒートシンク部材となる金属部材、前記ビアホール導体となる導体、並びに前記内部配線となる導体膜を形成する工程Cと、前記工程A〜工程Cを複数回行うことにより形成される積層体上に、前記スリップ材を塗布することにより前記セラミック体の表面側のセラミック層となる絶縁膜を形成した後、前記ヒートシンク部材となる金属部材上の領域を含む前記表面側のセラミック層となる絶縁膜を露光し、硬化する工程Dと、を含むことを特徴とするセラミック回路基板の製造方法である。
【0013】
【作用】
本発明によれば、セラミックからなる回路基板内に、回路基板の表面側が絶縁層に被われ、且つ回路基板の裏面側が露出するヒートシンク金属部材が内装され、前記ヒートシンク金属部材を被う絶縁層を介して、この前記ヒートシンク金属部材に対応する絶縁層上を発熱電子部品の載置領域とした。このため、発熱電子部品である厚膜抵抗体膜やパワートランジスタ、パワーMOS電界効果トンジスタのベアチップなどを、この載置領域に搭載しても、発熱電子部品に発生する熱を有効に回路基板の裏面側から外部に放出できるため、発熱に伴う他の電子部品や回路などの悪影響を防止することができる。また、発熱電子部品を、他の電子部品との間で、発熱による悪影響を最小限にし、回路配置(表面配線のパターン、電子部品の配置)できるため、その高密度化が容易となる。
【0014】
さらに、ヒートシンク金属部材が回路基板内に内層されていることから、セラミック回路基板の低背化が達成できる。
【0015】
【実施例】
以下、本発明を図面に基づいて説明する。
【0016】
図1は、本発明のセラミック回路基板、特に積層セラミック回路基板の断面図である。
【0017】
図1において、1は回路基板であり、2は厚膜抵抗体膜やパワートランジスタ、パワーMOS電界効果トンジスタベアチップの発熱電子部品である。尚、実施例では、発熱電子部品として厚膜抵抗体膜2を用いて説明する。
【0018】
回路基板1は、セラミックからなる絶縁層1a〜1eと、絶縁層1a〜1eの各層間に配置された内部配線3と、表面配線6と、各絶縁層1b〜1eの厚み方向を貫き形成された凹部52内に配置されたヒートシンク金属部材5と、各配線3、6との間を接続するビアーホール導体4とから構成されている。また、回路基板1の表面には、表面配線6に接合する各種電子部品7や、発熱電子部品2が夫々搭載され、さらに、絶縁保護膜(図示せず)などが被着されている。特に、ヒートシンク金属部材5に対応する絶縁層1aの領域Aを発熱電子部品2の載置領域となり、この領域Aに発熱電子部品2が搭載されている。
【0019】
絶縁層1a〜1eは、セラミック体を構成するものであり、例えば850〜1050℃前後の比較的低い温度で焼成可能にするガラス−セラミック材料からなり、表面絶縁層1aの厚みは、10〜70μmであり、絶縁層1b〜1eの厚みは、40〜120μmである。そして、この複数の絶縁層1a〜1eの各層間に内部配線3が絶縁層1a〜1eの厚み方向を貫くビアホール導体4が、また、絶縁層1b〜1eの厚み部分には、ヒートシンク金属部材5が夫々配置される凹部52が形成されている。
【0020】
内部配線3は、絶縁層1a〜1eの各層間に配置され、金系、銀系、銅系の金属材料、例えば銀系導体から成っている。これらの内部配線3の厚みは、3〜15μm程度である。
【0021】
ビアホール導体4は、金系、銀系、銅系の金属材料、例えば銀系導体からなり、内部配線3間を接続したり、また、絶縁層1a上に形成された表面配線6と内部配線3とを接続するために、各絶縁層1a〜1dの厚みを貫くように形成されている。
【0022】
ヒートシンク金属部材5は、回路基板1の裏面側に開口する凹部52に配置されており、その表面側の一端が、図では最表面の絶縁層1aによって被われており、絶縁層1b〜1eの厚み方向を貫いて、裏面側の一端が回路基板1の外部に露出している。ヒートシンク金属部材5は、例えば熱伝導率の高い金属材料が用いられるが、製造工程を簡略化するためには、金系、銀系、銅系、例えば銀系導体などのビアホール導体4と同一材料で形成することが望ましい。
【0023】
表面配線6は、絶縁層1aの表面に形成されており、金系、銀系、銅系の金属材料、例えば銀系導体からなっている。この表面配線6は、絶縁層1aに形成されたビアホール導体4を介して内部配線3と接続されている。
【0024】
回路基板1の表面には、表面配線6に接続する発熱電子部品である厚膜抵抗体膜2が被着形成され、表面配線6に接続する他の各種電子部品7が半田接合されている。
【0025】
発熱電子部品である厚膜抵抗体膜2は、ヒートシンク金属部材5を被う絶縁層1aの領域Aに被着形成されている。即ち、厚膜抵抗体膜2は、その対向する両端部が表面配線6に接続して、ヒートシンク金属部材5部分の絶縁層1a上に焼きつけされている。具体的には酸化ルテニウム系抵抗体ペーストを所定形状にスクリーン印刷を行い、その後、乾燥して、焼き付けによって形成される。その後、必要に応じて、所定抵抗値になるように、厚膜抵抗体膜の一部除去(トリミング)が行われる。
【0026】
また、その他の各種電子部品7とは、チップコンデンサやチップ抵抗、その他発振部品などが挙げられ、半田接合により表面配線6に接合している。
【0027】
本発明において構造的には、発熱電子部品2が、絶縁層1aのヒートシンク金属部材5に対応する領域Aに配置されていることである。
【0028】
これにより、発熱電子部品2の動作によって発生する熱を絶縁層1a、ヒートシンク金属部材5を介して、回路基板1の裏面側から外部に有効に放出することができる。従って、他の電子部品7や、表面配線6、内部配線3、電子部品7を含む所定回路に熱による誤動作などの悪影響を与えることが非常に少なくなるため、積層セラミック回路基板全体の熱信頼性が向上する。尚、絶縁層1aは、使用用途によっても異なるが、絶縁特性が1012Ω程度得られれば充分であり、この絶縁特性を満足する程度に薄くすることが望ましい。例えば、絶縁層1aの厚みを10μmにまで薄くしても構わない。
【0029】
また、回路基板1の表面に着目すれば、その表面はビアホール導体4が形成された絶縁層1aによって被われているため、表面配線6を形成する場合には、特別な制約事項がなく、表面配線6の高密度化に適したものとなる。
【0030】
上述の積層セラミック回路基板を図2(a)〜(k)に基づいて説明する。
【0031】
まず、図2(a)に示すように、耐熱性樹脂、ガラス、セラミックなどのワーク基板15上に絶縁層1eとなる絶縁膜10eを形成する。
【0032】
絶縁膜10eは、セラミック粉末、ガラス材料、光硬化可能なモノマー、有機バインダと、有機又は水系溶剤を均質混練して得られスリップ材を、40〜120μm程度になるように、塗布、乾燥して形成する。
【0033】
上述のセラミック粉末としては、クリストバライト、石英、コランダム(αアルミナ)、ムライト、ジルコニア、コージェライト等の材料が挙げられ、その粉末の平均粒径は、好ましくは1.0〜6.0μm、更に好ましくは1.5〜4.0μmである。これらのセラミック材料は2種以上混合して用いられてもよい。
【0034】
特に、コランダムを用いた場合、コスト的に有利となる。このセラミック粉末の平均粒径が1.0〜6.0μmと設定したのは、平均粒径が1.0μm未満では、均質混合してスリップ化することが難しくなり、後述の露光時に露光光が乱反射して充分な露光ができなくなる。逆に平均粒径が6.0μmを超えると緻密で強度の高い回路基板1が得られない。
【0035】
上述のガラス材料としては、複数の金属酸化物を含むガラスフリットであり、850〜1050℃で焼成した後に、コージェライト、ムライト、アノーサイト、セルジアン、スピネル、ガーナイト、ウイレマイト、ドロマイト、ペタライト及びその置換誘導体の結晶を少なくとも1種析出するものが挙げられる。
【0036】
特に、アノーサイトまたはセルジアンを析出する結晶化ガラスフリットを用いると、より強度の高い積層体本体が得られ、また、コージェライトまたはムライトを析出し得る結晶化ガラスフリットを用いると、焼成後の熱膨張率が低い為、回路基板1上にICベアチップ2を配置するための回路基板としては非常に有効となる。
【0037】
回路基板1の強度、熱膨張率を考慮した最も好ましいガラス材料としては、B2 3 、SiO2 、Al2 3 、ZnO、アルカリ土類酸化物を含むガラスフリットである。この様なガラスフリットは、ガラス化範囲が広くまた屈伏点が600〜800℃付近にあるため、850〜1050℃程度の低温焼成に適し、且つ内部配線3、ビアホール導体4となる銅系、銀系及び金系の導電材料の焼結挙動に適している。
【0038】
ガラス材料はスリップ材中にフリットの状態で混合されている。このフリットの平均粒径は、1.0〜6.0μm、好ましくは1.5〜3.5μmである。平均粒径が1.0μm未満の場合は、スリップ化することが困難なであり、後述の露光時に露光光が乱反射して充分な露光ができなくなる。逆に平均粒径が6.0μmを超えると分散性が損なわれ、具体的には絶縁材料であるセラミック粉末間に均等に溶解分散できず、強度が非常に低下してしまう。
【0039】
上述のセラミック材料とガラス材料との構成比率は、850〜1050℃の比較的低温で焼成する場合には、セラミック材料が10〜60wt%、好ましくは30〜50wt%であり、ガラス材料が90〜40wt%、好ましくは70〜50wt%である。セラミック材料が10wt%未満、且つガラス材料が90wt%を越えると、絶縁層にガラス質が増加しすぎ、絶縁層の強度等からしても不適切であり、また、セラミック材料が60wt%を越え、且つガラス材料が40wt%未満となると、後述の露光時に露光光が乱反射して充分な露光ができなり、焼成後の絶縁層の緻密性も損なわれる。
【0040】
上述のセラミックやガラスなどの固形成分の他に、スリップ材の構成材料としては、焼結によって消失される光硬化可能なモノマー、有機バインダーと、有機溶剤とを含んでいる。
【0041】
光硬化可能なモノマーは、比較的低温で且つ短時間の焼成工程で消失できるように熱分解性に優れたものであり、また、スリップ材の塗布・乾燥後の露光によって、光重合される必要があり、遊離ラジカルの形成、連鎖生長付加重合が可能で、2級もしくは3級炭素を有したモノマーが好ましく、例えば少なくとも1つの重合可能なエチレン系基を有するブチルアクリレート等のアルキルアクリレートおよびそれらに対応するアルキルメタクリレートが有効である。また、テトラエチレングリコールジアクリレート等のポリエチレングリコールジアクリレートおよびそれらに対応するメタクリレートなどが挙げられる。
【0042】
光硬化可能なモノマーは、露光処理によって絶縁膜10eが硬化され、現像処理によって露光部分以外の部分が容易に除去できるように所定量添加される。例えば、固形成分(セラミック材料及びガラス材料) に対して5〜15wt%以下である。
【0043】
有機バインダーは、光硬化可能なモノマー同様に熱分解性の良好なものでなくてはならない。同時にスリップの粘性を決めるものである為、固形分との濡れ性も重視せねばならず、本発明者の検討によればアクリル酸もしくはメタクリル酸系重合体のようなカルボキシル基、アルコール性水酸基を備えたエチレン性不飽和化合物が好ましい。添加量としては固形分に対して25wt%以下が好ましい。
【0044】
尚、溶剤として、有機系溶剤の他に、水系溶剤を用いることができるが、この場合、光硬化可能なモノマー及び有機バインダは、水溶性である必要があり、モノマー及びバインダには、親水性の官能基、例えばカルボキシル基が付加されている。その付加量は酸価で表せば2〜300あり、好ましくは5〜100である。付加量が少ない場合は水への溶解性、固定成分の粉末の分散性が悪くなり、多い場合は熱分解性が悪くなるため、付加量は、水への溶解性、分散性、熱分解性を考慮して、上述の範囲で適宜付加される。
【0045】
何れの系のスリップ材においても光硬化可能なモノマー及び有機バインダは上述したように熱分解性の良好なものでなくてはならないが、具体的には600℃以下で熱分解が可能でなくてはならない。更に好ましくは500℃以下である。
【0046】
熱分解温度が600℃を越えると、絶縁層内に残存してしまい、カーボンとしてトラップし、基板を灰色に変色させたり、絶縁層の絶縁抵抗までも低下させてしまう。またボイドとなりデラミネーションを起こすことがある。
【0047】
また、スリップ材には、増感剤、光開始系材料等を必要に応じて添加しても構わない。例えば、光開始系材料としては、ベンゾフェノン類、アシロインエステル類化合物などが挙げられる。
【0048】
上述のスリップ材の塗布方法として、例えば、ドクターブレード法(ナイフコート法)、ロールコート法、印刷法などが挙げられる。特に塗布後の絶縁膜の表面が平坦化することが容易なドクターブレード法などが好適である。尚、塗布方法に応じて溶剤の添加量が調整され、所定粘度に調整される。
【0049】
乾燥方法としては、バッチ式乾燥炉、インライン式乾燥炉を用いて行われ、乾燥条件は、120℃以下が望ましい。また、急激な乾燥は、表面にクラックを発生される可能性があるため、急加熱を避けることが重要となる。
【0050】
次に、図2(b)に示すように、スリップ材を塗布・乾燥した絶縁膜10eを選択的露光処理して、絶縁膜10eの所定位置、即ち、ヒートシンク金属部材5となる位置に、貫通凹部50となる溶化部50’を形成する。
【0051】
具体的には、絶縁膜10e中に含まれる光硬化モノマーが、光重合されるネガ型であるため、貫通凹部50となる溶化部50’のみが露光光が照射されないような所定パターンを有するフォトターゲットを、絶縁膜10e上に載置、又は近接配置して、低圧、高圧、超高圧の水銀灯系の露光光を照射する。尚、露光条件は、15〜20J/cm2 の露光光を約15〜30秒程度照射して行う。これにより、絶縁膜10eのヒートシンク金属部材5の一部となる部分以外は、光硬化可能なモノマーの光重合反応を起し、硬化されることになる。尚、露光装置は所謂写真製版技術に用いられる一般的なものでよい。
【0052】
次に、図2(c)に示すように、露光処理した絶縁膜10eを現像処理し、溶化部50’を除去して、貫通凹部50を形成する。これにより、貫通凹部50の下部開口には、ワーク基板15の表面の一部が露出することになる。この現像処理として、クロロセン、1,1,1−トリクロロエタン、アルカリ現像溶剤を例えばスプレー現像法やパドル現像法によって、溶化部50’に噴射したり、接触したりして、現像処理を行う。その後、必要に応じて洗浄及び乾燥を行なう。
【0053】
ここで、貫通凹部とは、絶縁膜の厚み方向に「貫通」して形成されるものの、その下部開口は、先に形成した内部配線となる導体膜又はヒートシンク金属部材によって閉塞されているため、全体として「凹部」形状を呈しているので、特に本発明においては貫通凹部と記載する。
【0054】
次に、図2(d)に示すように、絶縁層1eと絶縁層1dとの層間に配される内部配線3となる導体膜30及びヒートシンク金属部材5の一部となる金属部材51を例えばAg系導電性ペーストを用いてスクリーン印刷によって所定形状に印刷し、乾燥を行う。
【0055】
上述の導電性ペーストは、金、銀、銅もしくはその合金のうち少なくとも1つの金属材料、例えば銀系粉末と、低融点ガラス成分と、上述の光硬化モノマー、有機バインダーと及び有機溶剤とを均質混練したものが用いられる。尚、絶縁層1a〜1eがガラス−セラミックからなり、焼結温度が850〜1050℃と比較的低いため、絶縁膜の焼結挙動を考慮する必要がある。低融点ガラス成分としては、屈伏点が700〜800℃であり、且つ低熱膨張のものを用いることが重要であり、絶縁膜の焼結挙動と内部配線3、ヒートシンク金属部材5、ビアホール導体4の焼結挙動を近似させると同時に、熱膨張係数差を小さくしている。
【0056】
また、上述のように印刷した導体膜30及び印刷・充填した金属部材51は、上述の露光条件で光硬化させる。これは、後述する絶縁膜10e上の全面に塗布する絶縁膜10dに、貫通凹部50、40を形成するべく、露光、現像処理した時に、絶縁膜10dの貫通凹部50、40の下部開口から露出する絶縁膜10eに形成した導体膜30、金属部材51もが除去されないようにするためである。
【0057】
従って、現像液が、露光処理されていない絶縁膜のみを除去し、導体膜30や金属部材51を除去しないようにその成分や濃度を制御すれば、導電性ペーストに光硬化モノマーを用いる必要がなく、且つ導体膜30や金属部材51に対する露光処理を省略できる。
【0058】
尚、この実施例では、内部配線3とヒートシンク金属部材5とを同一金属、例えば銀系導体(金属)で形成するため、同一工程で印刷、又は充填を行っているが、内部配線3とヒートシンク金属部材5とが異なる金属である場合には、貫通凹部50にヒートシンク金属部材5の一部となる金属部材51を充填する工程と、内部配線3となる導体膜30を印刷する工程とを別に行うことができる。
【0059】
次に、図2(e)に示すように、絶縁膜1eに形成した導体膜30、金属部材51を完全に被うように、絶縁層1dとなる絶縁膜10dを上述のスリップ材を用いて塗布・乾燥を行う。
【0060】
次に、図2(f)に示すように、スリップ材を塗布・乾燥した絶縁膜10dを選択的な露光処理して、絶縁膜10dの所定位置、即ち、ヒートシンク金属部材5及びビアホール導体4となる位置に、貫通凹部50、40となる溶化部50’、40’を形成する。この形成方法は、図2(b)で説明したように、フォトターゲットを用いて、所定強度の露光光を照射して選択的な露光処理によって形成される。
【0061】
次に、図2(g)に示すように、露光処理した絶縁膜10dを現像処理し、溶化部50’、40’を除去して、貫通凹部50、40を形成する。これにより、貫通凹部50の下部には、絶縁膜10eに形成した金属部材51の表面が、貫通凹部40の下部には、絶縁膜10eに形成した導体膜30の表面が夫々露出することになる。尚、現像処理条件は、図2(c)の説明と同様である。
【0062】
そして、上述の図2(d)で説明したように、貫通凹部50、40に夫々ヒートシンク金属部材5となる金属部材51、ビアホール導体4となる導体41を印刷・充填するとともに、内部配線3となる導体膜30を印刷し、乾燥後、さらに、上述の図2(e)で説明したように、絶縁膜を形成し、さらに、図2(f)(g)で説明したように、ヒートシンク金属部材5となる部分及びビアホール導体4となる部分に、選択的な露光処理、現像処理を行う。このようにして、絶縁層1bとなる絶縁膜10bに形成した貫通凹部貫50、40に夫々ヒートシンク金属部材5となる金属部材51、ビアホール導体4となる導体41を印刷・充填するとともに、内部配線3となる導体膜30を印刷し、乾燥する。
【0063】
次に、図2(h)に示すように、絶縁膜10b上に、絶縁層11aとなる絶縁膜10aを形成する。ここで、絶縁膜10aは、上述の図2(e)で説明したようなスリップ材の塗布・乾燥で形成されるが、この絶縁膜10aは例えば10〜40μm程度と、既に形成した絶縁膜10b〜10eに比較して、薄い膜となっている。
【0064】
次に、図2(i)に示すように、絶縁膜10aに選択的な露光処理を行い、さらに現像処理行い、貫通凹部40を形成する。ここで、絶縁膜10aでは、露光光がヒートシンク金属部材5が形成される部分にも照射されるようにして露光処理を行う。これにより、現像処理により、ビアホール導体4となる部分のみが貫通凹部40として形成される。
【0065】
次に、図2(j)に示すように、絶縁膜10aの貫通凹部40を充填し、且つ絶縁膜10aの表面に所定パターンの表面配線6となる導体膜を印刷形成し、さらに、ワーク基板15を剥離し、さらに、回路基板1の形状に合わせて、分割できるようにプレス成型によって分割溝を形成し、一体的な焼結を行う。
【0066】
絶縁膜10aの貫通凹部40に充填する導体及び表面配線6となる導体膜は、金、銀、銅もしくはその合金のうち少なくとも1つの金属材料、例えば銀系粉末と、低融点ガラス成分と、有機バインダーと及び有機溶剤とを均質混練した導電性ペーストを用いて、充填したり、また所定形状に印刷し、乾燥して形成される。
【0067】
焼結は、脱バインダ過程と焼成過程からなる。脱バインダ過程は、絶縁膜10a〜10e、内部配線3となる導体膜30、ビアホール導体4となる導体41、、ヒートシンク金属部材5となる金属部材51及び表面配線6となる導体膜60に含まれる有機成分を消失するためであり、焼結過程の例えば600℃以下の温度領域で行われる。
【0068】
また、焼成過程は、絶縁膜10a〜10eのガラス成分を充分に軟化させて、セラミック粉末の粒界に均一に分散させ、回路基板1に一定強度を与え、同時に、導体膜30、導体41、金属部材51の銀系粉末を粒成長させて、低抵抗化させるとともに、絶縁層1a〜1eと一体化させるものであり、酸化性雰囲気又は中性雰囲気でピーク温度850〜1050℃で行われる。
【0069】
これにより、絶縁膜10a〜10eは絶縁層1a〜絶縁層1eとなり、導体膜30は内部配線3となり、導体41はビアホール導体4となり、金属部材51はヒートシンク金属部材5となり、表面導体膜は表面配線6となり、回路基板1が達成される。
【0070】
次に、図2(k)に示すように、ヒートシンク金属部材5を被う絶縁層1a上に、厚膜抵抗体膜2を形成する。
【0071】
厚膜抵抗体膜2の対向する両端は、表面配線6の一部に重畳し、且つ厚膜抵抗体膜2の実質的な本体部分はヒートシンク金属部材5を被う絶縁層1aの領域Aに密着している。
【0072】
具体的な形成方法は、例えば酸化ルテニウムなどの抵抗ペーストをスクリーン印刷により所定形状に印刷し、乾燥した後、酸化性雰囲気で焼きつけを行う。
【0073】
最後に、必要に応じて表面配線6や厚膜抵抗体膜2上を保護膜で被ったり、他の電子部品を表面配線6に半田接合を行い、図1に示す積層セラミック回路基板が達成する。
【0074】
以上の説明した製造方法によれば、ヒートシンク金属部材5が、回路基板1を構成する絶縁膜10b〜10e内に金属部材51の充填によって形成される積層セラミック回路基板全体の低背化が達成できる。
【0075】
また、ヒートシンク金属部材5が、基本的には、絶縁膜10b〜10dに形成されるビアホール導体4と同一工程で形成されるため、製造工程の付加なく、簡単に形成できる。しかも、上述の製造方法においては、ビアホール導体4の形状に比較して、非常に大きな形状(厚膜抵抗体膜2の大きさに相当する程度の形状)となるものの、ヒートシンク金属部材5となる金属部材51が、絶縁膜10b〜10eの選択的な露光、現像処理によって形成された貫通凹部50に充填することにより形成されることから、グリーンシート多層のようにペースト抜けが発生することがなく、回路基板1中に所定形状のヒートシンク金属部材5を内装することができる。
【0076】
また、貫通凹部50への金属部材51の充填状況が不十分であっても、その上面から絶縁膜をスリップ材の塗布によって形成し、さらに、その絶縁膜を除去して貫通凹部50を形成し、再度金属部材51の充填することになるため、金属部材51の積層構造が安定し、しかも絶縁膜10aの表面形状が均一な面となることができる。
【0077】
このように、絶縁膜10aの表面が均一な面となることで、表面配線6の形成が簡単、確実に且つ高密度配線化が可能になる。
【0078】
さらに、ヒートシンク金属部材5の内装位置・形状は絶縁膜に選択的な露光・現像処理による貫通凹部50によって決定されるため、絶縁膜の所定位置に、絶縁層1a上に搭載される発熱電子部品の形状に応じた所定形状に簡単に設定できる。
【0079】
尚、上述の実施例では、発熱電子部品として厚膜抵抗体膜2で説明したが、パワートランジスタ、パワーMOS電界効果トンジスタのベアチップなどであっても構わない。ことの場合、ヒートシンク金属部材5が内装された位置に対応して、絶縁層1a上に、エポキシ系、シリコン系などの樹脂接着材を介して直接接合され、さらに、表面配線6にボンディング細線によってボンディング接合される。
【0080】
また、表面配線6の材料として、銀系導体で説明したが、表面配線6の高密度化を考慮して、マイグレーションを発生しにくい銅系材料を用いることができる。
【0081】
この銅系材料で表面配線6を形成する際には、内部配線3やビアホール導体4との接合する部分での、銀と銅との共晶反応を防止するために、780℃以下の低温で焼成可能な銅系導電性ペーストを用いる必要があり、また、焼成においても、銅は酸化し易いため、回路基板1を一旦酸化性又は中性雰囲気で焼成した後、還元性または中性雰囲気で別焼成により行う必要がある。
【0082】
また、厚膜抵抗体膜2の材料も還元性又は中性雰囲気に曝されても、特性が変化しないような材料を用いる必要があり、窒化タンタル、窒化モリブデンなどの窒化物系金属材料、珪化タンタル、珪化モリブデンなどの珪化物系金属材料のペーストが用いられる。
【0083】
また、表面配線に、銀系導体と銅系導体を混在させても構わない。
【0084】
さらに、貫通凹部50に充填する金属部材51が、内部配線3やビアーホル導体4となる導体膜30や導体41と同時に形成されているが、貫通凹部50に充填する金属部材51が、内部配線3やビアーホル導体4となる導体膜30や導体41の材料と異なる場合は、貫通凹部50に金属部材を充填する工程を別工程で行う必要がある。
【0085】
また、絶縁層の積層数は、任意に設定することができ、さらに、ヒートシンク金属部材5の表面側を被う絶縁層も、発熱電子部品からの熱を有効に放出できる場合には2層、3層・・・の多層構造であっても構わない。
【0086】
さらに、上述の実施例では、ヒートシンク金属部材5の裏面側の一端は回路基板の裏面に露出しているが、熱伝導を妨げない程度の薄い絶縁層を回路基板の裏面側に形成しても構わない。
【0087】
【発明の効果】
以上のように本発明によれば、回路基板に、表面側一端が絶縁層に被われたヒートシンク金属部材が内装され、ヒートシンク金属部材上部の絶縁層に発熱電子部品が搭載されていることから、発熱電子部品から発せられる熱が、絶縁層、ヒートシンク金属部材を介して回路基板の外部に有効に放出できるため、熱による誤動作が少ない、信頼性の高い、低背型のセラミック回路基板が達成できる。
【0088】
特に、ヒートシンク金属部材を被う絶縁層が、実質的には回路板の表面に、絶縁層の積層数、内部配線の構造に係わらず、平坦な均一面とすることができるので、表面配線の引き回しの制約がなく、厚膜抵抗体膜、パワートランジスタ、パワーMOS電界効果トンジスタのベアチップなどの発熱電子部品を安定に接続することができ、表面配線の高密度化が可能なセラミック回路基板となる。
【図面の簡単な説明】
【図1】本発明に係るセラミック回路基板の断面図である。
【図2】(a)〜(k)は、本発明のセラミック回路基板の各製造工程の断面図である。
【符号の説明】
1・・・・・・・回路基板
1a〜1e・・・絶縁層
10a〜10e・・・絶縁膜
2・・・・・・・発熱電子部品
3・・・・・・・内部配線
30・・・・・・内部配線となる導体膜
4・・・・・・・ビアホール導体
40・・・・・・ビアホール導体となる貫通凹部
41・・・・・・ビアホール導体となる導体
5・・・・・・・ヒートシンク金属部材
50・・・・・・ヒートシンク金属部材となる貫通凹部
51・・・・・・ヒートシンク金属部材となる金属部材
A・・・・・・・載置領域

Claims (2)

  1. 積層した複数のセラミック層からなるセラミック体内にビアホール導体によって接続された複数の内部配線が配置されたセラミック回路基板であって、
    前記セラミック体に、表面側のセラミック層に覆われたヒートシンク金属部材を内装するとともに、前記ヒートシンク金属部材に対応するセラミック体の上面を、発熱電子部品の載置領域とし、更に、前記セラミック層中に屈伏点が600〜800℃のガラス材料を、前記ヒートシンク金属部材中に屈伏点が700〜800℃のガラス材料をそれぞれ含有させ、前記セラミック体を構成するセラミック層のうち、前記ヒートシンク金属部材を覆うセラミック層の厚みを他のセラミック層の厚みよりも薄くなしたことを特徴とするセラミック回路基板。
  2. 積層した複数のセラミック層からなるセラミック体内にビアホール導体によって接続された複数の内部配線を配置し、前記セラミック体に、表面側のセラミック層に覆われたヒートシンク金属部材を内装して成るセラミック回路基板の製造方法であって、
    光硬化可能なモノマーを含むスリップ材を塗布して前記セラミック層となる絶縁膜を形成する工程Aと、
    前記絶縁膜を選択的に露光することにより前記ヒートシンク部材となる部分以外及び前記ビアホール導体となる部分以外を硬化させた後、該絶縁膜を現像処理することにより、前記ヒートシンク部材及び前記ビアホール導体が配される位置に貫通凹部を形成する工程Bと、
    前記光硬化可能なモノマーを含む導電性ペーストを、前記貫通凹部内及び前記絶縁膜上に印刷した後、露光し硬化させることにより前記ヒートシンク部材となる金属部材、前記ビアホール導体となる導体、並びに前記内部配線となる導体膜を形成する工程Cと、
    前記工程A〜工程Cを複数回行うことにより形成される積層体上に、前記スリップ材を塗布することにより前記セラミック体の表面側のセラミック層となる絶縁膜を形成した後、前記ヒートシンク部材となる金属部材上の領域を含む前記表面側のセラミック層となる絶縁膜を露光し、硬化する工程Dと、
    を含むことを特徴とするセラミック回路基板の製造方法。
JP27153193A 1993-10-29 1993-10-29 セラミック回路基板及びセラミック回路基板の製造方法 Expired - Fee Related JP3677301B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27153193A JP3677301B2 (ja) 1993-10-29 1993-10-29 セラミック回路基板及びセラミック回路基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27153193A JP3677301B2 (ja) 1993-10-29 1993-10-29 セラミック回路基板及びセラミック回路基板の製造方法

Publications (2)

Publication Number Publication Date
JPH07131161A JPH07131161A (ja) 1995-05-19
JP3677301B2 true JP3677301B2 (ja) 2005-07-27

Family

ID=17501366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27153193A Expired - Fee Related JP3677301B2 (ja) 1993-10-29 1993-10-29 セラミック回路基板及びセラミック回路基板の製造方法

Country Status (1)

Country Link
JP (1) JP3677301B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929660B2 (ja) * 1999-10-29 2007-06-13 京セラ株式会社 絶縁性アルミナ質基板およびアルミナ質銅貼回路基板
JP4632653B2 (ja) * 2003-10-24 2011-02-16 京セラ株式会社 多層配線基板
JP4630041B2 (ja) * 2004-11-12 2011-02-09 日本特殊陶業株式会社 配線基板の製造方法
JP3779721B1 (ja) * 2005-07-28 2006-05-31 新神戸電機株式会社 積層回路基板の製造方法
JP2007036172A (ja) * 2005-11-28 2007-02-08 Shin Kobe Electric Mach Co Ltd 積層回路基板
JP2008085212A (ja) * 2006-09-28 2008-04-10 Koa Corp 低温焼成セラミック回路基板
JP2008085213A (ja) * 2006-09-28 2008-04-10 Koa Corp 低温焼成セラミック回路基板
US11382215B2 (en) * 2017-09-28 2022-07-05 Kyocera Corporation Electronic element mounting substrate and electronic device
JPWO2022085715A1 (ja) * 2020-10-22 2022-04-28

Also Published As

Publication number Publication date
JPH07131161A (ja) 1995-05-19

Similar Documents

Publication Publication Date Title
JP3527766B2 (ja) 積層回路基板の製造方法及び積層回路基板
JP3677301B2 (ja) セラミック回路基板及びセラミック回路基板の製造方法
JP3580688B2 (ja) 積層セラミック回路基板の製造方法
JP3231987B2 (ja) 多層セラミック回路基板の製造方法
US5292624A (en) Method for forming a metallurgical interconnection layer package for a multilayer ceramic substrate
JP2003264361A (ja) 回路基板の製造方法
JP3236785B2 (ja) 積層セラミック基板の製造方法
JP3231918B2 (ja) 積層型セラミック回路基板の製造方法
JPH0818236A (ja) 積層セラミック回路基板の製造方法
JP3236769B2 (ja) セラミック基板及びその製造方法並びに分割回路基板
JPH0742165U (ja) 積層回路基板
JP3322961B2 (ja) 半導体モジュールの製造方法
JP3651925B2 (ja) 積層コンデンサ基板の製造方法
JP3559310B2 (ja) 積層セラミック回路基板の製造方法
JP3393676B2 (ja) 多層セラミック回路基板の製造方法
JP3522007B2 (ja) 積層セラミック回路基板の製造方法
JP3526472B2 (ja) 積層セラミック回路基板の製造方法
JP3297532B2 (ja) 積層コンデンサ基板
JP3500244B2 (ja) セラミック基板の製造方法
JPH11112110A (ja) 高周波複合回路基板
JPH0715143A (ja) 多層セラミック回路基板の製造方法
JPH08213755A (ja) コンデンサ内蔵型積層セラミック回路基板及びその製造方法
JPH07122593A (ja) 半導体モジュール
JP3860696B2 (ja) 多層基板の製法
JPH0946044A (ja) 積層セラミック回路基板の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees