JP3605216B2 - 脈拍計 - Google Patents

脈拍計 Download PDF

Info

Publication number
JP3605216B2
JP3605216B2 JP02451096A JP2451096A JP3605216B2 JP 3605216 B2 JP3605216 B2 JP 3605216B2 JP 02451096 A JP02451096 A JP 02451096A JP 2451096 A JP2451096 A JP 2451096A JP 3605216 B2 JP3605216 B2 JP 3605216B2
Authority
JP
Japan
Prior art keywords
pulse
pulse wave
frequency
body motion
extraction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02451096A
Other languages
English (en)
Other versions
JPH08289876A (ja
Inventor
浩二 北澤
求 早川
博之 小田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Seiko Instruments Inc
Original Assignee
Seiko Epson Corp
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Seiko Instruments Inc filed Critical Seiko Epson Corp
Priority to JP02451096A priority Critical patent/JP3605216B2/ja
Priority to US08/602,650 priority patent/US5776070A/en
Priority to EP96301176A priority patent/EP0729726B1/en
Priority to DE69632285T priority patent/DE69632285T2/de
Publication of JPH08289876A publication Critical patent/JPH08289876A/ja
Application granted granted Critical
Publication of JP3605216B2 publication Critical patent/JP3605216B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02422Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation within occluders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Description

【0001】
【発明の属する技術分野】
本発明は、利用者の運動量の管理や健康管理などを行うための脈拍計に関するものである。特に、安静時および運動時のいずれの状態においても、高い精度をもって脈拍数を計測するための信号処理技術に関するものである。
【0002】
【従来の技術】
マラソン中やジョギング中でも脈拍数を計測できれば、利用者の運動量の管理や健康管理(危険防止)を行うことができることから、腕などに装着したまま脈拍数の計測を行うことができる携帯用の脈拍計が案出されている。かかる携帯用の脈拍計では、光学センサなどを用いて脈波信号を計測し、この脈波信号から脈拍に相当する信号を抽出して脈拍数を求めている。但し、ジョギング中に計測した脈波信号には、その体動に起因する信号成分も含まれていることから、そのままでは、脈拍に相当する信号を抽出することができない。
【0003】
そこで、特開昭60−259239号公報に開示されている脈拍計では、図12に示すように、1つの脈拍計に対して、脈波検出用センサ201に加えて、体動検出用センサ203も構成し、これらのセンサで得られた信号のいずれをも、まず、周波数分析器202において周波数分析するようになっている。この周波数分析器202によれば、図13に示すように、脈波検出用センサ201が検出した脈波信号は、波形301で表されるスペクトルに変換され、体動検出用センサ203が検出した体動信号は、波形302で表されるスペクトルに変換される。ここで、波形302は、体動検出用センサ203が検出した信号の周波数分析結果であるから、その基本波成分を表すピークB’は、身体の振動の基本周波数を表している。従って、ピークB’の周波数と、波形301中のピークBの周波数とが一致すれば、波形301中のピークBは身体の振動による波形であると判断できるので、波形301からピークBを除いたピーク、すなわち、ピークAが脈拍に相当する波形であると読みとることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の脈拍計においては、利用者自身が脈波検出用センサ201が検出した信号の周波数分析結果と、体動検出用センサ203が検出した信号の周波数分析結果とを見比べ、自分が運動しているときは、脈波検出用センサ201が検出した信号の周波数分析結果から体動検出用センサ203が検出した信号の周波数分析結果を差し引いて脈拍数を求めなければならない。これに対して、安静にしているときには、利用者は、脈波検出用センサ201が検出した信号の周波数分析結果のみから脈拍数を求めなければならず、その都度、操作する必要があるので、使い勝手が悪い。
【0005】
そこで、このような人手による操作をやめて、これらの処理を自動化することが求められているが、従来の脈拍計には、安静時か運動時かを判断する手段がないため、安静時も運動時と同様の演算処理を行うしかない。その結果、運動時には、脈波検出用センサ201が検出した信号の周波数解析結果から体動検出用センサ203が検出した信号の周波数解析結果を差し引けば、脈拍に相当する周波数を得ることができるが、安静時の脈拍を計測している時には、ノイズの影響によって脈拍数を正しく計測できないという問題が発生する。すなわち、安静時には、体動検出用センサが検出した信号にはノイズ成分しか乗っていないはずであるにもかかわらず、このノイズ成分の周波数が脈拍に相当する周波数と偶然にも一致していると、脈波検出用センサ201が検出した信号の周波数分析結果から体動検出用センサ203が検出した信号の周波数分析結果を差し引いたときに、脈波検出用センサ201が検出した信号の周波数分析結果から脈拍に相当する周波数を差し引いてしまうからである。このため、脈波検出用センサ201が検出した信号の周波数分析結果には、脈拍に相当する周波数成分はなくなってしまい、脈拍数を正確に計測できないという事態が発生する。
【0006】
以上の問題点に鑑みて、本発明の課題は、安静時および運動時のいずれの状態においても、脈拍数を正確に計測することができる脈拍計を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の脈拍計では、脈波検出用センサにより検出された脈波信号に、FFT処理を行ってから周波数分析を行う第一演算手段と、体動検出用センサにより検出された体動信号に、FFT処理を行ってから周波数分析を行う第二演算手段と、前記第一演算手段と前記第二演算手段の周波数分析結果に基づいて脈拍の周波数を抽出する脈波成分抽出手段と、前記体動信号の振幅レベルに応じて前記脈波成分抽出手段の抽出方法を切り替える抽出方法切替手段と、抽出された前記脈拍の周波数を用いて演算された脈拍数を表示する表示手段とを有し、前記抽出方法切替手段は、前記体動信号が検出されないときには、前記第一演算手段の周波数分析結果から脈拍の周波数を抽出する第一の抽出方法行うよう前記脈波成分抽出手段に指令し、前記抽出方法切替手段は、前記体動信号が検出されたときには、前記第一演算手段の周波数分析結果および前記第二演算手段の周波数分析結果の双方に基づいて脈拍の周波数を抽出する第二の抽出方法を前記脈波成分抽出手段に指令することを特徴とする。
【0008】
また、本発明の脈拍計では、脈波検出用センサにより検出された脈波信号に、FFT処理を行ってから周波数分析を行う第一演算手段と、体動検出用センサにより検出された体動信号に、FFT処理を行ってから周波数分析を行う第二演算手段と、前記第一演算手段と前記第二演算手段の周波数分析結果に基づいて脈拍の周波数を抽出する脈波成分抽出手段と、前記第二演算手段によって得られた周波数スペクトルのレベルに応じて脈波成分抽出手段の抽出方法を切り替える抽出方法切替手段と、抽出された前記脈拍の周波数を用いて演算された脈拍数を表示する表示手段とを有し、前記抽出方法切替手段は、前記体動信号が検出されないときには、前記第一演算手段の周波数分析結果から脈拍の周波数を抽出する第一の抽出方法行うよう前記脈波成分抽出手段に指令し、前記抽出方法切替手段は、前記体動信号が検出されたときには、前記第一演算手段の周波数分析結果および前記第二演算手段の周波数分析結果の双方に基づいて脈拍の周波数を抽出する第二の抽出方法を前記脈波成分抽出手段に指令することを特徴とする。
【0009】
さらに、本発明の脈拍計では、脈波検出用センサにより検出された脈波信号に、FFT処理を行ってから周波数分析を行う第一演算手段と、体動検出用センサにより検出された体動信号に、FFT処理を行ってから周波数分析を行う第二演算手段と、前記第一演算手段と前記第二演算手段の周波数分析結果に基づいて脈拍の周波数を抽出する脈波成分抽出手段と、前記第二演算手段によって得られた周波数スペクトルのレベルに応じて脈波成分抽出手段の抽出方法を切り替える抽出方法切替手段と、抽出された前記脈拍の周波数を用いて演算された脈拍数を表示する表示手段とを有し、前記抽出方法切替手段は、利用者の体動が検出されないときには、前記第一演算手段の周波数分析結果から脈拍の周波数を抽出する第一の抽出方法行うよう前記脈波成分抽出手段に指令し、利用者の体動が検出されたときには、前記第一演算手段の周波数分析結果および前記第二演算手段の周波数分析結果の双方に基づいて脈拍の周波数を抽出する第二の抽出方法を前記脈波成分抽出手段に指令することを特徴とする。
【0011】
【発明の実施の形態】
図1は、本発明の脈拍計の代表的構成の一例を示す機能ブロック図である。
【0012】
図1において、脈波検出手段101は、人体や動物などから脈波を検出する脈波検出用センサを備えており、この脈波検出手段101によって検出されたアナログ信号(脈波信号)は、脈波信号変換手段102によってデジタル信号に変換された後、第一演算手段103に出力されるようになっている。第一演算手段103は、脈波信号に対する周波数分析手段を備え、脈波信号変換手段102から出力されたデジタル信号を周波数分析し、その結果を脈波成分抽出手段108に出力するように構成されている。
【0013】
一方、体動検出手段104は、脈拍を計測中の人体や動物などの動きを検出するための体動検出用センサを備えており、この体動検出手段104によって検出されたアナログ信号は、体動信号変換手段105によってデジタル信号に変換された後、第二演算手段106に出力されるようになっている。第二演算手段106は、体動信号に対する周波数分析手段を備え、体動信号変換手段105から出力されたデジタル信号を周波数分析し、その結果を脈波成分抽出手段108に出力するように構成されている。
【0014】
脈波成分抽出手段108は、第一演算手段103及び第二演算手段106の出力信号から脈波の周波数成分を抽出する。ここで、脈波成分抽出手段108は、第一演算手段103の周波数分析結果(図13(a)のスペクトルに相当する。)のみから脈拍の周波数を抽出する第一の抽出方法と、第一演算手段103の周波数分析結果、および第二演算手段106の周波数分析結果(図13(b)のスペクトルに相当する。)の双方に基づいて脈拍の周波数を抽出する第二の抽出方法とを行うように構成されている。
【0015】
脈拍数演算手段109は、脈波成分抽出手段108により抽出された脈波の周波数成分に基づいて、その周波数を脈拍数に換算する。表示手段110は、脈拍数演算手段109により得た脈拍数を表示するように構成されている。
【0016】
本発明の脈拍計の特徴は、抽出方法切替手段107が構成されていることである。この抽出方法切替手段107は、体動信号変換手段105または第二演算手段106の出力信号に基づいて安静時か運動時かを自動的に判定し、この判定結果に基づいて、脈波成分抽出手段108が行うことのできる2つの脈波成分の抽出方法(第一の抽出方法、第二の抽出方法)のうち、適正な抽出方法を脈波成分抽出手段108に行わせるように構成されている。
【0017】
すなわち、抽出方法切替手段107は、安静時か運動時かを自動的に判定するにあたって、運動時と安静時との間では、通常、体動信号のレベルや周波数成分に大きな違いが生じることに基づいてこの違いを自動的に検出することにより、運動時と安静時とで脈波成分の抽出方法を切り替えるように構成されている。
【0018】
この違いを検出するために、本発明者は、
(1)体動信号の振幅レベルから判定する方法
(2)体動信号の周波数スペクトルのレベルから判定する方法
という簡便かつ優れた手法を創案し、この手法を脈波成分の抽出のために巧みに活用することにより本発明に到達したものである。なお、(2)体動信号の周波数スペクトルのレベルから判定する方法には、(a)最大スペクトルのレベル(パワー)から判定する方法と、この判定法を応用した(b)スペクトルのレベル(パワー)のばらつき度合い(各スペクトルのレベルの相対的な比較結果)から判定する方法とがある。
【0019】
以下に、上記の安静時と運動時の判定方法をそれぞれ利用した各実施例に係る脈拍計を説明する。なお、実施例1は、(1)体動信号の振幅レベルから判定する方法を適用した例、実施例2は、(2−a)体動信号の周波数スペクトルのレベル(最大スペクトルのレベル(パワー))から判定する方法を適用した例、実施例3は、(2−b)体動信号の周波数スペクトルのレベル(スペクトルのレベル(パワー)のばらつき度合い)から判定する方法を適用した例である。
【0020】
[実施例1]
(全体構成)
図2は、本例の脈拍計の構成を示す説明図である。
【0021】
図2において、本例の脈拍計1(携帯用脈波計測装置)は、腕時計構造を有する装置本体10と、この装置本体10に接続されるケーブル20と、このケーブル20の先端側に設けられた脈波検出用センサユニット30(脈波信号検出用センサ)とから大略構成されている。ケーブル20の先端側にはコネクタピース80が構成されており、このコネクタピース80は、装置本体10の6時の側に構成されているコネクタ部70に対して着脱自在である。装置本体10には、腕時計における12時方向から腕に巻きついてその6時方向で固定されるリストバンド12が設けられ、このリストバンド12によって、装置本体10は、腕に着脱自在である。脈波検出用センサユニット30は、センサ固定用バンド40によって遮光されながら人差し指の根元に装着されている。このように、脈波検出用センサユニット30を指の根元に装着すると、ケーブル20が短くて済むので、ケーブル20は、ランニング中に邪魔にならない。また、掌から指先までの体温の分布を計測すると、寒いときには、指先の温度が著しく低下するのに対し、指の根元の温度は比較的低下しない。従って、指の根元に脈波検出用センサユニット30を装着すれば、寒い日に屋外でランニングしたときでも、脈拍数などを正確に計測できる。
【0022】
(装置本体の構成)
図3は、本例の脈拍計の装置本体をリストバンドやケーブルなどを外した状態で示す平面図、図4は、本例の脈拍計を3時の方向からみた側面図である。
【0023】
図3において、装置本体10は、樹脂製の時計ケース11(本体ケース)を備えており、この時計ケース11の表面側には、現在時刻や日付に加えて、走行時や歩行時のピッチ、及び脈拍数などの脈波情報などを表示するELバックライト付きの液晶表示装置13が構成されている。液晶表示装置13には、表示面の左上側に位置する第1のセグメント表示領域131、右上側に位置する第2のセグメント表示領域132、右下側に位置する第3のセグメント表示領域133、及び左下側に位置するドット表示領域134が構成されており、ドット表示領域134では、各種の情報をグラフィック表示可能である。
【0024】
時計ケース11の内部には、脈波検出用センサユニット30が計測した脈波信号(状態信号)に基づいて脈拍数の変化などを求めるとともに、それを液晶表示装置13で表示するために、各種の制御やデータ処理を行うマイクロコンピュータからなる制御部5が構成されている。制御部5には、計時回路も構成されているため、通常時刻、ラップタイム、スプリットタイムなども液晶表示装置13に表示可能である。
【0025】
時計ケース11の外周部には、時刻合わせや表示モードの切換などの外部操作を行うためのボタンスイッチ111〜115が構成されている。また、時計ケースの表面には、大きめのボタンスイッチ116、117が構成されている。
【0026】
脈拍計1には、時計ケース11に内蔵されているボタン形の小型の電池59を搭載してあり、ケーブル20は、電池59から脈波検出用センサユニット30に電力を供給するとともに、脈波検出用センサユニット30の検出結果を時計ケース11の制御部5に入力している。
【0027】
装置本体10には、加速度センサ91を利用して、体の動きを体動信号として検出する体動検出用センサ装置90(体動検出用センサ)も内蔵されている。
【0028】
脈拍計1では、その機能を増やすにともなって、装置本体10を大型化する必要があるが、装置本体10には、腕に装着されるという制約があるため、装置本体10を腕時計における6時及び12時の方向に向けては拡大できない。そこで、装置本体10には、3時及び9時の方向における長さ寸法が6時及び12時の方向における長さ寸法よりも長い横長の時計ケース11を用いてある。但し、リストバンド12は、3時の方向側に偏った位置で接続しているため、リストバンド12からみると、腕時計における9時の方向に大きな張出部分101を有するが、かかる大きな張出部分は3時の方向にはない。従って、横長の時計ケース11を用いたわりには、手首を自由に曲げることができ、また、転んでも手の甲を時計ケース11にぶつけることがない。
【0029】
時計ケース11の内部において、電池59に対して9時の方向には、ブザー用の偏平な圧電素子58が配置されている。電池59は、圧電素子58に比較して重いため、装置本体10の重心位置は、3時の方向に偏った位置にある。この重心が偏っている側にリストバンド12が接続しているので、装置本体10を腕に安定した状態で装着できる。また、電池59と圧電素子58とを面方向に配置してあるため、装置本体10を薄型化できるとともに、図4に示すように、裏面部119に電池蓋118を設けることによって、ユーザーは、電池59を簡単に交換できる。
【0030】
(装置本体の腕への装着構造)
図4において、時計ケース11の12時の方向には、リストバンド12の端部に取り付けられた止め軸121を保持するための連結部105が形成されている。時計ケース11の6時の方向には、腕に巻かれたリストバンド12が長さ方向の途中位置で折り返されるとともに、この途中位置を保持するための留め具122が取り付けられる受け部106が形成されている。
【0031】
装置本体10の6時の方向において、裏面部119から受け部106に至る部分は、時計ケース11と一体に成形されて裏面部119に対して約115°の角度をなす回転止め部108になっている。すなわち、リストバンド12によって装置本体10を左の手首L(腕)の上面部L1(手の甲の側)に位置するように装着したとき、時計ケース11の裏面部119は、手首Lの上面部L1に密着する一方、回転止め部108は、橈骨Rのある側面部L2に当接する。この状態で、装置本体10の裏面部119は、橈骨Rと尺骨Uを跨ぐ感じにある一方、回転止め部108と裏面部119との屈曲部分109から回転止め部108にかけては、橈骨Rに当接する感じになる。このように、回転止め部108と裏面部119とは、約115°という解剖学的に理想的な角度をなしているため、装置本体10を矢印Aまたは矢印Bの方向に回そうとしても、装置本体10は、腕Lの周りを不必要にずれない。また、裏面部119及び回転止め部108によって腕の回りの片側2ヵ所で装置本体10の回転を規制するだけであるため、腕が細くても、裏面部119及び回転止め部108は確実に腕に接するので、回転止め効果が確実に得られる一方、腕が太くても窮屈な感じがない。
【0032】
(脈波検出用センサユニットの構成)
図5は、本例の脈波検出用センサユニットの断面図である。
【0033】
図5において、脈波検出用センサユニット30は、そのケース体としてのセンサ枠36の裏側に裏蓋302が被されることによって、内側に部品収納空間300が構成されている。部品収納空間300の内部には、回路基板35が配置されている。回路基板35には、LED31、フォトトランジスタ32、その他の電子部品が実装されている。脈波検出用センサユニット30には、ブッシュ393によってケーブル20の端部が固定され、ケーブル20の各配線は、各回路基板35のパターン上にはんだ付けされている。ここで、脈波検出用センサユニット30は、ケーブル20が指の根元側から装置本体10の側に引き出されるようにして指に取り付けられる。従って、LED31及びフォトトランジスタ32は、指の長さ方向に沿って配列されることになり、そのうち、LED31は指の先端側に位置し、フォトトランジスタ32は指の根元の方に位置する。このように配置すると、外光がフォトトランジスタ32に届きにくいという効果がある。
【0034】
脈波検出用センサユニット30では、センサ枠36の上面部分にガラス板からなる透光板34によって光透過窓が形成され、この透光板34に対して、LED31及びフォトトランジスタ32は、それぞれ発光面及び受光面を透光板34の方に向けている。このため、透光板34の外側表面341に指表面を密着させると、LED31は、指表面の側に向けて光を発するとともに、フォトトランジスタ32は、LED31が発した光のうち指の側から反射してくる光を受光可能である。ここで、透光板34の外側表面341は、指表面との密着性を高める目的に、周囲部分361から突出している構造になっている。
【0035】
本例では、LED31として、InGaN系(インジウム−ガリウム−窒素系)の青色LEDを用いてあり、その発光スペクトルは、450nmに発光ピークを有し、その発光波長領域は、350nmから600nmまでの範囲にある。かかる発光特性を有するLED31に対応させて、本例では、フォトトランジスタ32として、GaAsP系(ガリウム−砒素−リン系)のフォトトランジスタを用いてあり、その素子自身の受光波長領域は、主要感度領域が300nmから600nmまでの範囲にあって、300nm以下にも感度領域がある。
【0036】
このように構成した脈波検出用センサユニット30を、センサ固定用バンド40によって指の根元に装着し、この状態で、LED31から指に向けて光を照射すると、この光が血管に届いて血液中のヘモグロビンによって光の一部が吸収され、一部が反射する。指(血管)から反射してきた光は、フォトトランジスタ32によって受光され、その受光量変化が血量変化(血液の脈波)に対応する。すなわち、血量が多いときには、反射光が弱くなる一方、血量が少なくなると、反射光が強くなるので、反射光強度の変化を脈波信号として光学的に検出すれば、の検出結果から脈拍数などを計測できる。
【0037】
本例では、発光波長領域が350nmから600nmまでの範囲にあるLED31と、受光波長領域が300nmから600nmまでの範囲のフォトトランジスタ32とを用いてあり、その重なり領域である約300nmから約600nmまでの波長領域、すなわち、約700nm以下の波長領域における検出結果に基づいて生体情報を表示する。かかる脈波検出用センサユニット30を用いれば、外光が指の露出部分にあたっても、外光に含まれる光のうち波長領域が700nm以下の光は、指を導光体としてフォトトランジスタ32(受光部)にまで到達しない。その理由は、外光に含まれる波長領域が700nm以下の光は、指を透過しにくい傾向にあるため、外光がセンサ固定用バンド40で覆われていない指の部分に照射されても、指を通ってフォトトランジスタ32まで届かないからである。これに対し、880nm付近に発光ピークを有するLEDと、シリコン系のフォトトランジスタとを用いると、その受光波長範囲は、350nmから1200nmまでの範囲に及ぶ。この場合には、指を導光体として受光部にまで容易に届いてしまうような1μmの波長の光による検出結果に基づいて脈波を検出することになるので、外光の変動に起因する誤検出が起こりやすい。
【0038】
また、約700nm以下の波長領域の光を利用して、脈波情報を得ているので、血量変化に基づく脈波信号のS/N比が高い。その理由として、血液中のヘモグロビンは、波長が300nmから700nmまでの光に対する吸光係数が、従来の検出光である波長が880nmの光に対する吸光係数に比して数倍〜約100倍以上大きいため、血量変化に感度よく変化するので、血量変化に基づく脈波の検出率(S/N比)が高いからと考えられる。
【0039】
(制御部の構成)
図6は、本例の脈拍計の構成を示す機能ブロック図である。
【0040】
図6において、脈波検出用センサユニット30(脈波検出用センサ)は、生体から脈波を検出し、検出した脈波信号(アナログ信号)を脈波信号増幅回路402に出力する。体動検出用センサ装置90は、脈拍を計測中の利用者の動きを検出し、検出した体動信号(アナログ信号)を体動信号増幅回路406に出力する。
【0041】
脈波検出用センサユニット30は、前記のとおり、フォトトランジスタ32とLED31と組み合わせたものを使用する。すなわち、生体にLED31の光を照射し、フォトトランジスタ32によって生体からの反射光(もしくは透過光)を検出するものである。また、体動検出用センサ装置90(体動検出用センサ)としては、加速度センサを用いる。
【0042】
脈波信号増幅回路402は、脈波信号を増幅し、脈波信号用A/D変換器403に出力する。脈波信号用A/D変換器403は、脈波信号をA/D変換し、脈波信号用FFT回路404(図1における第一演算手段103に相当する。)に出力する。脈波信号用FFT回路404は、脈波信号用A/D変換器403の出力信号にFFT処理(高速フ−リエ変換)を行い、その周波数分析結果(図13(a)のスペクトルに相当する。)を脈波成分抽出手段410に出力する。
【0043】
一方、体動信号増幅回路406は、体動信号を増幅し、体動信号用A/D変換器407に出力する。体動信号用A/D変換器407は、体動信号をA/D変換し、体動信号用FFT回路408(図1における第二演算手段106に相当する。)に出力する。体動信号用FFT回路408は、体動信号用A/D変換器407の出力信号にFFT処理(高速フ−リエ変換)を行い、その周波数分析結果(図13(b)のスペクトルに相当する。)を脈波成分抽出手段410に出力する。
【0044】
脈波成分抽出手段410は、脈波信号用FFT回路404での周波数分析結果のみから脈拍に相当する周波数を抽出し、その結果を脈拍数演算手段411に出力する(第一の抽出方法)。また、脈波成分抽出手段410は、脈波信号用FFT回路404での周波数分析結果と、体動信号用FFT回路408での周波数分析結果とを比較し、脈波信号用FFT回路404の周波数成分から、体動信号用FFT回路408で得られた体動の周波数成分を差し引いて、脈拍に相当する周波数を抽出した結果を脈拍数演算手段411に出力することも可能である(第二の抽出方法)。
【0045】
抽出方法切替手段409Aは、体動信号用A/D変換器407で得られた信号に基づいて、利用者が安静状態にあるのか運動状態にあるのかを判断し、この判断に基づいて、脈波成分抽出手段410に対して、第一の抽出方法を行うべきか、第二の抽出方法を行うべきかを指令する。すなわち、抽出方法切替手段409Aは、利用者が安静状態にあると判断したときには、脈波信号用FFT回路404で得られた脈波の周波数成分から脈拍に相当する周波数を抽出する第一の抽出方法を行うべきと脈波成分抽出手段410に指令する。これに対して、抽出方法切替手段409Aは、利用者が運動状態にあると判断したときには、脈波信号用FFT回路404で得られた脈波の周波数成分から体動信号用FFT回路408で得られた体動の周波数成分を取り除いて脈拍に相当する周波数を抽出する第二の抽出方法を行うべきと脈波成分抽出手段410に指令する。
【0046】
脈拍数演算手段411は、脈波成分抽出手段410で得られた周波数を脈拍数に変換し、表示部412に出力する。表示部412は、脈拍数演算手段411で得られた脈拍数を液晶表示装置13に表示する。
【0047】
本例では、脈波成分抽出手段410、抽出方法切替手段409A、および脈拍数演算手段411は、いずれも、予め格納されているプログラムで動作するマイクロコンピュータによって構成されている。
【0048】
(信号処理の内容)
図7は、体動信号の周波数を求めてから、脈波の抽出方法を決定し、しかる後に、脈波を求めるまでの手順を示すフローチャートである。
【0049】
図6及び図7において、脈波成分抽出手段410は、体動信号用FFT回路408の出力信号により体動スペクトルの内で最大のものを体動周波数成分として特定する(ステップS601)。
【0050】
抽出方法切替手段409Aは、体動信号用A/D変換器407で得られたFFT回路408で処理するデータ群のうちで最大のレベルのものを抽出する(ステップS602)。そして、抽出された値がある一定値A1以上であるか、一定値A1未満であるかによって、脈波成分抽出手段410で行うべき抽出方法を切り替える(ステップS603)。ここで、一定値A1は、脈波成分抽出手段410の動作を制御する重要なしきい値であって、運動時であるか安静時であるかを判断する基準となるものである。
【0051】
ステップS603において、一定値A1以上であった場合(運動時)は、以下の手順に従って、第二の抽出方法により脈波成分を抽出する。まず、ステップS601で特定された体動周波数成分をfmとし、fmの1/2の周波数に、ある一定値TH以上の体動成分があるかどうかチェックする(ステップS604)。一定値TH以上の体動成分がある場合、fmは、第2高調波と特定する(ステップS605)。無い場合は、fmの1/3の周波数に、ある一定値TH以上の体動成分があるかどうかチェックする(ステップS606)。一定値TH以上の体動成分がある場合は、fmは、第三高調波と特定する(ステップS607)。無かった場合は、fmを基本波と特定する(ステップS608)。
【0052】
これらの処理によって、特定されたfmが何番目(変数HMCで規定されている。)の高調波であるかを求め、ステップS609で基本波を求めるためにfmを除する数値(変数HMC)を決定する。そこで、ステップS609では、体動の基本波を求める。
【0053】
次のステップS610からステップS613までにおいては、脈波の周波数分析結果の大きな線スペクトル順にその周波数と体動周波数と比較を行い、その周波数が体動信号の基本波、第二高調波、第三高調波と一致するかどうかをチェックする(ステップS610、ステップS611、ステップS612、ステップS613)。すなわち、脈波検出用センサユニット30によって検出された脈波信号を周波数分析した結果と、体動検出用センサ装置90によって検出された体動信号を周波数分析した結果との間で、互いに重なる周波数があるかどうかを判定するものである。
【0054】
まず、ステップS611においては体動周波数の基本波との比較を行い、ステップS612においては体動周波数の第2高調波との比較を行い、ステップS613においては体動周波数の第3高調波との比較を行う。これを、検出されたすべての脈波の周波数成分について繰り返し行い、もし一致する周波数が存在する場合は、この周波数成分を除去する。ただし、脈波の周波数成分のうち最大のレベルを有する周波数成分のみを用いて判定しても良い。これは、脈波の基本波のレベルが、通常一番大きいからである。この処理を行うことで、ステップS614において、体動成分と一致しない最大の脈波周波数成分fnを抽出することができる。
【0055】
一方、ステップS603で体動信号をA/D変換した後の最大のA/D変換値がある一定値A1未満であった場合(安静時)は、脈波信号用FFT回路404の出力信号より、脈波スペクトルの内で最大のものを脈波周波数成分fnとする(ステップS615)。以上の抽出方法は、脈波成分抽出手段410が安静時に行う第一の抽出方法である。
【0056】
(実施例1の主な効果)
このように、抽出方法切替手段409Aは、体動信号の振幅レベルに基づいて安静時か運動時かを自動的に判定し、この判定結果に基づいて、脈波成分抽出手段410が行うべき脈波成分の抽出方法を適正な方法に自動的に切り換える。従って、体動信号用FFT回路408の周波数分析結果にノイズの周波数成分が現れ、このノイズの周波数成分と脈波の周波数成分とが偶然に一致していた場合でも、体動信号をA/D変換した後の最大のA/D変換値が、ステップS603での判断で一定値A1以上でないと判断されれば、ステップS615の処理(第一の抽出方法)を行う。それ故、本例の脈拍計1によれば、安静時および運動時のいずれの時でも、体動信号のノイズの影響を受けずに、脈拍数を正確に計測できる。
【0057】
本例では、体動信号用A/D変換器407で得られたデータ群のうちで最大のレベルのものが一定値A1以上であるか、一定値A1未満であるかによって、運動時であるか安静時であるかを判断しており、かかるしきい値は、一般的に、利用者(被験体)によっても、あるいは同一の利用者(被験体)の運動状態によっても様々に変化する。従って、この値A1は実験によって決めることが望ましい。たとえば、体動検出用センサ装置90において、利用者の運動状態(加速度G)と、加速度センサ91からの出力との関係は、図8に示すように、略直線の関係にあり、加速度1Gは、加速度センサ91からの出力としては8mVに相当する。従って、図8において、加速度のレベル(横軸)を安静時、微弱運動時、および運動時に大きく区分したときに、微弱運動時と運動時とを明確に判別できる出力電圧をしきい値となるべき値A1とすることになる。すなわち、この測定系では、7.2mVをしきい値A1とすれば、加速度センサ91からの出力が7.2mV以上であれば運動時であると判断でき、加速度センサ91からの出力が7.2mV未満であれば安静時であると確実に判断できる。
【0058】
なお、しきい値A1は、各脈拍計毎に固有の値として設定してもよく、あるいは、操作者などによって任意に設定できるようにしてもよい。
【0059】
[実施例2]
図9は、本例の脈拍計の構成を示す機能ブロック図である。なお、本例の脈拍計は、基本的な構造が実施例1に係る脈拍計と同じであるため、装置本体の構造などについての説明は省略し、その制御部の構成についてのみ説明する。また、制御部の構成についても、実施例1と共通する部分には同じ符号を付して、それらの詳細な説明を省略する。
【0060】
図9からわかるように、本例の脈拍計でも、脈波検出用センサユニット30、脈波信号増幅回路402、脈波信号用A/D変換器403、脈波信号用FFT回路404、体動検出用センサ装置90、体動信号増幅回路406、体動信号用A/D変換器407、体動信号用FFT回路408、脈拍数演算手段411、および表示部412が構成され、これらの構成要素は、上述した実施例1の脈拍計と同様である。
【0061】
本例でも、脈波成分抽出手段410は、脈波信号用FFT回路404での周波数分析結果(図13(a)のスペクトルに相当する。)から脈拍に相当する周波数を抽出し、その結果を脈拍数演算手段411に出力する(第一の抽出方法)。また、脈波成分抽出手段410は、脈波信号用FFT回路404での周波数分析結果と、体動信号用FFT回路408での周波数分析結果(図13(b)のスペクトルに相当する。)とを比較し、脈波信号用FFT回路404の周波数成分から、体動信号用FFT回路408で得られた体動の周波数成分を差し引いて、脈拍に相当する周波数を抽出した結果を脈拍数演算手段411に出力することも可能である(第二の抽出方法)。
【0062】
本例では、抽出方法切替手段409Bは、体動信号用FFT回路408で得られた体動信号の周波数分析結果(スペクトル)の基線スペクトルに基づいて、利用者が安静状態にあるのか運動状態にあるのかを判断し、この判断に基づいて、脈波成分抽出手段410に対して、第一の抽出方法を行うべきか、第二の抽出方法を行うべきかを指令する。すなわち、抽出方法切替手段409Bは、利用者が安静状態にあると判断したときには、脈波信号用FFT回路404で得られた脈波の周波数成分から脈拍に相当する周波数を抽出する第一の抽出方法を行うべきと脈波成分抽出手段410に指令する。これに対して、抽出方法切替手段409Bは、利用者が運動状態にあると判断したときには、脈波信号用FFT回路404で得られた脈波の周波数成分から体動信号用FFT回路408で得られた体動の周波数成分を取り除いて脈拍に相当する周波数を抽出する第二の抽出方法を行うべきと脈波成分抽出手段410に指令する。
【0063】
図10は、体動信号の周波数と基線スペクトルのパワー(レベル)を求めた以降、脈波の抽出方法を決定し、しかる後に、脈波を求めるまでの手順を示すフローチャートである。
【0064】
図9及び図10において、まず、脈波成分抽出手段410は、体動信号用FFT回路408の周波数分析結果から体動スペクトルの内で最大のものを体動周波数成分として特定する(ステップS701)。
【0065】
抽出方法切替手段409Bは、体動周波数成分の基線スペクトルのパワーを求める(ステップS702)。そして、この基線スペクトルのパワーがある一定値A2以上であるか、未満であるかにより、抽出方法を切り替える(ステップS703)。ここで、一定値A2は、上述した実施例1において一定値A1を求めるのと同様、実験結果から求めることができる。
【0066】
ステップS703において、基線スペクトルのパワーが一定値A2以上であった場合(運動時)は、以下の手順に従って、第二の抽出方法により脈波成分を抽出する。まず、ステップS701で特定された体動周波数成分をfmとし、fmの1/2の周波数にある一定値TH以上の体動成分があるかどうかチェックする(ステップS704)。一定値TH以上の体動成分がある場合、fmは、第2高調波と特定する(ステップS705)。無い場合は、fmの1/3の周波数に、ある一定値TH以上の体動成分があるかどうかチェックする(ステップS706)。一定値TH以上の体動成分がある場合は、fmは、第三高調波と特定する(ステップS707)。無かった場合は、fmを基本波と特定する(ステップS708)。
【0067】
これらの処理によって、特定されたfmが何番目(変数HMCで規定されている。)の高調波であるかを求め、ステップS709で基本波を求めるためにfmを除する数値(変数HMC)を決定する。そこで、ステップS709では、体動の基本波を求める。
【0068】
次のステップS710からステップS713においては、脈波の周波数分析結果の大きな線スペクトル順にその周波数と体動周波数と比較を行い、その周波数が体動信号の基本波、第二高調波、第三高調波と一致するかどうかをチェックする(ステップS710、ステップS711、ステップS712、ステップS713)。この処理を行うことで、ステップS714において、体動成分と一致しない最大の脈波周波数成分fnを抽出することができる。
【0069】
一方、ステップS703で体動周波数成分の基線スペクトルのパワーがある一定値A2未満であった場合(安静時)は、脈波信号用FFT回路404の出力信号より、脈波スペクトルの内で最大のものを脈波周波数成分fnとする(ステップS715)。この抽出方法は、脈波成分抽出手段410が安静時に行う第一の抽出方法である。
【0070】
このように、本例では、抽出方法切替手段409Bは、体動信号の周波数スペクトルのうち、最大スペクトルのレベル(パワー)に基づいて安静時か運動時かを自動的に判定し、この判定結果に基づいて、脈波成分抽出手段410が行う脈波成分の抽出方法を適正な方に自動的に切り換える。従って、体動信号用FFT回路408の周波数分析結果にノイズの周波数成分が現れ、このノイズの周波数成分が脈波周波数成分と偶然に一致していた場合でも、ノイズの周波数成分の基線スペクトルのパワーが、ステップS703で設定したある一定値A2以上でないと判断されれば、ステップS715の処理(第一の抽出方法)を行う。それ故、本例の脈拍計1によれば、安静時および運動時のいずれの時でも、体動信号のノイズの影響を受けずに、脈拍数を正確に計測できる。
【0071】
[実施例3]
本例の脈拍計は、基本的な構造が実施例1に係る脈拍計と同じであるため、装置本体の構造などについての説明は省略し、その制御部の構成についてのみ説明する。また、制御部の基本的な構成は、実施例2に係る脈拍計の制御部の構成と同じであるため、同じく、図9を参照して簡単に説明する。
【0072】
図9において、本例の脈拍計の制御部でも、脈波検出用センサユニット30、脈波信号増幅回路402、脈波信号用A/D変換器403、脈波信号用FFT回路404、脈波成分抽出手段410、体動検出用センサ装置90、体動信号増幅回路406、体動信号用A/D変換器407、体動信号用FFT回路408、脈拍数演算手段411、表示部412が構成され、これらの構成要素は、上述した実施例1、2の脈拍計と同様である。
【0073】
但し、本例の脈拍計において、抽出方法切替手段409Cは、体動信号用FFT回路408によって得られた複数の周波数スペクトルのレベルのばらつき度合いに基づいて、利用者が安静時であるか運動時であるかを判断し、この判断結果に基づいて、脈波成分抽出手段410の抽出方法を第一の抽出方法と第二の抽出方法との間で切り替えるように構成されている。すなわち、抽出方法切替手段409Cは、利用者が安静状態にあると判断したときには、脈波信号用FFT回路404で得られた脈波の周波数成分から脈拍に相当する周波数を抽出する第一の抽出方法を行うべきと脈波成分抽出手段410に指令する。これに対して、抽出方法切替手段409Cは、利用者が運動状態にあると判断したときには、脈波信号用FFT回路404で得られた脈波の周波数成分から体動信号用FFT回路408で得られた体動の周波数成分を取り除いて脈拍に相当する周波数を抽出する第二の抽出方法を行うべきと脈波成分抽出手段410に指令する。
【0074】
かかる処理方法を、図11を参照して説明する。図11は、体動信号の周波数と基線スペクトルのパワー(レベル)を求めた以降、脈波の抽出方法を決定し、しかる後に、脈波を求めるまでの手順を示すフローチャートである。
【0075】
図9及び図11において、脈波成分抽出手段410は、体動信号用FFT回路408の出力信号により体動スペクトルの内で最大のものを体動周波数成分として特定する(ステップS801)。抽出方法切替手段409Cは、得られた体動周波数成分の基線スペクトルのパワーP1を求める(ステップS802)。
【0076】
次に、体動信号のFFT処理結果から最大の基線スペクトルの周波数以外の全基線スペクトルのパワーの和P2を求める(ステップS803)。また、式(B=P1/P2)に基づいて値Bを求める(ステップS804)。ここで、値Bは、最大の基線スペクトルの周波数以外の全基線スペクトルのパワーの和P2に対する最大の体動周波数成分のパワーの割合(相対的な比較結果)を示す数値である。すなわち、はっきりとした体動がある場合(運動時)は、最大の基線スペクトルのパワーP1が大きくなって、結果的に値Bも大きくなるが、体動が小さい場合は最大の基線スペクトルのパワーP1と、最大の基線スペクトルの周波数以外の基線スペクトルのパワーが似たような値となることが多く、結果的に値Bは小さくなる。従って、ここで求めた値Bは、体動信号用FFT回路408に体動の周波数が現れているときは大きくなり、ノイズ成分ばかりのときは小さい値となる。
【0077】
次に、ステップS804で求めた値Bがある一定値A3以上であるか、一定値A3未満であるかによって、抽出方法を切り替える(ステップS805)。
【0078】
ステップS805において、一定値A3以上であった場合(運動時)は、以下の手順に従って、第二の抽出方法により脈波成分を抽出する。まず、ステップS803で特定された体動周波数成分をfmとし、fmの1/2の周波数にある一定値TH以上の体動成分があるかどうかチェックする(ステップS806)。一定値TH以上の体動成分がある場合、fmは、第2高調波と特定する(ステップS807)。無い場合は、fmの1/3の周波数に、ある一定値TH以上の体動成分があるかどうかチェックする(ステップS808)。一定値TH以上の体動成分がある場合は、fmは、第三高調波と特定する(ステップS809)。無かった場合は、fmを基本波と特定する(ステップS810)。
【0079】
これらの処理によって、特定されたfmが何番目(変数HMCで規定されている。)の高調波であるかを求め、ステップS811で基本波を求めるためにfmを除する数値(変数HMC)を決定する。そこで、ステップS811では、体動の基本波を求める。
【0080】
次のステップS812からステップS815においては、脈波の周波数分析結果の大きな線スペクトル順にその周波数と体動周波数と比較を行い、その周波数が体動信号の基本波、第二高調波、第三高調波と一致するかどうかをチェックする(ステップS812、ステップS813、ステップS814、ステップS815)。この処理を行うことで、ステップS816において、体動成分と一致しない最大の脈波周波数成分fnを抽出することができる。
【0081】
一方、ステップS805で体動周波数成分の基線スペクトルのパワーがある一定値A3未満であった場合は、脈波信号用FFT回路404の出力信号より、脈波スペクトルの内で最大のものを脈波周波数成分fnとする(ステップS817)。この抽出方法は、脈波成分抽出手段410が安静時に行う第一の抽出方法である。
【0082】
このように、本例では、抽出方法切替手段409Cは、体動信号の周波数スペクトルにおいて、スペクトルのレベル(パワー)のばらつき度合いに基づいて安静時か運動時かを自動的に判定し、この判定結果に基づいて、脈波成分抽出手段410が行う脈波成分の抽出方法を適正な方に自動的に切り換える。従って、体動信号用FFT回路408の周波数分析結果にノイズの周波数成分が現れ、このノイズの周波数成分が脈波周波数成分と偶然に一致していた場合でも、ノイズの周波数成分の基線スペクトルのパワーばらつきが、ステップS805で設定したある一定値A3以上でなければ、脈波成分抽出手段410は、ステップS817の処理(第一の抽出方法)を行う。それ故、本例の脈拍計1によれば、安静時および運動時のいずれの時でも、体動信号のノイズの影響を受けずに、脈拍数を正確に計測できる。
【0083】
【発明の効果】
以上説明したように、本発明に係る脈拍計では、抽出方法切替手段は、体動信号に基づいて安静時か運動時かを自動的に判別し、かつ、この判別結果に基づいて、脈波成分抽出手段が行う脈波成分の抽出方法を適正な方法を自動的に切り替えることに特徴を有する。従って、本発明に係る脈拍計によれば、安静時および運動時のいずれの時でも、体動信号のノイズの影響を受けずに、脈拍数を正確に計測できる。
【図面の簡単な説明】
【図1】本発明に係る脈拍計の代表的な構成を示す機能ブロック図である。
【図2】本発明の実施例に係る腕装着型脈波計測装置の全体構成、及び使用状態を示す説明図である。
【図3】図2に示す腕装着型脈波計測装置の装置本体の平面図である。
【図4】図2に示す腕装着型脈波計測装置の装置本体を腕時計の3時の方向からみたときの説明図である。
【図5】図2に示す腕装着型脈波計測装置に用いたセンサユニットの断面図である。
【図6】本発明の実施例1に係る脈拍計の機能ブロック図である。
【図7】本発明の実施例1に係る脈拍計における抽出方法切替手段の動作概要を示すフローチャートである。
【図8】本発明の実施例1に係る脈拍計を装着した利用者の状態(加速度G)と、利用者が安静時か運動時かを判断するためのしきい値となるべき加速度センサの出力との関係を示すグラフである。
【図9】本発明の実施例2、3に係る脈拍計の機能ブロック図である。
【図10】本発明の実施例2に係る脈拍計における抽出方法切替手段の動作概要を示すフローチャートである。
【図11】本発明の実施例3に係る脈拍計における抽出方法切替手段の動作概要を示すフローチャートである。
【図12】従来の脈拍計の構成を示す機能ブロック図である。
【図13】脈波の抽出動作の概要を示す説明図である。
【符号の説明】
1・・・脈拍計
5・・・制御部
10・・・装置本体
13・・・液晶表示装置(表示部)
30・・・脈波検出用センサユニット(脈波検出用センサ)
31・・・LED
32・・・フォトトランジスタ
90・・・体動検出用センサ装置(体動検出用センサ)
101・・・脈波検出手段
102・・・脈波信号変換手段
103・・・第一演算手段
104・・・体動検出手段
105・・・体動信号変換手段
106・・・第二演算手段
107、409A、409B、409C・・・抽出方法切替手段
108、410・・・脈波成分抽出手段
109、411・・・脈拍数演算手段
110・・・表示手段
402・・・脈波信号増幅回路
403・・・脈波信号用A/D変換器
404・・・脈波信号用FFT回路(第一演算手段)
406・・・体動信号増幅回路
407・・・体動信号用A/D変換器
408・・・体動信号用FFT回路(第二演算手段)
412・・・表示部

Claims (3)

  1. 脈波検出用センサにより検出された脈波信号に、FFT処理を行ってから周波数分析を行う第一演算手段と、
    体動検出用センサにより検出された体動信号に、FFT処理を行ってから周波数分析を行う第二演算手段と、
    前記第一演算手段と前記第二演算手段の周波数分析結果に基づいて脈拍の周波数を抽出する脈波成分抽出手段と、
    前記体動信号の振幅レベルに応じて前記脈波成分抽出手段の抽出方法を切り替える抽出方法切替手段と、
    抽出された前記脈拍の周波数を用いて演算された脈拍数を表示する表示手段とを有し、
    前記抽出方法切替手段は、前記体動信号が検出されないときには、前記第一演算手段の周波数分析結果から脈拍の周波数を抽出する第一の抽出方法行うよう前記脈波成分抽出手段に指令し、
    前記抽出方法切替手段は、前記体動信号が検出されたときには、前記第一演算手段の周波数分析結果および前記第二演算手段の周波数分析結果の双方に基づいて脈拍の周波数を抽出する第二の抽出方法を前記脈波成分抽出手段に指令する
    ことを特徴とする脈拍計。
  2. 脈波検出用センサにより検出された脈波信号に、FFT処理を行ってから周波数分析を行う第一演算手段と、
    体動検出用センサにより検出された体動信号に、FFT処理を行ってから周波数分析を行う第二演算手段と、
    前記第一演算手段と前記第二演算手段の周波数分析結果に基づいて脈拍の周波数を抽出する脈波成分抽出手段と、
    前記第二演算手段によって得られた周波数スペクトルのレベルに応じて脈波成分抽出手段の抽出方法を切り替える抽出方法切替手段と、抽出された前記脈拍の周波数を用いて演算された脈拍数を表示する表示手段とを有し、
    前記抽出方法切替手段は、前記体動信号が検出されないときには、前記第一演算手段の周波数分析結果から脈拍の周波数を抽出する第一の抽出方法行うよう前記脈波成分抽出手段に指令し、
    前記抽出方法切替手段は、前記体動信号が検出されたときには、前記第一演算手段の周波数分析結果および前記第二演算手段の周波数分析結果の双方に基づいて脈拍の周波数を抽出する第二の抽出方法を前記脈波成分抽出手段に指令する
    ことを特徴とする脈拍計。
  3. 脈波検出用センサにより検出された脈波信号に、FFT処理を行ってから周波数分析を行う第一演算手段と、
    体動検出用センサにより検出された体動信号に、FFT処理を行ってから周波数分析を行う第二演算手段と、
    前記第一演算手段と前記第二演算手段の周波数分析結果に基づいて脈拍の周波数を抽出する脈波成分抽出手段と、
    前記第二演算手段によって得られた複数の周波数スペクトルのレベルの相対的な比較結果に応じて前記脈波成分抽出手段の抽出方法を切り替える抽出方法切替手段と、
    抽出された前記脈拍の周波数を用いて演算された脈拍数を表示する表示手段とを有し、
    前記抽出方法切替手段は、前記体動信号が検出されないときには、前記第一演算手段の周波数分析結果から脈拍の周波数を抽出する第一の抽出方法行うよう前記脈波成分抽出手段に指令し、
    前記抽出方法切替手段は、前記体動信号が検出されたときには、前記第一演算手段の周波数分析結果および前記第二演算手段の周波数分析結果の双方に基づいて脈拍の周波数を抽出する第二の抽出方法を前記脈波成分抽出手段に指令する
    ことを特徴とする脈拍計。
JP02451096A 1995-02-20 1996-02-09 脈拍計 Expired - Lifetime JP3605216B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02451096A JP3605216B2 (ja) 1995-02-20 1996-02-09 脈拍計
US08/602,650 US5776070A (en) 1995-02-20 1996-02-16 Pulse rate counter utilizing body movement amptitude detection
EP96301176A EP0729726B1 (en) 1995-02-20 1996-02-20 Pulse rate meter
DE69632285T DE69632285T2 (de) 1995-02-20 1996-02-20 Pulsschlagmesser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-31018 1995-02-20
JP3101895 1995-02-20
JP02451096A JP3605216B2 (ja) 1995-02-20 1996-02-09 脈拍計

Publications (2)

Publication Number Publication Date
JPH08289876A JPH08289876A (ja) 1996-11-05
JP3605216B2 true JP3605216B2 (ja) 2004-12-22

Family

ID=26362035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02451096A Expired - Lifetime JP3605216B2 (ja) 1995-02-20 1996-02-09 脈拍計

Country Status (4)

Country Link
US (1) US5776070A (ja)
EP (1) EP0729726B1 (ja)
JP (1) JP3605216B2 (ja)
DE (1) DE69632285T2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454989B2 (ja) * 1995-10-18 2003-10-06 セイコーエプソン株式会社 計測データに対する補正方法
EP0829226B1 (en) * 1996-03-22 2004-10-27 Seiko Epson Corporation Exercise quantity measuring device
TW376312B (en) * 1996-04-17 1999-12-11 Seiko Epson Corp Arrhythmia detector
JP3627243B2 (ja) * 1996-09-10 2005-03-09 セイコーエプソン株式会社 生体状態測定装置およびリラックス指導装置
JP3521654B2 (ja) * 1996-11-07 2004-04-19 セイコーエプソン株式会社 脈拍計
JP3870514B2 (ja) * 1997-10-31 2007-01-17 セイコーエプソン株式会社 一回拍出量検出装置および心機能診断装置
JP3584143B2 (ja) * 1997-03-17 2004-11-04 セイコーエプソン株式会社 脈波検出装置および脈拍計
JP3523978B2 (ja) * 1997-03-18 2004-04-26 セイコーエプソン株式会社 脈拍計
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
JP3666188B2 (ja) * 1997-06-27 2005-06-29 セイコーエプソン株式会社 心機能診断装置
US6361501B1 (en) 1997-08-26 2002-03-26 Seiko Epson Corporation Pulse wave diagnosing device
EP2859842A1 (en) * 1997-09-05 2015-04-15 Seiko Epson Corporation Reflection type photodetection apparatus, and biological information measuring apparatus
EP0956812B1 (en) * 1997-11-19 2007-04-11 Seiko Epson Corporation Pulse wave detection method, artery position detection method and pulse wave detection apparatus
TW425278B (en) * 1997-11-20 2001-03-11 Seiko Epson Corp Pulse diagnosis device, blood pressure monitor device, pulse waveform monitor device, and pharmacological reaction monitor device
FR2776524B1 (fr) * 1998-03-31 2008-10-24 Georges Cornuejols Dispositif de gestion de periodes d'activite
US6547728B1 (en) 1998-03-31 2003-04-15 Georges Marc Cornuejols Device for measuring organism condition
JP3700048B2 (ja) * 1999-06-28 2005-09-28 オムロンヘルスケア株式会社 電子血圧計
KR20020091002A (ko) * 2001-11-06 2002-12-05 주식회사 와이어리스리퍼블릭 가속도 가공 장치 및 방법, 및 그의 응용 및 상기 방법을실현시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수있는 기록매체
US20080294058A1 (en) * 2004-08-16 2008-11-27 Dror Shklarski Wearable Device, System and Method for Measuring a Pulse While a User is in Motion
US7993276B2 (en) 2004-10-15 2011-08-09 Pulse Tracer, Inc. Motion cancellation of optical input signals for physiological pulse measurement
US20090108205A1 (en) * 2007-10-10 2009-04-30 Cas Medical Systems, Inc. Nirs sensor mounting apparatus
JP2012170703A (ja) * 2011-02-23 2012-09-10 Seiko Epson Corp 拍動検出装置
JP5742369B2 (ja) * 2011-03-29 2015-07-01 セイコーエプソン株式会社 脈波計、および信号処理方法
JP5673351B2 (ja) * 2011-05-25 2015-02-18 富士通株式会社 体動検出装置、体動検出方法及び体動検出プログラム
WO2013109390A1 (en) 2012-01-16 2013-07-25 Valencell, Inc. Reduction of physiological metric error due to inertial cadence
US10390762B2 (en) 2012-01-16 2019-08-27 Valencell, Inc. Physiological metric estimation rise and fall limiting
JP5991100B2 (ja) 2012-09-13 2016-09-14 オムロンヘルスケア株式会社 脈拍測定装置、脈拍測定方法、および脈拍測定プログラム
JP5987578B2 (ja) * 2012-09-13 2016-09-07 オムロンヘルスケア株式会社 脈拍測定装置、ならびに、脈拍測定方法および脈拍測定プログラム
CN104969035B (zh) 2013-01-09 2019-05-10 瓦伦赛尔公司 基于惯性谐波的步调检测方法和系统
US10524734B2 (en) * 2014-10-08 2020-01-07 MAD Apparel, Inc. Method and system for measuring beat parameters
JP6522327B2 (ja) * 2014-12-11 2019-05-29 国立大学法人広島大学 脈波解析装置
JP6052332B2 (ja) * 2015-04-28 2016-12-27 セイコーエプソン株式会社 脈波計、信号処理方法、およびプログラム
US9814400B1 (en) 2015-05-26 2017-11-14 Verily Life Sciences Llc Method for improving accuracy of pulse rate estimation
US9826940B1 (en) 2015-05-26 2017-11-28 Verily Life Sciences Llc Optical tracking of heart rate using PLL optimization
CN107613855B (zh) * 2015-05-29 2021-11-23 京瓷株式会社 电子设备
US10786164B2 (en) 2015-12-12 2020-09-29 Verily Life Sciences Llc Method for improving heart rate estimates by combining multiple measurement modalities
CN105962945B (zh) * 2016-06-18 2019-08-23 广东乐心医疗电子股份有限公司 一种计算步频的方法与装置以及包含该装置的可穿戴设备
JP6970645B2 (ja) * 2018-07-13 2021-11-24 美津濃株式会社 脈拍検出方法、および、脈拍検出システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239048A (en) * 1979-02-06 1980-12-16 Multitronics Corporation Cardiotachometer using autocorrelation techniques
US4338950A (en) * 1980-09-22 1982-07-13 Texas Instruments Incorporated System and method for sensing and measuring heart beat
DE3150925A1 (de) * 1981-12-23 1983-06-30 Honeywell B.V., Amsterdam Anordnung zur pulsmessung mit einem photoelektrischen nutzsignalaufnehmer
JPS60259239A (ja) * 1984-06-06 1985-12-21 シャープ株式会社 心拍測定装置
JPH0315502U (ja) * 1989-06-28 1991-02-15
FI92139C (fi) * 1992-02-28 1994-10-10 Matti Myllymaeki Ranteeseen kiinnitettävä terveydentilan seurantalaite
JP3220271B2 (ja) * 1993-02-22 2001-10-22 セイコーインスツルメンツ株式会社 脈拍計付歩数計
JP3387171B2 (ja) * 1993-09-28 2003-03-17 セイコーエプソン株式会社 脈波検出装置および運動強度測定装置
JP2816944B2 (ja) * 1993-12-20 1998-10-27 セイコーインスツルメンツ株式会社 脈拍計

Also Published As

Publication number Publication date
DE69632285D1 (de) 2004-06-03
DE69632285T2 (de) 2005-06-23
EP0729726B1 (en) 2004-04-28
EP0729726A2 (en) 1996-09-04
JPH08289876A (ja) 1996-11-05
US5776070A (en) 1998-07-07
EP0729726A3 (en) 1998-10-28

Similar Documents

Publication Publication Date Title
JP3605216B2 (ja) 脈拍計
JP3755501B2 (ja) 脈拍計、脈拍計の制御方法、時計型情報機器、制御プログラムおよび記録媒体
US20200335211A1 (en) Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
JP3523978B2 (ja) 脈拍計
EP2291111B1 (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
CN104135917B (zh) 脉搏计
US20230284916A1 (en) Continuous noninvasive blood pressure measurement
US20060195020A1 (en) Methods, systems, and apparatus for measuring a pulse rate
JP6597410B2 (ja) 生体情報測定装置および生体情報測定方法
JPH07365A (ja) 心拍速度測定装置
EP0885592A1 (en) A system and method for evaluating the autonomic nervous system of a living subject
JP2005160640A (ja) 生体状態検出装置
WO1997015028A1 (fr) Appareil de mesure de cadence, dispositif electronique et procede de mesure de cadence
WO2005110211A1 (ja) 生体情報検出装置
JPH11276448A (ja) 信号抽出装置および信号抽出方法
JP2013000540A (ja) 脈波検出装置、及び脈波検出システム
WO2020246258A1 (ja) 血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラム
JP5012866B2 (ja) 生体情報処理装置、および、生体情報処理方法
JP2012161344A (ja) 脈波計測装置、およびプログラム
JP2002017694A (ja) 脈拍数検出装置
JPH10258039A (ja) 脈拍計
JP3454989B2 (ja) 計測データに対する補正方法
JPH09215664A (ja) 自律神経機能評価装置
JP5790694B2 (ja) 生体情報処理方法、及び生体情報処理装置
JP2009207713A (ja) 生体情報処理装置、生体情報処理方法および制御プログラム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

EXPY Cancellation because of completion of term