JP3153167B2 - 強磁性トンネル接合素子の製造方法 - Google Patents

強磁性トンネル接合素子の製造方法

Info

Publication number
JP3153167B2
JP3153167B2 JP34259297A JP34259297A JP3153167B2 JP 3153167 B2 JP3153167 B2 JP 3153167B2 JP 34259297 A JP34259297 A JP 34259297A JP 34259297 A JP34259297 A JP 34259297A JP 3153167 B2 JP3153167 B2 JP 3153167B2
Authority
JP
Japan
Prior art keywords
ferromagnetic
tunnel junction
etching
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34259297A
Other languages
English (en)
Other versions
JPH11175927A (ja
Inventor
雄二 塚本
久尚 柘植
延行 石綿
久雄 松寺
正文 中田
敦 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP34259297A priority Critical patent/JP3153167B2/ja
Priority to US09/209,696 priority patent/US6174736B1/en
Publication of JPH11175927A publication Critical patent/JPH11175927A/ja
Application granted granted Critical
Publication of JP3153167B2 publication Critical patent/JP3153167B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、強磁性トンネル接
合素子の製造方法に関し、特に、高密度磁気ディスク装
置における磁気ヘッドの読出しセンサに用いられる強磁
性トンネル接合素子の製造方法に関する。
【0002】
【従来の技術】従来の強磁性トンネル接合素子には、厚
みが数nm程度の絶縁体から成るトンネルバリア層を一
対の強磁性層で挟み込んだ構造のものがある。このよう
な強磁性トンネル接合素子では、強磁性層双方の間に一
定電流を流した状態で強磁性層面内に外部磁界を印加し
たとき、両磁性層の磁化の相対角度に対応して抵抗値が
変化する磁気抵抗効果が現れる。この磁化の方向が相互
に平行する場合に抵抗値は最小になり、平行でない場合
に抵抗値は最大になる。従って、両磁性層に保磁力差を
付与することにより、磁界の強さに対応して磁化の平行
及び非平行状態が実現できるので、抵抗値の変化を検出
することによって磁界を検出できる。
【0003】近年、トンネルバリア層にAlの表面酸化
膜を用いることによって20%近い磁気抵抗変化率を示
す強磁性トンネル接合素子が得られたことにより、磁気
ヘッドや磁気メモリへの応用の可能性が高まっている。
このように大きな磁気抵抗変化率に関する技術は、例え
ば、「1996年4月、ジャーナル・オブ・アプライド・フ
ィジックス、79巻、4724〜4729頁(Journal of Applied
Physics, vol.79, 4724〜4729, 1996)」に記載されて
いる。
【0004】上記磁気抵抗変化率に関する技術では、例
えば、CoFeから成る第1の強磁性層をガラス基板上
に蒸着マスクを用いて真空蒸着し、引き続きマスクを交
換して、厚みが約1.2〜2.0nmのAl層を蒸着す
る。次いで、Al層の表面を酸素グロー放電に曝すこと
により、Al23から成るトンネルバリア層を形成す
る。更に、トンネルバリア層を介して第1の強磁性層に
重なるように、Coから成る第2の強磁性層を成膜して
十字電極型の強磁性トンネル接合素子を完成させる。こ
の方法によると、最大18%の大きな磁気抵抗変化率を
得ることができる。
【0005】他の文献として、特開平5-63254号公報、
特開平6-244477号公報、特開平8-70148号公報、特開平8
-70149号公報及び特開平8-316548号公報、「1997年、日
本応用磁気学会誌、21巻、493〜496頁」等が存在する。
これらの公報や磁気学会誌には、成膜後のAl層を大気
中に曝してAl23を成長させる方法がトンネルバリア
層の形成方法として記載されている。
【0006】ところで、高密度磁気ディスク装置の磁気
ヘッドに強磁性トンネル接合素子を適用する場合に、熱
雑音の影響を低減するには、実用素子寸法下で抵抗値を
ある程度低くする必要がある。この実現のため、強磁性
トンネル接合素子の端面を研磨し、この接合素子の幅方
向と直交する素子高さを高精度で規定して抵抗値を低く
する研磨技術がある。強磁性トンネル接合素子の端面
は、この接合素子を磁気ヘッドに適用する場合には、磁
気ディスクの記録面に対向して磁界を直接的に検知する
対向面になる。
【0007】従来の研磨工程では、粒径が数μm以下の
ダイヤモンド等の硬質粒子を懸濁した水又は油を滴下し
た研磨盤に加工面を押し付け、硬質粒子の研削作用と塑
性流動作用とによって加工面を機械的に研削し、平滑化
する。研削作用では、加工面から材料を切り屑として除
去することによって素子高さを規定し、塑性流動作用で
は、研磨方向に加工面の材料を塑性変形且つ流動させる
ことにより表面の平滑化を促す。
【0008】
【発明が解決しようとする課題】強磁性トンネル接合素
子では、厚みが数nm程度のトンネルバリア層によって
第1及び第2の強磁性層が相互に絶縁されることが必要
である。しかし、強磁性トンネル接合素子を機械的に研
磨する際に、第1の強磁性層と第2の強磁性層とが塑性
流動作用により局所的に短絡することがある。つまり、
トンネルバリア層が数nm以下と極めて薄いため、機械
研磨工程により第1の磁性層が塑性変形を受けて研磨方
向に流動すると、電子がトンネルバリア層を越えて第2
の強磁性層に達することがある。第1及び第2の強磁性
層が相互に直接接触する短絡状態が発生すると、トンネ
ルバリア層を介したトンネル効果が十分に得られず、良
好な素子特性が損なわれる。
【0009】本発明は、上記に鑑み、強磁性トンネル接
合素子の素子高さを高精度で規定できる製造方法であり
ながらも、トンネルバリア層による第1及び第2の強磁
性層間の良好な絶縁状態を適正に保持できる強磁性トン
ネル接合素子の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】上記目的を達成するため
に、本発明の磁気ヘッドに用いる強磁性トンネル接合素
子の製造方法は、第1の強磁性層と第2の強磁性層との
間にトンネルバリア層を挟んで成る強磁性トンネル接合
素子の製造方法において、前記第1の強磁性層、前記ト
ンネルバリア層及び前記第2の強磁性層の端面を一括し
て研磨する工程が、前記端面を機械的に研磨する第1の
研磨処理と、前記端面をドライエッチングする第2の研
磨処理とを順次に含むことを特徴とする。
【0011】本発明の磁気ヘッドに用いる強磁性トンネ
ル接合素子の製造方法では、第1の研磨処理で機械的に
研磨した端面を第2の研磨処理でドライエッチングする
ので、機械的研磨の際に、第1及び第2の強磁性層間に
局所的な短絡箇所が生じたとしても、短絡箇所を効果的
に除去することができる。従って、強磁性トンネル接合
素子を磁気ヘッドに用いる際の再生特性を向上させるこ
とができる。
【0012】ここで、研磨工程が、強磁性トンネル接合
素子の幅方向と直交する素子高さを規定する工程である
ことが好ましい。これによると、強磁性トンネル接合素
子を磁気ヘッドに適用する場合に、強磁性トンネル接合
素子の端面を高精度に研磨して抵抗値を低く設定するこ
とができる。
【0013】更に好ましくは、第2の研磨処理が、プラ
ズマエッチング、励起ガスエッチング、反応性イオンエ
ッチング、スパッタエッチング、反応性イオンビ−ムエ
ッチング、イオンビ−ムエッチング、又は、イオンミリ
ングである。この場合、第2の研磨処理における実際の
処理を状況に応じて選択することができる。
【0014】好適には、第1及び第2の強磁性層の少な
くとも一方が、Fe、Co、Ni又はこれらを含む合金
から成る。この場合、第1の強磁性層及び第2の強磁性
層の材料を適宜選択して、所望の性質の強磁性トンネル
接合素子を得ることが可能になる。
【0015】また、トンネルバリア層が、ランタノイド
に属する金属、Al又はMgの酸化膜から成ることが好
ましい。この場合、トンネルバリア層の材料を適宜選択
して、所望の性質の強磁性トンネル接合素子を得ること
が可能になる。
【0016】
【発明の実施の形態】図面を参照して本発明を更に詳細
に説明する。図1は、本発明の一実施形態例に係る強磁
性トンネル接合素子の製造時の様子を模式的に示す断面
図である。まず、真空状態のチャンバ内で所定の基板上
に第1の強磁性層11と導電層12とを連続的に成膜し
(図1(a))、チャンバ内に純酸素を導入し、導電層1
2の表面を自然酸化することによってトンネルバリア層
13を形成する(図1(b))。次いで、トンネルバリア
層13上に第2の強磁性層14を形成する(図1
(c))。
【0017】ここで、本発明の製造方法を検証するた
め、図1で説明した強磁性トンネル接合素子を使用し、
磁気ヘッドに加工する前の試料1〜6に関して説明す
る。図2は、試料を製造する際の様子を模式的に示す断
面図である。以下の成膜時には、直径4インチのターゲ
ット4基を備えた高周波マグネトロンスパッタ装置を用
いる。スパッタ条件は、バックグランド圧力を1×10
-7Torr以下、Ar圧力を10mTorr、及び高周波電力を
200Wにする。
【0018】まず、試料1の製造工程について説明す
る。図2(a)に示すように、表面を熱酸化したSi基板
31上に、厚みが50nmのAl膜から成る第1の配線
層32と、厚みが10nmのFe膜から成る第1の強磁
性層33と、厚みが2nmのAl膜から成る導電層34
とを順次にスパッタ蒸着する。次いで、スパッタ装置内
に純酸素を導入し、酸素圧力を20mTorr〜200Torr
の範囲で10分間保持し、Al導電層34表面を酸化し
てトンネルバリア層35を形成する。更に、酸素の排気
によりバックグランド圧力に達した後に、厚みが20n
mのCoFe膜から成る第2の強磁性層36をスパッタ
蒸着して、接合構成層を完成させる。
【0019】次に、通常のフォトリソグラフィ技術及び
イオンミリング技術を用いて接合構成層における全層を
下部配線形状に加工し、Si基板31上の一部を除去す
る(図2(b))。更に、図2(c)に示すように、接合寸
法を規定するためのレジストパターン37を第2の強磁
性層36上に形成すると共に、第1の配線層32上で、
第2の強磁性層36から第1の強磁性層33までをイオ
ンミリングによって除去する。
【0020】次いで、レジストパターン37を残した状
態で、厚みが300nmのAl23膜から成る絶縁層3
8を、Si基板31及び第1の配線層32上に電子ビー
ムによって蒸着した後に、レジストパターン37をリフ
トオフ法で除去する(図2(d))。更に、上部配線を設
けるためのレジストパターン39を形成した後に、第2
の強磁性層36と後述の第2の配線層40との間の電気
的な接触を得るため露出させた試料表面に対し、逆スパ
ッタクリーニングを行う(図2(e))。次いで、厚みが
200nmのAl膜から成る第2の配線層40を試料表
面に蒸着した後に、レジストパターン39をリフトオフ
法で除去することにより上部配線層を形成し、強磁性ト
ンネル接合素子の試料1を完成させる(図2(f))。
【0021】試料2は、試料1におけるAl膜から成る
導電層34に代えて、厚みがAl膜と同じ2nmのMg
膜から成る導電層34を用い、これ以外の材料及び製造
工程は試料1の場合と同様である。
【0022】試料3は、試料1におけるAl膜から成る
導電層34に代えて、厚みがAl膜と同じ2nmのLa
膜から成る導電層34を用い、これ以外の材料及び製造
工程は試料1の場合と同様である。
【0023】試料4は、試料1におけるSi基板31に
代えて、Al23・TiCセラミック基板を用い、これ
以外の材料及び製造工程は試料1の場合と同様である。
【0024】試料5は、試料2におけるSi基板31に
代えて、Al23・TiCセラミック基板を用い、これ
以外の材料及び製造工程は試料2の場合と同様である。
【0025】試料6は、試料3におけるSi基板31に
代えて、Al23・TiCセラミック基板を用い、これ
以外の材料及び製造工程は試料3の場合と同様である。
【0026】ここで、例えば図2(f)の紙面手前〜奥方
向における長さ、つまり素子高さを出すための機械的研
磨を行うため、ダイシングソ−を用いて試料1〜6の夫
々から棒状試料を作製する。機械研磨工程では、平均粒
径が約0.25μm程度の多結晶ダイヤモンド粒子を含
む油性研磨液を研磨盤に滴下し、研磨盤の回転速度を3
0RPMに且つ押付け荷重を5gに夫々設定した状態で、
研磨盤に各試料を夫々押し付ける。この場合に、素子抵
抗値を連続的に測定しつつ、素子抵抗値が所定値に達し
た時点で機械的な研磨を終了する。
【0027】
【実施例】次に、上記機械研磨工程を終了した試料1〜
6の研磨面に対してドライエッチングを施した実施例に
ついて述べる。
【0028】実施例1 試料1の研磨面に対してプラズマエッチングを施すこと
により、強磁性トンネル接合素子を製造した。プラズマ
エッチングでは、プラズマ発生方式として誘導結合方式
を用い、ガス圧力が0.3TorrのO2+CCl4混合ガス
をエッチングガスとして用いた。印加高周波電力は20
0W、基板加熱温度は60℃、エッチング時間は20
分、エッチング量は約20nmとした。
【0029】実施例2 試料1の研磨面に対して励起ガスエッチングを施すこと
により、強磁性トンネル接合素子を製造した。励起ガス
エッチングでは、プラズマ発生方式としてエッチトンネ
ルマイクロ波励起方式を用い、ガス圧力が0.2Torrの
CCl4+O2混合ガスをエッチングガスとして用いた。
印加高周波電力は250W、基板加熱温度は50℃、エ
ッチング時間は100分、エッチング量は約20nmと
した。
【0030】実施例3 試料1の研磨面に対して反応性イオンエッチングを施す
ことにより、強磁性トンネル接合素子を製造した。反応
性イオンエッチングでは、電極配置として平行平板型を
用い、ガス圧力が100TorrのCF4+H2混合ガスをエ
ッチングガスとして用いた。印加高周波電力は200
W、基板加熱温度は50℃、エッチング時間は40分、
エッチング量は約20nmとした。
【0031】実施例4 試料1の研磨面に対してスパッタエッチングを施すこと
により、強磁性トンネル接合素子を製造した。スパッタ
エッチングでは、電極配置として平行平板方式を用い、
ガス圧力が10TorrのArガスをエッチングガスとして
用いた。印加電力は200W、基板加熱温度は25℃、
エッチング時間は5分、エッチング量は約30nmとし
た。
【0032】実施例5 試料5の研磨面に対して反応性イオンビ−ムエッチング
を施すことにより、強磁性トンネル接合素子を製造し
た。反応性イオンビ−ムエッチングでは、イオン銃方式
を用い、ガス圧力が8×10-4TorrのCCl4ガスをエ
ッチングガスとして用いた。イオン加速電圧は500
V、イオン電流密度は0.3mA/cm2、基板加熱温度は5
0℃、エッチング時間は10分、エッチング量は約50
nmとした。
【0033】実施例6 試料6の研磨面に対してイオンビ−ムエッチングを施す
ことにより、強磁性トンネル接合素子を製造した。反応
性イオンビ−ムエッチングでは、イオン銃方式を用い、
ガス圧力が8×10-3TorrのArガスをエッチングガス
として用いた。イオン加速電圧は600V、イオン電流
密度は0.2mA/cm2、基板加熱温度は70℃、エッチン
グ時間は30分、エッチング量は約50nmとした。
【0034】実施例7〜11 試料2〜6の各研磨面に対してプラズマエッチングを施
すことにより、強磁性トンネル接合素子を夫々製造し
た。プラズマエッチングでは、各処理における諸条件は
実施例1の場合と同様である。
【0035】実施例12〜16 試料2〜6の各研磨面に対して励起ガスエッチングを施
すことにより、強磁性トンネル接合素子を夫々製造し
た。励起ガスエッチングでは、各処理における諸条件は
実施例2の場合と同様である。
【0036】実施例17〜21 試料2〜6の各研磨面に対して反応性イオンエッチング
を施すことにより、強磁性トンネル接合素子を夫々製造
した。反応性イオンエッチングでは、各処理における諸
条件は実施例3の場合と同様である。
【0037】実施例22〜26 試料2〜6の各研磨面に対してスパッタエッチングを施
すことにより、強磁性トンネル接合素子を夫々製造し
た。スパッタエッチングでは、各処理における諸条件は
実施例4の場合と同様である。
【0038】実施例27〜31 試料2〜6の各研磨面に対して反応性イオンビ−ムエッ
チングを施すことにより、強磁性トンネル接合素子を夫
々製造した。反応性イオンビ−ムエッチングでは、各処
理における諸条件は実施例5の場合と同様である。
【0039】実施例32〜36 試料2〜6の各研磨面に対してイオンビ−ムエッチング
を施すことにより、強磁性トンネル接合素子を夫々製造
した。イオンビ−ムエッチングでは、各処理における諸
条件は実施例6の場合と同様である。
【0040】実施例37 試料1の研磨面に対してイオンミリングを施すことによ
り、強磁性トンネル接合素子を製造した。イオンミリン
グでは、電極配置として平行平板方式を用い、ガス圧力
が2×10-4TorrのArガスをエッチングガスとして用
いた。印加電圧は200V、イオン電流密度は0.6mA
/cm2、基板加熱温度は50℃、エッチング時間は10
分、エッチング量は約40nmとした。
【0041】実施例38 試料1の研磨面に対してイオンミリングを施すことによ
り、強磁性トンネル接合素子を製造した。イオンミリン
グでは、電極配置として平行平板方式を用い、ガス圧力
が2×10-4TorrのAr+O2混合ガスをエッチングガ
スとして用いた。印加電圧は200V、イオン電流密度
は0.6mA/cm2、基板加熱温度は50℃、エッチング時
間は15分、エッチング量は約30nmとした。
【0042】以上の実施例1〜38、及び、機械的研磨
まで施した試料1〜6の計44種の強磁性トンネル接合
素子及び試料を用いて浮上量20nmの浮上型磁気ヘッ
ドを作製し、磁気ディスクに対する再生特性を測定する
ことにより、ドライエッチングがもたらす効果を検証し
た。磁気ディスクとしては、ガラス基板、厚み10nm
のCr下地層、厚み20nmのCoCrTaPt磁性層、厚
み10nmのカ−ボン保護膜、及び厚み2nmの潤滑膜
が順次に積層され、磁界の強さHcが2400Oeで、磁束
密度と厚みの積Brtが100Gμmのものを使用し
た。浮上量が20nmの薄膜磁気ヘッドを用いて所定の
孤立波を予め磁気ディスクに記録しておき、各実施例及
び試料に係る強磁性トンネル接合素子を実装した磁気ヘ
ッドによって上記孤立波を再生した。このとき、得られ
たセンス電流密度5×103A/cm2の再生出力[mV]を
表1に示す。
【0043】
【表1】
【0044】
【表2】
【0045】表1及び表2から理解できるように、ドラ
イエッチングを施さず機械的研磨のみ施した試料1〜6
の場合には、再生出力はいずれも0.7[mV]以下と
極めて低い値である。しかし、機械的研磨に加えてドラ
イエッチングを施した実施例1〜38の場合には、最小
の値であっても実施例24の1.8[mV]であり、こ
れ以外の実施例では1.8[mV]以上の値であり、全
ての実施例で良好な再生出力が得られた。
【0046】以上のように、本製造方法によると、機械
的に研磨した端面をドライエッチングするので、機械的
研磨の際に、第1及び第2の強磁性層33、36間に局
所的な短絡箇所が生じたとしても、短絡箇所を効果的に
除去することができる。従って、強磁性トンネル接合素
子の素子高さを高精度で規定できる製造方法でありなが
らも、トンネルバリア層35による第1及び第2の強磁
性層間の良好な絶縁状態を適正に保持できる強磁性トン
ネル接合素子を得ることができ、歩留まりが向上する。
また、強磁性トンネル接合素子を高密度磁気ディスク装
置における読出しセンサに用いる場合に、磁気ヘッドの
媒体対向面を平滑化することができ、実用上必要な抵抗
値及び信号出力電圧特性を備え再生出力が極めて高い磁
気ヘッドを得ることができる。例えば、従来の製造方法
では、再生可能な磁気ヘッドの歩留まりは30%程度で
あったが、機械研磨工程にドライエッチング工程を併用
した本発明の製造方法によれば、70%を越える歩留ま
りを達成することができた。
【0047】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明の強磁性トンネル接合素子の
製造方法は、上記実施形態例(実施例)にのみ限定され
るものではなく、上記実施形態例から種々の修正及び変
更を施した強磁性トンネル接合素子の製造方法も、本発
明の範囲に含まれる。
【0048】
【発明の効果】以上説明したように、本発明によると、
強磁性トンネル接合素子の素子高さを高精度で規定でき
る製造方法でありながらも、トンネルバリア層による第
1及び第2の強磁性層間の良好な絶縁状態を適正に保持
できる強磁性トンネル接合素子を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る強磁性トンネル接
合素子の製造時の様子を模式的に示す断面図であり、
(a)は第1の強磁性層及び導電層を成膜する際の様子、
(b)はトンネルバリア層を形成する際の様子、(c)は第2
の強磁性層を形成する際の様子を夫々示す。
【図2】試料を製造する際の様子を模式的に示す断面図
であり、(a)は接合構成層の完成時の様子、(b)はSi基
板上の一部を除去する際の様子、(c)は強磁性層等を除
去する際の様子、(d)はレジストパターンを除去する際
の様子、(e)は逆スパッタクリーニング工程、(f)は接合
素子の完成時の状態を夫々示す。
【符号の説明】
11、33 第1の強磁性層 12、34 導電層 13、35 トンネルバリア層 14、36 第2の強磁性層 31 Si基板 32 第1の配線層
フロントページの続き (72)発明者 石綿 延行 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 松寺 久雄 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 中田 正文 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 上條 敦 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平8−45031(JP,A)

Claims (5)

    (57)【特許請求の範囲】
  1. 【請求項1】 第1の強磁性層と第2の強磁性層との間
    にトンネルバリア層を挟んで成る強磁性トンネル接合素
    を用いた磁気ヘッドの製造方法において、前記第1の
    強磁性層、前記トンネルバリア層及び前記第2の強磁性
    層の端面を一括して研磨する工程が、前記端面を機械的
    に研磨する第1の研磨処理と、前記端面をドライエッチ
    ングする第2の研磨処理とを順次に含むことを特徴とす
    る強磁性トンネル接合素子を用いた磁気ヘッドの製造方
    法。
  2. 【請求項2】 前記研磨工程が、前記強磁性トンネル接
    合素子の幅方向と直交する素子高さを規定する工程であ
    る、請求項1に記載の強磁性トンネル接合素子を用いた
    磁気ヘッドの製造方法。
  3. 【請求項3】 前記第2の研磨処理が、プラズマエッチ
    ング、励起ガスエッチング、反応性イオンエッチング、
    スパッタエッチング、反応性イオンビ−ムエッチング、
    イオンビ−ムエッチング、又は、イオンミリングであ
    る、請求項1又は2に記載の強磁性トンネル接合素子
    用いた磁気ヘッドの製造方法。
  4. 【請求項4】 前記第1及び第2の強磁性層の少なくと
    も一方が、Fe、Co、Ni又はこれらを含む合金から
    成る、請求項1乃至3の内の何れか1項に記載の強磁性
    トンネル接合素子を用いた磁気ヘッドの製造方法。
  5. 【請求項5】 前記トンネルバリア層が、ランタノイド
    に属する金属、Al又はMgの酸化膜から成ることを特
    徴とする請求項1乃至4の内の何れか1項に記載の強磁
    性トンネル接合素子を用いた磁気ヘッドの製造方法。
JP34259297A 1997-12-12 1997-12-12 強磁性トンネル接合素子の製造方法 Expired - Lifetime JP3153167B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34259297A JP3153167B2 (ja) 1997-12-12 1997-12-12 強磁性トンネル接合素子の製造方法
US09/209,696 US6174736B1 (en) 1997-12-12 1998-12-11 Method of fabricating ferromagnetic tunnel junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34259297A JP3153167B2 (ja) 1997-12-12 1997-12-12 強磁性トンネル接合素子の製造方法

Publications (2)

Publication Number Publication Date
JPH11175927A JPH11175927A (ja) 1999-07-02
JP3153167B2 true JP3153167B2 (ja) 2001-04-03

Family

ID=18354969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34259297A Expired - Lifetime JP3153167B2 (ja) 1997-12-12 1997-12-12 強磁性トンネル接合素子の製造方法

Country Status (2)

Country Link
US (1) US6174736B1 (ja)
JP (1) JP3153167B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354034B2 (en) 2008-06-25 2013-01-15 Hitachi Global Storage Technologies Netherlands Bv Method of manufacturing a magnetic head
JP2014037955A (ja) * 2012-08-17 2014-02-27 Okawa Tekko:Kk 木屑バイオマスを燃料とする連続温水製造装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452204B1 (en) * 1998-12-08 2002-09-17 Nec Corporation Tunneling magnetoresistance transducer and method for manufacturing the same
JP3400750B2 (ja) * 1999-07-23 2003-04-28 ティーディーケイ株式会社 トンネル磁気抵抗効果型ヘッドの製造方法
JP3556600B2 (ja) 2001-02-01 2004-08-18 株式会社東芝 磁気抵抗効果素子の製造方法
JP5013494B2 (ja) * 2001-04-06 2012-08-29 ルネサスエレクトロニクス株式会社 磁性メモリの製造方法
US20030099069A1 (en) 2001-10-10 2003-05-29 Tdk Corporation Magnetic head, method of manufacturing same, and head suspension assembly
JP4065787B2 (ja) 2002-08-30 2008-03-26 株式会社日立グローバルストレージテクノロジーズ 磁気ヘッドおよび磁気記録再生装置
JP3895281B2 (ja) * 2003-02-18 2007-03-22 Tdk株式会社 パターン形成方法、これを用いた磁気抵抗効果素子及び磁気ヘッドの製造方法、並びに、ヘッドサスペンションアセンブリ及び磁気ディスク装置
US7097745B2 (en) * 2003-06-27 2006-08-29 Seagate Technology, Llc Method of forming a tunneling magnetoresistive head
CN101095246B (zh) * 2005-01-05 2010-05-26 株式会社爱发科 磁性多层膜的制造方法
JP2008052840A (ja) 2006-08-25 2008-03-06 Hitachi Global Storage Technologies Netherlands Bv 磁気ヘッドスライダの製造方法
WO2008139513A1 (ja) * 2007-04-27 2008-11-20 Fujitsu Limited 磁極幅測定方法
WO2009096328A1 (ja) 2008-01-29 2009-08-06 Ulvac, Inc. 磁気デバイスの製造方法
CN110268530B (zh) 2017-09-07 2022-07-26 Tdk株式会社 自旋流磁化反转元件和自旋轨道转矩型磁阻效应元件

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657075A (en) * 1967-09-18 1972-04-18 Kokusai Denshin Denwa Co Ltd Method of fabricating memory matrix planes using ferromagnetic thin film
US4714641A (en) * 1983-12-15 1987-12-22 Varian Associates, Inc. Ferromagnetic films for high density recording and methods of production
US4520040A (en) * 1983-12-15 1985-05-28 Varian Associates, Inc. Ferromagnetic films for high density recording and methods of production
JP3035836B2 (ja) 1991-07-01 2000-04-24 三菱マテリアル株式会社 磁気抵抗素子
JP3035838B2 (ja) 1991-08-29 2000-04-24 三菱マテリアル株式会社 磁気抵抗複合素子
US5467881A (en) 1994-06-28 1995-11-21 International Business Machines Corporation Method of manufacturing an MR read head which eliminates lead-to-shield shorts at the ABS of the MR read head
JPH0870148A (ja) 1994-08-30 1996-03-12 Mitsubishi Materials Corp 磁気抵抗素子
JPH0870149A (ja) 1994-08-30 1996-03-12 Mitsubishi Materials Corp 磁気抵抗素子
JP3282444B2 (ja) 1995-05-16 2002-05-13 三菱マテリアル株式会社 磁気抵抗素子
JPH09106514A (ja) 1995-10-06 1997-04-22 Fujitsu Ltd 強磁性トンネル素子及びその製造方法
JP2871670B1 (ja) * 1997-03-26 1999-03-17 富士通株式会社 強磁性トンネル接合磁気センサ、その製造方法、磁気ヘッド、および磁気記録/再生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354034B2 (en) 2008-06-25 2013-01-15 Hitachi Global Storage Technologies Netherlands Bv Method of manufacturing a magnetic head
JP2014037955A (ja) * 2012-08-17 2014-02-27 Okawa Tekko:Kk 木屑バイオマスを燃料とする連続温水製造装置

Also Published As

Publication number Publication date
US6174736B1 (en) 2001-01-16
JPH11175927A (ja) 1999-07-02

Similar Documents

Publication Publication Date Title
JP3153167B2 (ja) 強磁性トンネル接合素子の製造方法
US4943882A (en) Thin-film, perpendicular magnetic recording and reproducing head
JP3459869B2 (ja) 強磁性トンネル接合素子の製造方法
US4855854A (en) Thin-film magnetic head
JPH11175920A (ja) 磁気抵抗効果型複合ヘッドおよびその製造方法
JP2008052840A (ja) 磁気ヘッドスライダの製造方法
US6024886A (en) Planarizing method for fabricating an inductive magnetic write head for high density magnetic recording
JP2000099922A (ja) 磁気トンネル素子及びその製造方法
JP2000036628A (ja) 磁気トンネル接合素子及びその製造方法
JPH08203036A (ja) 磁気抵抗効果型ヘッドおよびその製造方法
JP3055662B2 (ja) 強磁性トンネル接合
JP2613876B2 (ja) 薄膜磁気ヘッドの製造方法
JP2000357829A (ja) 強磁性トンネル接合素子の製造方法
JP3933793B2 (ja) シリコン酸化膜の形成方法及び薄膜磁気ヘッドの製造方法
JP2751696B2 (ja) 薄膜磁気ヘッドの製造方法
JP2535819B2 (ja) 薄膜磁気ヘッドの製造方法
JP3602013B2 (ja) 強磁性トンネル接合素子の製造方法
JPS61267914A (ja) 磁気抵抗効果ヘツドの製造方法
JP2006085794A (ja) 磁気抵抗効果型ヘッドおよびその製造方法、記録再生分離型磁気ヘッド
JPH0798835A (ja) 磁気記録媒体及びその製造方法
JPH07296337A (ja) 磁気抵抗効果型薄膜磁気ヘッド
JP2000077744A (ja) 強磁性トンネル接合磁気抵抗効果素子の製造方法
JPH0822608A (ja) 磁気ヘッド及びその製造方法
JPH0817022A (ja) 複合型薄膜磁気ヘッドの製造方法
JPH1196512A (ja) 薄膜磁気ヘッド及びその製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

EXPY Cancellation because of completion of term