JP2020061939A - 電力伝送システムおよび方法 - Google Patents

電力伝送システムおよび方法 Download PDF

Info

Publication number
JP2020061939A
JP2020061939A JP2020001318A JP2020001318A JP2020061939A JP 2020061939 A JP2020061939 A JP 2020061939A JP 2020001318 A JP2020001318 A JP 2020001318A JP 2020001318 A JP2020001318 A JP 2020001318A JP 2020061939 A JP2020061939 A JP 2020061939A
Authority
JP
Japan
Prior art keywords
transmitter
receiver
power
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020001318A
Other languages
English (en)
Inventor
アーロン レックス キース,
Rex Keith Aaron
アーロン レックス キース,
アルニム クマール,
Kumar Arunim
アルニム クマール,
ジュンボ ゼン,
Junbo Zeng
ジュンボ ゼン,
ルイス フリース ハーパム,
Freeth Harpham Lewis
ルイス フリース ハーパム,
ポール デイビッド マーソン,
David Marson Paul
ポール デイビッド マーソン,
サンダー ボック,
Vocke Sander
サンダー ボック,
ヤ−ティン ワング,
ya-ting Wang
ヤ−ティン ワング,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2020061939A publication Critical patent/JP2020061939A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

【課題】本発明は無線分野または誘導的電力伝送の分野のものである。【解決手段】誘導的電力伝送システムは、電力受信器の特性に基づいて複数のモードで電力を選択的に送信し、受信した信号強度情報に基づいてどの送信コイルを駆動するかを決定してもよい。誘導的電力伝送送信器は電力受信器の特性を検出することで電力伝送のモードを制御し、電力受信器から受信した信号強度情報に基づいてどの送信コイルを駆動するかを選択的に制御する。電力送信器は、共通コイル巻き線開口の中に設けられた透磁性材料からなるスラグを有してもよく、送信コイルは複数の並列巻き線からなってもよい。【選択図】図15B

Description

本発明は無線分野または誘導的電力伝送の分野のものである。特に、それだけではないが、本発明はコンシューマ電子デバイスの誘導的電力伝送システムおよび方法に係る。
IPT技術は発展が進んでいる分野であり、IPTシステムは今や広範囲のアプリケーションで種々の構成により用いられている。そのようなアプリケーションのひとつは、いわゆる「充電マット」またはパッドにおけるIPTシステムの使用である。そのような充電マットは通常、平面状の充電面を提供し、携帯電子デバイス(例えばスマートフォン)をその上に置いて無線充電または給電を行うことができる。
典型的には、充電マットはひとつ以上の電力送信コイルを有する送信器を含み、それらの電力送信コイルは充電マットの平面状の充電面と平行に設けられる。送信器は送信コイルを駆動し、その結果、送信コイルは平面状の面のごく近傍に時間変化する磁場を生成する。携帯電子デバイスが平面状の面の上または近くに置かれた場合、時間変化する磁場は、デバイスに関連付けられた適切な受信器(例えば、デバイス自体に組み入れられた受信器)の受信コイルに交流電流を誘導する。そして、受信された電力を用いて電池を充電したり、デバイスや他の負荷に電力を供給したりしてもよい。
充電マットデザインに関連する課題は、誘導的電力伝送が十分に効率的であることを保証することである。ひとつのアプローチは、送信コイルと受信コイルとの間の正確な位置合わせを要求することである。例えば、平面状の充電面上にしるしや刻みを設け、ユーザがデバイスを充電マットに置いた場合にコイル間の位置合わせが保証されるようにすることで、これは達成可能である。しかしながら、このアプローチではユーザがデバイスを充電マット上に注意深く置くことが要求されるので、理想的ではない。
充電マットデザインに関する他の課題は、複数のデバイスを効率的かつ低コストに同時に充電することを可能とすることである。ある従来のデザインは、充電マットの面全体に対応する単一の大きな送信コイルを用いる。この例では、ひとつ以上のデバイスを充電マットの面上のどこに置いてもよい。これは、ユーザが充電マット上にデバイスを置くという点でより大きな自由度を与える。しかしながら、大きな送信コイルにより生成される磁場は一様ではなく、充電マットの中央に向かって「弱い場所(weak spots)」を伴う。さらに、面全体が「電力供給」しているので、面のうち充電中のデバイスによって覆われていない任意の箇所が安全上の問題を有するかもしれない。
複数デバイス充電の他の従来のアプローチは、より小さい複数の送信コイルのアレイを有することである。効率的かつ安全な電力伝送を提供するために、充電マットは適切な検出メカニズムを用いてデバイスの位置を検出し、最も近い送信コイルを活性化する。これは単一コイルデザインのようにユーザがデバイスをどこに置くかという点でより大きな自由度を与えるが、隣り合う送信コイルの間の境界は隣り合うコイルの相殺効果によって弱い場所となり、受信器が十分な電力を受信しない虞がある。
非受信器が送信器の範囲に入り、それに望まれない電流(およびしたがって熱)が誘起される場合に、さらなる課題が生じる。これらの非受信器は多くの場合、寄生負荷または異物として知られている。受信デバイスの存在の検出は従来的にも可能であるが、受信器が特定の送信器に合っているものとして受信器を特定することも必要であろう。合わない受信器への電力伝送の試行は、非効率的な電力伝送(したがって、望まれないエネルギの損失)または送信器および/または受信器の故障を引き起こしうる。
上述の課題への自明な解は、送信器に、手動操作の電力スイッチを含めることである。これは送信器にいつ電力を投入するかを制御する手段を提供するが、それは利便性を損ねるものであり、その利便性こそ多くのIPTシステムの目指すところである。それは、受信器が取り除かれた場合にユーザが手動で送信器をきることを要求し、また、ユーザの知識なしでは、送信器の近傍に導入された寄生負荷を許容できない。
本発明は、複数デバイス電力供給のための信頼性の高いかつ効率的な無線電力伝送を達成する誘導的電力伝送システムおよび方法を提供するか、または少なくとも役に立つ選択肢を公に提供する。
例示的な実施の形態によると、電力伝送システムおよびそのシステムの動作方法が提供される。システムは、電力送信器と電力受信器とを備える。電力送信器は複数の送信コイルを有し、コントローラの制御の下で、複数のモードで電力を電力受信器の受信コイルに送信することを複数の送信コイルに選択的に行わせることが可能である。 コントローラは、電力伝送のモードを制御するために、電力受信器の特性を検出するよう構成される。
他の例示的な実施の形態によると、電力送信器と少なくともひとつの電力受信器とを備える電力伝送システムであって、前記電力送信器は複数の送信コイルを有し、コントローラの制御の下で、複数のモードで電力を前記少なくともひとつの電力受信器の受信コイルに送信することを前記複数の送信コイルに選択的に行わせることが可能であり、前記コントローラは、前記電力伝送の前記モードを制御するために、前記電力受信器の特性を検出するよう構成されるシステムが提供される。
前記電力受信器の前記特性は、前記受信器の負荷への電力フローを制御するための回路を前記電力受信器が備えているか否かを含んでもよい。
前記コントローラは前記電力受信器と通信し、前記特性についての情報を前記電力受信器から受信するよう構成されてもよい。前記コントローラは前記電力送信器と前記電力受信器との間で電磁誘導を通じて伝送される電力信号の変調を通じて前記電力受信器と通信するよう構成されてもよい。
電力送信器は、物体検出コイルによって誘起された磁場の中の物体を検出するために設けられた物体検出器を備えてもよい。
前記コントローラは、結合された送信コイルと受信コイルとの間を通る変調電力信号から受信器デバイスバージョン情報を抽出し、前記バージョン情報に基づいて電力伝送の前記モードを制御してもよい。
前記コントローラは、結合された送信コイルと受信コイルとの間を通る変調電力信号から受信器デバイス構成情報を抽出し、前記構成情報に基づいて電力伝送の前記モードを制御してもよい。前記受信器デバイスに送信される最大電力および/または前記受信器に電力を供給するのに必要な送信コイルの数は、前記構成情報にしたがって制御されてもよい。
受信器位置フェーズ中、エネルギ伝送の前に、前記コントローラは、駆動された送信コイルから前記受信器が受信した信号の強度の指標に関する情報であって前記受信器から受信した情報に基づいて、前記複数の送信コイルのうちのどれを駆動するかを選択的に制御してもよい。受信器位置フェーズ中、前記制御回路は前記電力調整回路からの駆動信号を各電力送信コイルに順番に接続し、各コイルに所定の期間エネルギを与えてもよい。
他の例示的な実施の形態によると、ひとつ以上の受信コイルを有する誘導性電力伝送受信器に電力を供給するための誘導性電力伝送送信器であって、
(1)複数の送信コイル、
(2)駆動時に送信コイルに駆動信号を供給するための電力調整回路、
(3)駆動された送信コイルから受信コイルが受信した信号の強度の指標に関する情報であって前記受信器から前記送信器が受信した情報に基づいて、前記複数の送信コイルのうちのどれが前記電力調整回路によって駆動されるかを選択的に制御する制御回路、を備える送信器が提供される。
受信器位置フェーズ中、前記制御回路は前記電力調整回路からの駆動信号を各電力送信コイルに順番に接続し、各コイルに所定の期間エネルギを与える。前記所定の期間は信号強度パケットを受信するための見込み受信期間に対応する。
前記制御回路は、前記複数の送信コイルのうちのどれが駆動されるべきかを選択するために、コイルが駆動されることに応じて受信器から受信した情報を前記駆動されたコイルに関連付けてもよい。通信モジュールは、結合された送信コイルと受信コイルとの間を通る電力信号の変調を検出し、送信コイルと受信コイルとのペアの間の結合の指標を得てもよく、これは好適には受信器が送信した信号強度パケットから信号強度値を抽出し、送信コイルと受信コイルとのペアの間の結合の指標を得ることによる。
前記複数の送信コイルのうちの前記ひとつ以上の選択の次に、前記複数の送信コイルのうちの前記ひとつ以上には前記所定の期間よりも長くエネルギが与えられてもよく、それにより前記受信器からのさらなるパケットの受信が可能となってもよい。前記制御回路は、前記受信器に電力を供給するためにひとつ以上の送信コイルを選択してもよい。最も高い関連付けられた信号強度値を有する単一の送信コイルが選択されてもよい。二つ以上の送信コイルは最も高い関連付けられた信号強度値を有する前記送信コイルおよび次に高い関連付けられた信号強度値を有する前記送信コイルであってもよい。
前記制御回路は、前記送信器が受信した情報に含まれる前記電力受信器の特性に応じて、前記電力調整回路を制御してもよい。
送信器は物体検出システムを含み、前記制御システムは前記物体検出システムが物体を検出すると前記送信コイルにエネルギを与えてもよい。
前記通信モジュールは、結合された送信コイルと受信コイルとの間を通る変調信号から受信器識別情報を抽出し、前記識別情報に基づいて前記電力調整回路の動作を制御してもよい。
他の例示的な実施の形態によると、複数の送信コイルを有するIPT電力送信器とひとつ以上の受信コイルを有する電力受信器とを含むIPT電力システムにおいて、ひとつ以上の送信コイルを選択的に駆動する方法は、
a.受信器位置フェーズ中に、電力送信コイルを順番に駆動して各コイルに所定の期間エネルギを与えるステップと、
b.前記受信器の前記ひとつ以上の受信コイルにエネルギが与えられたことを検出し、それに応じて前記受信器から前記送信器へ信号強度情報を送信するステップと、
c.受信された信号強度情報とエネルギが与えられた送信コイルとを関連付けるステップと、
d.各送信コイルに関連付けられた前記信号強度情報に基づいて、電力伝送中にどの送信コイルを駆動するかを決定するステップと、を含む方法が提供される。
前記所定の期間は信号強度パケットを受信するための見込み受信期間に対応してもよい。前記受信器は、前記電力送信器と前記電力受信器との間で伝送される電力信号の変調によって、前記送信器に信号を送信してもよい。信号強度情報は、受信器識別情報を含みうる信号強度パケットで送信されてもよい。受信器識別情報は、受信器位置フェーズの後に、結合された送信器に識別パケットで送信されてもよい。
前記送信器は前記受信器識別情報に基づいてバージョン情報を決定してもよい。前記送信器の動作の前記モードは前記バージョン情報にしたがって制御されてもよい。前記識別パケットは前記受信器の動作の前記モードを特定するバージョンコードを含んでもよい。前記識別パケットは前記受信器の製造者を特定する製造者コードを含んでもよい。識別パケットは一意の識別子を含んでもよい。
前記通信回路は受信器デバイス構成情報を結合された送信器に、好適には構成パケットで送信する。構成パケットは、送信される最大電力を含んでもよい。電力送信器は、前記送信器が受信した情報に含まれる前記電力受信器の特性に応じて、前記電力受信器に電力を供給してもよい。
各パケットが受信器識別コード、好ましくは一意のコード、を含む場合、電力伝送のモードは受信器識別コードに基づいてもよい。
他の例示的な実施の形態によると、(1)受信コイル、
(2)誘導性電力伝送送信コイルから前記受信コイルが受信した信号の強度を測定するための信号強度測定回路、
(3)誘導性電力伝送送信コイルから電力を受信すると、前記測定された信号強度および受信器識別情報に関する信号を前記誘導性電力伝送送信器に送信する通信回路、を備える誘導性電力伝送受信器が提供される。
他の例示的な実施の形態によると、複数の隣り合う送信コイルを含む誘導性電力伝送送信器であって、各巻き線は中央開口を定め、複数の隣り合うコイルの前記中央開口は共通開口を定め、透磁性材料により形成されるスラグが前記共通開口のうちの少なくともいくつかの中に設けられ、かつ前記複数の送信コイルの上に突き出ている誘導性電力伝送送信器が提供される。
前記スラグは、前記コイルの下に設けられた透磁性材料の層から突き出てもよい。少なくともいくつかの隣り合う送信コイルは複数の層を有してもよく、それら複数の層は交互に配置されてもよい。
他の例示的な実施の形態では、送信器であって、各巻き線は中央開口を定め、複数の隣り合うコイルの前記中央開口は共通開口を定め、透磁性材料により形成されるスラグが前記共通開口のうちの少なくともいくつかの中に設けられる送信器が提供される。
各スラグは送信コイルの上面の上に突き出てもよい。複数の送信コイルが設けられてもよく、各コイルは複数の巻き線層を有し、少なくともいくつかのコイルはオフセットされ、それらの複数の層は交互に配置されてもよい。前記スラグは、前記コイルの下に設けられた透磁性材料の層から突き出てもよい。
少なくともいくつかのコイルの各層の前記巻き線は、電気的に並列に接続された複数の並列巻き線として形成されてもよい。少なくともいくつかのコイルの各層の前記巻き線は、電気的に並列に接続された三つの並列巻き線として形成されてもよい。前記並列巻き線のうちの少なくともいくつかの径方向変位は層間で変わってもよい。あるデザインでは、一対の並列巻き線は、層間において、前記コイルの中央に最も近いのと前記コイルの中央から最も遠いのとの間で入れ替わる。
他の例示的な実施の形態によると、複数の送信コイルを含む誘導性電力伝送送信器であって、各コイルは複数の巻き線層からなり、前記複数の巻き線は、電気的に並列に接続された複数の並列巻き線として形成される誘導性電力伝送送信器が提供される。
複数の並列巻き線は各層上に形成され、層間で互いに接続されてもよい。少なくともいくつかのコイルの各層の前記巻き線は、電気的に並列に接続された三つの並列巻き線として形成されてもよい。並列巻き線のうちの少なくともいくつかの径方向変位は層間で変わってもよい。例えば、一対の並列巻き線は、層間において、前記コイルの中央に最も近いのと前記コイルの中央から最も遠いのとの間で入れ替わる。
各巻きの並列巻き線は巻き線層の間、好ましくは二つの層の間、に分布してもよい。並列巻き線は層間でオフセットされてもよい。
透磁性材料から形成されるスラグは前記巻き線に誘導される電流を実質的に低減するのに十分な程度に各コイルの上方に延びてもよい。スラグは各巻き線の上部の上に各巻き線の高さ程度だけ、もしくは1ミリメートル以上または1ミリメートル程度突き出てもよい。スラグを収容するために各送信コイルの中に四つの共通開口が定められてもよい。前記送信コイルに誘導される電流を低減するために、各送信コイルと各スラグとの間にエアギャップが設けられてもよい。
他の例示的な実施の形態によると、複数の送信コイルを有する誘導性電力伝送送信器であって、コントローラの制御の下で、複数のモードで電力を少なくともひとつの電力受信器の受信コイルに送信することを前記複数の送信コイルに選択的に行わせることが可能であり、
前記コントローラは、前記電力伝送の前記モードを制御するために、前記電力受信器の特性を検出するよう構成される誘導性電力伝送送信器が提供される。
前記電力受信器の前記特性は、前記受信器の負荷への電力フローを制御するための回路を前記電力受信器が備えているか否かを含んでもよい。前記コントローラは、例えば前記電力送信器と前記電力受信器との間で電磁誘導により伝送される電力信号の変調を通じて、前記電力受信器と通信しそのような特性についての情報を電力受信器から受信するよう構成されてもよい。
前記コントローラは、結合された送信コイルと受信コイルとの間を通る変調電力信号から受信器デバイスバージョン情報を抽出し、前記バージョン情報に基づいて電力伝送の前記モードを制御してもよい。
前記受信器デバイスに送信される最大電力および/または前記受信器に電力を供給するのに必要な送信コイルの数は、バージョン情報にしたがって制御されてもよい。
他の例示的な実施の形態によると、(1)ひとつ以上の受信コイル、
(2)前記受信コイルにおいて誘導性電力伝送送信コイルから電力を受信すると、前記受信器の前記特性に関する信号を前記誘導性電力伝送送信器に送信する通信回路、を備える誘導性電力伝送受信器が提供される。
受信器は受信器の負荷への電力フローを制御するための電力フローコントローラを含んでもよく、前記通信回路によって通信される前記特性は電力フロー制御特性を含む。
受信器の前記特性はバージョン情報を含んでもよく、バージョン情報は受信器の電力伝送のモードを示してもよい。前記バージョン情報は信号強度パケットに続くパケットで送られてもよい。
特性は構成情報を含んでもよく、構成情報は、前記ひとつ以上の受信コイルに電力を提供するために駆動が必要な送信コイルの数を含んでもよい。
電力送信器から受信した電力信号の強度に関する信号強度情報が他の通信より前に送られてもよい。
「comprise」、「comprises」および「comprising」という用語には、種々の法域の下、排他的な意味または包括的な意味のいずれかが与えられてもよいことは理解される。本明細書の目的のために、およびそうでないと記載されない限り、これらの用語は包括的な意味を有することが意図される。すなわち、これらの用語は、直接的に参照されるリストされたコンポーネントと、潜在的に他の非特定コンポーネントまたは要素と、を含むことを意味するものとしてとらえられるであろう。
本明細書における先行技術への参照は、そのような先行技術が技術常識の一部を形成するとの認定を構成するものではない。
添付の図面は本明細書に組み入れられ本明細書の一部を形成する。添付の図面は本発明の実施の形態を説明し、上述の本発明の概括的な説明および後述の実施の形態の詳細な説明と共に本発明の原理を説明する役割を有する。
図面:
本発明の典型的なアプリケーションを示す。 本発明の無線電力伝送システムの例示的な構成を示す。 システムの送信器の実施の形態を示す。 送信器のより詳細な例をブロック図の形式で示す。 図5A−5Dは、物体検出測定に関する結果を示す。 図5A−5Dは、物体検出測定に関する結果を示す。 図5A−5Dは、物体検出測定に関する結果を示す。 図5A−5Dは、物体検出測定に関する結果を示す。 図6A−6Eは、通信プロトコルのデータおよびデータパケット構造を示す。 図6A−6Eは、通信プロトコルのデータおよびデータパケット構造を示す。 図6A−6Eは、通信プロトコルのデータおよびデータパケット構造を示す。 図6A−6Eは、通信プロトコルのデータおよびデータパケット構造を示す。 図6A−6Eは、通信プロトコルのデータおよびデータパケット構造を示す。 通信処理ブロックのブロック図を示す。 システムの受信器の実施の形態を示す。 受信器のより詳細な例をブロック図の形式で示す。 受信器の例示的な形態の回路図である。 送信器のインバータの機能を達成するよう動作する例示的な回路の模式図を示す。 送信器のマイクロプロセッサの機能を達成するよう動作する例示的な回路の模式図を示す。 送信器の電力レギュレータの機能を達成するよう動作する例示的な回路の模式図を示す。 送信器の送信コイルアレイの機能を達成するよう動作する例示的な回路の模式図を示す。 送信器のセレクタの機能を達成するよう動作する例示的な回路の模式図を示す。 送信器の物体検出器の機能を達成するよう動作する例示的な回路の模式図を示す。 送信器の通信モジュールの機能を達成するよう動作する例示的な回路の模式図を示す。 送信器の通信モジュールの機能を改善する例示的な回路の模式図を示す。 図12Aおよび12Bは、受信器の整流器の機能を達成するよう動作する例示的な回路であって点Aおよび点Bにおいて接続される回路の模式図を示す。 図12Aおよび12Bは、受信器の整流器の機能を達成するよう動作する例示的な回路であって点Aおよび点Bにおいて接続される回路の模式図を示す。 送信器のマイクロプロセッサの機能を達成するよう動作する例示的な回路の模式図を示す。 受信器の通信モジュールの機能を達成するよう動作する例示的な回路の模式図を示す。 受信器の電流検出回路の機能を達成するよう動作する例示的な回路の模式図を示す。 図13A−13Cは、送信器により行われる制御シーケンスのフロー図である。 図13A−13Cは、送信器により行われる制御シーケンスのフロー図である。 図13A−13Cは、送信器により行われる制御シーケンスのフロー図である。 図14A−14Cは、受信器により行われる制御シーケンスのフロー図である。 図14A−14Cは、受信器により行われる制御シーケンスのフロー図である。 図14A−14Cは、受信器により行われる制御シーケンスのフロー図である。 図15A−15Cは、例示的な送信コイルアレイを示す。 図15A−15Cは、例示的な送信コイルアレイを示す。 図15A−15Cは、例示的な送信コイルアレイを示す。 図15D−15Gは、四層送信コイルで用いられてもよい例示的な巻き線パターンを示す。 図15D−15Gは、四層送信コイルで用いられてもよい例示的な巻き線パターンを示す。 図15D−15Gは、四層送信コイルで用いられてもよい例示的な巻き線パターンを示す。 図15D−15Gは、四層送信コイルで用いられてもよい例示的な巻き線パターンを示す。 図15Hおよび15Jは、例示的な送信コイル構成を示す。 図15Hおよび15Jは、例示的な送信コイル構成を示す。 例示的な送信器の分解組立図である。 図16の送信器の個々のコンポーネントを示す。 図17の図面の断面図である。 強磁性凸部とPCB送信コイル層との間の関係を示す。 図20Aおよび20Bは、システムの例示的な物体検出器の等価回路を示す。 図20Aおよび20Bは、システムの例示的な物体検出器の等価回路を示す。
図1は、本発明の典型的なアプリケーション100を示す。無線電力伝送システム100は送信器すなわち充電「パッド」102を有するよう描かれている。充電パッド102はその上に置かれた複数のコンシューマ電子デバイス104を有する。この場合、デバイスの電気的負荷またはエネルギ蓄積要素(例えば、電池)を無線または非接触で充電することができる。図示の例では、送信器エレクトロニクスと受信器エレクトロニクスとの間の緩結合(loose-coupling)技術を用いて、電磁誘導または誘導的電力伝送(IPT)を介して、パッドとデバイスとの間で電力が提供される。しかしながら、そのようなシステムについて、容量的電力伝送などの他のタイプの無線電力伝送もまた可能である。
充電パッド102およびデバイス104の送信器エレクトロニクスおよび受信器エレクトロニクスは、ゼロでない電力伝送を生じさせるかまたは電力伝送を有効な態様で生じさせるための(パッド内またはパッド上の)送信器エレクトロニクスと(デバイス内またはデバイス上の)受信器エレクトロニクスとの所定の位置合わせを保証する必要なしに、ユーザがパッド上のデバイスの置く位置を任意に選択できるよう構成される。さらに、送信器は、そのように置かれた複数の受信器デバイスを個々別々に充電するよう構成される。送信器と複数の受信器との間のこの「空間的自由度」は実質的に制限されておらず、後述の通りに提供される。
図2に、無線電力伝送システム200の例示的な構成が示される。複数の受信器204、206および208に電力を伝送するよう構成された送信器202が提供される。本例では、図1に示される「スマートフォン」などのコンシューマデバイス構成の三つの受信器が送信器「パッド」に置かれるのが示される。しかしながら、同じタイプまたは異なるタイプの二つ以上の受信器デバイスを収容しそれらに電力を供給するために送信器の「パッド」をスケールしてもよいことは、以下の説明に基づき当業者には理解されるであろう。そのような二つ以上の受信器デバイスは、例えば、複数の電話機、ファブレット、タブレット、ラップトップ、それらの組み合わせ等であり、それぞれが空間的寸法と電力レベルとを有する。例えば、電池を充電するために、スマートフォンは約5ワットから約7.5ワットの電力を必要とする場合があり、一方タブレットは約15ワットの電力を必要とする場合がある。
送信器202は、そのエレクトロニクスおよびコンポーネントを示すブロック図の形態で示される。受信器への伝送用の電力は電源210から送信器へ入力される。電源210はAC電力またはDC電力のいずれかを送信器202へ供給してもよい。AC電力供給について、電源210は例えば商用電源であってもよく、入力方法はケーブル接続であってもよいが、他のAC電源や入力方法も可能である。DC電力供給について、電源210は例えば電池、調整されたDC電源、またはPCへのUSB電力接続などであってもよい。いずれの場合でも、送信器202の回路は入力電力を、電力伝送要素212を介した伝送に適した信号に変換する。伝送要素212はアレイ214状に設けられる。示されるように、伝送要素212は、ひとつ以上の要素を用いて受信器デバイス204−208のうちのひとつの受信要素216に電力を送信するように構成される。
当業者には理解されるように、IPTでは、伝送要素および受信要素は誘導的要素であって、該誘導的要素は主(送信)コイルおよび副またはピックアップ(受信)コイルとして提供される。これらのコイルは近くにあると互いに誘導的に結合し、交流電流(AC)が送信コイルを通るときに誘導される磁場を介して、それらのコイルの間で電力が伝送される。図2の表示では、受信コイル216は送信コイル212から離れて示され、かつ結合している送信コイルおよび受信コイルのグループは同様のハッチングで示される。これは説明を簡単にすることのみを目的としており、動作中は受信コイルはそれと結合する送信コイルと重なる。
本明細書における「コイル(coils)」という用語は、電気伝導性を有するワイヤを三次元コイル形状または二次元平面コイル形状に巻いた誘導的「コイル」を指すものとして用いられ、そこではプリント回路基板(PCB)技術、スタンピングやプリンティング(例えば、スクリーンプリンティングまたは三次元プリンティング)を用いて電気伝導性物質をひとつ以上のPCB「層」の上の三次元コイル形状や他のコイル状形状に加工してもよいことが理解される。「コイル」という用語の使用は、この意味で限定的であるべきでない。さらに、図2では、送信コイルおよび受信コイルは二次元において総じて楕円形状であるように描かれているが、これは単なる例示であって、円形、三角形、正方形、矩形、および他の多角形形状などの他の二次元形状が可能である。後に詳述されるように、そのような形状はアレイ構成に資するものである。
システムの効率的な動作を可能とするために、送信器202が、近くの受信器デバイスの受信コイル216に結合可能な送信コイル212にのみ電力を供給することが必要である。これにより、供給された電力は受信器への電力伝送に使用され、送信コイルそのものに電力を供給するためには使用されない。この選択的動作は、送信コイルとの関係で受信コイルの位置を知ることが必要であり、これは後述される。
アレイ214の複数の送信コイルに選択的に給電する最も単純な方法は、各コイルに専用のまたは少なくともアレイ内のコイルのグループに専用の駆動エレクトロニクスを提供することである。この解は単純ではあるが、必要な電子回路の量は多くなり、したがって回路の複雑さやサイズやコストが加えられることになる。回路の複雑さの増大は、より多くの数のコンポーネントが要求されることを意味し、これにより回路における損失が増大する可能性があり、これは効率的なIPTに要求される効率性に反する。コストの増大はコンシューマ電子産業において特に問題である。該産業では、製造者やベンダの収益率が小さく、したがって該収益率は最適化される必要がある。したがって、本発明のIPT送信器は、全ての送信コイルに共通の駆動エレクトロニクスを用いる。これは必要な回路を単純化するが、駆動回路を制御する態様の複雑さを増大させる。しかしながら、後述されるように、本発明の制御方法が用いられる場合、この増大する制御複雑さは許容可能となる。送信器駆動エレクトロニクスは図2において駆動または制御回路218として示される。制御回路218はコントローラ220と送信電力調整器222とセレクタ224とを含む。
コントローラ220は、マイクロコントローラやマイクロプロセッサなどのプログラマブル集積回路の形態のデジタルコントローラとして、またはディスクリート回路コンポーネントの形態のアナログコントローラとして、設けられ、かつ、比例−積分−微分(PID)コントローラを含むかそれであってもよい。本明細書で説明される駆動回路の例では、コイルを駆動するためだけでなく送信器のメイン処理回路としてマイクロコントローラを設けるが、当業者であれば、本システムの特定のアプリケーションに依存して、異なる適用可能な形態のコントローラが等しく用いられうることを理解する。
送信電力調整器222は送信コイルを駆動するために入力電力を調整するために用いられる。したがって、送信電力調整器222の構成は用いられる電源210および送信コイル回路の要件に依存する。例えば、電源210がDC電力を供給する場合、送信電力調整器222は電力整流機能を伴うDC-ACインバータである。一方、電源210がAC電力を供給する場合、送信電力調整器222は電力調整機能を伴うAC-DCコンバータと電力整流機能を伴うDC-ACインバータとの組み合わせであり、したがってDC伝送リンクを介したACからACへの電力調整を提供する。いずれの場合においても、送信要素アレイを駆動するのに単一のインバータが用いられる。電源210がAC電力を供給する場合に送信電力調整器222を直接AC-ACコンバータとして構成することも可能ではあるが、そのような直接コンバータは多くの場合、高周波出力を生成できないことにより、IPTアプリケーションには向かない。電力整流DC−ACインバータは、当業者によく知られているように、スイッチを有するハーフブリッジ整流器やフルブリッジ整流器などのスイッチベースの非同期構成または同期構成の整流器として設けられてもよい。スイッチはダイオードベースのスイッチであってもよく、またはトランジスタや電界効果型トランジスタ(FETs)や金属酸化物半導体FET(MOSFETs)などの半導体スイッチであってもよい。電力調整DC−ACコンバータは、ステップアップ(ブースト)コンバータやステップダウン(バック)コンバータやバック−ブーストコンバータやシステム200の特定のアプリケーションで電力を調整する用に適した他のコンバータタイプと組み合わされたAC−DCコンバータ(ADC)として設けられてもよい。本明細書で説明される駆動回路の例では、電源210は商用電源レートでACを供給し、送信器または送信電力調整器はADCを有し、該ADCは電源210により入力されるAC電力をDCに変換し、バック−ブーストコンバータは変換されたDC電力を調整し、一対のFETを有するハーフブリッジ整流器は調整された電力を整流し、もって送信コイル212に整流された電力が提供され、要求されている磁束が誘起される。しかしながら、本システムの特定のアプリケーションに依存して、調整器および整流器の異なる適用可能な形態を等しく用いることが可能であることは当業者には理解される。
セレクタ224は、送信コイル212とは別個であってかつそれに接続された電池またはスイッチアレイとして、または、送信回路にコイル212と共に個別に集積されたスイッチとして、設けられてもよい。セレクタ224は、スイッチを当業者にはよく理解される態様で駆動するためのデマルチプレクサおよびシフトレジスタを含んでもよい。駆動回路218のこれらのコンポーネントの動作および効果は後に詳述される。
送信コイル212のアレイ214は多くのやり方で構成されうる。送信コイルは、受信コイルと実質的に同じ寸法および構成を有するよう構成されてもよく、この場合、送信コイルと受信コイルとの結合された対が可能となる。あるいはまた、送信コイルは受信コイルよりも大きいかあるいは小さくなるよう構成されてもよく、および/または受信コイルとは異なる構成を有してもよい。実際、受信器デバイスの異なるタイプは寸法や構成が異なる受信コイルを有する可能性がある。そのような場合でも、本発明のシステムおよび方法は、これらの相対的構成の組み合わせをサポート可能である。図2の例では、送信コイル212は、受信コイル216よりも小さい寸法を有するが、同じ構成すなわち総じて楕円形を有するように描かれている。そのような構成では、複数の送信コイル212がひとつの対応する受信コイル216と結合することが可能であり、これはハッチングされた送信コイルグループ212a、212bおよび212cとして示されている。複数の送信コイルを用いて単一のより大きな受信コイルに電力を与えることは、伝送される電力の量を、送信器および駆動回路を効率的に用いることを通じて最適化する。図2に示されるように、グループの送信コイルは、相対的向きを含む重なっている受信コイルの配置に基づいて選択される。
図2のアレイ214は送信コイル212を配置する最も単純な形態である。すなわち、送信コイルの繰り返しパターンが単一の層または平面に設けられ、各コイルはアレイの他の全てのコイルと総じて同一平面上にある。この構成はシンプルであるという利点をもたらすが、アレイの他の構成も可能であり、そのような他の構成は、規則的にまたは不規則に配置された送信コイルの層間オフセットまたは重なりを伴うかまたは伴わない多層または多平面コイルアレイを含む。そのような複雑さが増したアレイは、結合磁場の改善された一様性などの他の利点を提供する。異なるアレイ形態の具体例が後述されるが、空間的に自由な複数デバイスIPT充電の目的にかなった効果はこれらの例のそれぞれに共通である。
さらに図2を参照すると、送信器202はシステム200のユーザにより用いられる機器226を含む。機器226は、図1に示されるような発光ダイオード(LED)などのインジケータおよび/またはボタンなどのユーザコントロールを含んでもよい。機器226は、システムの動作に関する情報の入出力のために、コントローラ220または適用可能なら他の制御回路に接続され、かつ、それにより制御されてもよい。
既述の通り、送信コイルの選択的動作は、送信コイルとの関係での受信コイルの位置の知識を要求する。そのような目的を達成するための種々の従来技術が存在する。しかしながら、例示的な実施の形態では、本発明は比較的シンプルな技術を用いる。すなわち、最初に送信器の近く(例えば、充電範囲内)における受信器または他の物体の存在を検出し(「粗い」検出)、次いで送信コイルに対する受信コイルの相対位置を検出する(「細かい」検出)。これは、本発明のシステムにおいて有利である。受信器の存在が検出された場合にのみ細かい検出のための複数の送信コイルへの十分な電力供給が行われ、それにより送信器の実質的な低電力アイドルまたは「スリープ」モードが可能となるからである。「低い」電力の典型的な値は約100mWより小さいものであり、好適には約50mWより小さいものであり、より好適には約数mWから約20mW以下の範囲内のものである。
粗い検出の次に細かい検出が続く本発明の二段階受信器検出方法が以下に提供されうる。図3は、本発明のシステムの送信器302の実施の形態を示す。図2のように、送信器302は、アレイ314状の送信要素/コイル312と駆動回路318とを含むエレクトロニクスを示すブロック図の形態で示されており、駆動回路318はコントローラ320と送信電力調整器322とセレクタ324とを含む。加えて、送信器302はさらに検出器328と通信モジュール330とを有するものとして描かれている。図4は、同様のコンポーネント/要素を有する送信器402のより詳細な例をブロック図の形態で示す。送信器402は、アレイ414状の送信要素/コイル412と駆動回路418とを含み、駆動回路418はコントローラ420と、送信電力調整器422とセレクタ424と検出器428と通信モジュール430とを含む。加えて、送信電力調整器422は、前述の通り(バック−ブースト)コンバータ432と(ハーフ−ブリッジ)整流器434とを有するよう描かれている。送信器302および402のコンポーネント/要素は送信器202の同様なコンポーネント/要素と同様に機能し、送信器328および428の検出器および通信モジュールは各図において同じ要素を表すことを注意しておく。
検出器はコントローラと連携して受信器の粗い検出に用いられ、一方コントローラは他の回路と連携して細かい検出法に用いられてもよい。検出器428は、検出送信要素436および関連する検出回路438として設けられる。ある実施の形態では、検出送信要素432は電力送信要素412のアレイ414を囲むコイルとして設けられてもよい。他の実施の形態では、検出送信要素436は、アレイ414の(少なくとも)一部と重なるコイルとして、または複数のコイル(またはコイルのアレイ)として、設けられてもよい。例えば、国際出願公開第WO2014/070026号(その内容は参照により明示的に本明細書に組み入れられる)に開示される検出コイルの構成および動作は、送信要素432の適用可能な例示的形態である。検出要素436は、受信器が送信器の近くにあるか否か、例えばスマートフォンなどの受信器デバイスが送信パッドまたは充電面に置かれたか、またはそこから取り除かれたか、を判定するために使用される。前述の通り、検出器328/428の「コイル」は、巻き線コイルやプリント回路コイルやスタンプされたコイルやプリントされたコイルであってもよく、特定のアプリケーションに資するような形状および寸法を有してもよい。
この検出は以下のように達成される。図4に示されるように、コイル436は検出回路438を介して電力調整器440によってコントローラ420の制御の下で電力の供給を受ける。電力調整器440は電源からの入力電力を検出器428によって用いられるものに変換する。すなわち、送信電力調整器の動作と同様に、電力調整器440は、受信コイル検出に必要な磁束を誘起するために、検出コイル436に調整されたAC信号(電圧/電流)を供給するよう構成される。例えば、電力調整器440はバックコンバータ、ブーストコンバータまたはバック−ブーストコンバータと組み合わされたADCとして設けられてもよい。図4に示される例示的な実施の形態では、電力調整器440はDC電力入力442からDC電圧が供給されるバック−ブーストコンバータである。DC電力入力442はACアダプタとして設けられてもよい。商用AC電力またはDC電力、例えばPCなどへのUSB接続を介するもの、は送信器402に該ACアダプタで供給される。電力(送信器)コイル412および検出コイル436の相対的な電圧/電流要件に依存して、電力調整器440は駆動回路418の一部であってもよいことは、当業者には理解される。図4に示される例示的な実施の形態では、相対的な要件は異なっており、第1電圧レベルを要求する検出器428(およびコントローラ420)と、第2電圧レベルを要求する送信電力調整器422および送信コイル412と、で別個の駆動エレクトロニクスが設けられる。これらのパラメータの例示的な値は後述される。いずれの構成においても、DC電力入力442により提供されるDC電圧は、EMIフィルタブロック444による電磁干渉(EMI)調整を経た後に、送信器402の回路に入力されてもよい。EMIフィルタブロック444はEMIノイズ抑制のためのコモンモードフィルタおよび差分モードフィルタを含む。特にシステムが携帯通信環境において用いられる場合、EMIノイズを抑制することにより、送信回路の安定性および応答性を高めることができる。
検出器の最もシンプルな形態において、提供される「検出」は基本的に金属探知システムのそれである。当業者にはよく理解されるように、検出器のコイルに電力が供給されると、該コイルはある周波数で振動せしめられる。この振動周波数はコントローラの制御の下、検出回路によって測定される(所定の時間フレーム内でカウントされた、振動周波数信号のエッジの数として)。金属物体が検出コイル、したがって送信器、の近くにあると、それは振動の周波数を変えさせる。したがって、期間内にカウントされるエッジの数が変わる。検出コイルにより放たれる磁束のエネルギを金属が吸収するからである。変化量は、金属物体が吸収するエネルギの量により変わる。したがって、この振動周波数の変化に対する限界またはしきい値を設定することによって、「金属物体」を検出することができる。その変化は単一の期間内において、または一連の期間に亘って、測定(すなわち検出)可能である。エッジを検出しカウントする適切な方法は周知であり、したがって本明細書では詳述しない。
検出コイル振動の周波数は、送信コイルが駆動される周波数とは異なるかそれからオフセットされる周波数範囲に入るように、検出回路のコンポーネント(可変コンポーネントであってもよい)の適切な選択および検出コイルの寸法およびトポロジの適切な選択を通じて選択される。このようにして、検出器によって提供される粗い検出は受信器に給電する際の送信器の動作と干渉しない。本発明の一例では、検出周波数はMHz範囲内、例えば約1MHz、であり、一方電力伝送はkHz範囲内、例えば約100kHz、である(より具体的な値の範囲は後述される)。この周波数範囲では、検出のための所定の(第1)期間はミリ秒(ms)範囲内、例えば約40ms、である。したがって、物体が送信器の近くに持ってこられたかの「サーチ」は、変化が生じたかを判定するために検出コイルをコンスタントに動作させかつ規則的な時間間隔で振動周波数をサンプリングすることによって実行される。物体が送信「パッド」に置かれた場合にその物体を検出するためだけでなく物体が送信器に向けて、送信器に沿って、または送信器から離れるように動かされるときにその物体を検出するために、検出「パルス」間の(第2)期間として約500msが適切であると考えられる。ここで、「近く」は、100ミリメートル(mm)未満の範囲、例えば約3mmから約30mmの範囲、にあるものと考えられ、これはシステムの充電範囲である。しかしながら、第1期間および第2期間は、要求される検出の「粗さ」に依存して、より大きいものまたはより小さいものが選択されてもよい。
検出コイルの動作が送信コイルの動作に相当干渉するということはないが、送信コイルの動作は、充電が発生しているときに検出コイルの振動周波数が変わるという点で、検出コイルの動作に干渉する。これは、部分的には充電中ずっと送信器の充電面に受信器デバイスが存在することによるものであり、また部分的には電力供給された送信コイルの誘導磁場による(より大きな)検出コイルの誘導磁場への影響によるものである。しかしながら、後に詳述するように、振動周波数の突然の変化が測定され、その場合充電シーケンスの影響は周波数デルタ測定のベースラインを単にシフトさせるだけであるから、この影響はシンプルに説明される。
検出のための測定周波数変化のしきい値の設定は、システムのアプリケーションに依存して実験的に決定されてもよいし、較正を通じて設定されてもよいし、動的に決定され送信器表面に複数の受信器デバイスが置かれたことによる周波数値の「ローリング」平均として用いられてもよい。本明細書で説明されるシステムの例示的な実施の形態では、エッジカウントの一連の読み取り値の間の分散として、約5%から約10%は環境的なもの(例えば、「バックグラウンドノイズ」)とされ、したがって無視される(図5A参照)。スマートフォンなどの実際のコンシューマデバイスは、IPTシステムが設けられる典型的な環境と比較して多量の金属を含む密な物体であるが、その実際のコンシューマデバイスが送信器表面に置かれた場合、振動周波数のかなり大きな変化が起こる。例えば、典型的なスマートフォンについて、二つの連続する読み取り値の間で周波数のほぼ二倍化が観測され、さらに次の読み取り値に亘って約150%から約200%の増加が見られる(図5B参照)。そのような「イベント」を用いて細かい検出を「トリガ」し、細かい検出は、検出された「物体」が受信器であるかあるいは送信器に置かれたただの他の金属物体であってしたがって電力供給されるべきでないもの(すなわち、後に詳述されるように、いわゆる「異物」または「寄生負荷」)であるかを判定する。
図5Aおよび図5Bに示される結果は、約10%以上の周波数変化しきい値を設定することで比較的感度の高い「イベント」検出が可能となり、また例えば約50%以上の設定により比較的粗いイベント検出が可能となることを示すが、より多くの時間およびエネルギが消費される細かい検出法が用いられる「誤検知(false positives)」が生成されないように、しきい値を設定する際には他のファクタを考慮すべきである。
例えば、システムの近くにある使用環境中の金属の量はバックグラウンド変動に影響を与えうる。システムの最終的な使用環境および場所が未知で非制限的である場合にそのようなファクタを所定の態様で説明することは困難であるが、検出コイルの適切なデザインにより影響のレベルを低減できる。例えば、当業者には理解される通り、方向性コイルトポロジやシールドや磁場シェーピング等を用いてもよい。
さらに、電力送信コイルにエネルギを与えることにより振動周波数が変わりうる。前述の通り、本例では、当業者にはよく理解されるように、送信器コイル412に電力が供給されると、該送信器コイル412はある周波数で振動せしめられ、その周波数は約100kHzから約120kHzである。送信コイルのこの振動は検出コイルにおける振動に影響を与え、検出の読み取り値の分散が約10%以上となる(図5C参照)。したがって、粗い検出しきい値を設定する際には、電力伝送コイルまたは充電コイルへの給電の影響を理解し、対処する必要がある。
考慮されなければならない他のファクタは、送信器に結合された受信器によって引き込まれる充電電流による検出回路の振動周波数への影響である。引き込み電流のこの変化は、電池またはコンシューマ電子受信器デバイスの他のエネルギ蓄積デバイスにおける「充電」レベルの時間変化に起因する。送信器側に設けられた電力フローコントロールは、電力送信効率の観点でこれに対処する(詳細は後述)。これは特により長い時間スパン、すなわちスマートフォンの電池を充電するのに必要な期間の長さ、例えば約1時間程度、に亘って観測される。その期間に亘って、電力調整器440のバックコンバータ電圧における負荷ステップは受信器から要求される電力量を反映し、その変化量は検出読み取り値に、振動周波数の揺動変化として反映される(図5D参照)。この時間変化は、コントローラ420には知られているバックコンバータ電圧負荷ステップにしたがって振動周波数の「ベースライン」を動的に設定することによって、検出アルゴリズムにおいて対処可能である。無論、一度に電力供給中/充電中のデバイスの数や電力供給中/充電中のデバイスのタイプやこれらのデバイスの相対的な「充電レベル」もまた検出測定に影響を与えることは理解されるであろう。
検出コイルマグネティクスに対するこれらの既知の影響を組み合わせることにより、粗いまたは初期(主)検出レジームについて堅牢で効果的な検出レジームが提供されうる。例えば、複数デバイス充電システムの「モード」やユースケースに基づいて、しきい値の集合を動作中に動的に決定するかプリセットすることができる。そのような「モード」やユースケースは、例えば、給電中/充電中のデバイスがない、所定のタイプのデバイスひとつが給電中/充電中である、他の所定のタイプのデバイスひとつが給電中/充電中である、同じまたは異なるタイプの二つのデバイスが給電中/充電中である、等である。さらに、検出されカウントされるエッジは立ち上がりエッジまたは立ち下がりエッジのいずれかであってもよいが、立ち上がりエッジと立ち下がりエッジとで異なるべきしきい値の分離は、より具体的なカテゴリ化のために用いられてもよい。さらに、静的な値を測定するのではなく送信器において状況の変化を検出することによって、物体検出は一度だけ生じればよく、その場合、「細かい」または第2(副)検出が行われて検出された物体が受信器デバイスでないという結果となったら、検出された物体は副検出を再び行う必要性をトリガしない。
他の例では、IPTフィールドによる検出フィールドへの影響は、代替的に、上述のようなソフトウエアによってではなくハードウエアによって対処されうるか、またはそのようなソフトウエアによる対処に加えてハードウエアによって対処されうる。図20Aは国際出願公開第WO2014/070026号に開示される(自励式)周辺コイルの等価回路を示す。この回路では、「ループ」コイルL1の中に金属が置かれると、そのコイルのインダクタンスが変わり、それにより(インダクタL1およびキャパシタC1の共振回路により提供される)振動周波数が変化し、その変化は図示される比較回路を用いて測定される。しかしながら、上述の通り、電力送信コイルの動作によりループコイルがIPTフィールドと結合し、それにより検出信号を損ねる可能性がある。IPTフィールドによる検出コイルへの悪影響(すなわち、ノイズ)を低減するために、図20Bに示されるように、検出回路に適切なフィルタを設けてもよい。本例では、インダクタL3とキャパシタC3とからなるLCフィルタが検出コイルL1と並列に追加され、インダクタL2とキャパシタC2とからなるLCフィルタが比較回路に設けられる。これにより、インダクタL1およびL2(比較回路内)とIPTフィールドとの結合は低減される。
上述から理解される通り、物体検出方法は、受信器デバイスを含む物体の存在を検出するために使用可能なだけでなく、同じしきい値レジームを用いてそのような物体がないことを検出するためにも使用可能である。物体がないことは、送信器の充電面から受信器デバイスが除去された場合や、充電面に対して受信器デバイスが動かされた場合である。このようにして、シンプルな態様で、送信器の充電モードを正確に制御することができ、低電力および安全な動作が提供される。
本発明のシステムの送信器の動作では、効率的かつ効果的な物体検出機能が以下のように提供される。送信器への電力投入時、すなわち電源から送信器へ電力が供給されたとき、どの送信コイルにも電力は供給されず、上述のレジームの下で検出コイルに電力が供給され、受信器デバイスを含む物体が送信器の充電範囲内にあるか否かが検出される。送信器に給電されている間は物体検出が連続的に行われ、送信器への給電を止めると物体検出は終わる。
近くに物体を検出すると、システムはコントローラと連携して受信器の検出を行う。この「細かい」検出は、送信「パッド」または充電面をスキャンして検出物体の実際の位置を決めると共にその検出物体が受信器デバイスであるか否かを決めることに相当する。このスキャンは、アレイの送信コイルを選択的に活性化し、そのような送信コイルの離散的な既知の位置に物体があるか否かを決定することによって、達成される。上述のように、検出物体は受信器デバイスであるか、または金属を含む他の物体であってもよい。送信コイルにより送信されるエネルギと金属との相互作用によって検出がより容易となる。送信コイルの活性化は、送信されるエネルギにより、送信コイルと近くの受信コイルとの結合が、その結合される受信コイルに関連付けられた受信回路/負荷に実際に給電/充電することなしに生じるような態様で、実行される。特に、物体検出器を用いて検出された任意の可能性のある物体の位置を、送信コイルと物体との磁気的相互作用を通じて、決定するように、スキャンが行われる。送信コイルアレイの構成に依存して、スキャンおよび検出は多くの方法で実行可能である。例えば、国際出願公開第WO2013/165261号および国際出願公開第WO2014/070026号(両方の内容は参照により明示的に本明細書に組み入れられる)に開示される突入電流測定および検出方法の原理並びに国際出願公開第WO2013/165261号に開示されるスイープ検出方法は、本発明の「細かい」検出方法のテストまたはステップの基礎として用いられうる。あるいはまた、後述の例示的な方法を含む受信器の位置を知る他の方法が用いられてもよい。
国際出願公開第WO2013/165261号および国際出願公開第WO2014/070026号に開示される通り、受信器エレクトロニクスの特性が既知の場合、突入および周波数掃引検出方法を用いて受信器デバイスを「特定」できると共に、そのデバイスの位置を知ることができる。そのように述べたが、受信器を特定しその位置を知る代替的な方法は後述される。この特定は、検出物体が送信器による給電/充電と互換性がある受信器デバイスであるか否かを判定するのを助ける。この機能に関して、本発明のシステムは、コンシューマ電子デバイスの無線給電のための従来のシステムとは以下のように一線を画している。
既述の通り、送信器は同じタイプまたは異なるタイプの二つ以上の受信器デバイスを収め、それらに電力を供給することができる。これらの受信器の「タイプ」は、スマートフォン、タブレット等のデバイスタイプや3ワット、10ワット等のパワーレーティングタイプを含むだけでなく、産業規格の下で定義された異なる規格書に準拠する受信器タイプを含む。規格の発展を通じて産業規格の規格書が変更になった場合に後方互換性を可能とするために、これらの異なる規格書をサポートすることは重要である。すなわち、規格書の前のバージョンに準拠するデバイスはその規格書の後のバージョンに(完全には)準拠しない可能性がある。したがって、前のバージョンのデバイスの給電/充電を新たなバージョンのデバイス用にデザインされた送信器でサポートすることは、規格の初期の採用者が、少なくとも彼らが前のバージョンのデバイスを漸次廃止して新たなバージョンに置き換えることができるまで、不当な不公平にさらされることはないことを意味する。これは道理ではあるが、規格ベースの規格書の異なる世代は、回路デザインおよび動作において、相補的または互換ではないかもしれない。現在、コンシューマデバイスの無線給電業界は、異なる標準規格団体(SSO)により設定されているいくつかの規格書を有する。用いられている無線電力伝送のための基礎技術がとても異なるため、単一のシステムでこれらの競合する規格書をサポートすることはさらに難しい可能性がある。
このコンテキストで、本発明のシステムは、受信器デバイスの「タイプ」または少なくとも送信器に提供されている受信器デバイスの特性を特定するための、かつ、この特定を通じて複数の「タイプ」の受信器デバイスの充電をサポートするための、メカニズムを提供する。本発明のシステムは、送信器が本システムの一部であるか産業規格の規格書の異なるバージョンのものであるかに依らず、受信器デバイスがその送信器に自証するメカニズムを提供する。
本発明のシステムの複数デバイスタイプ給電/充電能力の例示的なアプリケーションとして、図3の通信モジュール330の動作を説明する。この例示的な実施の形態では、通信モジュールは産業規格の規格書の第1バージョンで規定される通信要件に準拠する。この場合、その第1バージョンの規格書に準拠する受信器デバイスだけでなく、第1バージョンよりも新しいバージョンである産業規格の規格書の第2バージョンに準拠する受信器デバイスにおいて、特定、通信および給電/充電が実行可能である。そのような複数バージョン受信器サポートを行うために、無線電力伝送の適切なバージョンモードが選択されるよう、送信器302は受信器タイプを識別する必要がある。
前のバージョンの規格書は、送信器から受信器への電力伝送について以下の四つのフェーズを有する。
・選択
送信器は、物体の載置および除去があるかについて、送信器(インタフェース)表面を監視する。送信器が物体を検出すると、システムはピンフェーズに進む。
・ピン
送信器はデジタルピンを実行し、応答を聞く。送信器が応答を受信すると、システムは特定および設定フェーズに進む。
・特定および設定
送信器は受信器を特定し、受信器がその出力(負荷)において提供することになっている最大電力量などの設定情報を取得する。受信器が特定され設定されると、システムは電力伝送フェーズに進む。
・電力伝送
送信器は、受信器から受信する制御データに応じてそのコイル電流を調整することで、受信器に電力を提供する。
前のバージョンの規格書のこのレジームでは、任意の他のフェーズから選択フェーズへの遷移は、送信器が受信器への電力信号を除去することを含む。本発明については、これらのフェーズは以下のように行われる。選択フェーズは、前述の通り本発明のシステムによって行われる物体検出を含む。ピンフェーズおよび特定および設定フェーズは本発明の態様で以下に説明されるように行われる。電力伝送フェーズは特定された受信器のバージョンに依存して行われる。すなわち、前のバージョンのモードまたは後のバージョンのモードのいずれかで行われ、前者では送信器が上述のように伝送される電力量を調整し、後者では受信器が後述のように受信側負荷へ運ばれる受信電力量を調整する。以下の記載では、前のバージョンの規格書をバージョンAと呼び、後のバージョンの規格書をバージョンBと呼ぶ。より多くのバージョンや異なる規格の規格書のバージョンが同様にサポートされうることは理解される。
まず本発明のピンフェーズが説明される。本実施の形態では、本発明のバージョンB送信器(例えば、送信器302)は、まず、送信コイル312に順番に選択的に給電することによって受信器位置スキャンを行い、バージョンAまたはバージョンB受信器が存在するか否かを判定する。もしなければ位置スキャンは終わる。これは単なる一例であり、同じスキャン内の代わりに、種々のバージョンを順次(例えば、順番に)見つけてもよい。
送信器表面上のどこに受信器デバイスがいるかを検出し、その受信器デバイスを特定するために、送信器と受信器との間の通信プロトコルが用いられてもよい。この通信プロトコルは両方のバージョンの規格書にしたがうものであってもよい。この場合、バージョンAおよびバージョンBのデバイスを時間的に効率の良い態様で検出できる。送信器によって給電/充電される前に受信器デバイスが検出されることを待たなくてはならないことによってシステムのユーザ体験が不当に影響を受けることがないようにするために、時間的に効率が良いことが望ましい。図6はバージョンAの通信プロトコルの例示的な通信またはデータ「パケット」のコンポーネントを示す。パケットはワン(ONE)ビットおよびゼロ(ZERO)ビットからなるビットストリームを含む。図6Aおよび6Bに示されるように、ゼロビットはクロック信号tCLKのひとつの周期内のひとつの遷移として符号化され、ワンビットはひとつのクロック周期内の二つの遷移として符号化される。クロック周期は例えば約2kHzである。ビットは一つの遷移または二つの遷移のいずれかとして符号化されるので、信号の初期状態は重要ではなく、クロック周期の周期内にいくつの遷移があるかのみが重要である。図6Cに示されるように、パケットの各バイトは11ビット非対称シリアルフォーマットで符号化され、そこではひとつのスタートビット、ひとつのオッドパリティビットおよびひとつのストップビットがある。図6(D)は、四つのパート(部分またはフィールド)を有するパケットを示す。すなわち、11ビットから25ビットのプリアンブル部であって、全てのビットがワンに設定される(すなわち、プリアンブル部ではどのバイトも符号化されない)プリアンブル部と、ひとつのバイトからなるヘッダ部であって、パケットタイプおよびメッセージ部バイトの数を示すヘッダ部と、ひとつ以上のバイトからなるメッセージ部と、ヘッダ部バイトとメッセージ部バイトのそれぞれとのXORとして計算されるひとつのバイトからなるチェックサム部と、である。
動作中、例えば約100msから約300msまでの所定の期間に亘って、送信器302はアレイ314の各送信コイル312から順に「ピン」を送信する。「ピン」は離散的な非充電エネルギ信号であって、該信号はピンを送信する送信コイルと最近接の受信コイルとを一時的に結合させることができる。セレクタ324を用いて選択された送信コイル312を介して特定の期間に亘って適切な電力信号を出力するよう送信電力調整器322を制御することによって、ピンが得られる。一時的なピン信号により運ばれる電力によって、結合された受信器デバイスは送信器302に結合通信パケットを「送る」ことができ、送信器302の通信モジュール330は受信したパケットを復号して処理するための復号および処理回路を含む。コントローラ320の制御の下でこれらの機能を行うための回路が送信器302の通信モジュール330に設けられてもよいし、またはコントローラ320自身の一部として設けられてもよい。受信器が通信対象の情報をパケットに符号化するやり方およびこれらのパケットを「送信」するやり方は後述される。
図7は、コントローラ320または通信モジュール330に実装されうる、受信されたパケットを復号するためのデコーダ702および復号されたパケットを処理するためのステートマシン704を示すブロック図である。受信通信パケット内の期間を測定するためのタイマ706も示される。デコーダ702は、バージョンAの通信プロトコルにより、少なくとも四つのプリアンブルビットが受信され、かつ、メッセージにパリティエラーが無く、かつ、チェックサムがマッチする場合にのみ、受信パケットのメッセージを正当と考えるよう構成される。しかしながら、他の検証基準も可能である。デコーダ702は復号されたメッセージをステートマシン704に渡し、またいつエラーを伴うメッセージが受信されたかを示す。ステートマシン704は復号されたパケットを処理する。
上述の通り、ピン信号のエネルギを受信する受信器デバイスは、結合通信パケットを送信器に送信することによって応答する。この結合(第1)通信パケットは信号強度パケットの形態であってもよい。信号強度パケットはパケットのメッセージ部のなかで信号強度値を伝える。該メッセージ部はピンを送信する送信コイルと結合された受信コイルとの間の結合の度合いを示す。ステートマシン704はこの受信した信号強度パケットを処理し、それにより送信器302は、送信伝送コイルに局在的な位置にあるものとして受信器デバイスを位置決めすることができる。当業者には理解されるように、主にIPTフィールドにおける反射信号として、信号強度パケットを受信するのはその送信コイルであるからである。
受信器デバイスの位置決めに加えて、信号強度パケットから、受信器デバイスに給電/充電するための送信コイルまたは複数のコイルを導くことができる。すなわち、上述のように、かつ後に詳述されるように、受信器は、送信コイルのうちのあるひとつと受信器デバイスの受信コイルとの間の結合のレベルを測定し、信号強度を伝えることによって送信器にこの結合レベルを示すよう構成される。したがって、送信器はどの送信コイルまたはどの送信コイルの組み合わせが最良の結合を与えるかを決定することができる。例えば、電力効率を最大化しつつ電力伝送を最大化するために二つ以上の送信コイルの組み合わせを用いる場合、コントローラ320は、どの送信コイル312が最大の信号強度測定を提供するかおよびその「最良」の送信コイル312の隣のどの送信コイル312が次に「最良」の信号強度を提供するかを決定してもよい。この場合、その「最良」の二つの送信コイル312がセレクタ324を用いて電力伝送のために選択される。あるいはまた、前述の突入電流方法などの、同じまたは異なるパラメータの他の測定を用いてもよい。
まず低電力の粗い検出方法を用いて物体を検出し、次いで細かい検出スキャン方法を用いて送信コイルに対する位置を見つける二段階受信器検出方法が説明されたが、単一段階検出方法も本発明の範囲内である。例えば、新たに提供される受信器デバイスを検出する際の、または既存の受信器デバイスの動きを検出する際の、電力効率の重要度が特定のアプリケーションにおいて低いと考えられる場合、特定の状況において、またはシステムから物体検出回路および関連するソフトウエアを合わせて省くことにより、粗い検出を省いてもよい。実際、送信器および受信器の回路は、送信器パッドスキャン中に電力効率が最適化されるように、または結果として得られる検出/位置決めの高速化が低電力の「アイドル」またはスタンバイモードに対する必要性よりも高い価値を有するように、構成されてもよい。
受信器デバイスを位置決めすると、システムは特定および設定フェーズに入る。このフェーズでは、送信器は受信器を特定し、受信器がその出力(負荷)において提供することになっている最大電力量などの設定情報を取得する。例えば、ピン信号のエネルギが受信された場合に、位置決めされた受信器デバイスが送信器に識別通信パケットを送信することによって、これは達成される。この識別(第2)通信パケットはパケットのメッセージ部において受信器デバイスのIDを伝える。例えば、メッセージは、バージョンAの通信プロトコルによると、バージョンコードと製造者コードと基本デバイス識別子とを含む。バージョンコードは受信器がバージョンAおよび/またはバージョンBと互換性があることを特定し、製造者コードは受信器の製造者を特定し、基本デバイス識別子は十分な一意性を保証するようランダムに生成された受信器デバイスID(例えば、デバイスIDまたはIDコード)である。ステートマシン704はこの受信された識別パケットを処理し、よって送信器302は位置決めされた受信器デバイスを特定することができる。バージョンAの通信プロトコルでは、識別パケットは設定(第3)通信パケットを伴う。該設定通信パケットのメッセージ部は受信器デバイスが受信するよう構成されている最大電力を示す。ステートマシン704はこの受信された設定パケットを処理し、よって送信器302は電力伝送モードのパラメータを適切に設定することができる。バージョンBの受信器について、設定パケットは、受信器に給電するのに必要な送信コイルの最大数/最小数などの追加的な設定情報を含んでもよい。
送信器からのピンに応じて結合パケット、識別パケットおよび設定パケットを順番に提供する上述のプロトコルの代わりに、システムはより多くのまたはより少ないデータパケットで同様の情報を送信するよう構成されてもよい。図6Eは代替的なパケット構造を示し、そこではヘッダ部とメッセージ部との間にID部またはフィールドが設けられる。これは、基本デバイス識別子などのデバイスのIDを全てのデータパケットと共に送信することを可能とし、後述の通りそれは後の通信中に役に立つ場合がある。さらに、バージョンコードおよび製造者コードをIDコードから生来的に導出することが可能である場合には、これにより別個の識別データパケットを(生成して)送信する必要性がなくなる。これは位置決めおよび識別スキャンをスピードアップするのを助ける。さらに、特定された受信器デバイスの設定要件を最初に定義するためにIDコードがさらに用いられてもよく、この場合、設定データパケットを省いてもよく、それにより本システムの「細かい」検出方法の処理時間をさらにスピードアップすることができる。
電力伝送フェーズを説明するために、まず、本発明に適用可能な受信器デバイスの詳細な例を適用可能な例示的送信器との関係で説明することがためになるであろう。
図8は、本発明のシステムの受信器804の実施の形態を示す。受信器804は、受信電力管理回路806と受信器回路808とを含むエレクトロニクスを示すブロック図の形態で示される。受信器回路808は、コントローラ810と受信電力調整器812と通信モジュール814と負荷816とを含む。図9は、同様のコンポーネント/要素を有する受信器904のより詳細な例をブロック図の形態で示す。受信器902は、受信電力管理回路906と受信器回路908とを含む。受信器回路908は、コントローラ910と受信電力調整器912と通信モジュール914と負荷916と電流検出回路917とを含む。加えて、受信電力調整器912は電力整流器918と電圧調整器920とを有するように描かれており、図3のコイルアレイ314から送信されたエネルギがコンテキストのために示されている。受信器804および904の同様のコンポーネント/要素は互いに同様な態様で機能することを注意しておく。
コントローラ810/910は、マイクロコントローラやマイクロプロセッサなどのプログラマブル集積回路の形態のデジタルコントローラとして、またはディスクリート回路コンポーネントの形態のアナログコントローラとして、設けられてもよい。本明細書で説明される受信電力管理回路および受信器回路の例では、受信側負荷への電力フロー制御を駆動するためだけでなく受信器のメイン処理回路としてマイクロコントローラを設けるが、当業者であれば、本システムの特定のアプリケーションに依存して、異なる適用可能な形態のコントローラが等しく用いられうることを理解する。
電力整流器918は、当業者によく知られているように、スイッチを有するハーフブリッジ整流器やフルブリッジ整流器などのスイッチベースの非同期構成または同期構成の整流器として設けられてもよい。スイッチはダイオードベースのスイッチであってもよく、またはトランジスタやFETやMOSFETなどの半導体スイッチであってもよい。電圧調整器920は低損失レギュレータ(LDO)またはシステムの特定のアプリケーションにおいて電圧を調整するために適切な他の回路として設けられてもよい。受信コイルによって受信される電力はAC信号であるから、本明細書で説明される受信器回路908の例では、受信電力調整器は電力整流器918と電圧調整器920とを有する。電力整流器918は、AC電圧をDC電圧へ変換するフルブリッジ整流器として構成される。電圧調整器920は、整流されたDC電圧(すなわち、図9に示される中間電圧)を負荷916への搬送に適した電圧へ調整するためのLDOとして構成される。しかしながら、当業者であれば、本システムの特定のアプリケーションに依存して、異なる適用可能な形態の整流器および調整器が等しく用いられうることを理解する。
前述の通り、受信器デバイスがシステムの送信器の結合近傍に持ってこられた場合、受信器デバイスへの給電/充電が許される/可能とされる前に、まず受信器デバイスの存在、相対位置およびIDが確かめられる。この機能は、送信器上のデバイス載置の空間的自由度および複数デバイスの同時充電を助けるだけでなく、デバイスが互換性のある態様で給電/充電されることを保証する。これは、前述の通り、異なるSSO規格書に伴う複数の受信器デバイスバージョンが異なる給電および充電要件、例えば受信側負荷へ運ばれる最大許容可能電圧、を有するからである。この検出および設定フェーズは、受信側負荷を受信器の充電回路、したがって送信器、から切り離し、したがって正しくないまたは望まれない充電に伴う問題がないようにすることで、最も便利に実行される。すなわち、送信器の結合ピンによって受信器がオンされた場合、受信器は初期状態に入る。この初期状態では、当業者には良く理解される態様で、LDO920をディスエーブルのままにしておくことにより、電力調整器924をディスエーブルし、かつ出力負荷916を切り離す。初期状態および他の状態において受信側負荷を切り離す他の方法もまた本発明に適用可能である。
電力整流および通信モジュールの包含と共に負荷切り離しをこのように提供することで、バージョンBの受信器として構成される本発明の受信器は、バージョンAの受信器と同様となる。しかしながら、ここが同様性が終わるところである。本発明のバージョンBの受信器とバージョンAの受信器との間のひとつの機能的差異は、受信側における電力フロー制御の包含である。後の記載から明らかになる通り、バージョンAの受信器の電力フロー制御は、バージョンAの受信器とバージョンAまたはバージョンBのいずれかである送信器との間の通信を通じて提供され、そこでは送信器は送信される電力量を変えることでそのような通信に応答する。充電可能電池などの受信器デバイスの負荷を過充電または不完全充電しないことを保証するために、また送信電力が不当にかつ望まれない形で無駄にならないように(これはシステムの効率を低下させるからである)、電力フロー制御は必要である。送信側で電力フロー制御を要求することは上手くいくが、通信リンクの使用により制限されることからその動作は比較的遅く、またIPTフィールドを介した電力送信が電力フロー制御の主な手段として用いられることから細かくまたは正確に制御することは難しい。したがって、本発明の受信器に電力フロー制御を提供すること自体が、より動的で正確な形態の制御を可能とする。
受信側の電力フロー制御は知られているが、前述の通り、本発明の特定のアプリケーションは受信回路を小さくしてコンシューマ電子デバイス、例えばスマートフォン、に入れることであることは理解されるべきである。したがって、複雑でやっかいでコンポーネントヘビーな既知の電力フロー制御回路はそのようなアプリケーションに向いていない。そこでは、最終的なゴールは受信器の回路をデバイスのICそのものに集積することである。
本発明の受信器の電力フロー制御は、コントローラの制御の下、受信電力管理回路により提供される。図9に戻り、受信電力管理回路906は受信要素(コイル)回路922と電力調整器924とを含み、電力調整器924は受信要素回路922から受信電力調整器912へ運ばれる電力を調整する。受信電力管理回路の例示的な形態は、米国特許仮出願第61/930,191号および第61/990,409号(いずれもCoupled-Coil Power Control for Inductive Power Transfer Systemsというタイトルであり、それぞれ2014年1月22日、2014年5月8日に出願)、米国特許仮出願第62/075,878号および第62/076,714号(いずれもReceived Wireless Power Regulationというタイトルであり、それぞれ2014年11月5日、2014年11月7日に出願)、ニュージーランド仮出願第617604号、第617606号、および第620979号(それぞれ、Power Receiver Having Magnetic Signature and Method of Operating Same、 Contactless Power Receiver and Method of Operating Same、Inductive Power Receiver with Resonant Coupling Regulatorというタイトルであり、それぞれ2013年11月11日、2013年11月11日、2014年2月7日に出願)、に開示されるチューニング回路および電力調整構成を含む。上記出願の内容は全て参照により明示的に本明細書に組み入れられる。図10は、バージョンAおよびバージョンB給電/充電のための複数モード動作を提供するよう適合された受信電力管理回路を有する受信器の例示的な実施の形態を示す。
図8および図9と同様に、図10は、受信電力管理回路1006と受信器回路1008とを有する受信器1004を示す。受信器回路1008は、コントローラ1010と受信電力調整器1012と通信モジュール1014と負荷1016とを含む。受信電力調整器1012は、ダイオードブリッジのブロック図として示される電力整流器1018と、電圧調整器1020と、を有する。これらのコンポーネントは、図9の同様のコンポーネントについて説明されたのと同じように構成され、動作してもよい。受信電力管理回路1006は受信要素回路1022と電力調整器1024とを有する。
受信要素回路1022は、受信要素1026と(共振)チューニング要素1028および1030とを有する二重共振回路として構成される。受信要素は受信(ピックアップまたは副)コイル1026として構成される。(第1)チューニング要素1028は、当業者には理解される態様でシステムの電力伝送効率を改善するよう構成された直列チューニングキャパシタCsとして示される。(第2)チューニング要素1030は、バージョンAの規格書にしたがいバージョンAの送信器の共振検出方法を可能とするよう構成された並列チューニングキャパシタCpとして示され、これは約1MHzにチューンされており、本明細書では詳述しない。図示のキャパシタは、当業者には理解される通り、可変キャパシタやインダクタなどの他の固定または可変リアクティブ要素として、またはそのような要素の組み合わせとして、または抵抗などの他のチューニング要素として、提供されてもよい。
図10に示されるように、受信器1004は、負荷1016への出力電流を検出するために設けられた電流検出回路1017を含む。出力電流の検出値はコントローラ1010に伝えられる。コントローラ1010はバージョンAモード(後に詳述される)において多くの目的のために検出出力電流情報を用いる。その目的は以下を含む。
(a) バージョンA(モード)の送信器に最適な動作ポイントを確立することを要求するため。
(b) バージョンA(モード)送信器に送信するものとして、受信電力を決定するため。
(c) 同期整流器1018をイネーブルする必要があるか否か(バージョンAモードでは不要)を判定するため。
バージョンA受信器およびバージョンB受信器の例示的な形態を説明したので、本発明のシステムによって実装される電力伝送モードの一例を説明する。前述の通り、前のバージョンのSSO規格書の電力伝送モードでは、送信器は、受信器から受信する制御データに応じてそのコイル電流を調整することで、受信器に電力を提供する。しかしながら、後のバージョンのSSO規格書では、受信器が前述のようなやり方で受信側負荷に運ばれる受信電力の量を調整する。したがって、この複数バージョン充電環境では、本発明のシステムがいくつかの動作シナリオをサポートする必要がある。これらのシナリオは以下の通り。
(1) バージョンBモード−バージョンB送信器
バージョンB送信器がひとつ以上のバージョンB受信器デバイスを充電する。
(2) バージョンBモード−バージョンB受信器
バージョンB受信器がバージョンB送信器によって充電される。
(3) バージョンAモード−バージョンB送信器
バージョンB送信器がひとつ以上のバージョンA受信器デバイスを充電する。
(4) バージョンAモード−バージョンB受信器
バージョンB受信器がバージョンA送信器によって充電される。
(5) 複数バージョンモード−バージョンB送信器
バージョンB送信器がひとつ以上のバージョンAおよびバージョンB受信器デバイスを充電する。
システムがこれらの異なる動作モードのうちのひとつを採用するために、各ケースにおいて、送信器、受信器それぞれのバージョンを決定する必要がある。前述したバージョンAの通信プロトコルでは、通信は一方向で、すなわち受信器から送信器へ行われる。これは、前述されたような特定および設定フェーズの態様で、受信器のバージョンを送信器に識別させるための良いメカニズムを提供する。しかしながら、それは送信器のバージョンを受信器に識別させるためのメカニズムは提供しない。種々のシナリオを説明する前に、共通要素を説明する。
まず、バージョンAの通信プロトコルがバージョンAまたはバージョンBの受信器特定に適しているので、バージョンAまたはバージョンBの送信器からの「ピン」に応じて異なるバージョンの受信器が通信対象の情報をデータパケットに符号化する態様は基本的に同じである。すなわち、受信器904の通信モジュール914はコントローラ910の制御の下で振幅変調(AM)を用いて遷移を生成する。該遷移は、当業者には理解される態様で種々のデータパケットを作るワンビットおよびゼロビットからなるビットストリームを定義する。例えば、通信モジュール914を受信器のAC側に関連スイッチを伴う適切なサイズの二つのキャパシタとして構成することにより振幅変調を提供してもよく、この場合AC信号は容量性負荷を用いて変調される。さらに、送信器302の通信モジュール330は、受信器904から受信した変調信号を復調するよう、当業者には理解される態様で、構成され、デコーダ702に復調されたパケットを与えてもよい。送信器の復調回路の実施の形態の具体例は後述される。
例えば、信号強度パケットについて、(任意のバージョンの)送信器から(デジタル)ピンを受けると、受信要素(コイル)回路922は対応するAC信号を生成し、該AC信号は電力整流器918によって中間電圧としての整流されたDC電圧に変換される。中間電圧は、(例えば、電圧分割回路を用いて中間電圧を測定し、電圧検出信号を生成し、それをコントローラ910に伝えることによって)コントローラ910によってサンプルされる。コントローラ910は中間電圧を用いて通信モジュール914を制御し、振幅変調を用いて信号強度パケットを生成する。該パケットは中間電圧のレベル、したがって受信コイルとピンを送信するために用いられた送信コイルとの間の結合のレベル(または強度)を示す。
第2に、本例では、バージョンAは、任意のバージョンの送信器が例えば約110kHzから約205kHzまでの所定の周波数範囲で動作することを要求する。この要件は、後のバージョンの送信器および受信器と前のバージョンの送信器および受信器との互換性を保証するために満たされなければならない。周波数範囲の要件に関して、バージョンBの送信器およびバージョンBの受信器の動作周波数は約110kHzに設定される。
第3に、制限された要求周波数範囲は、バージョンBの送信器が結合されたバージョンBの受信器と通信する機会を提供し、これにより、図3の実施の形態を参照して分かるように双方向または二方向通信が提供される。バージョンBの送信器は、アレイ314のある(または各)送信コイル312で、バージョンAの動作周波数範囲の外のまたはそれからシフトした離散的な非給電信号を送信するよう構成され、その送信コイル312を介してバージョンBの識別パケットが結合された受信器から受信される。例えば、バージョンAの動作周波数よりも高い周波数、例えば約300kHzから約1MHz、の信号が送信される。本実施の形態では、約300kHzから約400kHzの信号(またはバースト)が送信コイルによって送信される。セレクタ324を用いて選択された送信コイル312を介して所定の期間に亘って適切な電力信号を出力するよう送信電力調整器322を制御することによって、これが得られる。これは、特定されたバージョンBの受信器にバージョンBモードで動作するよう知らせる「サイン(signature)」を提供する。本実施の形態では、所定の期間は約10msから約50msである。
再掲を目的として、電力伝送フェーズの前にシステムによって実行される例示的処理は以下の通りである。送信器へ電源投入されると、初期状態に入り、そこではどの送信コイルにも電力が供給されず、その結果どの近接受信器にも電力は運ばれない。この初期状態において、物体検出は実行され続け、受信器が送信器の充電面上に置かれたかを検出する。物体検出結果のトリガに際し、送信器は充電面全体のスキャンを行い、その上に受信器デバイスを有しうる領域を決定する。前述されたように、このスキャンは、個々の送信コイルにおける突入電流を測定すること、または送信器によるデジタル通信ピンの送信への受信器の応答を探すこと、を含んでもよい。さらに、位置(および識別)スキャンの説明される実施の形態は充電面全体のスキャンを含むが、スキャンが受信器デバイスの発見までだけで行われる場合も本発明の範囲内である。受信器が検出されると、送信器は電力伝送状態に入る。しかしながら、この初期状態の後であっても、送信器は物体検出およびそれによってトリガされる位置および識別スキャンを実行し続けることを注意しておく。この場合、検出された受信器の移動または除去を決定することができ、および/またはさらなる受信器デバイスの載置を検出することができる。
これらの共通要素を理解した上で、本発明のシステムに適用可能な種々のユースケースまたはシナリオを、それらが前に現れた順番すなわちシナリオ(1)から(5)の順番で、電力伝送フェーズの文脈においてかつ図3および図9の例示的な実施の形態を参照して、説明する。正しい動作状態の決定は全てのシナリオについて同じ処理フローで行われるので、この順番はシーケンス的な順序として考えられるものではないことを注意しておく。さらに、システムの実際のオペレーションでは、ここで記載されるもの以外の種々の基準の充足が要求されうる。これらの基準は具体例の文脈で後述される。
シナリオ(1)では、バージョンBの送信器を用いてひとつ以上のバージョンBの受信器デバイスを充電する。また、したがって、バージョンBの送信器はバージョンBモードにされる必要がある。
前述された例示的レジームにあるように、バージョンBの受信器は、バージョンBの送信器から受信したピン(メッセージ)に応じて送信された識別パケットの一部として、それがバージョンBであることを伝える。送信器302の通信モジュール330は、コントローラ320と連携して(例えば、デコーダ702およびステートマシン704を用いて)、受信器デバイス904がバージョンBでありかつ識別パケットを受信した送信コイル312の結合範囲内にあることを、受信した識別パケットが特定すると決定する。応じて、コントローラ320は送信器302をバージョンBモードにする。
バージョンBの送信器とバージョンBの受信器とが両方ともバージョンBモードとなり、シナリオ(2)に関連して議論された態様でバージョンBモードの電力伝送が開始されうる。バージョンBモードの電力伝送フェーズにおいて第2のまたは後に続くまたは他のバージョンBの受信器が送信器302の結合近傍に持ってこられた場合、例えば第2のバージョンBの受信器が充電面に置かれた場合、それにより選択フェーズの物体検出がトリガされ、電力伝送フェーズが中断されると共にピンフェーズおよび特定および設定フェーズが開始されることを注意しておく。これらのフェーズにおいて、既に充電中のバージョンBの受信器が再発見され、任意の新たな(または移動した)バージョンBの受信器が発見される。電力伝送フェーズに入った場合、再発見された受信器への給電/充電が再開され、新たに発見された受信器への給電/充電が始まる。送信器によって単一のインバータが用いられているが、バージョンBモードのバージョンBの送信器は同時に複数のバージョンBの受信器デバイスに独立に給電/充電することができる。後述されるように、バージョンBの受信器そのものによって電力フロー制御が規定されているからである。
電力伝送フェーズに入る前に、送信器302は、送信コイルと受信コイル(もしあれば)との間に(金属材料または他の電力吸収材料の)物体があるか否かを決定するためのいわゆる異物検出ステップを実行してもよいことを注意しておく。異物が検出された場合、送信器は送信コイルに給電しないことを選択するであろう。異物が検出されない場合、電力伝送フェーズが始まる。例示的な異物検出方法は、ニュージーランド仮出願第626547号および米国特許仮出願第62/078,103号、第62/094,341号および第62/099,750号に開示される方法であり、これらの出願の内容は参照により明示的に本明細書に組み入れられる。
シナリオ(2)では、バージョンBの受信器デバイスはバージョンBの送信器によって充電される。また、したがって、バージョンBの受信器はバージョンBモードにされる必要がある。
バージョンBの受信器のひとつの例示的な実施の形態では、前述の初期状態は中性モードで、すなわち受信器がバージョンAモードにもバージョンBモードにも置かれない状態で、実行されてもよい。バージョンBの受信器の動作のためのバージョンBモードの選択は、この中性モード初期状態から、以下のように実行可能である。
バージョンBモードのバージョンB送信器では、まず送信器302はセレクタ324を用いて、識別パケットが受け取られた送信コイル312を選択し、自身がバージョンB送信器であることをバージョンB受信器に対して自証するために、選択されたコイルでシフト周波数バーストを送信する。識別パケットおよび設定パケットを送信した後、受信器904のコントローラ910は、当業者には理解される態様で、受信器904の受信コイル922によって受信された送信器302からの電力信号の周波数を検出するモード検出アルゴリズムを実行する。受信器904が送信器302から300kHz信号を検出すると、待機状態に入る。
固定の時間遅延、例えば前述のような約50ms、の後、コントローラ320は選択された送信コイル312の動作周波数をバージョンB受信器の充電周波数、例えば約110kHz、に変更する。待機状態において、コントローラ910がモード選択アルゴリズムを実行し続けて送信器302から受信されている信号の周波数をチェックし続けているので、受信器904は送信電力周波数のこの変更を検出する。110kHz信号が受信されたことが検出されると、コントローラ910で電力調整器924およびLDO920をイネーブルし、それにより出力負荷916を受信器回路908に接続すると共に電力管理回路906による受信器904における電力フローの制御を可能とすることにより、モード選択アルゴリズムはバージョンBモードを選択する。
バージョンB受信器は、受信側負荷に給電/充電するために動作するべき送信コイルの数を選択するために、待機状態中に、ひとつ以上の設定(第3)通信パケットをバージョンB送信器に送信するよう構成されてもよい。
さらに、前のバージョンの規格書の一例では、バージョンAまたはバージョンB受信器とバージョンA送信器との間の電力契約を確立するために、送信器が受信器から要求時間間隔、例えば約500ms、以内に、正しい信号強度パケットと識別パケットと設定パケットとを受信する必要がある。したがって、バージョンB受信器は、前述された初期状態においてそれがバージョンA送信器に置かれたと仮定するよう構成されてもよい。すなわち、バージョンB受信器のデフォルトモードはバージョンAモードであり、その結果、バージョンB受信器はバージョンA電力契約を素早く確立することができる。本例では、モード選択アルゴリズムは周波数検出インタラプトサービスルーチン(ISR)として構成される。該ルーチンでは、送信器からのバージョンBサイン信号が検出された場合、初期状態からバージョンAモードへのデフォルトの移動が中断される。
バージョンB送信器およびバージョンB受信器の両方がバージョンBモードになると、バージョンBモードの電力伝送が開始され、受信コイル回路922および受信電力管理回路906の電力調整器924および受信電力調整器912の構成および動作に適用可能な態様で電力フロー制御が有効化される(例えば、既に参照された米国特許仮出願第61/930,191号、第61/990,409号、第62/075,878号、および第62/076,714号およびニュージーランド仮出願第617694号、第627606号、および第620979号に記載されるように)。
シナリオ(3)では、バージョンBの送信器を用いてひとつ以上のバージョンAの受信器デバイスを充電する。また、したがって、バージョンBの送信器はバージョンAモードにされる必要がある。
前述された例示的レジームにあるように、バージョンAの受信器は、バージョンBの送信器から受信したピン(メッセージ)に応じて送信された識別パケットの一部として、それがバージョンAであることを伝える。送信器302の通信モジュール330は、コントローラ320と連携して(例えば、デコーダ702およびステートマシン704を用いて)、受信器デバイスがバージョンAでありかつ識別パケットを受信した送信コイル312の結合範囲内にあることを、受信した識別パケットが特定すると決定する。応じて、コントローラ320は送信器302をバージョンAモードにする。
バージョンBの送信器がバージョンAモードとなり、例えば以下のようなバージョンAモードの電力伝送が開始されうる。
前述の通り、送信器302のバージョンAモードにおいて、バージョンA受信器の電力フロー制御はバージョンA受信器とバージョンB送信器との間の通信を通じて提供される。特に、いったんバージョンAモードになると、送信器302のコントローラ320は(例えばデコーダ702およびステートマシン704を用いて)、通信モジュール330がバージョンA受信器から受信した設定(第3)通信パケットを処理し、バージョンA受信器と電力契約を確立する。全ての引き続く電力伝送制御は通信を用いてバージョンA受信器によって取り扱われる。例えば、コントローラ320は、バージョンA受信器によって送信された電力伝送(第4)通信パケットに応答する。電力伝送パケットのメッセージ部は、異なる制御機能を提供するためにバージョンA受信器によって使用される。例えば、電力伝送パケットは、電力伝送開始パケットと、電力伝送終了パケットと、電力調整パケットと、エラーパケットと、を含んでもよい。これらのパケットがデコーダ702によって復号されステートマシン704によって実装されることで、送信器がバージョンA規格書に準拠するように電力信号が制御、調整されることを保証する。
送信器302が給電開始パケットを受信すると、コントローラ320は受信器に給電するために使用されている送信コイル312の動作周波数を、給電開始パケットのメッセージ部に規定される動作ポイントへ移動するよう調整し、電力伝送を開始する。本例では、ステートマシン704は、送信電力調整器322の(バック−ブースト)出力電圧を調整することで、伝送電力量を設定する。
電力伝送が始まると、受信側負荷により要求される電力量が充電および使用状態によって変化するにつれて電力調整パケットがバージョンA受信器によって連続的に送信され、該パケットはバージョンA受信器で受信されている電力量を調整するために使用される。送信器302が電力調整パケットを受信すると、コントローラ320は受信器に給電するために使用されている送信コイル312の動作周波数を、電力調整パケットのメッセージ部に規定される最適動作ポイントへ移動するよう調整する。本例では、ステートマシン704は、各電力調整パケットが受信されると、送信電力調整器322の(バック−ブースト)出力電圧を調整することで、伝送電力量を制御する。
送信電力調整器322がその動作範囲の限界にあるためにコントローラ302が要求されている調整(より高くまたはより低く)を満たすように出力電圧を調整できない場合、コントローラ320はセレクタ324に異なる送信コイル312(またはコイルの集合)を選択させ、それらの選択されたコイルは受信コイルとのフィールド結合をより良くするか悪くするために使用される。
送信器302が給電終了パケットまたはエラーパケットを受信すると、コントローラ320は電力伝送を止め、電力伝送フェーズからその初期状態へ戻る。エラーパケットは、過熱や過電圧などの受信器内または受信器近傍における種々のエラー条件の存在を示すものとして送信される。
バージョンA受信器によって生成され送信される他の可能性のある電力伝送通信パケットは受信電力パケットであり、それは電力伝送フェーズ中連続的に送信されてもよい。バージョンB送信器はこれらの受信電力パケットを用いることで、送信されている電力(コントローラに知られている)とバージョンA受信器によって受信されている電力量との間の差分を決定することができる。これにより、電力伝送損失の計算が可能となる。送信器は、バージョンA電力伝送について受け入れ可能な電力伝送損失の所定のしきい値でプログラムされてもよい。このしきい値は、バージョンA受信器以外のまたはそれに加えてのある物体、いわゆる異物、が伝送される電力のいくらかまたは全てを受信している潜在的状況を示す。望まれない影響を低減するために、そのような異物を検出する必要がある。望まれない影響は、例えば、受信器への非効率的な電力伝送や、金属的でありうる異物が伝送電力を吸収し望まれないかつ危ない加熱を引き起こしうること、である。特に、電力伝送損失が所定のしきい値電力伝送損失よりも高いとコントローラ320が判定すると、送信器302は受信器への給電を止め、異物が熱くなるのを防ぐ。したがって、バージョンB送信器は、バージョンAモードにある間に、電力損失計算を用いて異物検出を行うことができる。
給電終了パケットあるいはエラーパケットの受領(CEP)により、または異物が存在する可能性の判定により、電力伝送が終わると、送信器は、例えば音声提示や視覚的提示(例えば、LEDを用いる)などの機器226を通じてユーザにこれらの状況を示してもよい。代替的にまたは追加的に、コントローラは、各状況を異なる態様で、すなわち給電終了とエラー状況とで異なる点滅または色レジームで、示すよう構成されてもよい。これらの機能は、通常動作条件またはエラー動作条件のいずれかにおいて電力伝送フェーズを終了することに関して、送信器のバージョンBモードにも等しく適用可能である。
本実施の形態の他の例では、受信電力データパケットは、追加的ではなくむしろ電力調整パケットの代わりに、用いられてもよい。すなわち、送信器302は、電力フロー制御が必要か否かを、受信電力データパケットに示される受信電力値に基づいて判定するよう構成されてもよい。
バージョンAモードの電力伝送フェーズにおいて第2のまたは後に続くまたは他のバージョンAの受信器が送信器302の結合近傍に持ってこられた場合、例えば第2のバージョンAの受信器が充電面に置かれた場合、それにより選択フェーズの物体検出がトリガされ、電力伝送フェーズが中断されると共にピンフェーズおよび特定および設定フェーズが開始されることを注意しておく。これらのフェーズにおいて、既に充電中のバージョンAの受信器が再発見され、任意の新たな(または移動した)バージョンAの受信器が発見される。しかしながら、バージョンB送信器によって複数のバージョンB受信器が個別にかつ同時に給電/充電可能であるバージョンBモードとは違って、バージョンAモードでは、一度に一つしかバージョンA受信器を給電/充電することができない。これは、電力フロー制御がバージョンB受信器自身により規定されるバージョンBモードとは違って、バージョンAモードでは、電力フロー制御は送信器によって規定され、バージョンB送信器の本例では、これは単一のインバータによって行われるからである。したがって、電力伝送フェーズに再度入ると、送信器302は、例えば、再発見された受信器から給電終了パケットが受信されるまで再発見された受信器の給電/充電を復活させ、給電終了パケットが受信された段階で新たに発見された受信器の給電/充電を開始するよう構成されてもよい。あるいはまた、順番にではなく、期間に亘ってバージョンA受信器に交互に給電/充電してもよい。
複数のバージョンA受信器に同時に給電/充電することは物理的には可能であるが、本例の前のバージョンの規格書により要求されるように各バージョンA受信器が最適な電力量を受信していることを保証することはできない。しかしながら、特定のアプリケーションの前のバージョンの規格書が異なる基準および要件を提供する場合、前の規格書バージョンモードにおいて複数の充電をサポートすることができる。
シナリオ(4)では、バージョンBの受信器デバイスはバージョンAの送信器によって充電される。また、したがって、バージョンBの受信器はバージョンAモードにされる必要がある。
前述の通り、バージョンB受信器の初期状態は中性モードで、すなわち受信器がバージョンAモードにもバージョンBモードにも置かれない状態で、実行されてもよく、またはデフォルトモードで、すなわちバージョンB受信器がバージョンA電力契約を素早く確立することができるようにバージョンB受信器をバージョンAモードとすることで、実行されてもよい。これらのモードのいずれにおいても、バージョンB送信器と同様に、バージョンA送信器は適切な受信器の存在を検出するために「ピン」を間欠的に送信する。バージョンB受信器は、前述のような態様と同じ態様で、例えば結合(信号強度)パケットおよび識別(および設定)パケットを伝えることで、バージョンA送信器から受信したピンに応答する。しかしながら、シナリオ(2)とは違って、受信器904が中性モードにある場合、識別(および設定)パケットを送信した後、バージョンB受信器は待機状態には入らない。バージョンB送信器とは違って、受信器904はバージョンA送信器からシフト周波数や他のサイン信号を検出しないからである。むしろ、バージョンA送信器は、受信器904から受信した設定パケットに基づいて例えば110kHzの動作周波数で電力の送信を開始するであろう。シフト周波数や他のサイン信号を受け取らないことに基づいて、受信器904のコントローラ910は送信器がバージョンAであると決定し、したがってバージョンAモードに入るかそれを維持し、それにより電力契約を確立する。
バージョンA受信器と同様に、バージョンAモードにおいて、バージョンB受信器は通信を用いて、全ての引き続く電力伝送制御を取り扱う。例えば、受信器904の通信モジュール914は電力伝送(第4)通信パケットを生成し、バージョンA送信器に送信する。電力伝送パケットのメッセージ部は、異なる制御機能を提供するために受信器904によって使用される。例えば、電力伝送パケットは、電力伝送開始パケットと、電力伝送終了パケットと、電力調整パケットと、エラーパケットと、を含んでもよい。これらのパケットがデコーダによって復号されバージョンA送信器のステートマシンによって実装されることで、送信器がバージョンA規格書に準拠するように電力信号が制御、調整されることを保証する。
給電開始パケットに関して、受信器904のコントローラ910は中間電圧を測定することで、バージョンA規格書の電力伝送の(所定の)開始要件が満たされるか否かをチェックする。本例では、電力伝送の開始要件は、中間電圧が7ボルトよりも高いことである。開始要件が満たされない場合、通信モジュール914はコントローラ910と連携してエラーパケットを送信し、開始要件が満たされるようバージョンA送信器が最適動作ポイントへ動くよう要求する。開始要件が満たされる場合、コントローラ910はLDO920をイネーブルし、それにより出力負荷916を受信器回路908に接続する。バージョンAモードでは電力調整器924はイネーブルされず、したがって電力管理回路906は受信器904における電力フローを制御しないことを注意しておく。
電力伝送が始まると、コントローラ910は負荷916への出力を連続的に決定する。これは、LDO920により出力される電圧または電流を測定することによってなされうる。例示的な実施の形態では、電流検出回路917を用いて前述のように出力電流を測定する。出力電流サンプルはコントローラ910に伝えられる。コントローラ910は例えばルックアップテーブルを参照することによって、所定の値の範囲に対して測定された値をチェックし、所望の中間電圧を判定する。表1は、出力電圧を5Vに制御するために5VLDOが用いられる本実施の形態について、出力電流と所望の中間電圧との関係の例を示す。この場合、最低ドロップアウト電圧が1.5A出力において100mVより低くなるようデザインされる。したがって、100mVのドロップアウトを可能とし、かつ出力電圧を5Vに維持するために、中間電圧は5.1Vとなるよう制御されてもよい。
Figure 2020061939
例えば受信器デバイスの電池がその満充電状態に近い場合などの低負荷または軽負荷の場合、所望の中間電圧は、受信器904が出力電圧に影響を与えることなしに負荷ステップを扱えるように、高い値に設定される。例えば受信器デバイスの電池が充電を必要とする場合などの重い負荷の場合、所望の中間電圧は5.1Vに設定され、その結果、中間電圧と出力電圧との間のドロップアウト電圧は0.1Vとなり、5V負荷LDO920に亘る電力損失が最小化される。
所望の中間電圧を決定した後、受信器904のコントローラ910は実際の中間電圧をサンプリングすることで、測定された(既知の)出力電流値における所望の中間電圧と実際の中間電圧との差分を決定する。この差分に基づいて、コントローラ910は通信モジュール914に、電力調整パケットのメッセージの値を設定する。これは、例えば所望の中間電圧と実際の中間電圧との間の計算された差分を所定のスケールファクタで除すことによって達成されてもよい。この電力調整値は、正(例えば、バージョンA送信器により多くの電力を提供するよう要求する)または負(例えば、バージョンA送信器により少ない電力を提供するよう要求する)のいずれかであってもよい。受信側負荷により要求される電力量が充電および使用状態によって変化するにつれて電力調整パケットが受信器904によって連続的に送信され、該パケットは受信器904で受信されている電力量を調整するために使用される。
受信器904のコントローラ910は、通信モジュール914を用いて受信電力パケットを生成して送信するよう構成され、この場合、エラーおよび/または異物検出のための電力損失計算がバージョンA送信器によって行われうる。受信電力は、送信器から受信器が受信した全電力(電力損失含む)の測定値である。受信電力値は以下のように計算される。受信電力=出力電流×中間電圧+評価損失「評価損失」は、回路コンポーネントおよび動作の知識から所与である。
電力伝送フェーズでは、受信器904は、任意の規定された/要求された時間間隔内においてバージョンA送信器へ電力調整パケットおよび受信電力パケットを報告すると共に、負荷916が電力伝送を終了するための条件を満たしたか否かを常に監視する。電力伝送を終了するための条件のうちのいずれかが満たされると、受信器904は電力伝送終了パケットを生成してバージョンA送信器へ通信モジュール914を用いて送信する。ここで電力伝送フェーズは終わり、受信器904は初期状態に戻る。
本実施の形態の他の例では、受信電力データパケットは、追加的ではなくむしろ電力調整パケットの代わりに、用いられてもよい。すなわち、受信器904は、受信電力データパケットを送信するよう構成され、バージョンA送信器は電力フロー制御が必要か否かを、受信電力データパケットに示される受信電力値に基づいて判定してもよい。
バージョンB受信器によって生成され送信される他の可能性のある電力伝送通信パケットはエラーパケットである。エラーパケットは、過熱や過電圧などの受信器内または受信器近傍における種々のエラー条件の存在を示すものであり、これらのエラー条件は受信器回路において当業者には良く理解されるように種々の手段を用いてコントローラ910によって判定される。
シナリオ(5)では、バージョンBの送信器を用いてひとつ以上のバージョンAの受信器デバイスおよびひとつ以上のバージョンBの受信器デバイスを充電する。また、したがって、バージョンBの送信器は複数バージョンモードにされる必要がある。
シナリオ(1)および(3)に関して前述された通り、バージョンAモードでは一度に一つしかバージョンA受信器に給電/充電できない。またバージョンBモードでは、一度に複数のバージョンB受信器に給電/充電する。シナリオ(5)の種々の状況においてこれらのモードの基本的な機能は成り立つ。例えば、
(a)バージョンB受信器がバージョンBモードにおいて給電/充電されており、かつバージョンA受信器がバージョンB送信器にもたらされる、および
(b)バージョンA受信器がバージョンAモードにおいて給電/充電されており、かつバージョンB受信器がバージョンB送信器にもたらされる。
状況(a)、(b)のいずれにおいても、前述の通り、選択フェーズの物体検出によって電力伝送フェーズが中断され、続いてピンフェーズおよび識別および設定フェーズが行われる。本実施の形態では、状況(a)、(b)のいずれにおいても、バージョンBモード充電が優先される。すなわち、状況(a)において、既に充電されているバージョンB受信器が再発見され、かつバージョンA受信器が発見される。この場合、電力伝送フェーズに再度入ると、バージョンB送信器は、再発見されたバージョンB受信器が満充電されるかまたは送信器から除去されるまで再発見されたバージョンB受信器の給電/充電を復活させ、それから、新たに発見されたバージョンA受信器の給電/充電を開始する。また、状況(b)において、既に充電されているバージョンA受信器が再発見され、かつバージョンB受信器が発見される。この場合、電力伝送フェーズに再度入ると、バージョンB送信器は、新たに発見されたバージョンB受信器が満充電されるかまたは送信器から除去されるまで新たに発見されたバージョンB受信器の給電/充電を開始し、それから、再発見されたバージョンA受信器の給電/充電を復活させる。しかしながら、これは一例であって、例えばバージョンBモードよりもバージョンAモードが優先されてもよい。
さらに、送信器302によって複数バージョンモードが実装されてもよく、そこではバージョンA受信器およびバージョンB受信器が同時にまたは交互に給電される。特定のアプリケーションの前のバージョンの規格書が異なる基準および要件を提供する場合、そのような複数バージョンモードが特に可能となる。
例示的な本実施の形態で、シナリオ(3)、(4)および(5)において、バージョンAモードは受信器からの通信に応じて送信器によって電力フロー制御が行われることを要求する。この通信電力データ、すなわち電力調整パケットおよび/または受信電力データパケット、の途切れない流れは、バージョンA受信器に他のバージョンA受信器またはバージョンB受信器と同時に給電/充電する能力にさらなる制限を与える。これは、バージョンAモードで動作する各受信器のメッセージであって前述のバージョンA通信プロトコルで用いられるデータストリーム中のメッセージが他のバージョンAモード受信器のメッセージを破損するか、またはバージョンBモード受信器に対して充電中断を引き起こす可能性があるからである。
そのようなデータパッケージ衝突への潜在的な解は、デバイス識別子(デバイスID)をただ識別通信パケットだけに含めるのではなく、バージョンA(モード)受信器によって生成され送信される全ての通信パケット/パッケージに含めることである。例えば、図6Eに示されるように、データパケットにIDコードを含めてもよい。これにより、符号分割多元接続(CDMA)や時分割多元接続(TDMA)などの技術を、個々に識別される受信器から受信したデータパケットのメッセージを復号して実装するために用いることができる。
例えば、結合された受信器がメッセージを送信する必要がある場合、それは利用可能な時間ウインドウまたはスロットの集合のなかからランダム送信ウインドウを選択し、かつ、他の送信ウインドウにおいては黙ったままとなる。これにより、他の受信器デバイスがそれらのウインドウにおいて通信可能となる。一例では、受信器904のコントローラ910は、一意のデバイスIDを、送信ウインドウのランダム選択のためのランダム値のためのシードとして使用するよう構成されてもよい。実装される(バージョンA)通信プロトコルがデータ衝突検出またはアクノレッジパケットの類いを有さない場合、送信されたメッセージが成功したのかまたは他の受信器のメッセージとぶつかったのかを受信器が知るすべはない。したがって、受信器904は、電力伝送条件が変わるまで、時間スロットの集合のサイクルからランダムに選択された他の時間ウインドウでメッセージを送信し続けてもよい。複数の受信器が給電中/充電中である場合、同じ送信ウインドウを選択した複数の受信器によって引き起こされる通信エラーがある。しかしながら、各受信器が都度異なるランダム送信ウインドウを選択するので、メッセージは破損することなしに後続の送信で通るであろう。この方法を用いたエラー無し通信の確率は、一度に充電可能な受信器の最大数を比較的低く、例えば5より少なく、抑え、かつ、全体の通信時間を増大させずに利用可能な送信時間スロットの数を比較的高く維持する(例えば、約8つの時間ウインドウは十分に速い通信を維持しつつメッセージが通る高い確率を提供する)ことによって、高められる。
シナリオ(1)および(2)では、電力伝送フェーズ中にバージョンB送信器によって伝送されるべき電力量は、最初、バージョンB受信器と電力契約を確立するためにバージョンB受信器から通信モジュール330が受信した設定通信パケットおよび/または電力伝送開始通信パケットにしたがって設定される。バージョンBモードでは、バージョンA受信器と同様な受信側電力フロー制御ではなくむしろ、またはそれに加えて、バージョンB受信器が通信を用いて電力伝送制御を取り扱うことが可能である。すなわち、バージョンAモードと同様に、バージョンAおよびBの合成モードでは、電力伝送制御はバージョンB送信器のみによって、またはバージョンB受信器の電力フロー制御との組み合わせで、処理されうる。例えば、バージョンB受信器は動的電力フロー制御の所定の範囲を有してもよく、かつバージョンB送信器はこの範囲の外の電力伝送制御に用いられてもよい。
この合成モードでは、バージョンAモードと同様に、送信器のコントローラ320はバージョンB受信器によって送信される電力伝送通信パケット(電力伝送開始パケットと、電力伝送終了パケットと、電力調整パケットと、エラー制御パケットと、を含む)に応答する。これらのパケットがデコーダ702によって復号されステートマシン704によって実装されることで、送信器が要求された量の電力をバージョンB受信器へ伝送するように電力信号が制御、調整されることことを保証する。
しかしながら、さらなる構成がない場合、この合成モードは、シナリオ(3)、(4)および(5)について上述されたのと同じ、複数のバージョンB受信器からの電力伝送パケット間の衝突に苦しむ。これを軽減するため、上述の衝突解法が実装される。しかしながら、少なくともシナリオ(3)および(4)とは違って、バージョンB受信器によって提供される電力フロー制御は、この合成モードが、以下のように電力フロー制御および搬送を最適化することを可能とする。
バージョンBモードでは、同時に複数のバージョンB受信器に給電されるので、バージョンB送信器は複数のバージョンB受信器から複数の電力伝送パケットを受信する。これらの電力伝送パケットの値は典型的には異なっており、したがって伝送される電力量を調整する際のバージョンB送信器からの正しい応答はプリセットでない限り未知である。このプリセットは、先に置かれた受信器が後に置かれた受信器よりも優先されることか、またはどの受信器も優先されず、かつ平均または中間電力レベルが伝送されること、であってもよい。
しかしながら、受信器回路内の電力調整器(およびコンディショナ)の構成および受信側負荷への電力フローの効率についての利点に基づいて、受信器内の電力フロー制御回路が負荷電力要件を満たすために、受信電力を増やす(例えば、ブースト制御)よりむしろ受信電力を抑制するまたは減衰させる(例えば、バック制御)ようにすることが好ましい。電力伝送(エラー制御)パケットの値は、受信器によって、送信器によって提供される制御ポイントが所望の制御ポイントと等しい(すなわち、受信電力が負荷によって要求される電力と等しい)場合はゼロ値に、受信電力の減少が要求される場合は負の値に、受信電力の増大が要求される場合は正の値に、設定される。
したがって、合成モードでは、バージョンB送信器のコントローラは、最高値を有する電力伝送パケットのみに応答し、その最高電力レベルを要求したバージョンB受信器への送信電力を調整するよう構成される。このようにすることで、他のバージョンB受信器は、自身の負荷電力要件にしたがい負荷に供給される電力を減らすよう自己調整する。したがって、送信器の電力コントローラは、最大の電力を要求する受信器デバイスに従う。
特に、これは送信器コントローラのPIDコントローラ等によって達成される。そのPIDコントローラは、通信フレーム期間中に全ての電力供給される受信器から全ての電力伝送(エラー制御)値を集め、集められたなかから最大の値(送信コイルにおける最大電流を与えるもの)を電力伝送(エラー制御)値として選択し、選択された値を用いて制御アルゴリズムを更新し、通信フレームの開始時点でフレーム送信の開始と同期して更新された制御値を適用する。最高のCEP値がゼロでない場合、後続の通信フレームに亘ってその最高値をゼロへと持っていくように更新制御値を設定する。これにより、少なくともその受信器を安定動作状態へ持っていける。
通信パケットまたはパッケージが送信器および受信器の通信モジュールによって生成され送信されることが説明されたが、本発明はこれに限定されない。代替的に、種々のデータパケットのそれぞれは予め定められ、例えばリアルタイムで生成されるよりむしろ、ルックアップテーブルを介しての動作中の後のアクセスのために保持されてもよい。追加的にまたは代替的に、データパケットの種々の部分の少なくともいくつかを個別に予め定めて保持してもよい。この場合、要求されるデータパケットのタイプに依存して、種々の予め定められた部分を他の予め定められた部分および/またはアクティブに生成された部分と組み合わせることによって、データパケットを「生成」する。例えば、プリアンブルおよびヘッダ(およびID)部は予め定められ、同じタイプまたは複数のタイプの全てのパケットについて共通であってもよく、メッセージおよびチェックサム部は完全に予め定められてもよいし、または一部が予め定められて一部がアクティブにリアルタイムで生成されてもよいし、または完全にアクティブにリアルタイムで生成されてもよい。さらに、当業者には理解されるように、通信パケットの他のデータ構造が可能である。さらに、送信器および受信器の通信モジュールは、対応するコントローラとは別個の要素として描かれているが、本発明はこれに限定されない。例えば、パケット生成、データ保持、データルックアップ、符号化/復号、実装、および送受信のような通信機能は、コントローラ自体の中で行われてもよい。さらに、通信パケットの生成に必要なデータや様々に記述されたデータの測定や計算に必要なデータは、アナログおよび/またはデジタルメモリに保持されてもよい。このメモリは、コントローラとは別個でもよいし、それ専用でもよいし、および/またはコントローラに統合されてもよい。
図10に示される受信側電力フロー制御の例示的構成はAC側電力調整、すなわちプレレクチフィケーションを実効的に提供することを注意しておく。当業者であれば、DC側電力調整、すなわちポストレクチフィケーションを実装する構成も等しく適用可能であることを理解する。AC側調整の場合、電力伝送フェーズ中に上述のIPT通信と電力フロー制御(調整)とを同時に実行することは困難である。調整がAM通信信号に歪みをもたらすからである。これは、振幅変調の使用が中間電圧を変え、これにより電力調整器が通信期間中に調整の安定状態に留まるよりむしろこの変化を補償すべく電圧を調整するからである。調整量、したがって導入される歪み量は、電力送信器が通信されるデータパケットを正しく分析および/または受信することを妨げるのに十分である可能性があり、この場合電力伝送はエラーで終了する。この状況は以下のように処理されてもよい。
ある実施の形態では、受信器から送信器へのAM通信中、AC側調整器はコントローラによって非活性化または切り離され(例えば、電源オフ)てもよい。調整器がこの状態にある間、中間電圧は上昇し、これは出力電圧の上昇を招く、すなわち負荷への電圧は実質的に調整されない。しかしながら、この期間中、出力電圧は電圧調整器(LDO)によって実質的に一定のレベルに維持されうる。各通信期間は比較的短く、例えば約50ms、であり、かつ周期的に、例えば約一秒に一回、発生するからであり、その結果、電圧調整器は電圧調整器に過大な負荷をかけることなく通信期間中に余分な電力を消費できる。したがって、AC側電力フロー制御が通信中に非活性化された場合、DC側電力フロー制御が補助で実施される。
他の実施の形態では、受信器のコントローラはデジタルコントローラとして設けられる。デジタルコントローラはAM通信を開始するときにADC/コントローラ値を格納し、通信の持続期間の間この格納された値を用いるよう構成され、それにより補助の電力調整段が提供される。基本的に、通信中に電力調整器を完全に非活性化するのではなく、電力調整器は通信前のそれの状態に維持される。このようにすることで、電圧調整器は、電力調整器が完全にオフされる上述の実施の形態のときほどハードに動作する必要はなくなる。中間電圧の変化およびその結果としての出力電圧の変化が低減されるからである。
種々の利用シナリオおよび本発明のシステムがこれらのケースに対処する態様を説明したので、特定の例示的な実施の形態の特定の詳細を説明することはためになる。受信器デバイス1004について、負荷1016に供給されるべき出力電力は約7.5Wであり、一方バージョンA受信器について出力電力は約5Wである。LDO1020から負荷1016への出力電圧は約5Vである。これらの動作パラメータは、図11および図12に示される例示的な回路によって提供されうる。図11Aから図11Gは、図4の送信器の例示的な模式的コンポーネント構成およびパラメータを示し、図12Aから図12Dは、図10の受信器の例示的な模式的コンポーネント構成およびパラメータを示し、これらは既に説明された種々のパラメータや値に補足的なものである。
送信器402に関して、整流器434は一対のFETを有するハーフブリッジインバータであり(図11A参照)、これはコントローラ420のマイクロプロセッサによって駆動されて(図11B参照)電力調整器432のバック−ブーストコンバータ回路からの調整された電力を整流し(図11C参照)、かつ送信コイル412に整流された電力を提供する。送信コイルアレイ414は複数の送信コイル412により形成され(図11D参照)、各送信コイルはセレクタ424としてその送信コイルの一方の側に接続されたスイッチを有する(図11E参照)。送信コイルの集合は、その送信コイルの集合に対応するスイッチがオンされた場合、オンされて受信器に電力を供給することができる。物体検出器428の検出回路および通信モジュール430の復調回路はそれぞれ図11Fおよび図11Gに示されている。
図11Aにおいて、入力は以下の通り。DCDC_OUTはバック−ブースト調整器からの11−21VDC、+10_SWは10V線形調整器446からのもの、INV_PWM_TおよびINV_PWM_Bはゲート駆動回路450を介したマイクロプロセッサからの方形波パルスである。出力は以下の通り。D_ARMは送信コイルを駆動し、図示の回路は送信コイルに(5Armsまでの)高周波AC電流を提供すると共に約110kHzと約300kHzとの間の動作周波数を提供する。
図11Cにおいて、入力は以下の通り。VDC_INはEMIフィルタ444ならびに突入電流および逆極性保護回路452を介した19VDC入力サプライ442であり、DCVOLT_PWM_Tは出力電圧調整を変えるために使用されるマイクロプロセッサからのPWM信号である。出力は以下の通り。DCDC_OUTはインバータ回路に入力される、11Vから21Vまでで変わるようデザインされたものであり、COIL_VIN_MCUはマイクロプロセッサのピン13に接続され、バック−ブーストコンバータの出力を検出するために使用され、出力電圧が11Vから21Vに昇圧されるにつれて0.48Vから0.91Vへと変わっていくものであり、図示の回路はインバータに可変入力電圧(11V−21V)を提供し、それによりバージョンA互換性および約400kHzの動作周波数を可能とする。
図11Dおよび図11Eにおいて、入力は以下の通り。INDは送信コイルのひとつに接続され、+10V_SWはDCサプライ446であり、+3V3はDCサプライ440であり、DCはマイクロプロセッサからのセレクトスイッチ信号であり、SNUBおよびD_SNUBは両方とも、スイッチ電圧レーティングが全ての条件における限界内にあることを保証するために用いられるスナバ回路に接続され、図示の回路は、受信器の位置に依存して送信コイルを選択的にオンするために用いられるコイルスイッチであってスイッチを流れる最大電流が約2Aであるコイルスイッチを提供する。
図11Fにおいて、入力は以下の通り。+3V3はサプライ440であり、3V3_CONTはマイクロプロセッサからのものであって物体検出回路のイネーブル/ディスエーブルのために用いられる。出力は以下の通り。LOOP_COMP+は振動子周波数に比例する周波数を有する方形波である。図示の回路は、約1MHzに設定された周波数での金属検出器を提供し、そこでは金属物体がパッド表面に置かれると振動子周波数が変化し、その変化がマイクロプロセッサによって検出される。
図11Gにおいて、入力は以下の通り。+5VはDCサプライ448であり、T-Demod-Signalはインバータ電流に比例するAC信号である。出力は以下の通り。Demod_Out_1は、受信器と通信するのにマイクロプロセッサが使用するものである。図示の回路は、バージョンB送信器における電流変調の検出を提供する。
本出願人は、送信器共振回路と受信器共振回路との間のある相互作用によって変調スロープ逆転が発生しうることを見出した。これは、復調回路で検出される合成電流が、送信器の出て行く電流(第1周波数で共振する)と受信器からの入来電流(異なる第2周波数である)との積であるからである。これは変調信号の歪みを引き起こし、したがって通信を妨害しうる。潜在的な解法は、方向性カプラを用いることである。該カプラは外向き送信器電流を排除する。この場合、順方向電流と逆方向電流とを分離することによって、受信器からの内向き変調電流を歪みなしで検出することができる。しかしながら、コンシューマエレクトロニクスにそのような方向性カプラを含めることは、トランスフォーマを含めることになってコストおよび複雑さが増大するので、望ましくない。代替的な解法は、図11Hに示されるように、図11Gの復調回路の入力段に振幅位相検出器1102を用いることである。そのような振幅位相検出器では、入力トランスフォーマ1104の二つのアームは、図面の右側から結合される(送信コイルからの)信号はキャパシタ1106によって調整され、図面の左側から結合される(インバータからの)信号はインダクタ1108によって調整される、よう調整される。このようにすることで、順方向電流と逆方向電流とを周波数にしたがって区別することができる。送信器の電流検出コイルの適切な一端を選択することで、受信器のピックアップコイルからの振幅変調信号のレベルを最適化するのに適切な周波数(例えば約100kHz)でそのコイルを共振させることができる。
受信器1004に関して、電力整流器1018はAC電圧をDC電圧に変換するフルブリッジ整流器として構成され、同期構成の四つのMOSFETを有する。すなわち、ハイサイドの二つのPチャネルMOSFETとローサイドの二つのNチャネルMOSFETとを有し(図12Aおよび図12B参照)、これらはコントローラ1010のマイクロプロセッサの制御の下でスイッチする(図12C参照)。特に、同期整流器制御はバージョンAとバージョンBとの両方に共通である。ハイサイドのPチャネルMOSFETはAC信号によって自己駆動され、一方ローサイドのNチャネルMOSFETはマイクロプロセッサによって生成されるゲート信号によって制御される。出力電流が700mAを超えると同期整流器がイネーブルされる(デジタルゲート信号が生成され、NチャンネルMOSFETがオンオフされる)。負荷1016が500mAを下回る場合、同期整流器はディスエーブルされ、電流を伝えるためにNチャネルMOSFETのボディダイオードが用いられる。同期整流器がフル同期整流器またはハーフ同期整流器のいずれかで動作しうることは、図12Aおよび図12Bから当業者には理解される。LDO1020の回路もまた図12Bに示される。LDO1020はマイクロプロセッサ信号のLoad_Enable出力をローに設定することによってディスエーブルされ、これは負荷1016をも切り離す。LDO1020はLoad_Enable信号をハイに設定することによってイネーブルされる。通信モジュール1014の変調回路は二つのキャパシタと二つのスイッチとを有し、受信器1004のAC側においてキャパシタの容量性負荷を変調することによって(図12D参照)通信パケット/信号が提供される。電流検出回路は負荷および増幅器と直列に抵抗を有し(図12E参照)、出力電流を決定する。マイクロプロセッサはこの情報を用いて送信器に最適動作ポイントを確立することを要求し、送信器から受信した電力を決定し、同期整流器をイネーブルする必要があるかを決定し、低(軽)負荷の場合にはハーフ同期整流器をイネーブルする。
図12Aおよび図12Bにおいて、整流器1018への入力は以下の通り。AC_in1/2は(図12Dの変調回路からのもの)Q1およびQ2が自己スイッチすることを可能とするものであり、Sync_Ctrl_PWM_1/2、および5V_Supplyは+5Vサプライスイッチ回路からのものであって該回路は5V_LoadおよびAnalogue_enableを入力として取得し、回路のサプライ電圧を制御することで受信電力管理回路1006(構成は当業者には理解されるので不図示)のアナログ回路をディスエーブル/イネーブルするのに用いられる。LDO1020への入力は、Intermediate VoltageとLoad_EnableとDummy_Load_Enable(図12Cのマイクロプロセッサからの)であり、整流器からの出力はIntermediate Voltageである。
LDOの出力は以下の通り。5V_LoadおよびCurrent_Sense_R。整流器の図示の回路では、D2−D3はダイオード直流化半整流を提供するが、マイクロプロセッサによってスイッチQ4−Q5を同期的にスイッチすることができる。
図12Cにおいて、入力は以下の通り。3V3_supplyは+3.3VLDO回路からのものであって、該回路はSoft_Start_Enableを入力として取得し、マイクロプロセッサ(構成は当業者には理解されるので不図示)に給電するために使用される。Intermediate Voltage。AC_in1/2(図12Dの変調回路からのもの)。CurSense_InputおよびCurSense_filtered (図12Eの電流検出回路からのもの)。出力は以下の通り。Comms(通信モジュール1014の変調回路のキャパシタをスイッチするFETを駆動するために用いられる)。Load_Enable(LDO1020のオン状態およびオフ状態を制御するためのもの)。Sync_Ctrl_PWM_1/2。Soft_Start_Enable(オーバシュートを避けるために使用されるもの)。Dummy_Load_Enable。Analogue_enable。
図12Dにおいて、入力は以下の通り。Comms。出力は以下の通り。AC_in1/2。図示の回路では、4.7nFキャパシタが出力にスイッチされ、それにより受信コイルの電圧の振幅が変調される。これにより、バージョンAモードにおけるシグナリング状態が提供される。
図12Eにおいて、入力は以下の通り。3V3_Supply。5V_Supply。Current_Sense_R。
出力は以下の通り。CurSense_Input(同期整流器の制御をオフするために用いられる高速出力電流遷移検出のためにマイクロプロセッサの比較器に入力されるもの)およびCurSense_filtered(増幅された出力電流であって、バージョンAモードおよびバージョンBモードの間に用いられる出力電力監視のためのアナログ入力としてマイクロプロセッサが取得するもの)。
図13Aから図13Cは電力送信器のコントローラによって実装される制御フローのフロー図であり、図14Aから図14Cは本発明の電力受信器のコントローラによって実装される制御フローのフロー図であり、それらの送信器および受信器は前述されたようなバージョンB送信器および受信器である。
本発明の種々の例示的な実施の形態に係る送信コイルアレイおよび動作が説明される。前述の通り、送信器は、空間的自由度および複数受信器デバイス給電/充電を提供するために、送信コイルのアレイを有する。そのような機能を提供する一つの方法は、多層アレイ状または多平面アレイ状の送信コイルの繰り返しパターンを、各コイルがその層の他のコイルと総じて同一平面上となるような態様で、提供することである。送信コイルの層間オフセットまたは重なりを伴う二層アレイのひとつの潜在的な実施の形態は図15A−Cに示される。そのような構成は、結合磁場の改善された一様性などの利点を提供する。図示の例示的な実施の形態では、送信コイルは、複数のPCB「層」の上にPCB技術を用いて製造された導電性材料からなる二次元平面コイル形状として提供される。この実施の形態では、送信コイルは総じて正方形状であるように描かれているが、これは単なる例示であって、円形、三角形、矩形、および他の多角形形状などの他の二次元形状が可能である。そのような形状はアレイ構成に資するものである。例えば、八角形状のコイルを提供することにより、コイルをより密に配置することができ、IPTフィールドの一様性をさらに高めることができる。
図15A−Cに示されるように、送信コイルの第1層1512aは、PCB1512c内の送信コイルの第2層1512bと重なる。図示の例では、第1層1512aは六つのコイルを有し、第2層1512bは四つのコイルを有するが、他の数のコイルや層に亘る組み合わせも可能である。各コイル1512aおよび1512bはいくつかの「巻き線」を有し、この場合、巻き線のない内部空間が提供される。すなわち、各送信コイルの径方向中央には導電性物質は存在しない。重なり合うコイルは各コイル内に四つの共通開口を定義する。コイル1512a内の共通開口1512dから1512gを参照。これにより、後述のように、透磁性物質からなるスラグを各共通開口に設けることができる。図示のように、コイルの中心は揃っている。これにより、電力伝送のために二つ以上の隣接する/重なり合うコイルが選択される場合に一様な磁場の生成が助けられる。図15Cに最も明確に示されるように、各PCBコイル1512は四つのPCB「層」として加工され、これらの層は、Aとマークされる円形領域に示されるように、第1層および第2層の交互の層とされる。この交互層は、一様な磁場の生成をさらに助ける。しかしながら、第1層および第2層は「交互の層」というよりむしろ「積層」されてもよい。すなわち、第2層の全てのPCB層は第1層の全てのPCB層の上に積層されてもよい。二つの層が描かれているが、特定のアプリケーションのIPTフィールドおよび送信コイルアレイ要件に依存して、二つより多い層も可能である。
図15Dから15Gを参照し、四層送信コイル1521aまたは1512b(図15B)に用いられてもよい特定の巻き線パターンを説明する。図15DはPCBトップ層11520を示し、図15Eは第3PCB層1521(隣接する重なるコイルのインタリーブされた層である第2PCB層)を示し、図15Fは第5PCB層1522(隣接する重なるコイルのインタリーブされた層である第4PCB層)を示し、図15Gは第7PCB層1523(隣接する重なるコイルのインタリーブされた層である第6PCB層および層1523の下である第8層)を示す。PCB層は、後述のように垂直方向に互いに積層され互いに接続される。
トップ層1520aをまず見ると、第1コイル端子1527は三つの並列巻き線1524、1525および1526と接続される。三つの並列巻き線が示されているが、並列巻き線の数はアプリケーションに依存して変わりうることは理解されるであろう。ただひとつのみの巻き線を用いる場合、「表皮効果(skin effect)」により許容不可能な損失および加熱が生じうる。この効果では、巻き線の小さな表面領域に大きな電流が生じる。並列巻き線を設けることで、この影響が改善される。
これらの並列巻き線は二つのループを形成し、終端1528、1529および1530で終わる。終端1528、1529および1530は図15Eに示される第3PCB層1521の終端1531、1532および1533と互いに接続される(すなわち、終端1528は終端1531と接続され、終端1529は終端1532と接続され、終端1530は終端1533と接続される)。終端1531、1532および1533は並列巻き線1534、1535および1536と接続される。
第1層1520では並列巻き線1524がコイルの中央に最も近く、かつ、並列巻き線1526がコイルの中央から最も離れており、一方で第3PCB層1521では巻き線1534(巻き線1526に接続される)がコイルの中央に最も近く、かつ、並列巻き線1536(並列巻き線1524に接続される)がコイルの中央から最も離れていることが分かるであろう。したがって、層間において、最も内側の並列巻き線と最も外側の並列巻き線とが層間で位置を交換する。
第5層1522についても同様に、第3層1521の終端1537、1538および1539は図15Fに示される第5PCB層1522の終端1540、1541および1542と互いに接続される(すなわち、終端1537は終端1540と接続され、終端1538は終端1541と接続され、終端1539は終端1542と接続される)。終端1540、1541および1542は並列巻き線1545、1544および1543と接続される。
第7層1523についても同様に、第5層1522の終端1546、1547および1548は図15Gに示される第7PCB層1523の終端1549、1550および1551と互いに接続される(すなわち、終端1546は終端1549と接続され、終端1547は終端1550と接続され、終端1548は終端1551と接続される)。終端1549、1550および1551は並列巻き線1552、1553および1554と接続され、それらは第2コイル終端1555に共通に接続される。コイルは、第1コイル終端1527と第2コイル終端1555とに交流駆動信号を印加することによって駆動されうる。
層間において、コイルの中央に最も近い並列巻き線とコイルの中央から最も遠い並列巻き線とが入れ替わることが分かるであろう。これにより、並列巻き線のうちのひとつだけが、コイルの中央に最も近いところで経験する最も大きな誘導電流にさらされることがないことが保証される。これは、コイルの焼けを避けることを助ける。さらに、並列巻き線は並列巻き線ごとの印加電流を低減し、コイル抵抗を低減する。
図15Hは単一の送信コイル1556の一方の側を通じた断面図を示し、該コイル1556は透磁性ベース1557の上に配置され、該コイル1556は透磁性スラグ1558を囲む。この場合、単一のコイルが示されるが、そのデザインは上述のインタリーブコイルデザインにも適用可能であることは理解される。送信コイル1556は六つのPCB層1559から1564として形成され、明確化のため導体のみが示される。層1559から1564の巻き線は層間でオフセットしていてもよく、これにより電流分布が改善される。各層の導体は、0.25mmより大きな幅と0.14mmの厚さと0.2mmより大きな間隔とを有する銅の導体である。前述の実施の形態のように、複数の並列巻き線、好適には三つの並列巻き線が用いられる。並列巻き線は複数の巻き線層の間に分布してもよい。例えば、最初の三つの並列巻き線は層1559および層1560の両方からの導体を含んでもよい。好適には、並列巻き線の各集合は二つの層の間に分布する。スラグ1558はコイル巻き線に誘導される電流を実質的に低減するのに十分な程度にコイル1556の上方に延びる。スラグ1558は巻き線の上方に、およそ巻き線の高さ程度突き出てもよい。ひとつの好適な実施の形態では、スラグは巻き線の高さの上方に、約1mm以上延びる。送信コイル1556の巻き線に誘導される電流を低減するために、送信コイル1556とスラグ1558との間にエアギャップ1565が設けられる。
図15Jは図15Hの変形例を示す。そこでは、内側のスラグ1558に加えて、送信コイル1556の外側にスラグ1566が設けられる。この構成は送信コイル1556に誘導される電流をさらに低減する。実際、受信コイルのフィールドシェーピング効果に起因して、この構成により負荷無しコイルよりむしろ負荷有りコイルにおいて損失を低減できる。しかしながら、追加要素による追加的コストおよび複雑さのため、このデザインはより要求の高いアプリケーションにおいてのみ正当化されうる。
図15Hおよび15Jのデザイン特徴を、適切な適応化により、図15Aから15Gの送信コイルアレイに適用可能であることは理解されるであろう。
図16は、本発明に適用可能な送信器1602のPCBコイルアレイ1614を分解組立図の形態で示す。送信器1602は、トップケーシング1603aと、ボトムケーシング1603bと、駆動回路が設けられた主PCB回路ボード1605と、物体検出器と、通信モジュールと、送信器の他の回路と、を備える。PCBコイルアレイ1614は磁性材料層1607に配置される。材料層1607は、送信コイルアレイに誘導される磁場を強化する物質、例えば強磁性物質やフェライトからなる。図示の通り、材料層1607はさらに磁場を強化するための突起1609を有する。該突起1609は磁性材料層と一体であるか、またはそれに(位置的にまたは接着的に)取り付けられている。これは図17においてより明確に示される。図17では、PCBコイルアレイ1714が材料層1707に取り付けられる様子が個別に示される。見られるように、PCBコイルアレイ1714は貫通孔1714aを有し、該貫通孔を通じて材料層1707の突起1709が突き出る。その結果、各送信コイルはその内部に少なくともひとつの突起1709を有する。図18は断面においてこれをより詳細に示す。同様の参照符号は図17と同様の要素のために用いられる。各突起またはスラグ1809は各巻き線1814のトップの上方に、およそ各巻き線1814の高さ程度突き出てもよい。好適には、各スラグ1809は各巻き線1814のトップの上方に、約1mm以上突き出る。
見られるように、フェライト材料層の突起またはスラグはPCBコイルアレイ層の上方に突き出る。本出願人は、これが磁場への影響に対してさらなる利点を提供することを見出した。図19はPCBコイル層1914のセグメントの上方に高さhだけ突き出ている突起1909を示す。高さhは、PCBコイル層1914における次の孔1914aのエッジからの角度θが45度より小さくなるよう決定される。磁性材料層の突起として提供される代わりに、磁性材料の「スラグ」が磁性材料層があってもなくてもよい独立した要素として設けられてもよく、また送信コイルアレイの加工の一部として、例えばコイルを位置決めするために使用されるPCBまたは他の基板の一部として、設けられてもよいことは理解される。さらに、図示の例では、各コイルは四つの磁性材料要素を囲む。これらの要素は矩形コイルの角の内側にある。この構成は、各コイルの「空洞」内における磁性材料の量を最大化することで好影響を最適化しつつ、コイルアレイの多層化を助ける。より少ない、より多いまたは異なる形状の要素によるコイルおよび磁性材料要素の他の構成が可能であることは理解される。さらに、磁性材料要素が送信コイルアレイのトップ層の上方に突き出ないほうがアプリケーションにより適する場合には、そのようにする必要はない。例えば、要素とコイルアレイとは同一平面上にあってもよい。
送信器マグネティックやIPTフィールドの好影響や強化は、リーズナブルな電力伝送レベルでの一様なまたは増大されたIPTカバレッジを提供するようなフィールドシェーピング、例えばIPTフィールドの高さを増やすこと(送信パッドの直交幾何に対するいわゆる「z高さ」)、を含む。出願人は、同時に給電される隣り合う送信コイルの数を増やすことによってz高さを追加的に増やすことができることを見出した。したがって、これらのメカニズム、例えば機械的なものおよび制御的なもの、の組み合わせを用いることで、電力送信器の無線電力伝送の有効範囲を増やすことができる。このようにフィールドをシェーピングすることによって、コイル巻き線に誘導される電流を低減することができ、および/またはコイル巻き線における電流分布を改善することができる。フェライトコアがコイルの表面かそれより下の高さまで延びる場合、コイルの内側巻き線および/または外側巻き線で誘導電流が生じうる。一方、その表面の上方に延びる磁性コアが用いられる場合、電流分布はより一様となり、および/または誘導電流を低減できる。あるいはまた、または組み合わせで、フェライトコアをコイルの外側のエッジに延ばすことおよび/またはそれを受信器の一部まで延ばすことは、コイル電流分布をさらに改善するおよび/または誘導電流をさらに低減するであろう。
送信器コイルアレイの図示の実施の形態はPCBコイルを示す。しかしながら、これはIPTコイルアレイを構成し製造するやり方の例でしかない。コイルは手でまたは機械で巻かれたコイルであってもよいし、または前述のようにスタンピングやプリンティングなどの他のやり方で加工されてもよい。アレイ内におけるコイルの相対配置および機能は、効果的で信頼性が高く効率的な無線電力伝送を提供するIPTフィールドを提供する際の重要なファクタである。
上述の無線電力伝送システムは、複数モデルまたは互換性構成に基づいて、組み合わせとしてのエンドユーザコンシューマエレクトロニクスシステムまたは個別のエンドユーザコンシューマエレクトロニクスシステムとして提供されてもよい。前者の例は送信器およびひとつ以上の受信器が「パッケージ」または「セット」として提供されるものであり、後者の例は送信器が受信器とは別個に取得可能かつそれとは別個に動作可能なユニットとして提供されるものである。あるいはまた、無線電力伝送システムは、オリジナルデザイン製造(ODM)や相手先ブランド名製造(OEM)の評価や教育目的のキットとして提供されてもよい。それらはコンシューマエレクトロニクスを製造し、その場合、種々の構成や能力がテストされおよび/または無線給電の製品への統合または組み入れが評価される。そのようなキットは、無線電力電送のために必要なコンポーネント、モジュール、インストラクションおよび学習材料と、異なるアプリケーションのための無線電力伝送システムのデザイン、変更、適合、テスト、評価および構成のためのシステム構成および調整、例えば、電力レベルやフィールドカバレッジなど、と、を含んでもよい。
そのような無線電力伝送キットは、本明細書で説明され添付の図面に示される構成および特徴を有する無線電力送信器および複数の無線電力受信器を備えてもよい。キットは、無線電力伝送のキットコンポーネントをアレンジし、構成し、最適化し、適合させ、るためのインストラクションを含んでもよい。インストラクションはシステムのコンポーネントをどのように適合させ、用い、作り、または評価するかを教えてもよい。無線電力電送キットの電子部品は、オシロスコープやマルチメータや電力計や電流計や電圧計やプローブなどの測定機器を用いた動作パラメータの測定を可能とするための複数の電気端子を有してもよい。
本発明の実施の形態の説明によって本発明を説明し、また実施の形態を詳細に説明したが、添付の請求項の範囲をそのような詳細に制限したり限定したりするような意図は全くない。当業者には、追加的な利点や変形例は容易に明らかであろう。したがって、より広い態様における本発明は、示され説明された具体的な詳細や代表的な装置および方法や説明的例示に制限されない。したがって、大きな発明概念の精神や範囲から逸脱することなしに、そのような詳細からの逸脱がなされうる。

Claims (106)

  1. 電力送信器と少なくともひとつの電力受信器とを備える電力伝送システムであって、前記電力送信器は複数の送信コイルを有し、コントローラの制御の下で、複数のモードで電力を前記少なくともひとつの電力受信器の受信コイルに送信することを前記複数の送信コイルに選択的に行わせることが可能であり、
    前記コントローラは、前記電力伝送の前記モードを制御するために、前記電力受信器の特性を検出するよう構成されるシステム。
  2. 前記電力受信器の前記特性は、前記受信器の負荷への電力フローを制御するための回路を前記電力受信器が備えているか否かを含む請求項1に記載のシステム。
  3. 前記コントローラは前記電力受信器と通信し、前記特性についての情報を前記電力受信器から受信するよう構成される請求項1に記載のシステム。
  4. 前記コントローラは前記電力送信器と前記電力受信器との間で伝送される電力信号の変調を通じて前記電力受信器と通信するよう構成される請求項3に記載のシステム。
  5. 前記電力送信器および前記電力受信器は、前記電力信号がそれらの間を電磁誘導を通じて伝送されるように構成される請求項4に記載のシステム。
  6. 前記電力送信器は、物体検出コイルによって誘起された磁場の中の物体を検出するための物体検出器を備える請求項5に記載のシステム。
  7. 前記コントローラは、結合された送信コイルと受信コイルとの間を通る変調電力信号から受信器デバイスバージョン情報を抽出し、前記バージョン情報に基づいて電力伝送の前記モードを制御する請求項3から6のいずれか一項に記載のシステム。
  8. 前記コントローラは、結合された送信コイルと受信コイルとの間を通る変調電力信号から受信器デバイス構成情報を抽出し、前記構成情報に基づいて電力伝送の前記モードを制御する請求項3から7のいずれか一項に記載のシステム。
  9. 前記受信器デバイスに送信される最大電力は、前記構成情報にしたがって制御される請求項8に記載のシステム。
  10. 前記受信器に電力を供給するのに必要な送信コイルの数は、前記構成情報にしたがって制御される請求項8または9に記載のシステム。
  11. 受信器位置フェーズ中、エネルギ伝送の前に、前記コントローラは、駆動された送信コイルから前記受信器が受信した信号の強度の指標に関する情報であって前記受信器から受信した情報に基づいて、前記複数の送信コイルのうちのどれを駆動するかを選択的に制御する請求項1から10のいずれか一項に記載のシステム。
  12. 受信器位置フェーズ中、前記制御回路は前記電力調整回路からの駆動信号を各電力送信コイルに順番に接続し、各コイルに所定の期間エネルギを与える請求項11に記載のシステム。
  13. 前記複数の送信コイルのそれぞれは、少なくともそのコイルと同一平面上にある少なくともひとつの磁性体要素を囲む請求項1から12のいずれか一項に記載のシステム。
  14. 各磁性体要素は各コイルの上方に延びる請求項13に記載のシステム。
  15. 請求項1から14のいずれか一項に記載の前記システムを用いる電力伝送方法であって、前記コントローラは、前記電力受信器に電力を伝送する前に、前記電力受信器の前記特性を検出する方法。
  16. ひとつ以上の受信コイルを有する誘導性電力伝送受信器に電力を供給するための誘導性電力伝送送信器であって、
    (1)複数の送信コイル、
    (2)駆動時に送信コイルに駆動信号を供給するための電力調整回路、
    (3)駆動された送信コイルから受信コイルが受信した信号の強度の指標に関する情報であって前記受信器から前記送信器が受信した情報に基づいて、前記複数の送信コイルのうちのどれが前記電力調整回路によって駆動されるかを選択的に制御する制御回路、を備える送信器。
  17. 受信器位置フェーズ中、前記制御回路は前記電力調整回路からの駆動信号を各電力送信コイルに順番に接続し、各コイルに所定の期間エネルギを与える請求項16に記載の送信器。
  18. 前記所定の期間は信号強度パケットを受信するための見込み受信期間に対応する請求項15または16に記載の送信機。
  19. 前記制御回路は、前記複数の送信コイルのうちのどれが駆動されるべきかを選択するために、コイルが駆動されることに応じて受信器から受信した情報を前記駆動されたコイルに関連付ける請求項17または18に記載の送信器。
  20. 結合された送信コイルと受信コイルとの間を通る電力信号の変調を検出し、送信コイルと受信コイルとのペアの間の結合の指標を得る通信モジュールを含む請求項19に記載の送信器。
  21. 前記通信モジュールは、受信器が送信した信号強度パケットから信号強度値を抽出し、送信コイルと受信コイルとのペアの間の結合の指標を得る請求項20に記載の送信器。
  22. 前記複数の送信コイルのうちの前記ひとつ以上の選択の次に、前記複数の送信コイルのうちの前記ひとつ以上には前記所定の期間よりも長くエネルギが与えられ、それにより前記受信器からのさらなるパケットの受信が可能となる請求項17から21のいずれか一項に記載の送信器。
  23. 前記制御回路は、前記受信器に電力を供給するために単一の送信コイルを選択する請求項16から22のいずれか一項に記載の送信器。
  24. 前記選択された単一の送信コイルは、最も高い関連付けられた信号強度値を有する前記送信コイルである請求項23に記載の送信器。
  25. 前記制御回路は、前記受信器に電力を供給するために二つ以上の送信コイルを選択する請求項16から22のいずれか一項に記載の送信器。
  26. 前記制御回路は、最も高い関連付けられた信号強度値を有する前記送信コイルと、次に高い関連付けられた信号強度値を有する前記送信コイルと、を選択する請求項25に記載の送信器。
  27. 前記制御回路は、前記送信器が受信した情報に含まれる前記電力受信器の特性に応じて、前記電力調整回路を制御する請求項16から26のいずれか一項に記載の送信器。
  28. 物体検出システムを含み、前記制御システムは前記物体検出システムが物体を検出すると前記送信コイルにエネルギを与える請求項16から27のいずれか一項に記載の送信器。
  29. 前記物体検出システムはひとつ以上の物体検出コイルを含む請求項28に記載の送信器。
  30. 前記通信モジュールは、結合された送信コイルと受信コイルとの間を通る変調信号から受信器識別情報を抽出し、前記識別情報に基づいて前記電力調整回路の動作を制御する請求項20に記載の送信器。
  31. 複数の送信コイルを有するIPT電力送信器とひとつ以上の受信コイルを有する電力受信器とを含むIPT電力システムにおいて、ひとつ以上の送信コイルを選択的に駆動する方法は、
    a.受信器位置フェーズ中に、電力送信コイルを順番に駆動して各コイルに所定の期間エネルギを与えるステップと、
    b.前記受信器の前記ひとつ以上の受信コイルにエネルギが与えられたことを検出し、それに応じて前記受信器から前記送信器へ信号強度情報を送信するステップと、
    c.受信された信号強度情報とエネルギが与えられた送信コイルとを関連付けるステップと、
    d.各送信コイルに関連付けられた前記信号強度情報に基づいて、電力伝送中にどの送信コイルを駆動するかを決定するステップと、を含む方法。
  32. 前記所定の期間は信号強度パケットを受信するための見込み受信期間に対応する請求項31に記載の方法。
  33. 前記受信器は、前記電力送信器と前記電力受信器との間で伝送される電力信号の変調によって、前記送信器に信号を送信する請求項31または32に記載の方法。
  34. 前記信号強度情報は信号強度パケットで送信される請求項31から33のいずれか一項に記載の方法。
  35. 前記信号強度パケットは受信器識別情報を含む請求項34に記載の方法。
  36. 前記送信器は前記受信器識別情報に基づいてバージョン情報を決定する請求項35に記載の方法。
  37. 前記送信器の動作の前記モードは前記バージョン情報にしたがって制御される請求項36に記載の方法。
  38. 前記受信器位置フェーズの次に、前記受信器は受信器識別情報を結合された送信器に送信する請求項35から37のいずれか一項に記載の方法。
  39. 前記受信器識別情報は識別パケットで送信される請求項38に記載の方法。
  40. 前記識別パケットは前記受信器の動作の前記モードを特定するバージョンコードを含む請求項39に記載の方法。
  41. 前記識別パケットは前記受信器の前記製造者を特定する製造者コードを含む請求項39または40に記載の方法。
  42. 前記識別パケットは一意の識別子を含む請求項39から41のいずれか一項に記載の方法。
  43. 前記通信回路は受信器デバイス構成情報を結合された送信器に送信する請求項39から42のいずれか一項に記載の方法。
  44. 前記構成情報は構成パケットで送信される請求項43に記載の方法。
  45. 前記電力受信器に送信される最大電力は前記構成パケットに含まれる請求項44に記載の方法。
  46. 前記送信器は、前記複数の送信コイルのうちのどれが駆動されるべきかを選択するために、コイルが駆動されることに応じて受信器から受信した情報を前記駆動された送信コイルに関連付ける請求項31から45のいずれか一項に記載の方法。
  47. 前記送信器は、前記受信器に電力を供給するために単一の送信コイルを選択する請求項46に記載の方法。
  48. 前記選択された単一の送信コイルは、最も高い関連付けられた信号強度値を有する前記送信コイルである請求項47に記載の方法。
  49. 前記制御回路は、前記受信器に電力を供給するために二つ以上の送信コイルを選択する請求項46に記載の方法。
  50. 前記制御回路は、最も高い関連付けられた信号強度値を有する前記送信コイルと、次に高い関連付けられた信号強度値を有する前記送信コイルと、を選択する請求項49に記載の方法。
  51. 前記送信器は、前記送信器が受信した情報に含まれる前記電力受信器の特性に応じて、前記受信器に電力を供給する請求項31から50のいずれか一項に記載の方法。
  52. 各パケットは受信器識別コードを含む請求項38から51のいずれか一項に記載の方法。
  53. 前記受信器識別コードは一意の受信器識別コードである請求項52に記載の方法。
  54. 前記受信器位置フェーズの前に物体検出ステップを含む請求項31から53のいずれか一項に記載の方法。
  55. (1)受信コイル、
    (2)誘導性電力伝送送信コイルから前記受信コイルが受信した信号の強度を測定するための信号強度測定回路、
    (3)誘導性電力伝送送信コイルから電力を受信すると、前記測定された信号強度および受信器識別情報に関する信号を前記誘導性電力伝送送信器に送信する通信回路、を備える誘導性電力伝送受信器。
  56. 前記受信器が送信する全ての通信において受信器識別情報が送信される請求項55に記載の受信器。
  57. 複数の隣り合う送信コイルを含む誘導性電力伝送送信器であって、各巻き線は中央開口を定め、複数の隣り合うコイルの前記中央開口は共通開口を定め、透磁性材料により形成されるスラグが前記共通開口のうちの少なくともいくつかの中に設けられ、かつ前記複数の送信コイルの上に突き出ている誘導性電力伝送送信器。
  58. 前記スラグは、前記コイルの下に設けられた透磁性材料の層から突き出る請求項57に記載の送信器。
  59. 少なくともいくつかの隣り合うコイルは複数の層を有し、それら複数の層は交互に配置される請求項57または58に記載の送信器。
  60. 送信器であって、各巻き線は中央開口を定め、複数の隣り合うコイルの前記中央開口は共通開口を定め、透磁性材料により形成されるスラグが前記共通開口のうちの少なくともいくつかの中に設けられる送信器。
  61. 最も上のコイルの上層は上面を定め、各スラグは上面の上に突き出る請求項60に記載の送信器。
  62. 複数の送信コイルを含み、各コイルは複数の巻き線層からなり、少なくともいくつかのコイルはオフセットされ、それらの複数の層は交互に配置される請求項60または61に記載の誘導性電力伝送送信器。
  63. 前記スラグは、前記コイルの下に設けられた透磁性材料の層から突き出る請求項60から62のいずれか一項に記載の送信器。
  64. 少なくともいくつかのコイルの各層の前記巻き線は、電気的に並列に接続された複数の並列巻き線として形成される請求項60から63のいずれか一項に記載の送信器。
  65. 少なくともいくつかのコイルの各層の前記巻き線は、電気的に並列に接続された三つの並列巻き線として形成される請求項64に記載の送信器。
  66. 前記並列巻き線のうちの少なくともいくつかの径方向変位は層間で変わる請求項64または65に記載の送信器。
  67. 一対の並列巻き線は、層間において、前記コイルの中央に最も近いのと前記コイルの中央から最も遠いのとの間で入れ替わる請求項66に記載の送信器。
  68. 複数の送信コイルを含む誘導性電力伝送送信器であって、各コイルは複数の巻き線層からなり、前記複数の巻き線は、電気的に並列に接続された複数の並列巻き線として形成される誘導性電力伝送送信器。
  69. 前記複数の並列巻き線は各層上に形成され、層間で互いに接続される請求項68に記載の送信器。
  70. 少なくともいくつかのコイルの各層の前記複数の巻き線は電気的に並列に接続された三つの並列巻き線として形成される請求項68または69に記載の送信器。
  71. 前記並列巻き線のうちの少なくともいくつかの径方向変位は層間で変わる請求項68から70のいずれか一項に記載の送信器。
  72. 一対の並列巻き線は、層間において、前記コイルの中央に最も近いのと前記コイルの中央から最も遠いのとの間で入れ替わる請求項71に記載の送信器。
  73. 各巻きの前記並列巻き線は巻き線層の間に分布する請求項68に記載の送信器。
  74. 各巻きの前記並列巻き線は二つの層の間で分けられている請求項73に記載の誘導性電力伝送送信器。
  75. 前記並列巻き線は層間でオフセットされる請求項68から74のいずれか一項に記載の誘導性電力伝送送信器。
  76. 各巻き線は透磁性材料から形成されるスラグを含み、該スラグは前記巻き線に誘導される電流を実質的に低減するのに十分な程度に各コイルの上方に延びる請求項57から75のいずれか一項に記載の誘導性電力伝送送信器。
  77. 各スラグは各巻き線の上部の上に各巻き線の高さ程度だけ突き出る請求項76に記載の誘導性電力伝送送信器。
  78. 各スラグは各巻き線の上部の上に1ミリメートル以上突き出る請求項76に記載の誘導性電力伝送送信器。
  79. 各スラグは各巻き線の上部の上に約1ミリメートル突き出る請求項76に記載の誘導性電力伝送送信器。
  80. 各送信コイルの中に四つの共通開口が定められる請求項68から79のいずれか一項に記載の誘導性電力伝送送信器。
  81. 各共通開口にスラグが設けられる請求項80に記載の誘導性電力伝送送信器。
  82. 前記送信コイルに誘導される電流を低減するために、各送信コイルと各スラグとの間にエアギャップが設けられる請求項81に記載の誘導性電力伝送送信器。
  83. 複数の送信コイルを有する誘導性電力伝送送信器であって、コントローラの制御の下で、複数のモードで電力を少なくともひとつの電力受信器の受信コイルに送信することを前記複数の送信コイルに選択的に行わせることが可能であり、
    前記コントローラは、前記電力伝送の前記モードを制御するために、前記電力受信器の特性を検出するよう構成される誘導性電力伝送送信器。
  84. 前記電力受信器の前記特性は、前記受信器の負荷への電力フローを制御するための回路を前記電力受信器が備えているか否かを含む請求項83に記載の誘導性電力伝送送信器。
  85. 前記コントローラは前記電力受信器と通信し、前記特性についての情報を前記電力受信器から受信するよう構成される請求項83または84に記載の誘導性電力伝送送信器。
  86. 前記コントローラは前記電力送信器と前記電力受信器との間で伝送される電力信号の変調を通じて前記電力受信器と通信するよう構成される請求項83から85のいずれか一項に記載の誘導性電力伝送送信器。
  87. 前記電力信号は電磁誘導により伝送される請求項86に記載の誘導性電力伝送送信器。
  88. 物体検出コイルによって誘起された磁場の中の物体を検出するための物体検出器を備える請求項83から87のいずれか一項に記載の誘導性電力伝送送信器。
  89. 前記コントローラは、結合された送信コイルと受信コイルとの間を通る変調電力信号から受信器デバイスバージョン情報を抽出し、前記バージョン情報に基づいて電力伝送の前記モードを制御する請求項85から88のいずれか一項に記載の誘導性電力伝送送信器。
  90. 前記受信器デバイスに送信される最大電力は、前記バージョン情報にしたがって制御される請求項89に記載の誘導性電力伝送送信器。
  91. 前記受信器に電力を供給するのに必要な送信コイルの数は、前記バージョン情報にしたがって制御される請求項89または90に記載の誘導性電力伝送送信器。
  92. 受信器位置フェーズ中、エネルギ伝送の前に、前記コントローラは、駆動された送信コイルから前記受信器が受信した信号の強度の指標に関する情報であって前記受信器から受信した情報に基づいて、前記複数の送信コイルのうちのどれを駆動するかを選択的に制御する請求項83から91のいずれか一項に記載の誘導性電力伝送送信器。
  93. 受信器位置フェーズ中、前記制御回路は前記電力調整回路からの駆動信号を各電力送信コイルに順番に接続し、各コイルに所定の期間エネルギを与える請求項92に記載の誘導性電力伝送送信器。
  94. 前記複数の送信コイルのそれぞれは、少なくともそのコイルと同一平面上にある少なくともひとつの磁性体要素を囲む請求項83から93のいずれか一項に記載の誘導性電力伝送送信器。
  95. 各磁性体要素は各コイルの上方に延びる請求項94に記載の誘導性電力伝送送信器。
  96. (1)ひとつ以上の受信コイル、
    (2)前記受信コイルにおいて誘導性電力伝送送信コイルから電力を受信すると、前記受信器の前記特性に関する信号を前記誘導性電力伝送送信器に送信する通信回路、を備える誘導性電力伝送受信器。
  97. 前記受信器は前記受信器の負荷への電力フローを制御するための電力フローコントローラを含む請求項96に記載の誘導性電力伝送受信器。
  98. 前記通信回路によって通信される前記特性は電力フロー制御特性を含む請求項97に記載の誘導性電力伝送受信器。
  99. 前記通信回路は、電力送信器と前記電力受信器との間で送信される電力信号の変調を通じて、前記電力送信器と通信するよう構成される請求項96から98のいずれか一項に記載の誘導性電力伝送受信器。
  100. 前記電力信号は電磁誘導によって送信される請求項99に記載の誘導性電力伝送受信器。
  101. 前記特性はバージョン情報を含む請求項96から100のいずれか一項に記載の誘導性電力伝送受信器。
  102. 前記バージョン情報は前記受信器の電力伝送の前記モードを含む請求項101に記載の誘導性電力伝送受信器。
  103. 前記バージョン情報は信号強度パケットに続くパケットで送られる請求項101または102に記載の誘導性電力伝送受信器。
  104. 前記特性は構成情報を含む請求項96から103に記載の誘導性電力伝送受信器。
  105. 前記構成情報は、前記ひとつ以上の受信コイルに電力を提供するために駆動が必要な送信コイルの数を含む請求項104に記載の誘導性電力伝送受信器。
  106. 電力送信器から受信した電力信号の強度に関する信号強度情報が他の通信より前に送られる請求項96から105のいずれか一項に記載の誘導性電力伝送受信器。
JP2020001318A 2014-08-12 2020-01-08 電力伝送システムおよび方法 Pending JP2020061939A (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201462070042P 2014-08-12 2014-08-12
US62/070,042 2014-08-12
US201462036622P 2014-08-13 2014-08-13
US62/036,622 2014-08-13
US201562099990P 2015-01-05 2015-01-05
US62/099,990 2015-01-05
US201562108495P 2015-01-27 2015-01-27
US62/108,495 2015-01-27
NZ71070315 2015-08-03
NZ710703 2015-08-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017507880A Division JP6859254B2 (ja) 2014-08-12 2015-08-12 電力伝送システムおよび方法

Publications (1)

Publication Number Publication Date
JP2020061939A true JP2020061939A (ja) 2020-04-16

Family

ID=55304401

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017507880A Active JP6859254B2 (ja) 2014-08-12 2015-08-12 電力伝送システムおよび方法
JP2020001318A Pending JP2020061939A (ja) 2014-08-12 2020-01-08 電力伝送システムおよび方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017507880A Active JP6859254B2 (ja) 2014-08-12 2015-08-12 電力伝送システムおよび方法

Country Status (8)

Country Link
US (2) US10601251B2 (ja)
EP (2) EP3550697A1 (ja)
JP (2) JP6859254B2 (ja)
KR (2) KR102479354B1 (ja)
CN (2) CN112510856A (ja)
AU (2) AU2015302418B2 (ja)
CA (1) CA2957903A1 (ja)
WO (1) WO2016024869A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261053A1 (ja) * 2020-06-26 2021-12-30 キヤノン株式会社 送電装置、送電装置の制御方法、およびプログラム

Families Citing this family (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
KR20160119842A (ko) 2014-02-23 2016-10-14 애플 인크. 결합 코일 시스템의 조정 필터
KR20180069107A (ko) 2014-02-23 2018-06-22 애플 인크. 유도 전력 전송 시스템의 임피던스 매칭
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10032557B1 (en) 2014-05-29 2018-07-24 Apple Inc. Tuning of primary and secondary resonant frequency for improved efficiency of inductive power transfer
US9537353B1 (en) 2014-06-03 2017-01-03 Apple Inc. Methods for detecting mated coils
US9685814B1 (en) * 2014-06-13 2017-06-20 Apple Inc. Detection of coil coupling in an inductive charging system
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9813041B1 (en) 2014-07-31 2017-11-07 Apple Inc. Automatic boost control for resonant coupled coils
US10014733B2 (en) 2014-08-28 2018-07-03 Apple Inc. Temperature management in a wireless energy transfer system
US10193372B2 (en) 2014-09-02 2019-01-29 Apple Inc. Operating an inductive energy transfer system
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
AU2016216178A1 (en) 2015-02-03 2017-09-07 Apple Inc. Inductive power transmitter
US10566853B2 (en) * 2015-02-03 2020-02-18 Apple Inc. Inductive power transmitter
US10840744B2 (en) 2015-03-04 2020-11-17 Apple Inc. Inductive power transmitter
CN112234721A (zh) * 2015-05-19 2021-01-15 松下知识产权经营株式会社 非接触供电设备的供电方法、非接触受电设备的受电方法和非接触电力传送系统
US10666084B2 (en) 2015-07-10 2020-05-26 Apple Inc. Detection and notification of an unpowered releasable charging device
DE102015213981A1 (de) * 2015-07-24 2017-01-26 Conti Temic Microelectronic Gmbh Detektion eines Fremdkörpers in einem elektromagnetischen Feld, insbesondere mit Hilfe eines NFC Chips
JP5995022B1 (ja) * 2015-09-10 2016-09-21 パナソニックIpマネジメント株式会社 無線電力伝送システムおよび送電装置
US10523033B2 (en) * 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10498171B2 (en) * 2015-10-12 2019-12-03 Avago Technologies International Sales Pte. Limited Wireless power receiver voltage control enabling simultaneous communications to transmitter in over-voltage state
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
JP6450027B2 (ja) * 2015-11-05 2019-01-09 エルジー エレクトロニクス インコーポレイティド 車両用無線電力送信機及び受信機
KR102130791B1 (ko) 2015-11-19 2020-07-06 애플 인크. 유도 전력 송신기
CN105337427B (zh) * 2015-11-30 2018-08-10 联想(北京)有限公司 无线充电设备
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10193375B2 (en) * 2016-01-28 2019-01-29 Mediatek Inc. Closed loop current control in a wireless power system
WO2017139594A2 (en) * 2016-02-12 2017-08-17 The University Of Florida Research Foundation, Inc. Wireless power transmitter for versatile receiver alignment
CN109496380B (zh) 2016-04-04 2022-04-05 苹果公司 感应式功率发射器
CN110289668B (zh) 2016-04-08 2022-03-08 华为技术有限公司 一种快速充电的方法、终端、充电器和系统
US11183885B2 (en) * 2016-05-13 2021-11-23 Samsung Electronics Co., Ltd. Wireless power transmission device and control method thereof
US10483786B2 (en) 2016-07-06 2019-11-19 Apple Inc. Wireless charging systems with multicoil receivers
KR102617560B1 (ko) * 2016-08-23 2023-12-27 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
US10644531B1 (en) 2016-09-22 2020-05-05 Apple Inc. Adaptable power rectifier for wireless charger system
US10693308B2 (en) * 2016-09-23 2020-06-23 Apple Inc. Interconnections for multi-layer transmitter coil arrangements in wireless charging mats
DE102016221225A1 (de) * 2016-10-27 2018-05-03 Robert Bosch Gmbh Energieübertragungsvorrichtung und Energieübertragungsverfahren
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
DE102016123268B3 (de) * 2016-12-01 2018-03-01 Lisa Dräxlmaier GmbH Ladegerät und verfahren zum induktiven laden eines mobilen gerätes innerhalb eines kraftfahrzeuges
JP6691273B2 (ja) * 2016-12-12 2020-04-28 エナージャス コーポレイション 配送される無線電力を最大化するために近接場充電パッドのアンテナ区域を選択的に活性化する方法
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10770921B2 (en) 2017-02-10 2020-09-08 Apple Inc. Wireless charging system with start-up negotiation
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10523063B2 (en) 2017-04-07 2019-12-31 Apple Inc. Common mode noise compensation in wireless power systems
US10389274B2 (en) 2017-04-07 2019-08-20 Apple Inc. Boosted output inverter for electronic devices
CN107170570B (zh) * 2017-04-11 2020-02-14 中国矿业大学 一种无线电能传输磁路耦合机构
KR102421069B1 (ko) * 2017-04-19 2022-07-14 엘지이노텍 주식회사 무선 충전을 위한 무선 전력 송신 장치
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10320241B2 (en) 2017-05-17 2019-06-11 Apple Inc. Wireless charging system with object recognition
JP2019004691A (ja) * 2017-06-13 2019-01-10 ローム株式会社 送電装置及び非接触給電システム
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
EP3429060A1 (en) 2017-07-13 2019-01-16 Koninklijke Philips N.V. Wireless power transfer
US10705130B2 (en) * 2017-08-17 2020-07-07 Integrated Device Technology, Inc. Adaptive transmitter present detection
US10734847B2 (en) * 2017-08-23 2020-08-04 Apple Inc. Wireless power system with coupling-coefficient-based coil selection
EP3917080B1 (en) 2017-08-24 2023-06-28 LG Electronics Inc. Apparatus and method for performing communication in wireless power transmission system
US10797534B2 (en) 2017-09-11 2020-10-06 Apple Inc. Foreign object detection in wireless charging systems with multiple power receiving devices present on a power transmitting device
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
CN107786005A (zh) * 2017-11-01 2018-03-09 国家电网公司 应用于电动汽车无线供电的磁耦合机构的双层屏蔽接收端
CN107733044B (zh) * 2017-11-15 2023-12-01 深圳市中天迅通信技术股份有限公司 一种可实现多个用电器同时充电的装置
KR20190060531A (ko) * 2017-11-24 2019-06-03 경희대학교 산학협력단 복수의 소형 전력 전송 코일로 구성된 무선 충전 패드 및 무선 충전 패드의 구동 장치 및 방법
KR102454603B1 (ko) * 2017-11-30 2022-10-14 주식회사 위츠 무선 전력 송신 장치 및 그의 제어 방법
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11171502B2 (en) * 2018-02-23 2021-11-09 Aira, Inc. Free positioning charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US10862351B2 (en) 2018-03-26 2020-12-08 Lg Electronics Inc. Method and apparatus for performing communication in wireless power transmission system
EP3547487B1 (en) * 2018-03-29 2020-03-25 NOK9 ip AB A testing device for testing a wireless power transmitter device, and an associated method
US20210028653A1 (en) * 2018-04-05 2021-01-28 Lg Electronics Inc. Device and method for controlling transmission of power in wireless power transmitting system
CN108390441B (zh) * 2018-05-03 2024-03-22 深圳银星智能集团股份有限公司 充电座、移动机器人以及自动充电系统
KR102509314B1 (ko) * 2018-05-16 2023-03-14 엘지이노텍 주식회사 무선 전력 전송 제어 방법 및 장치
US11165273B2 (en) * 2018-05-25 2021-11-02 Apple Inc. Wireless charging systems for electronic devices
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11239695B2 (en) * 2018-08-14 2022-02-01 Apple Inc. Wireless power system with device priority
KR102602320B1 (ko) 2018-08-14 2023-11-16 삼성전자주식회사 무선 전력 수신 장치, 무선 전력 송신 장치 및 그 제어 방법
KR102235490B1 (ko) * 2018-08-20 2021-04-02 애플 인크. 전자 디바이스를 위한 무선 충전 시스템
CN112567592A (zh) * 2018-08-21 2021-03-26 三菱电机株式会社 非接触供电系统、非接触供电用的受电设备以及基于非接触供电用的受电设备的启动信号发送方法
DE102018120779B3 (de) 2018-08-24 2019-12-12 Phoenix Contact Gmbh & Co. Kg Kontaktloses PoE-Verbindungssystem
US11770029B2 (en) * 2018-10-04 2023-09-26 Lg Electronics Inc. Wireless power transmission device
EP3637583A1 (en) * 2018-10-09 2020-04-15 Koninklijke Philips N.V. Wireless power transfer
KR20210066838A (ko) * 2018-10-26 2021-06-07 엘지전자 주식회사 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법
CN109278573B (zh) * 2018-11-07 2021-10-19 常熟理工学院 基于波束形成原理的静止状态下纯电动汽车无线充电方法
US11171503B2 (en) * 2018-11-08 2021-11-09 Schlage Lock Company Llc Wireless power status through boosted output voltage
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
DE102018220766B4 (de) * 2018-11-30 2020-11-19 Diehl Metering Gmbh Vereinfachte kombination codierter datenpakete
WO2020115665A1 (en) * 2018-12-04 2020-06-11 Powermat Technologies Ltd Adaptive wireless power transmitter
US11670969B2 (en) * 2019-01-18 2023-06-06 Ossia Inc. Wireless power transmission system capable of changing power transmission frequency
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
JP2020124002A (ja) * 2019-01-29 2020-08-13 株式会社東芝 ワイヤレス給電システム
JP2022519749A (ja) 2019-02-06 2022-03-24 エナージャス コーポレイション アンテナアレイ内の個々のアンテナに使用するための最適位相を推定するシステム及び方法
WO2020222528A1 (ko) * 2019-04-29 2020-11-05 엘지전자 주식회사 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
US11114903B2 (en) * 2019-06-24 2021-09-07 Apple Inc. Wireless power systems with concurrently active data streams
WO2021003370A1 (en) * 2019-07-03 2021-01-07 Verily Life Sciences Llc Systems and methods for sealing and providing wireless power to wearable or implantable devices
CN110610574B (zh) * 2019-07-23 2021-07-06 未来智城(浙江)科技发展有限公司 无线智能装置系统
CN110518709A (zh) * 2019-09-02 2019-11-29 北京酷能科技有限公司 一种无线充电装置、方法和无线接收装置、方法
US20220344979A1 (en) * 2019-09-04 2022-10-27 Ge Hybrid Technologies, Llc Wireless power transmission apparatus with multiple controllers and adjacent coil muting
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
WO2021055900A1 (en) 2019-09-20 2021-03-25 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021119483A1 (en) 2019-12-13 2021-06-17 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
CN115605969A (zh) * 2020-01-06 2023-01-13 艾拉公司(Us) 充电设备中的多线圈选择
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11505077B2 (en) * 2020-05-27 2022-11-22 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for wireless vehicle power transfer and misalignment estimation
CN111725738B (zh) * 2020-07-27 2021-10-01 国网黑龙江省电力有限公司电力科学研究院 一种高压线路绝缘子电磁除冰系统
WO2022025328A1 (ko) * 2020-07-31 2022-02-03 엘지전자 주식회사 무선 전력 송신 장치
JP2022077659A (ja) * 2020-11-12 2022-05-24 キヤノン株式会社 送電装置、送電装置の制御方法、及びプログラム
KR20220109690A (ko) * 2021-01-29 2022-08-05 삼성전자주식회사 무선 전력을 송신하는 전자 장치 및 이를 이용한 무선 충전 방법
EP4220895A1 (en) 2021-01-29 2023-08-02 Samsung Electronics Co., Ltd. Electronic apparatus for transmitting wireless power and wireless charging method using same
KR20220112611A (ko) * 2021-02-04 2022-08-11 삼성전자주식회사 무선 충전 시 전력을 조절하기 위한 전자 장치 및 그 동작 방법
CN113131560A (zh) * 2021-03-01 2021-07-16 联想(北京)有限公司 一种电能传输方法、设备及系统
US20220377947A1 (en) * 2021-05-16 2022-11-24 Aira, Inc. Active cooling in a multi-device wireless charger
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
KR20230111979A (ko) * 2022-01-19 2023-07-26 삼성전자주식회사 무선 전력 송신 장치, 무선 전력 수신 장치, 및 이의 동작 방법
CN116521842A (zh) * 2023-04-27 2023-08-01 南北联合信息科技有限公司 一种具有口语描述的民事案件咨询系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201328A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 充電装置及び充電システム
JP2010028935A (ja) * 2008-07-16 2010-02-04 Seiko Epson Corp 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
JP2010527226A (ja) * 2007-05-08 2010-08-05 モジョ モビリティー インコーポレイテッド ポータブルデバイスの誘導充電システムおよび方法
JP2012518381A (ja) * 2009-02-13 2012-08-09 クアルコム,インコーポレイテッド 充電可能および充電デバイスのためのワイヤレス電力
US20140009109A1 (en) * 2012-07-09 2014-01-09 Jihyun Lee Wireless power transfer method, apparatus and system
WO2014025168A1 (ko) * 2012-08-06 2014-02-13 (주)한림포스텍 무선 전력 전송 시스템에서 호환성 제공 장치 및 방법

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664679B2 (ja) 1984-05-31 1994-08-22 株式会社豊田中央研究所 テレメ−タ装置
US5000178A (en) 1986-05-23 1991-03-19 Lti Biomedical, Inc. Shielded electromagnetic transducer
DE3851664T2 (de) 1987-07-10 1995-02-16 Seiko Epson Corp Ladevorrichtung für elektronisches Gerät.
JPH01157896A (ja) 1987-09-28 1989-06-21 Mitsubishi Electric Corp 非接触型icカード及び非接触型カードリーダライタ
NL8802959A (nl) 1988-12-01 1990-07-02 Philips Nv Rf spoelensysteem met meerdere oppervlaktespoelen.
JP2846090B2 (ja) 1990-09-12 1999-01-13 ユニチカ株式会社 非接触型トランス
JPH0629128A (ja) 1992-07-08 1994-02-04 Fujitsu Ltd コネクタ
JPH06105471A (ja) 1992-08-06 1994-04-15 Toyota Autom Loom Works Ltd 電磁給電装置
JP3247186B2 (ja) 1993-03-29 2002-01-15 江藤電気株式会社 可動体側電動駆動手段への給電装置
US5496036A (en) 1995-06-12 1996-03-05 Chester; Keith D. Football card boardgame
FR2765736B1 (fr) 1996-12-03 2000-04-28 Jacques Patrick Andres Systeme pour la fourniture d'energie electrique, notamment en exterieur et dans les lieux publics, borne et socle correspondants
US5803744A (en) 1997-06-17 1998-09-08 Yen; Jung-Chuan Computer typing learning device
US5959433A (en) 1997-08-22 1999-09-28 Centurion Intl., Inc. Universal inductive battery charger system
US6151231A (en) 1998-12-31 2000-11-21 Motorola, Inc. Circuit and method for reactive energy recirculation control in a series-resonant converter
US6320772B1 (en) 1999-05-26 2001-11-20 Matsushita Electric Industrial Co., Ltd. Converter circuit having control means with capability to short-circuit converter output
JP4127935B2 (ja) 1999-07-29 2008-07-30 大日本印刷株式会社 信号及び電源伝送装置並びにロータリージョイント
US6803744B1 (en) 1999-11-01 2004-10-12 Anthony Sabo Alignment independent and self aligning inductive power transfer system
JP2001196249A (ja) 2000-01-17 2001-07-19 Tamura Seisakusho Co Ltd 非接触電力給電による検出装置
JP4681742B2 (ja) 2001-02-14 2011-05-11 Fdk株式会社 非接触カプラ
WO2003105308A1 (en) 2002-01-11 2003-12-18 City University Of Hong Kong Planar inductive battery charger
GB0210886D0 (en) 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
US8917057B2 (en) 2002-06-10 2014-12-23 City University Of Hong Kong Battery charging system
GB0320960D0 (en) 2003-09-08 2003-10-08 Splashpower Ltd Improvements relating to improving flux patterns of inductive charging pads
US7233137B2 (en) * 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
US7164591B2 (en) 2003-10-01 2007-01-16 International Rectifier Corporation Bridge-less boost (BLB) power factor correction topology controlled with one cycle control
JP4096873B2 (ja) 2003-12-05 2008-06-04 株式会社ダイフク 無接触給電設備の誘導受電回路
JP4969770B2 (ja) 2004-04-09 2012-07-04 株式会社デンソー スティック型点火コイル及びその1次コイルアセンブリの組付け方法
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
JP2006029128A (ja) 2004-07-13 2006-02-02 Hino Motors Ltd 車両
JP4852829B2 (ja) 2004-07-28 2012-01-11 セイコーエプソン株式会社 非接触電力伝送装置
JP2006105471A (ja) 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd 加熱調理器
JP4608282B2 (ja) 2004-10-28 2011-01-12 大日本印刷株式会社 非接触給電方法及び装置
JP4503469B2 (ja) 2005-03-04 2010-07-14 東光電気株式会社 モールド形計器用変圧器の製造方法及びモールド形計器用変圧器
US20070131505A1 (en) 2005-07-16 2007-06-14 Kim Bryan H J Magnetic Induction Charging System for Vehicles
DE102005034642B3 (de) 2005-07-25 2006-08-03 Siemens Ag Mikrofluidiksystem
US20080224656A1 (en) 2005-09-12 2008-09-18 Koninklijke Philips Electronics, N.V. Device For Recharging Batteries
NZ546955A (en) 2006-05-02 2008-09-26 Auckland Uniservices Ltd Pick-up apparatus for inductive power transfer systems
US7948208B2 (en) 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
WO2008051611A2 (en) 2006-10-25 2008-05-02 Farkas Laszio High power wireless resonant energy transfer system transfers energy across an airgap
KR102230175B1 (ko) 2007-05-10 2021-03-22 오클랜드 유니서비시즈 리미티드 멀티 전력을 공급받는 전기 자동차
CA2687060C (en) 2007-05-10 2019-01-22 Auckland Uniservices Limited Multi power sourced electric vehicle
WO2009004587A1 (en) 2007-07-02 2009-01-08 Alan Simon Levy Card player protection
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
JP2009088479A (ja) 2007-09-14 2009-04-23 Denso Corp 点火コイル
US7973635B2 (en) 2007-09-28 2011-07-05 Access Business Group International Llc Printed circuit board coil
WO2009045847A2 (en) 2007-09-28 2009-04-09 Access Business Group International Llc Multiphase inductive power supply system
US7915858B2 (en) 2007-10-30 2011-03-29 City University Of Hong Kong Localized charging, load identification and bi-directional communication methods for a planar inductive battery charging system
JP5224442B2 (ja) 2007-12-28 2013-07-03 Necトーキン株式会社 非接触電力伝送装置
JP5425539B2 (ja) 2009-01-27 2014-02-26 パナソニック株式会社 非接触電力伝送システム
WO2010090538A1 (en) 2009-02-05 2010-08-12 Auckland Uniservices Limited Inductive power transfer apparatus
JP6230776B2 (ja) 2009-02-05 2017-11-15 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 誘導電力伝達装置
KR100944113B1 (ko) 2009-02-27 2010-02-24 한국과학기술원 전기자동차용 전원공급 시스템 및 방법
AU2010234396A1 (en) * 2009-04-08 2011-10-27 Access Business Group International Llc Selectable coil array
JP2013501665A (ja) 2009-08-07 2013-01-17 オークランド ユニサービシズ リミテッド 道路から電気エネルギーを得る電気車両システム
US8937407B2 (en) 2009-09-24 2015-01-20 Norman R. Byrne Worksurface power transfer
JP5691458B2 (ja) 2010-03-31 2015-04-01 日産自動車株式会社 非接触給電装置及び非接触給電方法
CN106953368B (zh) 2010-05-19 2021-10-15 奥克兰联合服务有限公司 感应电能传输系统的一次轨道拓扑结构
CN102906832B (zh) * 2010-05-28 2017-06-09 皇家飞利浦电子股份有限公司 用于在模块化电力传输系统中使用的发射器模块
KR20130099071A (ko) * 2010-08-25 2013-09-05 액세스 비지니스 그룹 인터내셔날 엘엘씨 무선 전원 공급 시스템 및 다층 심 조립체
JP4835786B1 (ja) 2010-12-01 2011-12-14 パナソニック株式会社 非接触充電モジュール及び非接触充電機器
US20130181668A1 (en) 2010-12-01 2013-07-18 Panasonic Corporation Non-contact charging module and non-contact charging instrument
JP4835787B1 (ja) 2010-12-01 2011-12-14 パナソニック株式会社 非接触充電モジュール及び非接触充電機器
JP5843446B2 (ja) 2011-01-14 2016-01-13 三菱重工業株式会社 電動車両の充電装置
US9953761B2 (en) * 2011-05-03 2018-04-24 Phoenix Contact Gmbh & Co. Kg Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
US9391671B2 (en) * 2011-05-06 2016-07-12 Samsung Electronics Co., Ltd. Wireless power transmission and charging system and method thereof
US8823318B2 (en) * 2011-07-25 2014-09-02 ConvenientPower HK Ltd. System and method for operating a mobile device
US9118203B2 (en) * 2011-11-15 2015-08-25 Qualcomm Incorporated Systems and methods for induction charging with a closed magnetic loop
JP5838768B2 (ja) 2011-11-30 2016-01-06 ソニー株式会社 検知装置、受電装置、非接触電力伝送システム及び検知方法
JP5965148B2 (ja) * 2012-01-05 2016-08-03 日東電工株式会社 無線電力伝送を用いたモバイル端末用受電モジュール及び当該モバイル端末用受電モジュールを備えたモバイル端末用充電池
WO2013103943A1 (en) 2012-01-08 2013-07-11 Access Business Group International Llc Interference mitigation for multiple inductive systems
EP2815484B1 (en) 2012-02-16 2022-11-30 Auckland UniServices Limited Multiple coil flux pad
KR102072533B1 (ko) 2012-05-02 2020-02-03 애플 인크. 유도선 전력 전송 시스템에서 수신기를 탐지하고 식별하기 위한 방법들
US10141768B2 (en) * 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
KR102058130B1 (ko) 2012-07-09 2019-12-20 오클랜드 유니서비시즈 리미티드 자속 결합 디바이스 및 이를 위한 자기 구조물
JP2014023348A (ja) * 2012-07-20 2014-02-03 Nikon Corp 携帯端末の充電装置
KR101956570B1 (ko) * 2012-09-05 2019-03-11 엘지전자 주식회사 유도 방식과 공진 방식을 지원하는 무선 전력 수신장치 및 무선 전력 수신방법
US9276440B2 (en) 2012-09-07 2016-03-01 WIPQTUS Inc. Multi-mode multi-coupling multi-protocol ubiquitous wireless power transmitter
US9236757B2 (en) 2012-09-28 2016-01-12 Broadcom Corporation Wireless power transfer adaptation triggers
TW201415749A (zh) * 2012-10-12 2014-04-16 Espower Electronics Inc 多機型無線電源供應系統
CN104885324B (zh) 2012-11-05 2019-05-28 苹果公司 感应耦合电力传输系统
RU2658331C2 (ru) * 2012-11-29 2018-06-20 Конинклейке Филипс Н.В. Беспроводная индукционная передача энергии
US9939539B2 (en) 2014-04-04 2018-04-10 Texas Instruments Incorporated Wireless power receiver and/or foreign object detection by a wireless power transmitter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527226A (ja) * 2007-05-08 2010-08-05 モジョ モビリティー インコーポレイテッド ポータブルデバイスの誘導充電システムおよび方法
JP2009201328A (ja) * 2008-02-25 2009-09-03 Toshiba Corp 充電装置及び充電システム
JP2010028935A (ja) * 2008-07-16 2010-02-04 Seiko Epson Corp 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
JP2012518381A (ja) * 2009-02-13 2012-08-09 クアルコム,インコーポレイテッド 充電可能および充電デバイスのためのワイヤレス電力
US20140009109A1 (en) * 2012-07-09 2014-01-09 Jihyun Lee Wireless power transfer method, apparatus and system
WO2014025168A1 (ko) * 2012-08-06 2014-02-13 (주)한림포스텍 무선 전력 전송 시스템에서 호환성 제공 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261053A1 (ja) * 2020-06-26 2021-12-30 キヤノン株式会社 送電装置、送電装置の制御方法、およびプログラム

Also Published As

Publication number Publication date
JP6859254B2 (ja) 2021-04-21
CA2957903A1 (en) 2016-02-18
CN107148719A (zh) 2017-09-08
US11374431B2 (en) 2022-06-28
AU2015302418B2 (en) 2020-08-20
EP3180835A1 (en) 2017-06-21
KR20210099178A (ko) 2021-08-11
EP3550697A1 (en) 2019-10-09
AU2020273361B2 (en) 2022-06-23
AU2015302418A1 (en) 2017-03-16
KR102285941B1 (ko) 2021-08-06
KR102479354B1 (ko) 2022-12-19
CN112510856A (zh) 2021-03-16
WO2016024869A1 (en) 2016-02-18
EP3180835A4 (en) 2017-09-13
US20190245383A9 (en) 2019-08-08
AU2020273361A1 (en) 2020-12-17
CN107148719B (zh) 2020-11-13
US10601251B2 (en) 2020-03-24
KR20170041891A (ko) 2017-04-17
US20200169121A1 (en) 2020-05-28
JP2017525332A (ja) 2017-08-31
US20170237296A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP2020061939A (ja) 電力伝送システムおよび方法
US9397505B2 (en) Charging system that detects receiver standard and adjusts charging with switches and selection of capacitors
JP5689682B2 (ja) 誘導電力供給装置
CN107408833B (zh) 感应功率发射器
US20150137746A1 (en) Wireless power transfer device and wireless charging system having same
KR101750345B1 (ko) 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
EP2824798A1 (en) Non-contact power transmission device drive method and non-contact power transmission device
US20180131243A1 (en) Wireless power transmission apparatus and control method for the same
KR20190051035A (ko) 무선 전력 송신기의 코일 구조
KR20160012889A (ko) 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
JP2011517926A (ja) 複数のコイル1次を有する誘導充電システム
CN109769402B (zh) 无线电力发送设备
JP2013252001A (ja) 給電システム、給電装置、及び受電装置
US20150349545A1 (en) Apparatus for wirelessly transmitting power
WO2013015208A1 (ja) 電池内蔵機器と充電台及び電池内蔵機器
US10923955B2 (en) Wireless power system with resonant circuit tuning
US20190140483A1 (en) Power transmission device and non-contact power feeding system
US20200185967A1 (en) Power feed device
US20220239165A1 (en) Position detection system and electric power transmission system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210921