JP2019158478A - パーティクルカウンタ - Google Patents

パーティクルカウンタ Download PDF

Info

Publication number
JP2019158478A
JP2019158478A JP2018043571A JP2018043571A JP2019158478A JP 2019158478 A JP2019158478 A JP 2019158478A JP 2018043571 A JP2018043571 A JP 2018043571A JP 2018043571 A JP2018043571 A JP 2018043571A JP 2019158478 A JP2019158478 A JP 2019158478A
Authority
JP
Japan
Prior art keywords
light
optical path
path length
particles
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018043571A
Other languages
English (en)
Other versions
JP7071849B2 (ja
JP2019158478A5 (ja
Inventor
朋信 松田
Tomonobu Matsuda
朋信 松田
正樹 進村
Masaki Shinmura
正樹 進村
光秋 齊藤
Mitsuaki Saito
光秋 齊藤
雄生 山川
Takeo Yamakawa
雄生 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP2018043571A priority Critical patent/JP7071849B2/ja
Priority to US16/290,788 priority patent/US10705010B2/en
Priority to KR1020190024719A priority patent/KR102166583B1/ko
Priority to CN201910173746.5A priority patent/CN110243729B/zh
Priority to TW108107844A priority patent/TWI685650B/zh
Publication of JP2019158478A publication Critical patent/JP2019158478A/ja
Publication of JP2019158478A5 publication Critical patent/JP2019158478A5/ja
Application granted granted Critical
Publication of JP7071849B2 publication Critical patent/JP7071849B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1454Optical arrangements using phase shift or interference, e.g. for improving contrast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】試料流体の流速を比較的高くしても正確な粒子計数を行えるパーティクルカウンタを提供する。【解決手段】照射光学系12は、光源1からの光を分岐して得られる第1光および第2光のうちの第1光をフローセル2の流路内の流体に照射して検出領域を形成する。検出光学系13は、検出領域内の流体に含まれる粒子からの散乱光を、ビームエキスパンダ16で、第2光を参照光として、ビームスプリッタ17に入射させる。検出部4は、散乱光と参照光との干渉光を受光素子で受光して検出信号を生成し、計数部6は、その検出信号に基づいて粒子の計数を行う。そして、光路長可変部31は、第1光および散乱光の光路の第1光路長と第2光の光路の第2光路長との光路差の変化速度を低くして散乱光と参照光との位相差の変化の速さを遅くするように、測定期間において第1光路長および第2光路長の少なくとも一方を所定速度で変化させる。【選択図】図1

Description

本発明は、パーティクルカウンタに関するものである。
薬液、水などの液体や空気などの気体である流体中の粒子を測定する装置としてパーティクルカウンタがある。あるパーティクルカウンタでは、光源からの光を照射光と参照光とに分離し、照射光を、粒子を含む流体に照射し、照射光による粒子の散乱光と参照光とを干渉させ、その干渉光に基づき、粒径ごとに粒子を計数している(例えば特許文献1参照)。
特許第5859154号公報
上述のように、干渉光に基づき粒子を計数する場合、フォトダイオードなどの半導体受光素子で干渉光を受光し、光電変換によって干渉光に対応する検出信号が生成され、半導体受光素子の後段のアンプによって、検出信号が増幅される。そして、増幅後の検出信号に基づいて粒子が計数される。
他方、粒子からの散乱光と参照光とによる干渉光の強度変化(つまり、干渉光の明暗であり、検出信号の周波数)は、粒子の移動速度(つまり、試料流体の流速)に依存する。例えば、所定量の試料流体をより短時間で測定するためには、試料流体の流速を高くしなければならないので、検出信号の周波数も高くなる。
したがって、試料流体の流速が高く検出信号の周波数が高い場合、半導体受光素子および/またはアンプの周波数特性に起因して検出信号の振幅レベルが低下してしまい、正確に粒子が計数されない可能性がある。
本発明は、上記の問題に鑑みてなされたものであり、試料流体の流速を比較的高くしても正確な粒子計数を行えるパーティクルカウンタを得ることを目的とする。
本発明に係るパーティクルカウンタは、光を出射する光源と、2つの光を空間的に重畳する光重畳部と、光源からの光を分岐して得られる複数の光のうちの第1光を流路内を流れる流体に照射して検出領域を形成する照射光学系と、検出領域内の流体に含まれる粒子からの散乱光のうち、照射光学系の光軸とは異なる方向の散乱光を、光重畳部に入射させる検出光学系と、複数の光のうちの第2光を参照光として光重畳部に入射させる参照光学系と、光重畳部によって得られる、散乱光と参照光との干渉光を受光素子で受光し、干渉光に対応する検出信号を生成しアンプで増幅する検出部と、粒子を測定するための測定期間における検出信号に基づいて粒子の計数を行う計数部と、第1光および散乱光の光路である第1光路および第2光の光路である第2光路の少なくとも一方の光路差を所定速度で変化させる光路長可変部とを備える。そして、上述の所定速度は、流体の流速に基づき、光路長を変化させることにより散乱光と参照光との位相差の変化を遅くし、検出信号の周波数を低くするように設定される。
本発明によれば、試料流体の流速を比較的高くしても正確な粒子計数を行えるパーティクルカウンタが得られる。
図1は、本発明の実施の形態1に係るパーティクルカウンタの構成を示すブロック図である。 図2は、図1におけるフローセル2の一例を示す斜視図である。 図3は、図1におけるフローセル2、検出光学系13、およびビームスプリッタ17の配置を説明する図である。 図4は、図1におけるビームスプリッタ17における光の重畳について説明する図である。 図5は、図1における光路長可変部31の一例を示す図である。 図6は、図6におけるスライダ45の動作速度Vsを説明する図である。 図7は、図1における検出部4により得られる検出信号について説明するタイミングチャートである。 図8は、光路長変化による検出信号の周波数変化を説明する図である。 図9は、実施の形態2に係るパーティクルカウンタにおける光路長可変部31の一例を示す図である。 図10は、実施の形態3に係るパーティクルカウンタにおける光路長可変部31の一例を示す図である。
以下、図に基づいて本発明の実施の形態を説明する。
実施の形態1.
図1は、本発明の実施の形態1に係るパーティクルカウンタの構成を示すブロック図である。図1に示すパーティクルカウンタは、光源1、フローセル2、光学系3、検出部4、フィルタ5、および計数部6を備える。
光源1は、所定の波長の光(ここではレーザ光)を出射する光源である。この実施の形態では、光源1は、縦シングルモードで高コヒーレントな光を出射する。例えば、光源1には、波長532nmで出力500mW程度のレーザ光源が使用される。
フローセル2は、計数対象の粒子を含む流体の流路を形成している。なお、この実施の形態では、計数対象の粒子を含む流体は、液体である。
図2は、図1におけるフローセル2の一例を示す斜視図である。図2に示すように、フローセル2は、L形に屈曲しており、屈曲した流路2aを形成する透明な管状の部材である。なお、計数対象の粒子を含む流体が強酸性または強アルカリ性などの薬液である場合、フローセル2は、例えば、サファイヤ製とされる。
フローセル2において、光源1からの光を分岐して得られる光のうちの1つの光を、流路2a内を流れる流体に照射して、検出領域が形成される。
光学系3は、ビームスプリッタ11、照射光学系12、検出光学系13、アッテネータ14、ミラー15、ビームエキスパンダ16、ビームスプリッタ17、集光部18a,18b、および光路長可変部31を備える。
ビームスプリッタ11は、光源1からの光を2つの光(第1光および第2光)に分岐する。第1光は、測定光として、照射光学系12に入射する。また、第2光は、参照光として、アッテネータ14に入射する。例えば、ビームスプリッタ11は、所定の不均等な比率(例えば90:10)で光源1からの光を分岐しており、測定光の強度は参照光の強度より大きい。
照射光学系12は、フローセル2の流路2aにおける流体の進行方向(図2におけるX方向)とは異なる方向(ここでは、垂直な方向、つまり図2におけるZ方向)から測定光を、流路2a内を流れる流体に照射する。なお、照射光学系12は、例えば特開2003−270120号公報に記載されているようなレンズ群で、エネルギ密度が高まるようにレーザ光を整形している。
検出光学系13は、上述の測定光の照射による流路2a内の粒子からの散乱光をビームスプリッタ17の所定の入射面に入射させる。例えば、検出光学系13には、集光レンズが使用されたり、背景光を遮蔽するためのピンホール並びにその前後にそれぞれ配置された集光レンズを有する光学系が使用されたりする。
この実施の形態では、検出光学系13の光軸とは異なる方向から測定光が流路2aに入射しているため、側方散乱の散乱光が検出光学系13によってビームスプリッタ17へ入射する。
図3は、図1におけるフローセル2、検出光学系13、およびビームスプリッタ17の配置を説明する図である。具体的には、図3に示すように、検出光学系13は、流路2a内の粒子および流体が発する散乱光のうち、検出領域での流体(つまり、粒子)の進行方向へ沿って発する散乱光をビームスプリッタ17に入射させる。
この実施の形態では、図3に示すように、流体(つまり、粒子)の進行方向と、検出光学系13の光軸とは、同一の方向とされており、検出領域の中心から所定の立体角内の散乱光がビームスプリッタ17に入射する。
他方、ビームスプリッタ11により分岐した参照光は、アッテネータ14に入射する。
アッテネータ14は、光の強度を所定の割合で減衰させる。アッテネータ14には、例えばND(Neutral Density)フィルタが使用される。ミラー15は、アッテネータ14から出射する参照光を反射し、その参照光をビームエキスパンダ16に入射させる。例えば、ビームスプリッタ11およびアッテネータ14によって、参照光の強度は、光源1から出射される光の強度の1万分の1程度とされる。なお、ビームスプリッタ17に入射する参照光の強度は、計数対象の粒子の粒径、散乱光強度などに応じて設定され、その参照光の強度を実現するようにアッテネータ14の減衰率などが設定される。
ビームエキスパンダ16は、参照光のビーム径を所定の径へ拡大し、ビーム径を拡大された参照光を略平行光としてビームスプリッタ17の所定の入射面(散乱光の入射面とは別の入射面)に入射させる。
この実施の形態では、検出光学系13、ミラー15、およびビームエキスパンダ16は、ビームスプリッタ17において粒子の散乱光の波面形状と参照光の波面形状が略一致するようにする。この実施の形態では、検出光学系13およびビームエキスパンダ16は、散乱光および参照光をそれぞれ略平行光で出射させている。なお、散乱光および参照光の波面形状は曲面でもよい。
また、検出光学系13、ミラー15、およびビームエキスパンダ16は、ビームスプリッタ17において偏光角が一致するようにする。
このように、この実施の形態では、より干渉の度合いを高めるために、参照光の光路において、参照光の強度、偏光角、および波面形状を制御するアッテネータ14、ミラー15、ビームエキスパンダ16などが設置されている。
ビームスプリッタ17は、入射した散乱光と入射した参照光とを空間的に重畳し、強め合うまたは弱め合うように干渉させる。この実施の形態では、ビームスプリッタ17は、ビームスプリッタ11とは別に設けられている。ビームスプリッタ17では、検出領域での粒子の移動に伴う光路長の変化に応じて、散乱光と参照光との位相差が変化し、ビームスプリッタ17自体を透過または反射する光によって、後述するように、干渉光の強度が変化する。また、検出領域での流体(つまり、粒子)の進行方向における速度に応じた散乱光と参照光との位相差の変化の周期(つまり周波数)で干渉光の強度が変化する。なお、粒子による散乱光が入射していない期間においては、ビームスプリッタ17から、流体による散乱光の透過成分と参照光の反射成分とが干渉し、かつ流体による散乱光の反射成分と参照光の透過成分とが干渉して出射する。この場合、流体の分子は極小であり、かつ極めて多数であるため、それらの散乱光はランダムであり、それらの干渉光の強度変化は粒子によるものに比べて小さい。
集光部18aは、ビームスプリッタ17のある出射面から出射する光を集光し受光素子21aに入射させる。集光部18bは、ビームスプリッタ17の別の出射面から出射する光を集光し受光素子21bに入射させる。集光部18a,18bには、例えば集光レンズが使用される。
図4は、図1におけるビームスプリッタ17における光の重畳について説明する図である。図4に示すように、ビームスプリッタ17では、散乱光Sの反射成分S1の光軸と参照光Rの透過成分R2の光軸が一致し、散乱光Sの透過成分S2の光軸と参照光Rの反射成分R1の光軸が一致するように、散乱光Sと参照光Rが入射している。したがって、ビームスプリッタ17から、散乱光Sの反射成分S1と参照光Rの透過成分R2とによる第1干渉光と、散乱光Sの透過成分S2と参照光Rの反射成分R1とによる第2干渉光とが出射する。この第1干渉光と第2干渉光は、集光部18a,18bを介して検出部4の受光素子21a,21bにそれぞれ入射する。
なお、ビームスプリッタ17の光分岐面に対して散乱光Sおよび参照光Rはそれぞれ略45度で入射しており、透過成分S2,R2は散乱光Sおよび参照光Rに対してそれぞれ同相となり、反射成分S1,R1の位相は散乱光Sおよび参照光Rに対してそれぞれ90度遅れるため、第1干渉光の強度変化と第2干渉光の強度変化とは、後述するように、互いに逆相となる。
また、ビームスプリッタ17における透過成分と反射成分との比率は、50:50が好ましいが、60:40などの不均等な比率でもよい。ビームスプリッタ17における透過成分と反射成分との比率が不均等である場合、その比率に応じて、電気信号V1における参照光の透過成分と電気信号V2における参照光の反射成分とが同一になるように、アンプ22a,22bのゲインが設定される。
なお、ビームダンパ19は、フローセル2を通過した光を吸収する。これにより、フローセル2を通過した光の乱反射、漏洩などによる光学系3への影響を抑制することができる。
光路長可変部31は、後述の測定期間において、測定光および散乱光の光路(第1光路)の第1光路長および参照光の光路(第2光路)の第2光路長の少なくとも一方を後述の所定速度で変化させる。実施の形態1では、光路長可変部31は、測定期間において第1光路長を所定速度で変化させる。例えば、光路長可変部31による第1光路長を変化させない場合、光重畳部となるビームスプリッタ17において、粒子の散乱光の位相と参照光の位相との位相差は、粒子の移動に伴って発生し、粒子の移動速度と位相の変化速度(つまり、干渉光の強度の変化速度)は比例する。ここで、粒子がビームスプリッタ17に向かって進む場合、光路長可変部31によって粒子の移動速度より遅い速度で第1光路長を長くするように変化させると、粒子の散乱光の位相と参照光との位相の位相差の変化速度を遅くすることができる。または、光路長可変部31によって粒子の移動速度より遅い速度で第2光路長を短くするように変化させると、粒子の散乱光の位相と参照光の位相との位相差の変化の速さを遅くすることができる。
具体的には、図3に示すように、流体(つまり、粒子)の進行方向と同じ方向で散乱光を受光する場合には、光路長可変部31は、第1光路長を所定速度で増加させる。一方、流体(つまり、粒子)の進行方向と反対方向で散乱光を受光する場合には、光路長可変部31は、第1光路長を所定速度で減少させる。なお、第2光路長を所定速度で変化させる場合、前述とは逆に第2光路長を増加または減少させることで同様の効果が得られる。
図5は、図1における光路長可変部31の一例を示す図である。図5に示すように、光路長可変部31は、第1光路に配置される2つの固定反射面41,42と、2つの可動反射面43,44を配置したスライダ45とを備える。
この実施の形態1では、固定反射面41,42および可動反射面43,44は、平板状のミラー部材でそれぞれ形成される。固定反射面41,42および可動反射面43,44は、それらに対する測定光の入射角が45度になるように配置されている。そして、それぞれのミラー41,42,43,44の反射を利用して第1光路長を変化させる。具体的には、後述するように、スライダ45は、測定期間において、第1光路長が所定速度で変化するように2つの可動反射面43,44を移動させる。
図6は、図5におけるスライダ45の動作速度Vsを説明する図である。図6に示すように、具体的には、スライダ45は、基準位置から可動反射面43,44の移動を開始し(時刻To)、測定期間において所定速度+Vで可動反射面43,44を移動させ、測定期間が終了すると(時刻Te)、非測定期間において、可動反射面43,44を、所定速度+Vより高い速度で逆方向に移動させて基準位置に戻す。このように、スライダ45は、可動反射面43,44を往復運動させる。
また、検出部4は、ビームスプリッタ17からの干渉光を受光素子21a,21bでそれぞれ受光し、それらの干渉光の差分に対応する検出信号Voを生成する。この実施の形態では、図1に示すように、検出部4は、受光素子21a,21b、アンプ22a,22b、および差分演算部23を備える。
受光素子21a,21bは、フォトダイオード、フォトトランジスタなどの半導体受光素子であって、入射する光に対応する電気信号をそれぞれ出力する。アンプ22a,22bは、受光素子21a,21bから出力される電気信号を所定のゲインで増幅する。ここでは、アンプ22a,22bは、トランスインピーダンスアンプであって、受光素子21a,21bの出力電流に応じた出力電圧を生成する。
差分演算部23は、受光素子21aにより得られる第1干渉光に対応する電気信号V1と受光素子22aにより得られる第2干渉光に対応する電気信号V2との差分を演算し検出信号Voとして出力する。
なお、粒子による散乱光成分を含まない状態(流体による散乱光成分と参照光成分)において、電気信号V1の電圧と電気信号V2の電圧とが同一になるように、アンプ22a,22bのゲインは調整されている。その代わりに、アンプ22a,22bのうちの1つだけを設け、上述の両者が同一になるように、そのアンプのゲインを調整するようにしてもよい。また、受光素子21aの電気信号の電圧と受光素子22aの電気信号の電圧とが同一であれば、アンプ22a,22bを設けなくてもよい。
図7は、図1における検出部4により得られる検出信号について説明するタイミングチャートである。
ある粒子が検出領域を時刻T1から時刻T2までの期間で通過する際に、その期間において粒子による散乱光が生じる。そして、検出領域内での粒子の進行方向への移動に応じて、粒子からビームスプリッタ17の光分岐面までの光路長が変化し、粒子による散乱光と参照光との位相差が変化して、干渉光の強度(振幅)は、強め合ったり弱め合ったり変化する。
したがって、図7に示すように、電気信号V1は、粒子がない状態の電圧V1oを基準として、粒子が検出領域を通過する期間においては、干渉の度合いに応じて基準に対し正負に変動する。同様に、電気信号V2は、粒子がない状態の電圧V2oを基準として、粒子が検出領域を通過する期間においては、干渉の度合いに応じて基準に対し正負に変動する。ただし、その期間における電気信号V1,V2の交流成分は、互いに逆相となる。
アンプ22a,22bから出力される電気信号V1,V2の基準電圧V1o,V2oは、互いに同一となっているため、差分演算部23により得られる検出信号Voは、図7に示すように、粒子が検出領域を通過する期間においては、電気信号V1,V2のそれぞれにおける干渉に起因する交流成分より振幅の大きい(約2倍)交流成分を有しており、その期間以外においては、略ゼロの電圧となる。
なお、本発明の実施の形態では、粒子が検出領域を通過する際に光路長の変化が大きくなるように、検出領域での流体の進行方向へ沿って発する散乱光を検出することとした。ただし、散乱光を検出できるのであれば、散乱光の検出方向を限定するものではない。
なお、流体の媒質である液体からの散乱光(背景光)は、検出領域の全域で発生し、さらに、異なる位置からの背景光も存在するが差分演算により打ち消されるため、検出信号Voにおいて、粒子からの散乱光の干渉に起因する交流成分に比べ、背景光の干渉に起因する交流成分は小さくなる。
この実施の形態では、計数対象の粒子の粒径は、光源1から出射される光の波長より小さいため、レイリー散乱による散乱光の強度は、粒径の6乗に比例する。これに対し、この散乱光と参照光との干渉光の強度は、光強度Iと電場強度Eの関係式(I=0.5・c・ε・E)に基づいており、粒径と干渉光の強度Iiとの関係式(Ii∝Er・ED0(D1/D0))から、粒径の比の3乗に比例する。よって、散乱光を直接検出するより、干渉光を検出したほうが、粒径を小さくした場合の、その強度の減少が少ない。ここで、D0,D1は粒径であり、Erは参照光の電場強度であり、ED0は粒子D0からの散乱光の電場強度である。
また、散乱光と参照光との干渉光の強度の最大値と最低値との差(散乱光と参照光との位相差が0であるときと180度であるときの干渉光強度の差=2・c・ε・Es・Er・単位面積)は、参照光の電場強度Erと散乱光の電場強度Esとの積に比例する。したがって、散乱光と参照光の強度を高くすることで、十分強い干渉光が得られ、ひいては、十分大きな振幅の検出信号が得られる。参照光の強度は、検出部4、フィルタ5、および計数部7のダイナミックレンジに応じて検出信号を良好に処理可能な値とされる。
例えば、粒径20nmの粒子の散乱光強度Isが7.0×10−6μWである場合、単位面積当たりの散乱光強度Is/aに変換し、光強度と電場強度の関係式(Is/a=0.5・c・ε・Es)から、散乱光の電場強度Esは約5.8×10−3V/mとなる。他方、参照光強度Irを1.2μWとすると、参照光の電場強度Erは約2.4V/mとなる。そして、散乱光と参照光が波面全域で干渉したとすると、上述の干渉光強度の差は、約1.2×10−2μWとなり、散乱光強度の約1600倍となっており、粒径70nmの粒子の散乱光強度と同等レベルに増幅される。ここで、cは光速(m/s)であり、εは空気の誘電率(F/m)である。
フィルタ5は、検出部4により生成された検出信号Voに対して、上述の干渉光の強度変化に応じた周波数成分を通過させるフィルタ処理を行う。この実施の形態では、フィルタ5は、干渉光の強度変化に応じた周波数成分以外の周波数成分を減衰させるバンドパスフィルタである。このバンドパスフィルタには、流路2a内の流体速度(つまり、粒子の移動速度)に対応する検出信号Voの周波数成分(つまり、干渉光の強度変化に応じた周波数成分)を通過させ、その流体の進行速度に対応する周波数成分以外の周波数成分を減衰させるように通過帯域が設定される。これにより、検出信号Voにおけるノイズ成分が減衰され、検出信号VoのS/N比がより高くなる。なお、通過帯域周波数については、粒子の移動速度、測定光の波長(つまり、光源1の波長)などから予め特定される。なお、ノイズの周波数が干渉光の強度変化に応じた周波数より高い場合にはローパスフィルタを使用してもよいし、ノイズの周波数が干渉光の強度変化に応じた周波数より低い場合にはハイパスフィルタを使用してもよい。
計数部6は、測定期間における検出信号Voに基づいて粒子の計数を行う。この実施の形態では、計数部6は、フィルタ5によるフィルタ処理後の検出信号Vo1に基づいて、粒子の計数を行う。また、計数部6は、スライダ45による可動反射面43,44の往復動作を検出して測定期間を特定する。
また、例えば、計数部6は、検出信号Voにおいて上述の期間連続する交流成分(つまり、干渉光の強度変化に応じた周波数成分)を検出すると、その振幅と粒径ごとに定めた所定の閾値とを比較し、粒径ごとに区別して、1つの粒子をカウントする。
この実施の形態1では、図5に示すように、光路長可変部31は、スライダ45の動作とともに、2つの可動反射面43,44が移動し、2つの光路区間51,52の長さが変化する。ここで、光路長可変部31内でスライダ45の動作とともに長さが変化する光路区間の数を光路区間倍数Bとすると、図5に示す光路長可変部31では、B=2である。つまり、スライダ45による可動反射面43,44の移動速度の2倍の速度で第1光路長が変化する。なお、光路区間倍数Bは、通常2以上(例えば偶数)とされるが、1でもよい。
スライダ45は、測定期間において基準位置から可動反射面43,44を移動させ、非測定期間(測定期間と次の測定期間との間の期間)において可動反射面43,44をその基準位置に戻すことで、可動反射面43,44を往復運動させる。
ここで、上述の「所定速度」は、フローセル2内の流体の流速、受光素子21a,21bの周波数特性、およびアンプ22a,22bの周波数特性に基づいて設定される。
具体的には、受光素子21a,21bの応答周波数の上限値およびアンプ22a,22bの周波数特性(つまり増幅率の周波数特性)における所定増幅率が得られる周波数の上限値のうちの低いほうの周波数より、干渉光の検出信号の周波数が低くなるように、流速に応じて「所定速度」が設定される。
例えば、フローセル2内の中心流速をVmとし、流体の屈折率をriとし、真空中の光源1の波長をλとし、スライダ45の動作速度(つまり、可動反射面43,44の移動速度)をVsとすると、干渉光による検出信号の周波数σは、次式のように表される。
σ=|Vm×ri−Vs×B|/λ
例えば、アンプ22a,22bの周波数上限値は120kHz程度であれば、検出信号の周波数σが120kHz以下になるように、流速Vmおよび流体屈折率riに基づいて、スライダ45の動作速度Vsおよび光路区間倍数Bが設定される。
次に、実施の形態1に係るパーティクルカウンタの動作について説明する。
光源1は、レーザ光を出射し、ビームスプリッタ11は、そのレーザ光を測定光と参照光に分岐する。参照光は、アッテネータ14によって減衰された後、ミラー15およびビームエキスパンダ16を経て、略平行光としてビームスプリッタ17に入射する。
他方、測定光は、光路長可変部31を介して、照射光学系12によってフローセル2内の検出領域に入射する。粒子が検出領域を通過すると、検出領域を通過している期間において粒子からの散乱光が発生する。検出光学系13は、フローセル2の流路2a内の流体の進行方向に沿って出射してくる散乱光を略平行光としてビームスプリッタ17に入射させる。
このように、粒子が検出領域を通過している期間においては、ビームスプリッタ17に参照光と粒子からの散乱光とが入射し、両者の干渉光がビームスプリッタ17から出射する。
粒子が検出領域を通過している期間にビームスプリッタ17から出射する干渉光は、受光素子21a,21bによってそれぞれ受光され、干渉光の強度に対応する電気信号が検出信号Voとして検出部4から出力される。特に、実施の形態1では、互いに逆相となる上述の第1干渉光と第2干渉光との差分に基づく検出信号Voが生成されるため、電気信号V1,V2に対して約2倍の振幅の交流成分の検出信号Voが得られる。
そして、測定期間において、光路長可変部31のスライダ45が一定速度で動作し、測定光の光路長が大きくなるように変化させる。これにより、スライダ45が停止している場合に比べ、粒子の散乱光の位相と参照光の位相との位相差の変化の速度を遅くすることができる。なお、光路長可変部31によって参照光の第2光路長を短くするように変化させると、前述と同様に、位相差の変化の速度を遅くすることができる。図8は、光路長変化による検出信号の周波数変化を説明する図である。位相差の変化の速度を遅くなると、干渉光の強度変化が遅くなり、図8に示すように、検出信号Voの周波数が低くなる。
そして、各測定期間において、計数部6は、フィルタ5のフィルタ処理後の検出信号Vo1に基づいて粒子の計数を行う。
以上のように、上記実施の形態1によれば、照射光学系12は、光源1からの光を分岐して得られる複数の光のうちの1つの光を、流体の流れる方向とは異なる方向から、流路2a内の流体に照射し検出領域を形成する。検出光学系13は、検出領域内の流体に含まれる粒子からの散乱光のうち、照射光学系12の光軸とは異なる方向の散乱光を、ビームスプリッタ17に入射させる。他方、ビームエキスパンダ16は、その複数の光のうちの別の光を参照光としてビームスプリッタ17に入射させる。検出部4は、ビームスプリッタ17によって得られる、散乱光と参照光との干渉光を受光素子で受光し、その干渉光に対応する検出信号を生成する。計数部6は、測定期間において、その検出信号(ここでは、フィルタ5を通過した検出信号)に基づいて粒子の計数を行う。そして、光路長可変部31は、第1光および散乱光の光路の第1光路長と第2光の光路の第2光路長との光路差の変化速度を低くして、粒子の散乱光の位相と参照光の位相との位相差の変化の速さを遅くするように、測定期間において第1光路長および第2光路長の少なくとも一方を所定速度で変化させる。
これにより、光路長可変部31によって干渉光の強度変化の速度が低くなるため、検出信号の周波数が低くなり、試料流体の流速を比較的高くしても、受光素子やアンプの周波数特性に起因する検出信号の振幅レベルを低下させることなく、正確な粒子計数を行える。
実施の形態2.
図9は、実施の形態2に係るパーティクルカウンタにおける光路長可変部31の一例を示す図である。図9に示すように、実施の形態2では、光路長可変部31は、第1光路に配置される4つの固定反射面61〜64と、4つの可動反射面65〜68を配置したスライダ69とを備える。スライダ69は、測定期間において、第1光路長が所定速度で変化するように4つの可動反射面65〜68を移動させる。
したがって、図9に示す光路長可変部31では、スライダ69の動作により長さの変化する光路区間71〜74が4つである(つまり、B=4)。したがって、図5に示す光路長可変部31(B=2)に比べ、(a)第1光路長の同一の変化速度を得るために、スライダ69の動作速度+Vは、スライダ45の動作速度+Vの半分で済み、さらに、(b)同一長の測定期間を得るために、スライダ69の移動範囲の幅は、スライダ45の移動範囲の幅の半分で済む。また、(c)試料流体の速度をより高くすることもできる。
この実施の形態2では、固定反射面61〜64および可動反射面65〜68は、平板状のミラー部材でそれぞれ形成される。
スライダ69は、測定期間において基準位置から可動反射面65〜68を移動させ、非測定期間において可動反射面65〜68をその基準位置に戻すことで、可動反射面65〜68を往復運動させる。
なお、実施の形態2に係るパーティクルカウンタのその他の構成および動作については実施の形態1と同様であるので、その説明を省略する。
実施の形態3.
図10は、実施の形態3に係るパーティクルカウンタにおける光路長可変部31の一例を示す図である。図10に示すように、実施の形態3では、光路長可変部31は、4つの直角プリズム81〜84とスライダ85とを備える。直角プリズム81〜83は、第1光路に配置される6つの固定反射面81a,81b,82a,82b,83a,83bを有し、直角プリズム84は、第1光路に配置される2つの可動反射面84a,84bを有する。スライダ85は、測定期間において、第1光路長が所定速度で変化するように、可動反射面84a,84b(つまり、直角プリズム84)を移動させる。
つまり、実施の形態3では、直角プリズム81と直角プリズム84との間で測定光を全反射させて複数回往復させることで(図10では、3往復)、光路区間倍数Bが大きくなっている(図10では、B=6)。
固定反射面81a,81b,82a,82b,83a,83bおよび可動反射面84a,84bは、それらに対する測定光の入射角が45度になるように配置されている。
なお、実施の形態3に係るパーティクルカウンタのその他の構成および動作については実施の形態1と同様であるので、その説明を省略する。
実施の形態4.
実施の形態1〜3では、光路長可変部31が第1光路に設けられているが、実施の形態4では、光路長可変部31が第2光路(つまり、参照光側)に設けられるか、第1光路および第2光路の両方に設けられる。
光路長可変部31が第2光路に設けられる場合には、上述の固定反射面および可動反射面が第2光路に配置され、実施の形態1〜3のように光路長可変部31が第1光路に設けられる場合とは逆に、測定期間において第2光路長を減少させる。
また、光路長可変部31が第1光路および第2光路の両方に設けられる場合には、第1光路に設けられる光路長可変部31は測定期間において第1光路長を増加させ、第2光路に設けられる光路長可変部31は測定期間において第2光路長を減少させる。
なお、実施の形態4に係るパーティクルカウンタのその他の構成および動作については実施の形態1〜3のいずれかと同様であるので、その説明を省略する。
なお、上述の実施の形態に対する様々な変更および修正については、当業者には明らかである。そのような変更および修正は、その主題の趣旨および範囲から離れることなく、かつ、意図された利点を弱めることなく行われてもよい。つまり、そのような変更および修正が請求の範囲に含まれることを意図している。
例えば、上記実施の形態1〜4では、参照光の光路にビームエキスパンダ16が設けられているが、その代わりに、あるいは追加的に、ビームスプリッタ11の前段に、ビームエキスパンダを設けてもよい。また、上記実施の形態1〜4では、図1に示すように、1つのミラー15を使用しているが、3つのミラーを使用して三次元的に光路の方向を調整するようにしてもよい。また、上記実施の形態1〜4では、粒子からの散乱光と参照光とを重畳するためにビームスプリッタ17を使用しているが、その代わりに、偏光プリズムを使用してもよい。
また、上記実施の形態1〜4において、光源1は、縦シングルモードで高コヒーレントなレーザ光を出射する光源であることが好ましい。また、検出領域のいずれの位置でも、粒子からの散乱光と参照光との干渉が起こるようなエネルギ分布の光源を使用するのが好ましい。さらに、光源1は、レーザ光を出射する光源に限定されず、レーザ光でなくLED光など、参照光側と粒子散乱光側との光路長差(つまり、光路長可変部31により光路長が変化した際の光路長差の最大値)が光源1の光のコヒーレント長以内になっていればよい。
また、上記実施の形態1〜4では、フィルタ5および計数部7は、アナログ回路としてもよいし、デジタル回路としてもよい。フィルタ5および計数部7をデジタル回路とする場合には、フィルタ5の前段にて検出信号Voに対してアナログ−デジタル変換が行われる。
また、上記実施の形態1〜4では、図1に示すように、光の分岐と光の重畳とが異なるビームスプリッタ11,17で行われる、いわゆるマッハツェンダ型の干渉光学系が採用されているが、その代わりに、マイケルソン型やその他の干渉光学系を採用してもよい。
また、上記実施の形態1〜4では、図3に示すように、検出領域での流体の進行方向から検出しているが、その代わりに、検出領域での流体の進行方向とは反対方向から検出してもよいし、流体の進行方向を逆向きにして検出してもよい。その場合には、光路長可変部は、上記実施の形態1〜4における光路長可変部31の動作とは逆に、第1光路に設けられる光路長可変部31は測定期間において第1光路長を減少させ、第2光路に設けられる光路長可変部31は測定期間において第2光路長を増加させる。
また、上記実施の形態1〜4に係るパーティクルカウンタは、液中パーティクルカウンタであるが、上記実施の形態1〜4に係るパーティクルカウンタを、気中パーティクルカウンタに適用してもよい。
本発明は、パーティクルカウンタに適用可能である。
1 光源
4 検出部
5 フィルタ
6 計数部
11 ビームスプリッタ(光分岐部の一例)
12 照射光学系
13 検出光学系
16 ビームエキスパンダ(参照光学系の一例)
17 ビームスプリッタ(光重畳部の一例)
21a,21b 受光素子
31 光路長可変部
41,42,61〜64,81a,81b,82a,82b,83a,83b 固定反射面
43,44,65〜68,84a,84b 可動反射面
45,69,85 スライダ

Claims (4)

  1. 光を出射する光源と、
    2つの光を空間的に重畳する光重畳部と、
    前記光源からの光を分岐して得られる複数の光のうちの第1光を流路内を流れる流体に照射して検出領域を形成する照射光学系と、
    前記検出領域内の前記流体に含まれる粒子からの散乱光のうち、前記照射光学系の光軸とは異なる方向の散乱光を、前記光重畳部に入射させる検出光学系と、
    前記複数の光のうちの第2光を参照光として前記光重畳部に入射させる参照光学系と、
    前記光重畳部によって得られる、前記散乱光と前記参照光との干渉光を受光素子で受光し、前記干渉光に対応する検出信号を生成しアンプで増幅する検出部と、
    前記粒子を測定するための測定期間における前記検出信号に基づいて前記粒子の計数を行う計数部と、
    前記第1光および前記散乱光の光路である第1光路および前記第2光の光路である第2光路の少なくとも一方の光路長を所定速度で変化させる光路長可変部とを備え、
    前記所定速度は、前記流体の流速に基づき、前記光路長を変化させることにより前記散乱光と前記参照光との位相差の変化を遅くし、前記検出信号の周波数を低くするように設定されること、
    を特徴とするパーティクルカウンタ。
  2. 前記光路長可変部は、前記第1光路または前記第2光路に配置される固定反射面と、前記測定期間において、前記光路長が前記所定速度で変化するように可動反射面を配置して、前記可動反射面を移動させるスライダとを備えることを特徴とする請求項1記載のパーティクルカウンタ。
  3. 前記スライダは、前記測定期間において基準位置から前記可動反射面を移動させ、非測定期間において前記可動反射面を前記基準位置に戻すことで、前記可動反射面を往復運動させ、
    前記計数部は、前記測定期間において前記粒子の計数を行い、前記非測定期間において前記粒子の計数を行わないこと、
    を特徴とする請求項2記載のパーティクルカウンタ。
  4. 前記所定速度は、さらに、前記受光素子の周波数特性、および前記アンプの周波数特性に基づいて設定されることを特徴とする請求項1から請求項3のうちのいずれか1項記載のパーティクルカウンタ。
JP2018043571A 2018-03-09 2018-03-09 パーティクルカウンタ Active JP7071849B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018043571A JP7071849B2 (ja) 2018-03-09 2018-03-09 パーティクルカウンタ
US16/290,788 US10705010B2 (en) 2018-03-09 2019-03-01 Particle counter
KR1020190024719A KR102166583B1 (ko) 2018-03-09 2019-03-04 파티클 카운터
CN201910173746.5A CN110243729B (zh) 2018-03-09 2019-03-07 粒子计数器
TW108107844A TWI685650B (zh) 2018-03-09 2019-03-08 粒子計數器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043571A JP7071849B2 (ja) 2018-03-09 2018-03-09 パーティクルカウンタ

Publications (3)

Publication Number Publication Date
JP2019158478A true JP2019158478A (ja) 2019-09-19
JP2019158478A5 JP2019158478A5 (ja) 2021-04-30
JP7071849B2 JP7071849B2 (ja) 2022-05-19

Family

ID=67843816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043571A Active JP7071849B2 (ja) 2018-03-09 2018-03-09 パーティクルカウンタ

Country Status (5)

Country Link
US (1) US10705010B2 (ja)
JP (1) JP7071849B2 (ja)
KR (1) KR102166583B1 (ja)
CN (1) CN110243729B (ja)
TW (1) TWI685650B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326256B2 (ja) 2017-10-26 2023-08-15 パーティクル・メージャーリング・システムズ・インコーポレーテッド 粒子計測システム及び方法
US10928297B2 (en) 2019-01-09 2021-02-23 University Of Washington Method for determining detection angle of optical particle sizer
US11237095B2 (en) 2019-04-25 2022-02-01 Particle Measuring Systems, Inc. Particle detection systems and methods for on-axis particle detection and/or differential detection
CN114729868A (zh) 2019-11-22 2022-07-08 粒子监测系统有限公司 先进的用于干涉测量颗粒检测和具有小大小尺寸的颗粒的检测的系统和方法
US20230236107A1 (en) * 2022-01-21 2023-07-27 Particle Measuring Systems, Inc. Enhanced dual-pass and multi-pass particle detection

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228185A (ja) * 1986-01-06 1987-10-07 ランク・テイラ−・ホブソン・リミテツド 測定装置
JPH10232204A (ja) * 1996-12-16 1998-09-02 Seitai Hikari Joho Kenkyusho:Kk 屈折率測定装置
JP2005121600A (ja) * 2003-10-20 2005-05-12 Otsuka Denshi Co Ltd 位相変調型干渉法を用いた動的光散乱測定装置
JP2007333409A (ja) * 2006-06-12 2007-12-27 Horiba Ltd 浮遊粒子測定装置
JP2014153063A (ja) * 2013-02-05 2014-08-25 Pulstec Industrial Co Ltd 動的光散乱測定装置及び動的光散乱測定装置の光路長調整方法
JP2016164530A (ja) * 2015-03-06 2016-09-08 リオン株式会社 パーティクルカウンタ
JP2017102068A (ja) * 2015-12-03 2017-06-08 リオン株式会社 パーティクルカウンタ
WO2017109928A1 (ja) * 2015-12-25 2017-06-29 ギガフォトン株式会社 レーザ照射装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO163384C (no) * 1987-12-18 1990-05-16 Norsk Hydro As Fremgangsmaate ved automatisk partikkelanalyse og anordning for dens utfoerelse.
JPH0240535A (ja) * 1988-07-30 1990-02-09 Horiba Ltd 部分測定型微粒子カウンター
US5383024A (en) * 1992-08-12 1995-01-17 Martin Marietta Energy Systems, Inc. Optical wet steam monitor
NL1000711C2 (nl) * 1995-06-30 1996-12-31 Stichting Tech Wetenschapp Beeldvorming en karakterisatie van het focale veld van een lens door ruimtelijke autocorrelatie.
US6201608B1 (en) * 1998-03-13 2001-03-13 Optical Biopsy Technologies, Inc. Method and apparatus for measuring optical reflectivity and imaging through a scattering medium
JP2000018918A (ja) 1998-07-03 2000-01-21 Tokyo Seimitsu Co Ltd レーザ干渉式可動体の移動量検出装置
TW445369B (en) * 2000-04-18 2001-07-11 Cheng Jou Heterodyne interferometer phase measurement system
US6611339B1 (en) * 2000-06-09 2003-08-26 Massachusetts Institute Of Technology Phase dispersive tomography
US6587206B1 (en) * 2000-10-18 2003-07-01 Lucent Technologies Inc. Method for characterizing particles in a liquid medium using interferometry
JP2002333304A (ja) 2001-05-08 2002-11-22 Canon Inc 光ヘテロダイン干渉計装置
JP2003121338A (ja) 2001-10-12 2003-04-23 Nikkiso Co Ltd 粒度分布測定方法および装置
JP2003270120A (ja) 2002-03-18 2003-09-25 Rion Co Ltd 粒子検出器
US9297737B2 (en) * 2004-03-06 2016-03-29 Michael Trainer Methods and apparatus for determining characteristics of particles
JP4459961B2 (ja) * 2004-08-20 2010-04-28 三菱電機株式会社 レーザ位相差検出装置およびレーザ位相制御装置
WO2006030482A1 (ja) * 2004-09-13 2006-03-23 Mitsubishi Denki Kabushiki Kaisha レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置
DE102004059526B4 (de) * 2004-12-09 2012-03-08 Sirona Dental Systems Gmbh Vermessungseinrichtung und Verfahren nach dem Grundprinzip der konfokalen Mikroskopie
JP3995684B2 (ja) * 2004-12-21 2007-10-24 リオン株式会社 粒子計数器
JP2007114160A (ja) * 2005-10-24 2007-05-10 Sumitomo Electric Ind Ltd 光コヒーレンストモグラフィー装置
US8009297B2 (en) * 2005-12-07 2011-08-30 Kabushiki Kaisha Topcon Optical image measuring apparatus
JP2007271349A (ja) * 2006-03-30 2007-10-18 Fujifilm Corp 光学特性検査装置及び光学特性検査方法
DE102007039434A1 (de) * 2007-08-21 2009-02-26 Prüftechnik Dieter Busch AG Verfahren und Vorrichtung zum Erfassen von Partikeln in einer strömenden Flüssigkeit
JP5306041B2 (ja) * 2008-05-08 2013-10-02 キヤノン株式会社 撮像装置及びその方法
EP2454554B1 (en) * 2009-06-19 2015-08-12 Zygo Corporation Equal-path interferometer
JP5325679B2 (ja) * 2009-07-03 2013-10-23 富士フイルム株式会社 低コヒーレンス光源を用いた動的光散乱測定装置及び光散乱強度測定方法
JP5366728B2 (ja) * 2009-09-14 2013-12-11 北斗電子工業株式会社 液体中の粒子のサイズの検出方法および装置
WO2013077137A1 (ja) * 2011-11-24 2013-05-30 国立大学法人東京農工大学 測定装置及び測定方法
WO2013084444A1 (ja) * 2011-12-05 2013-06-13 リオン株式会社 生物粒子計数器、生物粒子計数方法、透析液監視システム及び浄水監視システム
JP5362895B1 (ja) * 2012-11-06 2013-12-11 リオン株式会社 光散乱式粒子計数器
CN103575638B (zh) * 2013-07-26 2016-06-15 中国计量学院 一种光散射式粒子计数器及其粒径分布算法
ES2900803T3 (es) * 2013-12-04 2022-03-18 Iris Int Inc Citómetro de flujo
WO2015099116A1 (ja) * 2013-12-27 2015-07-02 株式会社堀場製作所 粒子計数方法および粒子計数装置
WO2016028996A1 (en) * 2014-08-20 2016-02-25 Research Triangle Institute Devices, systems and methods for detecting particles
JP5719473B1 (ja) * 2014-09-25 2015-05-20 リオン株式会社 薬液用パーティクルカウンタ
CN107209001A (zh) * 2015-01-30 2017-09-26 浜松光子学株式会社 干涉观察装置
JP2017003434A (ja) * 2015-06-10 2017-01-05 キヤノン株式会社 屈折率の計測方法、計測装置、光学素子の製造方法
WO2017057652A1 (en) * 2015-09-30 2017-04-06 Canon Kabushiki Kaisha Optical coherence tomographic apparatus, and optical coherence tomographic system
JP6654059B2 (ja) * 2016-02-18 2020-02-26 アズビル株式会社 粒子検出システム及び粒子の検出方法
US20180259441A1 (en) * 2017-03-07 2018-09-13 Axsun Technologies, Inc. OCT Sensing of Particulates in Oil
EP3376204A1 (en) * 2017-03-15 2018-09-19 Koninklijke Philips N.V. Laser sensor module for particle detection with offset beam
CN107289866A (zh) * 2017-06-01 2017-10-24 上海理工大学 多角度测量短碳纳米管直径与长度的方法
JP6413006B1 (ja) * 2017-11-28 2018-10-24 リオン株式会社 パーティクルカウンタ
CN112345421A (zh) * 2020-11-13 2021-02-09 浙江大学 一种用于含杂液滴物理参数测量的消光彩虹测量方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228185A (ja) * 1986-01-06 1987-10-07 ランク・テイラ−・ホブソン・リミテツド 測定装置
JPH10232204A (ja) * 1996-12-16 1998-09-02 Seitai Hikari Joho Kenkyusho:Kk 屈折率測定装置
JP2005121600A (ja) * 2003-10-20 2005-05-12 Otsuka Denshi Co Ltd 位相変調型干渉法を用いた動的光散乱測定装置
JP2007333409A (ja) * 2006-06-12 2007-12-27 Horiba Ltd 浮遊粒子測定装置
JP2014153063A (ja) * 2013-02-05 2014-08-25 Pulstec Industrial Co Ltd 動的光散乱測定装置及び動的光散乱測定装置の光路長調整方法
JP2016164530A (ja) * 2015-03-06 2016-09-08 リオン株式会社 パーティクルカウンタ
JP2017102068A (ja) * 2015-12-03 2017-06-08 リオン株式会社 パーティクルカウンタ
WO2017109928A1 (ja) * 2015-12-25 2017-06-29 ギガフォトン株式会社 レーザ照射装置

Also Published As

Publication number Publication date
CN110243729A (zh) 2019-09-17
JP7071849B2 (ja) 2022-05-19
US20190277745A1 (en) 2019-09-12
US10705010B2 (en) 2020-07-07
KR20190106724A (ko) 2019-09-18
TWI685650B (zh) 2020-02-21
CN110243729B (zh) 2022-07-15
TW201939011A (zh) 2019-10-01
KR102166583B1 (ko) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5859154B1 (ja) パーティクルカウンタ
JP7071849B2 (ja) パーティクルカウンタ
JP6030740B1 (ja) パーティクルカウンタ
JP6413006B1 (ja) パーティクルカウンタ
KR102601473B1 (ko) 입자 측정을 위한 시스템 및 방법
CN107345904B (zh) 基于光学吸收和干涉法检测气体浓度的方法及装置
JP2017525144A5 (ja)
CN108594257B (zh) 基于多普勒效应的测速传感器及其标定方法与测量方法
JP2017530347A (ja) 粒子特性評価方法及び装置
KR20190128068A (ko) 오프셋 빔을 통한 입자 검출을 위한 레이저 센서 모듈
CN109342758B (zh) 测速传感器
JP2009014740A (ja) 微粒子検出装置及び微粒子検出方法
JP2006038765A (ja) 吸収計測装置
JPS63233305A (ja) 変位センサ
JP2009204450A (ja) 濁度計
RU2039931C1 (ru) Способ определения диаметра стеклянной трубы и устройство для его осуществления
Sobolev et al. On the influence of the scattering particle concentration on the probe beam coherence, signal quality, and measuring accuracy of interferometric systems
CN106248625A (zh) 一种氢气传感器
Li et al. System study and error analysis of new photoelectricity film test

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7071849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150