JP2017003434A - 屈折率の計測方法、計測装置、光学素子の製造方法 - Google Patents

屈折率の計測方法、計測装置、光学素子の製造方法 Download PDF

Info

Publication number
JP2017003434A
JP2017003434A JP2015117797A JP2015117797A JP2017003434A JP 2017003434 A JP2017003434 A JP 2017003434A JP 2015117797 A JP2015117797 A JP 2015117797A JP 2015117797 A JP2015117797 A JP 2015117797A JP 2017003434 A JP2017003434 A JP 2017003434A
Authority
JP
Japan
Prior art keywords
light
refractive index
test
test object
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015117797A
Other languages
English (en)
Inventor
杉本 智洋
Tomohiro Sugimoto
智洋 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015117797A priority Critical patent/JP2017003434A/ja
Priority to US15/174,434 priority patent/US20160363531A1/en
Priority to CN201610402338.9A priority patent/CN106248623A/zh
Priority to KR1020160070714A priority patent/KR20160145496A/ko
Publication of JP2017003434A publication Critical patent/JP2017003434A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0211Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods for measuring coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • G01N2021/9583Lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】被検物の位相屈折率を高精度に計測することができる計測方法を提供する。
【解決手段】光源10からの光を参照光と被検光に分割し、参照光と被検物80を透過した被検光を干渉させて参照光と被検光の位相差を計測する。基準被検物の位相屈折率の波長に関する傾きに基づいて、位相差が有する2πの整数倍に対応する未知数を算出し、被検物80の位相屈折率を算出する。
【選択図】図1

Description

本発明は、屈折率の計測方法に関する。
モールドレンズの位相屈折率は成形条件によって変化する。成形後のレンズの位相屈折率は、一般的に、プリズム形状に加工した後、最小偏角法やVブロック法で計測される。この加工作業は、手間とコストがかかる。さらに、成形後のレンズの位相屈折率は、加工時の応力解放によって変化する。したがって、成形後のレンズの位相屈折率を非破壊で計測する技術が必要である。
特許文献1は、位相屈折率および形状が未知の被検物と位相屈折率および形状が既知のガラス試料を2種類の位相屈折率マッチング液に浸し、コヒーレント光を用いて干渉縞を測定する。そして、ガラス試料の干渉縞からオイルの位相屈折率を計測し、オイルの位相屈折率を用いて被検物の位相屈折率を算出する。非特許文献1は、参照光と被検光の干渉信号を波長の関数として計測し、干渉信号をフィッティングすることで位相屈折率を算出する。
特開平02−008726号公報
H.Delbarre,C.Przygodzki,M.Tassou,D.Boucher,"High−precision index measurement in anisotropic crystals using white−light spectral interferometry."Applied Physics B,2000,vol.70,p.45−51.
特許文献1に開示された方法では、位相屈折率が高いマッチングオイルは透過率が低いため、高い位相屈折率を有する被検物の透過波面計測は小さな信号しか得られず、計測精度が低くなる。非特許文献1に開示された方法では、2πの整数倍の位相が未知数であるため、フィッティング精度が低くなる。
本発明は、被検物の位相屈折率を高精度に計測することができる計測方法、計測装置、光学素子の製造方法を提供することを例示的な目的とする。
本発明の計測方法は、光源からの光を参照光と被検光に分割し、前記被検光を被検物に入射させ、前記参照光と前記被検物を透過した被検光とを干渉させて、前記参照光と前記被検光の位相差を複数の波長で計測するステップと、位相屈折率が既知の基準被検物の位相屈折率の波長に関する傾きに基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出し、前記被検物の位相屈折率を算出するステップを含むことを特徴とする。
本発明の光学素子の製造方法は、光学素子をモールド成形するステップと、上記の計測方法を用いて前記光学素子の屈折率を計測することによって、成形された光学素子を評価するステップを含むことを特徴としている。
本発明の計測装置は、光源と、前記光源からの光を参照光と被検光に分割し、前記被検光を被検物に入射させ、前記参照光と前記被検物を透過した被検光とを干渉させる干渉光学系と、前記干渉光学系により形成された前記参照光と前記被検光の干渉光を検出する検出器と、前記干渉光を検出した検出器から得られる干渉信号に基づいて、前記参照光と前記被検光の位相差を算出する算出手段を有する計測装置であって、前記算出手段は、位相屈折率が既知の基準被検物の位相屈折率の波長に関する傾きに基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出し、前記被検物の位相屈折率を算出することを特徴としている。
本発明によれば、被検物の位相屈折率を高精度に計測することができる計測方法、計測装置、光学素子の製造方法を提供することができる。
計測装置のブロック図である(実施例1)。 計測装置によって被検物の位相屈折率を算出する手順を示すフローチャートである(実施例1)。 検出器で得られる干渉信号を示す図である(実施例1)。 計測装置のブロック図である(実施例2)。 光学素子の製造工程の説明図である。
以下、添付図面を参照して、本発明の実施例について説明する。
図1は、本発明の実施例1の計測装置のブロック図である。本実施例の計測装置は、マッハ・ツェンダー干渉計で構成されている。計測装置は、光源10、干渉光学系、媒質70と被検物80を収容可能な容器60、検出器90、コンピュータ100を有し、被検物80の位相屈折率を計測する。
なお、屈折率には、光の等位相面の移動速度である位相速度v(λ)に関する位相屈折率n(λ)と、光のエネルギーの移動速度(波束の移動速度)v(λ)に関する群屈折率n(λ)があり、後述する数式8によって関連付けられる。
本実施例における被検物80は、負のパワーをもつレンズであるが、正のパワーを持つレンズであってもよいし、平板でもよい。実施例1の光源10は、複数の波長の光を射出する光源(例えば、スーパーコンティニューム光源)である。干渉光学系は、光源10からの光を、被検物を透過しない光(参照光)と被検物を透過する光(被検光)に分割し、参照光と被検光を重ね合わせて干渉させ、その干渉光を検出器90に導光する。干渉光学系は、ビームスプリッタ20、21、ミラー30、31、40、41、50、51を有する。
ビームスプリッタ20、21は、例えば、キューブビームスプリッタで構成される。ビームスプリッタ20は、界面(接合面)20aにおいて、光源10からの光の一部を透過すると同時に残りを反射する。本実施例では、界面20aを透過した光が参照光、界面20aで反射した光が被検光である。ビームスプリッタ21は、界面21aにおいて、参照光の一部を反射し、被検光の一部を透過する。この結果、参照光と被検光が干渉して干渉光を形成し、干渉光は検出器90に入射する。
容器60は、媒質70と被検物80を収容している。容器内における参照光の光路長と被検光の光路長は、被検物80が容器内に配置されていない状態で一致するのが好ましい。したがって、容器60の側面(例えば、ガラス)は厚み及び屈折率が均一で、かつ、容器60の両側面が平行であるのが望ましい。
媒質70の位相屈折率は、不図示の媒質屈折率算出手段によって算出される。媒質屈折率算出手段とは、例えば、媒質の温度を計測する温度計と、計測した温度を媒質の位相屈折率に換算するコンピュータから構成される。より具体的には、特定の温度における波長ごとの屈折率と、各波長における屈折率の温度係数を記憶したメモリをコンピュータが備える構成とすれば良い。これにより、コンピュータは、温度計測手段により計測された媒質70の温度に基づいて、計測された温度における媒質70の屈折率を波長ごとに算出することができる。なお、媒質70の温度変化が小さい場合は、特定の温度における波長ごとの屈折率のデータを示すルックアップデーブルを用いてもよい。もしくは、媒質屈折率算出手段は、位相屈折率及び形状が既知のガラスプリズムを媒質に浸してその透過波面を計測する波面計測センサと、透過波面と形状から媒質の位相屈折率を算出するコンピュータから構成されてもよい。
ミラー40、41は、例えば、プリズム型ミラーである。ミラー50、51は、例えば、コーナーキューブリフレクターである。ミラー51は、図1の矢印の方向の駆動機構を有する。ミラー51の駆動機構は、例えば、駆動レンジの大きいステージと駆動分解能の高いピエゾステージから構成されている。ミラー51の駆動量は、不図示の測長器(例えば、レーザ変位計やエンコーダ)によって計測される。ミラー51の駆動は、コンピュータ100によって制御されている。参照光と被検光の光路長差は、ミラー51の駆動機構によって調整することができる。
検出器90は、ビームスプリッタ21からの干渉光を分光し、干渉光強度を波長(周波数)の関数として検出する分光器などから構成されている。
コンピュータ100は、検出器90の検出結果と媒質の位相屈折率から被検物の位相屈折率を算出する算出手段として機能すると共に、ミラー51の駆動量を制御する制御手段としても機能し、CPUなどから構成されている。
干渉光学系は、被検物80が容器内に配置されていない状態で、参照光と被検光の光路長が等しくなるように調整されている。調整方法は次のとおりである。
図1の計測装置において、被検物80が被検光路上に配置されていない状態で参照光と被検光の干渉信号が取得される。このとき、参照光と被検光の位相差φ(λ)および干渉強度Iφ0(λ)は数式1で表される。
Figure 2017003434

(数式1)
ただし、λは空気中の波長、Δは参照光と被検光の光路長の差、Iは参照光の強度と被検光の強度の和、γは可視度(ビジビリティ)である。数式1より、Δがゼロではないとき、干渉強度Iφ0(λ)は振動関数となる。したがって、参照光と被検光の光路長を等しくするためには、干渉信号が振動関数とならない位置にミラー51を駆動すればよい。ただし、現在の位置がΔ=0からどれだけシフトしているかが分かる場合(現在のΔの値が特定できる場合)は、参照光と被検光の光路長が等しくなる位置(Δ=0)に調整する必要はない。
図2は、被検物80の位相屈折率を算出する算出手順を示すフローチャートであり、「S」は、Step(ステップ)の略である。
まず、被検物80が被検光路上に配置される(S10)。次に、参照光と被検光の位相差が複数の波長において計測される(S20)。計測される位相差φ(λ)は、2πの整数倍に対応する未知数2πm(mは整数)を含む。位相差φ(λ)及び干渉強度I(λ)は数式2で表される。
Figure 2017003434

(数式2)
ただし、nsample(λ)は被検物の位相屈折率、nmedium(λ)は媒質の位相屈折率、Lは被検物の幾何学厚みである。本実施例では、Lは被検物の中心部分の厚みである。
図3は、図1の検出器90で計測されるスペクトル領域の干渉信号である。干渉信号は、位相差φ(λ)の波長依存性を反映した振動関数となる。図3のλは、位相差φ(λ)が極値をとる波長を示している。干渉信号の振動周期は、波長λの付近でゆるやかになるため、干渉信号が計測しやすい。逆に、λから離れた波長では干渉信号の周期が短くなるため、干渉信号が密になりすぎて分解できない可能性がある。もし、λが計測範囲から外れている場合は、ミラー51を駆動させてΔの値を調整すればよい。
位相差φ(λ)は、例えば、次のような位相シフト法を用いて計測することができる。ミラー51を微小量ずつ駆動させながら干渉信号が取得される。ミラー51の位相シフト量(=駆動量×2π/λ)がδ(k=0,1,・・・,M−1)のときの干渉強度I(λ)は数式3で表される。
Figure 2017003434

(数式3)
係数a、a、aを最小二乗法のアルゴリズムによって算出すると、位相差φ(λ)は、位相シフト量δ、干渉強度I(λ)を用いて数式4で算出される。位相差φ(λ)の算出精度を高めるためには、位相シフト量δをできるだけ小さくし、駆動ステップ数Mをできるだけ大きくするのがよい。算出された位相差φ(λ)は2πで畳み込まれている。したがって、2πの位相飛びをつなぎ合わせる作業(アンラッピング)が必要である。
Figure 2017003434

(数式4)
位相差φ(λ)から被検物の位相屈折率が、整数mの関数として算出される(S30)。整数mの関数である被検物の位相屈折率nsample(λ,m)は、数式5で表される。位相差の未知数2πmは、被検物の位相屈折率に対して波長の一次関数(m/L)λとして影響することが数式5からわかる。つまり、位相屈折率の波長に関する傾きが整数mの値によって変化する。
Figure 2017003434

(数式5)
次に、基準被検物の位相屈折率の波長に関する傾きに基づいて、整数mが算出(位相差が有する2πの整数倍に対応する未知数が算出)される(S40)。ここで、基準被検物とは、被検物の位相屈折率と近い位相屈折率を有し、位相屈折率が既知のものを指す。例えば、被検物の母材や、被検物と同材質で製作された光学素子は、基準被検物になりうる。
モールド成形によって、位相屈折率は大きく変化する。その変化の大部分は、波長に依存しない定数成分(直流成分)の変化である。波長に関する傾き成分(一次成分)の変化はほとんどない。そのため、基準被検物の位相屈折率の波長に関する傾きに基づいて、整数mが算出される。具体的には、被検物の位相屈折率の波長に関する傾きと基準被検物の位相屈折率の波長に関する傾きの差分が最も小さくなるように、整数mが算出される。もしくは、基準被検物の位相屈折率の波長に関する傾きの公差(例えば、アッベ数公差)の範囲内に入るように、整数mが算出される。
最後に、ステップS40で算出した整数mを数式5に代入して、被検物の位相屈折率が算出される(S50)。
本実施例では、被検物の幾何学厚みLは既知と仮定している。そのため、あらかじめ被検物の幾何学厚みLを計測することが望ましい。被検物の幾何学厚みLは、例えば、探針を利用した接触計測や2枚の参照面を利用した低コヒーレンス干渉法を用いて計測できる。もしくは、本実施例の装置を用いて、次のように厚みLが計測されてもよい。
厚みLの計測方法は、数式2で表される位相差φ(λ)を計測した後、被検物および媒質の温度をΔTだけ変化させて再度位相差φΔT(λ)を計測する。位相差φΔT(λ)は、数式6のように表される。
Figure 2017003434

(数式6)
ただし、dnsample(λ)/dTは被検物の屈折率の温度係数、αは被検物の線膨張係数、nΔT medium(λ)は温度がΔT変化した後の媒質の位相屈折率、Δmは温度ΔTの変化に伴う整数の変化量である。dnsample(λ)/dTとαは既知の量である。nΔT medium(λ)は、媒質屈折率計測手段によって計測される。
位相差の波長に関する変化率が、位相差から算出される。この算出作業は、2πの整数倍の未知数を除去する作業である。数式2の位相差φ(λ)の波長に関する変化率(波長に関する微分)dφ(λ)/dλと、数式6の位相差φΔT(λ)の波長に関する変化率dφΔT(λ)/dλは、数式7のように表される。
Figure 2017003434

(数式7)
添え字gは群屈折率を示す。位相屈折率n(λ)と群屈折率n(λ)の関係は数式8で表される。
Figure 2017003434

(数式8)
数式7の2式からn sample(λ)を消去すると、数式9のように厚みLが算出される。
Figure 2017003434

(数式9)
既知の量と仮定しているdnsample(λ)/dTとαは、例えば、硝材製造元が提供する母材の値である。厳密に言うと、被検物80のdnsample(λ)/dTとαは母材の値と異なるが、母材の値と等しいと仮定しても問題はない。この理由は、硝材の屈折率が多少変化しても屈折率の温度係数と線膨張係数はほとんど変化せず、かつ数式9を用いて算出される厚みLは屈折率の温度係数と線膨張係数の変化に対して鈍感だからである。したがって、被検物と屈折率の近い硝材の屈折率の温度係数と線膨張係数が1組既知であればよい。尚、線膨張係数が厚みLへ与える影響は特に小さいため、被検物80の膨張は未考慮(つまり、線膨張係数がゼロ)でもよい。
温度変化を利用した厚み計測の代わりに、2種類の媒質を用いた厚み計測も可能である。2種類の媒質を用いた厚みLの計測方法は、数式2で表される位相差φ(λ)を計測した後、異なる屈折率を有する媒質中に被検物を配置して再度位相差φ(λ)を計測する。位相差φ(λ)の波長に関する変化率dφ(λ)/dλと、位相差φ(λ)の波長に関する変化率dφ(λ)/dλが算出される。dφ(λ)/dλとdφ(λ)/dλからn sample(λ)が消去されて、厚みLが数式10で算出される。ただし、ng2 medium(λ)は、2番目の媒質の群屈折率である。
Figure 2017003434

(数式10)
本実施例では、被検物80をオイル等の媒質70(空気の位相屈折率より高い位相屈折率を有する媒質)に浸している。本発明の計測方法は、媒質70が空気でも成り立つ。しかし、被検物80を媒質70に浸すことには利点がある。その利点とは、被検物と媒質の屈折率差が小さくなることによって、レンズのパワーの影響を低減できることである。
本実施例では、参照光と被検光の両方が、媒質70を透過するように構成されている。容器60の側面の位相屈折率と厚みと、容器60の側面間の距離とが、既知であれば、被検光のみが媒質70を透過する構成でもよい。
媒質70の温度の分布は、媒質70の屈折率の分布と等価である。媒質70の屈折率分布は、算出する被検物の屈折率に誤差を与える。媒質70の屈折率分布による誤差は、屈折率分布の量がわかれば補正できる。そのため、媒質70の屈折率分布を計測するための波面計測装置が備わっているのが望ましい。
本実施例では、ミラー51による機械的な位相シフトと検出器90による分光の組み合わせで位相差を計測した。その代わりに、ヘテロダイン干渉法を用いてもよい。ヘテロダイン干渉法を用いる場合、その干渉計は、例えば、光源直後に分光器を配置して疑似単色光を射出し、音響光学素子で参照光と被検光の間に周波数差を発生させ、干渉信号をフォトダイオード等の検出器で計測する。そして、分光器で波長を走査しながら各波長で位相差を算出する。
本実施例では、複数の波長の光を射出する光源10として、スーパーコンティニューム光源を用いた。その代わりに、スーパールミネッセントダイオード(SLD)やハロゲンランプ、短パルスレーザー等が使われてもよい。波長を走査する場合には、複数の波長の光を射出する光源と分光器の組み合わせの代わりに、波長掃引光源が使用されてもよい。連続スペクトルではなく離散スペクトルを有する光源(例えば、マルチライン発振ガスレーザ)が使用されてもよい。光源は、単一の光源に限らず、複数の光源を組み合わせでもよい。
本実施例では、マッハ・ツェンダー干渉計の構成をとっているが、代わりにマイケルソン干渉計の構成でもよい。また、本実施例では、屈折率や位相差を波長の関数として算出しているが、代わりに周波数の関数として算出してもよい。
図4は、実施例2の計測装置のブロック図である。波面が2次元センサを用いて計測される。媒質の位相屈折率を計測するために、位相屈折率及び形状が既知のガラスプリズムが被検光束上に配置されている。実施例1と同様の構成については、同一の符号を付して説明する。
光源10から射出された光は、分光器95で分光され、疑似単色光となってピンホール110に入射する。ピンホール110へ入射させる疑似単色光の波長は、コンピュータ100で制御される。ピンホール110を透過して発散光となった光は、コリメータレンズ120で平行光にコリメートされる。コリメート光は、ビームスプリッタ25で透過光(参照光)と反射光(被検光)に分割される。
ビームスプリッタ25で反射された被検光は、ミラー30で反射して、媒質70と被検物80とガラスプリズム130を収容している容器60に入射する。被検光の一部の光は媒質70及び被検物80を透過する。被検光の一部の光は媒質70及びガラスプリズム130を透過する。被検光の残りの光は媒質70のみを透過する。容器60を透過したそれぞれの光は、ビームスプリッタ26において参照光と干渉して干渉光を形成し、結像レンズ121を介して検出器92(例えば、CCDやCMOSセンサ)で検出される。検出器92で検出された干渉信号は、コンピュータ100に送られる。
検出器92は、被検物80及びガラスプリズム130の位置と共役位置に配置されている。ガラスプリズム130を透過した光と参照光の干渉縞が密になりすぎないように、ガラスプリズムは、媒質70の位相屈折率とほぼ等しい位相屈折率を有するものが好ましい。本実施例は、被検物80の透過光の内、被検物80の透過光すべてを計測する必要はなく、被検物80の中心部分の透過光のみを計測すればよい。
本実施例の被検物80の位相屈折率算出手段は、次のとおりである。
まず、被検物80が被検光束中に配置される。分光器95による波長走査と、ミラー31の駆動機構を用いた位相シフト法により、位相差φ(λ)と媒質70の位相屈折率が計測される。位相差φ(λ)から被検物の位相屈折率nsample(λ,m)が、整数mの関数として算出される。基準被検物の位相屈折率の波長に関する傾きに基づいて、2πの整数倍に対応する未知数2πmが算出される。算出した整数mを位相屈折率nsample(λ,m)に代入して、被検物の位相屈折率が算出される。
図5は、モールド成型を利用した光学素子の製造工程を示している。光学素子は、光学素子の設計工程、金型の設計工程および該金型を用いた光学素子のモールド成型工程を経て製造される。成型された光学素子は、その形状精度が評価され、精度不足である場合は金型を補正して再度モールド成型を行う。形状精度が良好であれば、該光学素子の光学性能が評価される。この光学性能の評価工程に、本発明の計測装置を用いることができる。評価された光学性能が要求する仕様を満足しなかった場合には、光学素子の光学面の補正量が算出され、その結果を用いて再度光学素子が設計され、仕様を満足する場合には、光学素子が量産される。
本実施例の光学素子の製造方法により、光学素子の位相屈折率が高精度に計測されるので、モールド成形を用いて光学素子を精度よく量産することができる。
10 光源
80 被検物
90 検出器
100 コンピュータ(算出手段)

Claims (11)

  1. 光源からの光を参照光と被検光に分割し、前記被検光を被検物に入射させ、前記参照光と前記被検物を透過した被検光とを干渉させて、前記参照光と前記被検光の位相差を複数の波長で計測するステップと、
    位相屈折率が既知の基準被検物の位相屈折率の波長に関する傾きに基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出し、前記被検物の位相屈折率を算出するステップを含むことを特徴とする計測方法。
  2. 前記被検物の位相屈折率の波長に関する傾きと前記基準被検物の位相屈折率の波長に関する傾きの差分に基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出することを特徴とする請求項1に記載の計測方法。
  3. 前記基準被検物の位相屈折率の波長に関する傾きの公差に基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出することを特徴とする請求項1または2に記載の計測方法。
  4. 前記被検物の温度を第1の温度として、前記参照光と前記被検光の位相差を複数の波長で計測するステップと、
    前記被検物の温度を前記第1の温度とは異なる第2の温度として、前記参照光と前記被検光の位相差を複数の波長で計測するステップと、
    前記第1、第2の温度においてそれぞれ計測された前記参照光と前記被検光の位相差に基づいて、前記被検物の厚みを算出するステップを含むことを特徴とする請求項1乃至3のいずれか1項に記載の計測方法。
  5. 第1の媒質中に前記被検物を配置して、前記参照光と前記被検光の位相差を複数の波長で計測するステップと、
    前記第1の媒質とは屈折率が異なる第2の媒質中に前記被検物を配置して、前記参照光と前記被検光の位相差を複数の波長で計測するステップと、
    前記第1、第2の媒質中に前記被検物を配置してそれぞれ計測された前記参照光と前記被検光の位相差に基づいて、前記被検物の厚みを算出するステップを含むことを特徴とする請求項1乃至3のいずれか1項に記載の計測方法。
  6. 光学素子をモールド成形するステップと、
    請求項1から5のいずれか1項に記載の計測方法を用いて前記光学素子の屈折率を計測することによって、成形された光学素子を評価するステップと、
    を含むことを特徴とする光学素子の製造方法。
  7. 光源と、
    前記光源からの光を参照光と被検光に分割し、前記被検光を被検物に入射させ、前記参照光と前記被検物を透過した被検光とを干渉させる干渉光学系と、
    前記干渉光学系により形成された前記参照光と前記被検光の干渉光を検出する検出器と、
    前記干渉光を検出した検出器から得られる干渉信号に基づいて、前記参照光と前記被検光の位相差を算出する算出手段を有する計測装置であって、
    前記算出手段は、位相屈折率が既知の基準被検物の位相屈折率の波長に関する傾きに基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出し、前記被検物の位相屈折率を算出することを特徴とする計測装置。
  8. 前記算出手段は、前記被検物の位相屈折率の波長に関する傾きと前記基準被検物の位相屈折率の波長に関する傾きの差分に基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出することを特徴とする請求項7に記載の計測装置。
  9. 前記算出手段は、前記基準被検物の位相屈折率の波長に関する傾きの公差に基づいて、前記位相差が有する2πの整数倍に対応する未知数を算出することを特徴とする請求項7または8に記載の計測装置。
  10. 前記算出手段は、前記被検物の温度を第1の温度として複数の波長で計測された前記参照光と前記被検光の位相差と、前記被検物の温度を前記第1の温度とは異なる第2の温度として複数の波長で計測された前記参照光と前記被検光の位相差とに基づいて、前記被検物の厚みを算出することを特徴とする請求項7乃至9のいずれか1項に記載の計測装置。
  11. 前記算出手段は、第1の媒質中に前記被検物が配置された状態で複数の波長で計測された前記参照光と前記被検光の位相差と、前記第1の媒質とは屈折率が異なる第2の媒質中に前記被検物が配置された状態で複数の波長で計測された前記参照光と前記被検光の位相差とに基づいて、前記被検物の厚みを算出することを特徴とする請求項7乃至9のいずれか1項に記載の計測装置。
JP2015117797A 2015-06-10 2015-06-10 屈折率の計測方法、計測装置、光学素子の製造方法 Pending JP2017003434A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015117797A JP2017003434A (ja) 2015-06-10 2015-06-10 屈折率の計測方法、計測装置、光学素子の製造方法
US15/174,434 US20160363531A1 (en) 2015-06-10 2016-06-06 Refractive index measurement method, measurement apparatus, and optical element manufacturing method
CN201610402338.9A CN106248623A (zh) 2015-06-10 2016-06-08 折射率测量方法、测量装置和光学元件制造方法
KR1020160070714A KR20160145496A (ko) 2015-06-10 2016-06-08 굴절률의 계측방법, 계측장치와, 광학소자의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117797A JP2017003434A (ja) 2015-06-10 2015-06-10 屈折率の計測方法、計測装置、光学素子の製造方法

Publications (1)

Publication Number Publication Date
JP2017003434A true JP2017003434A (ja) 2017-01-05

Family

ID=57516508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117797A Pending JP2017003434A (ja) 2015-06-10 2015-06-10 屈折率の計測方法、計測装置、光学素子の製造方法

Country Status (4)

Country Link
US (1) US20160363531A1 (ja)
JP (1) JP2017003434A (ja)
KR (1) KR20160145496A (ja)
CN (1) CN106248623A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243729A (zh) * 2018-03-09 2019-09-17 理音株式会社 粒子计数器
CN110715931A (zh) * 2019-10-29 2020-01-21 上海御微半导体技术有限公司 一种透明样品缺陷自动检测方法和检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402118B (zh) * 2017-07-25 2019-07-19 上海太洋科技有限公司 一种稀土掺杂光纤折射率的测量系统
CN107356412B (zh) * 2017-07-25 2019-09-24 泰州阿法光电科技有限公司 一种基于稀土掺杂光纤折射率的测量系统的测量方法
CN107907310A (zh) * 2017-11-02 2018-04-13 太原理工大学 一种便携式双路光纤折射率测量装置
EP3729039B1 (en) * 2017-12-21 2023-01-04 Alcon Inc. Method and apparatus for the determination of the index of refraction of lens material
FR3104258B1 (fr) * 2019-12-06 2021-12-31 Saint Gobain Méthode de mesure de la qualité optique d’une zone donnée d’un vitrage, dispositif de mesure associé
CN114397089B (zh) * 2021-11-03 2023-11-14 深圳技术大学 基于波面干涉信息的透镜测试方法
CN115931778B (zh) * 2022-11-28 2023-09-01 湖北华鑫光电有限公司 镜片的折射率检测设备及其方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887447A (ja) * 1981-11-20 1983-05-25 Agency Of Ind Science & Technol 群屈折率の高精度測定法
CN100465595C (zh) * 2000-04-24 2009-03-04 周晟 相位差测量装置及应用该装置的外差干涉测量系统
JP4594114B2 (ja) * 2005-01-19 2010-12-08 キヤノン株式会社 画像処理装置および屈折率分布測定装置
JP5168168B2 (ja) * 2009-01-22 2013-03-21 パナソニック株式会社 屈折率測定装置
JP4912504B1 (ja) * 2010-09-16 2012-04-11 キヤノン株式会社 屈折率の計測方法および計測装置
JP2014016253A (ja) * 2012-07-09 2014-01-30 Canon Inc 屈折率分布計測方法、光学素子の製造方法、および、屈折率分布計測装置
CN103076304B (zh) * 2013-01-05 2015-01-14 浙江理工大学 调制式激光干涉空气折射率测量方法及装置
JP2015105850A (ja) * 2013-11-29 2015-06-08 キヤノン株式会社 屈折率計測方法、屈折率計測装置および光学素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243729A (zh) * 2018-03-09 2019-09-17 理音株式会社 粒子计数器
CN110715931A (zh) * 2019-10-29 2020-01-21 上海御微半导体技术有限公司 一种透明样品缺陷自动检测方法和检测装置

Also Published As

Publication number Publication date
CN106248623A (zh) 2016-12-21
KR20160145496A (ko) 2016-12-20
US20160363531A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP6157240B2 (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
JP2017003434A (ja) 屈折率の計測方法、計測装置、光学素子の製造方法
KR101812541B1 (ko) 온도 측정 방법 및 기억 매체
JP6157241B2 (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
JP2015105850A (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
JP2015099133A (ja) 厚みの計測方法および計測装置
JP6207383B2 (ja) 屈折率分布計測方法、屈折率分布計測装置、及び光学素子の製造方法
JP2016223982A (ja) 計測方法、計測装置、光学素子の製造方法
US20170315053A1 (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
JP2018004409A (ja) 屈折率計測方法、屈折率計測装置、及び光学素子の製造方法
KR101108693B1 (ko) 백색광 간섭계를 기반으로 하는 굴절률 측정 장치 및 방법
KR20160069476A (ko) 굴절률 분포 계측방법, 굴절률 분포 계측장치, 및 광학소자의 제조방법
JP2015010920A (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
Wilhelm et al. A novel low coherence fibre optic interferometer for position and thickness measurements with unattained accuracy
JP2015210241A (ja) 波面計測方法、波面計測装置、及び光学素子の製造方法
Russo et al. OCT in Applications That Involve the Measurement of Large Dimensions
JP5894464B2 (ja) 計測装置
JP5177566B2 (ja) 屈折率測定方法および屈折率測定装置
JP2016109595A (ja) 屈折率分布計測方法、屈折率分布計測装置、及び光学素子の製造方法
Postnikov Interferometric technique with a reference scale
Kozhevatov et al. A new in situ method for testing the optical thickness of removed transparent elements
Lehmann et al. Fiber optic interferometric sensor based on mechanical oscillation
Wengierow et al. Multi-wavelength interferometer for high accuracy measurement of long gauge blocks
JPH07270313A (ja) 屈折率の測定方法および性状特性の測定方法