JP2006038765A - 吸収計測装置 - Google Patents

吸収計測装置 Download PDF

Info

Publication number
JP2006038765A
JP2006038765A JP2004222277A JP2004222277A JP2006038765A JP 2006038765 A JP2006038765 A JP 2006038765A JP 2004222277 A JP2004222277 A JP 2004222277A JP 2004222277 A JP2004222277 A JP 2004222277A JP 2006038765 A JP2006038765 A JP 2006038765A
Authority
JP
Japan
Prior art keywords
light
measurement
pulse light
absorption
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222277A
Other languages
English (en)
Other versions
JP4486433B2 (ja
Inventor
Yoshihiro Takiguchi
義浩 瀧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2004222277A priority Critical patent/JP4486433B2/ja
Publication of JP2006038765A publication Critical patent/JP2006038765A/ja
Application granted granted Critical
Publication of JP4486433B2 publication Critical patent/JP4486433B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 キャビティリングダウン分光法を用いて被測定試料の吸収特性を高感度に計測でき、小型化が可能な吸収計測装置を提供する。
【解決手段】 吸収計測装置1は、同一中心周波数を有する測定パルス光L1と参照パルス光L2とを異なる光路R1,R2上に出力する光供給手段20と、測定パルス光L1の光路上に配置されており、一対のミラー11a,11bからなるキャビティ11内に被測定試料Sが導入されるキャビティリングダウン(CRD)部10と、CRD部10が有するキャビティ内での測定パルス光L1の多重反射に応じて出力される複数の透過パルス光L1からなる信号光Mと参照パルス光L2との間の遅延時間を調整する光学遅延手段31,32と、信号光と参照パルス光とを干渉させて干渉光を検出する検出手段50と、検出手段で検出される干渉光の強度の時間的変化に基づいて被測定試料Sの吸収特性を決定する解析手段60とを備える。
【選択図】図2

Description

本発明は、キャビティリングダウン分光法を用いた吸収計測装置に関するものである。
被測定試料の吸収係数を取得する手法として、吸収分光法の1つであるキャビティリングダウン分光法(CRDS)が知られている。このCRDSでは、まず、被測定試料が導入されたキャビティ内にパルス光を入射する。キャビティ内に入射されたパルス光は、キャビティ内で多重反射するが、その際、被測定試料に含まれる光吸収物質によって吸収される成分とキャビティを構成するミラー対の反射・透過率によって減衰する成分によって、反射毎に強度が減少する。これにより、キャビティを構成するミラーでの反射毎にパルス光がそのミラーを透過して得られる透過パルス光の強度は、指数関数的に減衰する。CRDSでは、パルス光が入射されたキャビティからの複数の透過パルス光の強度を測定した後、その指数関数的な減衰曲線から被測定試料の吸収係数を決定する。このように、被測定試料の吸収係数が決定されると、その吸収係数を利用することによって、被測定試料に含まれる光吸収物質の濃度等を決定することができる。
上記CRDSを利用した計測装置として、特許文献1には、検出感度の向上を図るために、ヘテロダイン法を適用した装置が開示されている。すなわち、特許文献1に記載の装置では、周波数のわずかに異なる2つの光を同時にキャビティ内を通過させ、それら2つの光を干渉させて、その干渉成分から透過パルス光の時間強度の変化を検出している。
米国特許第6094267号明細書
ところで、干渉法を利用する場合、干渉させる2つの光の一方の光(参照光)の強度を大きくすれば、検出される信号も大きくなるので、高感度な計測が期待される。しかしながら、特許文献1に記載の装置では、周波数のわずかに異なる2つの光を両方とも被測定試料に通過させるため、参照光の強度を上げると被測定試料の光破壊が生じるおそれがあり、高感度な計測が難しい。更に、特許文献1記載の装置では、2つの光の周波数差を高精度に制御しなければならず、装置の構成が複雑になるという問題点がある。また、特許文献1に記載のように干渉法を利用せずに、光検出器で透過パルス光を直接検出して時間分解計測する場合には、透過パルス光の時間変化に追随する検出器と、オシロスコープやストリークカメラなどの時間分解計測装置とが必要になるため、装置が大型化するという問題点がある。
そこで、本発明は、キャビティリングダウン分光法を用いて被測定試料の吸収特性を高感度に計測でき、小型化が可能な吸収計測装置を提供することを目的とする。
上記課題を解決するために、本発明に係る吸収計測装置は、同一中心周波数を有する測定パルス光と参照パルス光とをそれぞれ異なる光路上に出力する光供給手段と、互いに対向する一対のミラーで構成されたキャビティ内に被測定試料が導入されており、測定パルス光の光路上に配置されるキャビティリングダウン部と、測定パルス光が入射されたキャビティリングダウン部におけるキャビティ内での測定パルスの多重反射に応じてキャビティリングダウン部から出力される複数の透過パルス光からなる信号光と参照パルス光との間の遅延時間を調整する光学遅延手段と、信号光と参照パルス光とを干渉させて、信号光と参照パルス光との干渉光を検出する検出手段と、検出手段で検出される干渉光の強度の時間的変化に基づいて被測定試料の吸収特性を決定する解析手段と、を備えることを特徴とする。
この場合、光供給手段によって、同一中心周波数を有する測定パルス光と参照パルス光とが生成され、それぞれ異なる光路上に出力される。そして、キャビティリングダウン部は、光供給手段から出力される測定パルス光の光路上に配置されているので、光供給手段から出力された測定パルス光は、キャビティリングダウン部に入射する。キャビティリングダウン部は、一対のミラーからなるキャビティを有していることから、キャビティリングダウン部に入射した測定パルス光はキャビティ内で多重反射する。また、このキャビティ内には、被測定試料が導入されているので、測定パルス光は、多重反射によってキャビティ内の被測定試料を通過する毎に被測定試料によって吸収される。そのため、測定パルス光がキャビティリングダウン部を通過して得られる複数の透過パルスからなる信号光の強度は、被測定試料の吸収特性とミラー対の反射・透過特性に応じて時間的に減衰する。上記吸収計測装置では、検出手段によって、上記測定パルス光と同一の中心周波数を有する信号光と、光供給手段から出力され測定パルス光と同一の中心周波数を有する参照パルス光と、を干渉させ、干渉光を検出する。そして、干渉光の強度の時間変化を解析手段によって解析することで、被測定試料の吸収特性を決定する。そのため、その吸収特性から被測定試料に含まれる光吸収物質の濃度等を算出可能である。
上記吸収計測装置では、同一中心周波数の信号光と参照パルス光とを干渉させてその干渉光を検出する、いわゆるホモダイン法を採用しているので、吸収計測装置の構成が簡素であり、小型化が可能である。また、参照パルス光は被測定試料を通過していないので、被測定試料にダメージを与えることなく参照パルス光の強度を上げることができる結果、高感度な計測が可能である。
また、本発明に係る吸収計測装置における光供給手段は、パルス光を出力するパルス光源部と、パルス光源部から出力されたパルス光を測定パルス光と参照パルス光とに分岐して、測定パルス光と参照パルス光とをそれぞれ異なる光路上に出力する光分岐部と、を有することが好ましい。この構成では、同じパルス光源部から出力された1つのパルス光が光分岐部で測定パルス光と参照パルス光とに分岐されて、異なる光路上に出力される。この場合、同一中心周波数を有する測定パルス光と参照パルス光とを容易に生成できる。
更に、本発明に係る吸収計測装置における光供給手段は、互いに対向する端面のうちの一方から測定パルス光を出力し、他方から参照パルス光を出力する半導体レーザであることが好ましい。この場合、1つの半導体レーザから同時に測定パルス光と参照パルス光とが出力されているので、装置の構成が更に簡素になり、小型化を図りやすい。
また、本発明に係る吸収計測装置における光学遅延手段は、測定パルス光の光路上及び参照パルス光の光路上のうち少なくとも一方に設けられた光路長が可変の遅延光学系からなることが好ましい。この場合、信号光及び参照パルス光の少なくとも一方の光路長を上記遅延光学系によって変えることで、信号光と参照パルス光との遅延時間を調整することができる。
更に、本発明に係る吸収計測装置においては、信号光と参照パルス光との間の光路長差を変調する変調手段を更に有し、変調手段は、測定パルス光及び参照パルス光の少なくとも一方の光路上に設けられることが好ましい。この場合、変調手段によって信号光と参照パルス光との光路長差が変調されているので、変調手段の変調周波数に同期させて干渉光を検出することにより、より高いS/N比を実現できる傾向にある。
更に、本発明に係る吸収計測装置においては、光供給手段、キャビティリングダウン部、光学遅延手段及び検出手段は、同じ支持板上に設けられることが好ましい。この場合、同じ支持板上に、光供給部、キャビティリングダウン部、光学遅延手段及び検出手段が設けられているので、吸収計測装置に用いられている光学系が安定する。
本発明の吸収計測装置によれば、キャビティリングダウン分光法を用いて被測定試料の吸収特性を高感度で計測でき、小型化も可能である。
以下、図面を参照して本発明による吸収計測装置の好適な実施形態について説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
本実施形態に係る吸収計測装置は、キャビティリングダウン分光法(CRDS)を利用して被測定試料Sの吸収特性を取得するものである。先ず、このCRDSの原理について説明する。
図1に示すように、CRDSでは、反射率の高い(例えば、反射率が99%以上)一対のミラー11a,11bからなるキャビティ11に、被測定試料Sを保持する試料セル12を配置しておく。そして、この試料セル12内に被測定試料Sを導入した状態で、キャビティ11内に測定パルス光L1を入射する。測定パルス光L1は、一対のミラー11a,11b間で多重反射するが、その一部はミラー11bから漏れ出し、パルス間隔Δtを有する複数の透過パルス光L1(nは、1以上の整数)の列からなる信号光Mが得られる。
なお、パルス間隔Δtは、主として、ミラー11a,11b間の距離Wと被測定試料Sの屈折率によって決まっており、例えば、被測定試料Sの屈折率を1.3とし、ミラー11a,11b間の距離Wを1cmとすると、パルス間隔Δtは、(2×1[cm]×1.3)を光速で除したものに相当し、約87psである。
ここで、試料セル12には被測定試料Sが導入されているので、キャビティ11内で多重反射している測定パルス光L1は、被測定試料Sを通過する毎に、被測定試料Sによって吸収される。そのため、各透過パルス光L1の強度は被測定試料Sの吸収に応じて減衰する。したがって、信号光Mの強度の時間変化(減衰特性)から被測定試料Sの吸収係数(吸収特性)を得ることができ、この吸収係数から被測定試料Sに含まれる光吸収物質の濃度などを求めることが可能である。
図2に示す本実施形態に係る吸収計測装置1は、信号光Mの検出にホモダイン法を適用したことを特徴としており、吸収計測装置1では、ホモダイン法を適用するために、測定パルス光L1と同一中心周波数の参照パルス光L2と、上述した信号光Mと、を干渉させるMach−Zehnder型の干渉計を採用している。以下、吸収計測装置1の構成について説明する。
吸収計測装置1は、測定パルス光L1及び参照パルス光L2を生成する光供給手段20を有している。光供給手段20は、特定の波長とパルス幅を有するパルス光Lを出力するレーザ光源(パルス光源部)21と、レーザ光源21から出力されたパルス光Lを2つに分ける光分岐部22とを含んで構成されている。光分岐部22としては、例えば、ハーフミラーやビームスプリッタである。
光供給手段20においては、レーザ光源21から出力したパルス光Lを、光分岐部22で測定パルス光L1と参照パルス光L2とに分岐した後に、互いに異なる第1及び第2の光路R1,R2に出力する。この測定パルス光L1と参照パルス光L2とは、1つのパルス光Lから分岐されて生成されているので、同一の中心周波数及び位相を有している。ここで、同一の位相とは、互いの位相において一定の関係を有するという意味である。
光供給手段20によって生成された測定パルス光L1の第1の光路R1上には、キャビティリングダウン(CRD)部10が配置されている。CRD部10は、図1に示した一対のミラー11a,11bからなるキャビティ11と、そのキャビティ11内に配置された試料セル12とを含んで構成される。試料セル12には、配管を介して試料供給源13が接続されており、試料供給源13からポンプ14によって、液体又は気体の被測定試料Sが導入される。そして、試料セル12内に被測定試料Sが溜められた状態で測定パルス光L1がキャビティ11内に入射されたとき、CRD部10は、複数の透過パルス光L1からなる信号光Mを第1の光路R1に出力する。また、試料セル12には、配管を介して廃棄溜15が接続されており、測定された被測定試料Sは、廃棄溜15に排出される。
このCRD部10から出力された信号光Mと参照パルス光L2とを、後述する検出手段50において干渉させるために、吸収計測装置1は、信号光Mと参照パルス光L2との遅延時間を調整する光学遅延手段としての測定側遅延手段31及び参照側遅延手段32を有している。
測定側遅延手段31は、第1の光路R1上であってCRD部10の後段に配置されており、自動ステージ33上にコーナキューブプリズム(以下、単にプリズムという)34が設けられた遅延光学系からなる。このプリズム34は、ミラーM1によって反射された後に入射される信号光Mの進行方向を反転させて出力する。すなわち、プリズム34は、側面34aに入射された信号光Mを、互いに直交している側面34b,34cで反射させて側面34aから出力する。このプリズム34が取り付けられている自動ステージ33は、信号光Mのプリズム34への入射方向に沿って前後に移動可能であり、測定側遅延手段31は、自動ステージ33の移動によって信号光Mの光路長を変えることができる。
また、参照側遅延手段32は、第2の光路R2上に配置されており、自動ステージ35上にプリズム36が設けられた遅延光学系からなる。このプリズム36は、入射される参照パルス光L2の進行方向を反転させて出力する。すなわち、プリズム36は、側面36aから入射される参照パルス光L2を、互いに直交している側面36b,36cで反射させて側面36aから出力する。プリズム36が取り付けられている自動ステージ35は、プリズム36への参照パルス光L2の入射方向に沿って前後に移動可能であり、参照側遅延手段32は、自動ステージ35の移動によって参照パルス光L2の光路長を変えることができる。
吸収計測装置1では、測定側遅延手段31及び参照側遅延手段32とを互いに連携させて信号光M及び参照パルス光L2の光路長を変えることで、信号光Mと参照パルス光L2との遅延時間を調整する。より具体的には、例えば、10個の透過パルス光L1〜L110に対して測定を実施する場合、透過パルス光L1〜L110のパルス間隔Δtを、仮に、87psとすれば、全体として870psの遅延時間を必要とするので、各プリズム34,36をいずれかを約13cm移動させる。ここでは、説明の簡単化のため、プリズム34,36は同一形状としている。なお、この移動距離は、ミラー11a,11b間の距離W(図1参照)と被測定試料Sの屈折率とで主に決まるパルス間隔Δtに依存しているので、被測定試料Sの屈折率に応じてミラー11a,11b間の距離Wを変えることによって、干渉計の安定性の向上及び吸収計測装置1の小型化を図るように移動距離を最適化することができる。
更に、吸収計測装置1は、干渉計の不安定性に起因するノイズを低減するために、信号光Mと参照パルス光L2との光路長差を変調する変調手段40を有している。この変調手段40は、ピエゾ素子41が取り付けられたミラーM2と、ピエゾ素子41を駆動する変調信号発生器42とを含んで構成されている。
このミラーM2は、第2の光路R2上であってプリズム36の後段に配置されており、プリズム36から出力される参照パルス光L2を反射して、後述する検出手段50に入射させる。ミラーM2に取り付けられたピエゾ素子41は、変調信号発生器42から入力される変調信号によって駆動され、参照パルス光L2の波長の数倍の振幅であって所定の周波数(例えば、1kHz)で振動する。なお、この所定の周波数は、透過パルス光L1のパルス間隔Δtに対応する周波数(≒1/Δt)と相違していればよく、通常、その周波数よりも低い周波数である。これにより、参照パルス光L2の光路長は、ピエゾ素子41の振動に応じて時間的に変化する結果、参照パルス光L2と信号光Mとの干渉光に対応する干渉信号の干渉成分は、変調周波数に応じて変化する交流信号成分となる。
また、吸収計測装置1は、測定側遅延手段31から出力された信号光Mと、変調手段40で変調された参照パルス光L2とを干渉させて干渉光を検出する検出手段50を有する。検出手段50は、光合波器51と、一対の検出器52,53と、差動アンプ54とを有しており、平衡型ホモダイン検出系を構成している。光合波器51は、例えば、ハーフミラーやビームスプリッタであって、プリズム34から出力された信号光Mと、ミラーM2で反射された参照パルス光L2とを合波して、各検出器52,53に出力する。
各検出器52,53は、例えば、光電子増倍管であり、光合波器51によって合波された結果得られる信号光Mと参照パルス光L2との干渉光を検出し、その干渉光に対応する干渉信号を差動アンプ54に入力する。差動アンプ54は、干渉信号のうち、干渉光の干渉成分に対応する信号成分を差動増幅して、データ解析回路(解析手段)60に入力する。本実施形態では、信号光Mと参照パルス光L2との光路長差が変調手段40によって変調されているので、Lockinアンプや高感度交流電流・電圧計などを併用して交流信号成分を抽出することによって、S/N比を改善することができる。
デジタル処理回路60は、コンピュータを有しており、差動アンプ54から入力されたデータ信号を解析して、被測定試料Sの吸収特性を取得する。すなわち、差動アンプ54から入力されたデータ信号の各ピーク強度の遅延時間に対する変化率から被測定試料Sの吸収係数(吸収特性)を算出する。そして、その吸収係数に基づいて、被測定試料Sに含まれる光吸収物質の濃度等を求める。
上記吸収計測装置1は、ホモダイン法を用いているので、精度良く測定を実施するには、干渉計の機械的な安定性がよいことが要求される。そのため、吸収計測装置1では、光供給手段20、CRD部10、測定側遅延手段31、参照側遅延手段32、変調手段40、及び、検出手段50などの吸収計測装置1の各構成要素を、同一の支持板70上に設けている。この支持板70は、アルミ、インバー、あるいはステンレスなどの金属ブロック、或いは、アクリルなどのプラスチック材料ブロックから削り出して製造されたものである。この場合、1つの支持板70上に、光供給手段20、CRD部10、測定側遅延手段31、参照側遅延手段32、変調手段40、及び、検出手段50が設けられるので、より安定した計測を実施できる。なお、上述した支持板70が容器の一部であり、上述した吸収計測装置1の各構成要素がその容器内に内蔵されていることは、装置の安定性の観点から更に好ましい。
上記吸収計測装置1の動作を説明する。先ず、CRD部10の試料セル12に試料供給源13から被測定試料Sを導入した状態で、光供給手段20によって測定パルス光L1と参照パルス光L2とを生成して第1及び第2の光路R1,R2に出力する。この測定パルス光L1は、第1の光路R1上に配置されたCRD部10に入射し、被測定試料Sによりその一部が吸収される一方、キャビティ11内で多重反射する。そして、測定パルス光L1は、被測定試料Sの吸収と一対のミラー11a,11bの反射・透過特性に応じて減衰した複数の透過パルス光L1からなる信号光Mとして、CRD部10から出力される。この信号光Mは、測定側遅延手段31によって参照パルス光L2との光路長を調整するように光学遅延を受けてから光合波器51に入射する。また、光供給手段20から出力された参照パルス光L2は、参照側遅延手段32によって信号光Mとの光路長を調整するように光学遅延を受け、更に、変調手段40によって変調されてから光合波器51に入射する。
この光合波器51で信号光Mと参照パルス光L2とが合波されて得られる干渉光は、一対の検出器52,53で受光される。そして、その干渉光に対応する干渉信号が差動アンプ54に入力されて、干渉成分が差動増幅される。そして、差動アンプ54から出力された信号のうち、干渉成分に対応する交流信号成分がデータ信号としてデジタル処理回路60に入力されると、データ信号に含まれるピーク強度の時間的変化に基づいて被測定試料Sの吸収係数が算出される。そして、その吸収係数から被測定試料Sに含まれる光吸収物質の濃度などが求められる。なお、吸収計測装置1において、測定された被測定試料Sは、試料セル12から配管を介して廃棄溜15に排出される。
この吸収計測装置1では、光学遅延手段としての測定側遅延手段31及び参照側遅延手段32をともに利用して、信号光Mと参照パルス光L2との遅延時間を変化させながら信号光Mと参照パルス光L2とを干渉させ、その結果得られる干渉光を、検出器52,53で検出している。そのため、遅延時間に対する干渉信号の波形は、信号光Mと参照パルス光L2との相互相関波形に相当する。そして、その干渉信号のピーク強度の遅延時間に対する変化率が各透過パルス光L1の減衰率に対応している。したがって、吸収計測装置1における時間分解能は、測定側遅延手段31及び参照側遅延手段32によって実現される光学遅延に依存する、すなわち、プリズム34,36の移動精度に依存している。
このように、吸収計測装置1の時間分解能が、主として、プリズム34,36の移動精度に依存しているので、信号光Mを直接時間分解計測する場合に比べて、高速な検出器や、時間分解計測装置(オシロスコープやストリークカメラなど)を要しない。更に、吸収計測装置1の時間分解能が、測定側遅延手段31及び参照側遅延手段32の機械精度(プリズム34,36の移動精度)によって決定されるため、フェムト秒オーダーの時間分解能も実現可能であり、吸収特性のより詳細な解析も容易にできる。
また、同一中心周波数の信号光Mと参照パルス光L2とを干渉させるホモダイン法を採用いていることから、例えば、ヘテロダイン法を採用した場合のように、周波数のわずかに異なる信号光と参照パルス光との間の周波数のズレを高精度に制御する必要がないため、装置構成が簡易になり、吸収計測装置1の小型化が可能であり、低コスト化も図れる。
また、CRDSでは、各透過パルス光L1のピーク強度の減衰率を取得することが重要であるため、各透過パルス光L1のピーク位置近傍のデータのみ得られれば十分である。したがって、測定側遅延手段31及び参照側遅延手段32によって信号光Mと参照パルス光L2との間の遅延時間をステップ的に飛ばし、各透過パルス光L1と参照パルス光L2とをピーク位置近傍で干渉させることによって、計測時間を短縮することも可能である。
更に、CRDSを適用する装置において通常利用される検出器の時間応答は、遠赤外線領域(例えば、波長範囲3〜20μm)の光に対して遅いことが知られており、従来のように信号光Mを直接時間分解計測する装置では、遠赤外線領域の信号光Mから被測定試料Sの吸収特性を得ることは困難である。これに対して、本実施形態に係る吸収計測装置1の時間分解能は、検出器52,53の時間応答速度よりも、主に、プリズム34,36の移動精度に依存しているため、従来では計測できなかった遠赤外線領域に対する被測定試料Sの吸収特性を得ることができる。なお、遠赤外線領域の光に対して計測を実施する際には、レーザ光源21として、遠赤外線領域で干渉性の高い光源(例えば、量子カスケードレーザ)を利用すればよい。
更にまた、吸収計測装置1では、参照パルス光L2の強度を増大させることによって干渉光の強度も大きくできるので、高感度な計測が可能である。その際、参照パルス光L2は、被測定試料Sを通過していないため、参照パルス光L2の強度を増加させても、被測定試料Sがダメージを受けることはない。また、2つの検出器52,53で検出された干渉信号を差動アンプ54が差動増幅してデータ信号を得ていることから、1つの検出器で干渉光を検出する場合に比べて倍の信号強度を得られる結果、感度の向上が図られている。更に、各検出器52,53は、コモンモードとして知られる、被測定試料Sからの蛍光や散乱光による雑音も検出しているが、これらは各検出器52,53によって同程度検出されているので、差動アンプ54によって差動増幅された後のデータ信号としては現れない。従って、コモンモードが取り除かれS/N比の改善されたデータ信号を解析できる。
また、変調手段40によって、参照パルス光L2と信号光Mとの光路長差を変調しているので、干渉信号に含まれる交流信号成分の周波数は、ピエゾ素子41の振動における変調周波数と振幅とに依存する。そのため、変調周波数のみならず、振幅を変えることによっても交流信号の周波数を変えることができる。したがって、干渉信号から交流信号を読み出すときに、読み出し回路の周波数特性に応じた交流信号を得ることができる。
なお、本実施形態では、変調手段40を備えているとしたが、変調手段40は、必ずしも使用しなくてもよく、また、変調手段40は、測定パルス光L1の光路(及び信号光Mの光路)である第1の光路R1、及び、参照パルス光L2の光路である第2の光路R2のうちの少なくとも一方に配置して、信号光Mと参照パルス光L2との間の光路長差を変調してもよい。また、パルス光源部として、パルス光を出力するレーザ光源21としたが、例えば、連続発振するレーザ光源を利用して、出力されたレーザ光からパルス光を生成してもよい。
(第2の実施形態)
図3に示す第2の実施形態に係る吸収計測装置2の構成と吸収計測装置1の構成とは、吸収計測装置2が光供給手段20として半導体レーザ23を利用している点で、主に相違する。この相違点を中心に、吸収計測装置2について説明する。
この吸収計測装置2では、半導体レーザ23をレーザ発振させて特定の波長とパルス幅を有するパルス光を生成した時に、半導体レーザ23の前端面及び後端面から同時に出力される一対のパルス光の一方を測定パルス光L1とし、他方を参照パルス光L2として利用する。これにより、同一中心周波数で同位相である測定パルス光L1と参照パルス光L2とを簡易に得られる。
ここで、吸収計測装置2の動作について説明する。先ず、第1の実施形態と同様に、CRD部10の試料セル12に試料供給源13から被測定試料Sを導入する。そして、試料セル12に被測定試料Sが導入された状態で、半導体レーザ23から測定パルス光L1及び参照パルス光L2を出力する。
この測定パルス光L1は、CRD部10を通過することによって信号光Mとなる。そして、その信号光Mが、測定側遅延手段31によって参照パルス光L2との光路長を調整するように光学遅延を受けた後に、ミラーM3で反射されてから光合波器51に入射する。また、半導体レーザ23から出力され、測定パルス光L1と同一の周波数を有する参照パルス光L2は、参照側遅延手段32によって信号光Mとの光路長を調整するように光学遅延を受けた後に光合波器51に入射する。
この光合波器51で信号光Mと参照パルス光L2とが合波されると、それらは干渉光として検出器52,53でそれぞれ受光される。そして、その干渉光に対応する干渉信号が差動アンプ54に入力されて、その干渉信号に含まれる干渉成分が差動増幅される。続いて、差動アンプ54からの信号がデータ信号としてデジタル処理回路60に入力されると、デジタル処理回路60によって、被測定試料Sの吸収係数(吸収特性)が算出される。そして、その吸収係数から被測定試料Sに含まれる光吸収物質の濃度等が求められる。なお、吸収計測装置2において、測定された被測定試料Sは、試料セル12から配管を介して廃棄溜15に排出される。
この構成では、半導体レーザ23の両端面から同時に出力される一対のパルス光を測定パルス光L1及び参照パルス光L2として用いているので、吸収計測装置1の構成がより簡易になり、吸収計測装置1の小型化が更に図れる。また、干渉計を構成する光学素子の数の減少を図ることができるので、安定した計測ができる傾向にある。なお、ホモダイン法を採用していることの効果は第1の実施形態と同様である。また、本実施形態においても、第1の実施形態で説明した変調手段40を、第1及び第2の光路R1,R2の少なくとも一方に配置してもよい。この場合にS/N比を改善できることは第1の実施形態と同様である。
以上、本発明の好適な実施形態について説明したが、本発明は、上記第1及び第2の実施形態に限定されないことは言うまでもない。例えば、光学遅延手段としての測定側遅延手段31及び参照側遅延手段32は、自動ステージ33,35上に設けられたプリズム34,36を利用した遅延光学系としたが、光路長が可変であればよい。例えば、信号光M及び参照パルス光L2を反射可能であればプリズム34,36以外の反射光学素子(例えば、ミラー)を利用することもできるし、反射光学素子を移動させる手段としては自動ステージに限らず、例えば、回転モータとクランクをつけた直線可動機構なども利用できる。また、測定側遅延手段31及び参照側遅延手段32によって、信号光Mと参照パルス光L2との光路長を調整しているが、光学遅延手段としては、どちらか一方を利用するようにしてもよい。更に、第1及び第2の実施形態の検出手段50は、2つの検出器52,53を用いて平衡型ホモダイン検出系を構成しているとしたが、1つの検出器で干渉光を検出することも可能である。
キャビティリングダウン分光法(CRDS)の原理を説明する図である。 本発明に係る吸収計測装置の第1の実施形態の構成を示す模式図である。 本発明に係る吸収計測装置の第2の実施形態の構成を示す模式図である。
符号の説明
1…吸収計測装置、10…キャビティリングダウン(CRD)部、11…キャビティ、11a,11b…ミラー、20…光供給手段、23…半導体レーザ(光供給手段)、21…レーザ光源(パルス光源部)、22…光分岐部、31…測定側遅延手段(光学遅延手段)、32…参照側遅延手段(光学遅延手段)、50…検出手段、60…デジタル処理回路(解析手段)、70…支持板、L1…測定パルス光、L1…透過パルス光、L2…参照パルス光、M…信号光、R1…測定パルス光(信号光)の光路、R2…参照パルス光の光路、S…被測定試料。

Claims (6)

  1. 同一中心周波数を有する測定パルス光と参照パルス光とをそれぞれ異なる光路上に出力する光供給手段と、
    互いに対向する一対のミラーで構成されたキャビティ内に被測定試料が導入されており、前記測定パルス光の光路上に配置されるキャビティリングダウン部と、
    前記測定パルス光が入射されたキャビティリングダウン部における前記キャビティ内での前記測定パルスの多重反射に応じて前記キャビティリングダウン部から出力される複数の透過パルス光からなる信号光と前記参照パルス光との間の遅延時間を調整する光学遅延手段と、
    前記信号光と前記参照パルス光とを干渉させて、前記信号光と前記参照パルス光との干渉光を検出する検出手段と、
    前記検出手段で検出される前記干渉光の強度の時間的変化に基づいて前記被測定試料の吸収特性を決定する解析手段と、
    を備えることを特徴とする吸収計測装置。
  2. 前記光供給手段は、
    パルス光を出力するパルス光源部と、
    前記パルス光源部から出力されたパルス光を前記測定パルス光と前記参照パルス光とに分岐して、前記測定パルス光と前記参照パルス光とをそれぞれ異なる光路上に出力する光分岐部と、
    を有することを特徴とする請求項1に記載の吸収計測装置。
  3. 前記光供給手段は、
    互いに対向する端面のうちの一方から前記測定パルス光を出力し、他方から前記参照パルス光を出力する半導体レーザであることを特徴とする請求項1に記載の吸収計測装置。
  4. 前記光学遅延手段は、
    前記測定パルス光の光路上及び前記参照パルス光の光路上のうち少なくとも一方に設けられた光路長が可変の遅延光学系からなることを特徴とする請求項1〜請求項3の何れか1項に記載の吸収計測装置。
  5. 前記信号光と前記参照パルス光との間の光路長差を変調する変調手段を更に有し、
    前記変調手段は、前記測定パルス光及び前記参照パルス光の少なくとも一方の光路上に設けられることを特徴とする請求項1〜請求項4の何れか1項に記載の吸収計測装置。
  6. 前記光供給手段、前記キャビティリングダウン部、前記光学遅延手段及び前記検出手段は、同じ支持板上に設けられることを特徴とする請求項1〜請求項5の何れか1項に記載の吸収計測装置。
JP2004222277A 2004-07-29 2004-07-29 吸収計測装置 Active JP4486433B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222277A JP4486433B2 (ja) 2004-07-29 2004-07-29 吸収計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222277A JP4486433B2 (ja) 2004-07-29 2004-07-29 吸収計測装置

Publications (2)

Publication Number Publication Date
JP2006038765A true JP2006038765A (ja) 2006-02-09
JP4486433B2 JP4486433B2 (ja) 2010-06-23

Family

ID=35903905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222277A Active JP4486433B2 (ja) 2004-07-29 2004-07-29 吸収計測装置

Country Status (1)

Country Link
JP (1) JP4486433B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025996A (ja) * 2006-07-18 2008-02-07 Niigata Univ 透光体の内部歪の測定方法及び測定装置
JP2008215997A (ja) * 2007-03-02 2008-09-18 J Morita Tokyo Mfg Corp Oct装置
JP2009229414A (ja) * 2008-03-25 2009-10-08 Osaka Gas Co Ltd 検知装置
JP2013515261A (ja) * 2009-12-22 2013-05-02 アイエムエー ライフ ノース アメリカ インコーポレーテッド 真空ポンプ排出物に関するガス測定による凍結乾燥の監視
WO2023089944A1 (ja) * 2021-11-19 2023-05-25 スミダコーポレーション株式会社 測定装置および測定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950194B (zh) * 2017-03-17 2018-06-12 哈尔滨翰奥科技有限公司 气体传感器及用于检测二氧化硫气体浓度变化的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045547A (ja) * 1990-04-21 1992-01-09 Mitsubishi Electric Corp 炭酸ガスセンサ
JPH0427845A (ja) * 1990-05-22 1992-01-30 Res Dev Corp Of Japan 不透明試料の分光吸収測定装置
JPH1090117A (ja) * 1996-09-11 1998-04-10 Ricoh Co Ltd 屈折率分布の測定方法及び装置
JP2000338037A (ja) * 1999-04-21 2000-12-08 Board Of Trustees For The Leland Stanford Junior Univ 光ヘテロダイン検出するキャビティリングダウンシステム
WO2000079248A1 (fr) * 1999-06-21 2000-12-28 Hamamatsu Photonics K.K. Spectrometre a ondes terahertz
JP2001004538A (ja) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd 媒質の測定装置および測定方法
JP2001194299A (ja) * 2000-01-11 2001-07-19 Board Of Trustees For The Leland Stanford Junior Univ キャビティリングダウン分光システムおよび方法
JP2001311697A (ja) * 2000-04-28 2001-11-09 Advantest Corp 表面状態測定方法及び装置
JP2002202250A (ja) * 2000-12-28 2002-07-19 Anritsu Corp ガス検出装置
JP2002540394A (ja) * 1999-03-19 2002-11-26 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ キャビティ寿命分光法のためのアナログ検出
US20030189711A1 (en) * 2000-07-12 2003-10-09 Orr Brian J Optical heterodyne detection in optical cavity ringdown spectroscopy
JP2004101510A (ja) * 2002-07-15 2004-04-02 Tochigi Nikon Corp パルス光を用いた分光計測方法および装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045547A (ja) * 1990-04-21 1992-01-09 Mitsubishi Electric Corp 炭酸ガスセンサ
JPH0427845A (ja) * 1990-05-22 1992-01-30 Res Dev Corp Of Japan 不透明試料の分光吸収測定装置
JPH1090117A (ja) * 1996-09-11 1998-04-10 Ricoh Co Ltd 屈折率分布の測定方法及び装置
JP2002540394A (ja) * 1999-03-19 2002-11-26 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ キャビティ寿命分光法のためのアナログ検出
JP2000338037A (ja) * 1999-04-21 2000-12-08 Board Of Trustees For The Leland Stanford Junior Univ 光ヘテロダイン検出するキャビティリングダウンシステム
JP2001004538A (ja) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd 媒質の測定装置および測定方法
WO2000079248A1 (fr) * 1999-06-21 2000-12-28 Hamamatsu Photonics K.K. Spectrometre a ondes terahertz
JP2001194299A (ja) * 2000-01-11 2001-07-19 Board Of Trustees For The Leland Stanford Junior Univ キャビティリングダウン分光システムおよび方法
JP2001311697A (ja) * 2000-04-28 2001-11-09 Advantest Corp 表面状態測定方法及び装置
US20030189711A1 (en) * 2000-07-12 2003-10-09 Orr Brian J Optical heterodyne detection in optical cavity ringdown spectroscopy
JP2002202250A (ja) * 2000-12-28 2002-07-19 Anritsu Corp ガス検出装置
JP2004101510A (ja) * 2002-07-15 2004-04-02 Tochigi Nikon Corp パルス光を用いた分光計測方法および装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025996A (ja) * 2006-07-18 2008-02-07 Niigata Univ 透光体の内部歪の測定方法及び測定装置
JP2008215997A (ja) * 2007-03-02 2008-09-18 J Morita Tokyo Mfg Corp Oct装置
JP2009229414A (ja) * 2008-03-25 2009-10-08 Osaka Gas Co Ltd 検知装置
JP2013515261A (ja) * 2009-12-22 2013-05-02 アイエムエー ライフ ノース アメリカ インコーポレーテッド 真空ポンプ排出物に関するガス測定による凍結乾燥の監視
WO2023089944A1 (ja) * 2021-11-19 2023-05-25 スミダコーポレーション株式会社 測定装置および測定方法

Also Published As

Publication number Publication date
JP4486433B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
US9702975B2 (en) Lidar measuring system and lidar measuring method
JP4790560B2 (ja) 単発テラヘルツ波時間波形計測装置
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
US3860342A (en) Dual-wavelength scanning doppler velocimeter
WO2013091584A1 (zh) 一种检测基质内缺陷的方法及装置
JP2006189392A (ja) 吸収計測装置
JP4522882B2 (ja) 吸収計測装置
JP4486433B2 (ja) 吸収計測装置
JP4540604B2 (ja) 気体速度センサ
US5406377A (en) Spectroscopic imaging system using a pulsed electromagnetic radiation source and an interferometer
JPH0843292A (ja) コロイド状の媒体の薄層による散乱光の光度を測定する検知器
JP2005321244A (ja) 光学的測定装置
JP2003207308A (ja) 干渉計、手術用顕微鏡、および対象物の運動速度の干渉測定法
CA2468924A1 (en) A device and method for non-contact sensing of low-concentration and trace substances
JPH11108763A (ja) 光計測装置
JP2006300808A (ja) ラマン分光測定装置
CN102944518A (zh) 基于驻波激发瞬态体光栅效应的材料特性检测方法及装置
US6654124B2 (en) Signal modulation compensation for wavelength meter
JP2734786B2 (ja) 光エコー顕微鏡
JP2022522746A (ja) 高コントラスト撮像のための装置、装置の使用、及び方法
RU2281471C1 (ru) Рефлектометр многократного отражения на основе плоских зеркал
JPH0875433A (ja) 表面形状測定装置
RU2143487C1 (ru) Детектор подвижных микроорганизмов
JPH0815155A (ja) 光学的検査方法および光学的検査装置
JP2002195945A (ja) 全反射減衰を利用したセンサー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4