WO2006030482A1 - レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置 - Google Patents

レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置 Download PDF

Info

Publication number
WO2006030482A1
WO2006030482A1 PCT/JP2004/013325 JP2004013325W WO2006030482A1 WO 2006030482 A1 WO2006030482 A1 WO 2006030482A1 JP 2004013325 W JP2004013325 W JP 2004013325W WO 2006030482 A1 WO2006030482 A1 WO 2006030482A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
path length
laser beam
optical path
length difference
Prior art date
Application number
PCT/JP2004/013325
Other languages
English (en)
French (fr)
Inventor
Jiro Suzuki
Yoshihito Hirano
Yutaka Ezaki
Yasushi Horiuchi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/013325 priority Critical patent/WO2006030482A1/ja
Priority to JP2006534966A priority patent/JP4786540B2/ja
Priority to EP04773007A priority patent/EP1793460A1/en
Priority to US11/631,308 priority patent/US7440478B2/en
Publication of WO2006030482A1 publication Critical patent/WO2006030482A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • Laser optical path length difference detection device laser phase control device, and coherent optical coupling device
  • the present invention relates to a laser apparatus, and more particularly to an optical measurement technique and an optical control technique in all apparatuses that control and handle a plurality of coherent laser beams.
  • a method for obtaining a desired light intensity by condensing a plurality of laser beams on a target at the same time is generally known.
  • the laser beam generated by one master oscillator is divided into a plurality of laser beams and then individually amplified, and then amplified.
  • Research has been conducted on a technique for obtaining a convergence performance equivalent to a single laser beam having a large diameter by arranging a plurality of laser beams to be bundled (hereinafter, the bundled laser beams are referred to as a main output beam). Yes.
  • this technique is called coherent coupling.
  • Patent Document 1 describes.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 340555 (FIG. 5)
  • the conventional phase synchronization deviation detection apparatus Since the conventional phase synchronization deviation detection apparatus is configured as described above, it is necessary to cause the main output beam, which is a target for detecting the phase difference, to interfere with the reference light.
  • the main output beam is an ultrashort pulse laser with a short coherence length, for example, a pulse width of picosecond or less, the optical path lengths in the propagation path of the reference light pulse and the main output beam do not match, and the optical path When there is a length difference, if the optical path length difference exceeds a certain value, the reference light and the main output beam do not interfere with each other.
  • the present invention has been made to solve the above-described problems, and is a compact, low-cost and easy-to-use laser optical path length difference detection device, and coherent light using the laser optical path length difference detection device
  • a laser phase control device for a coupling device and a coherent optical coupling device using the laser phase control device are provided.
  • the laser optical path length difference detection device is a propagation of the first laser beam 1 and the second laser beam 2 that are mutually coherent when propagating along any two optical paths of a plurality of laser beam optical paths.
  • a laser optical path length difference detecting device for detecting an optical path length difference between paths, wherein an optical path length difference varying means for changing an optical path length difference between the first laser beam 1 and the second laser beam 2;
  • a wavefront tilt generating means for tilting at least one wavefront of the first laser beam 1 and the second laser beam 2, and the first laser beam 1 after passing through the wavefront tilt generating means and the
  • a light intensity distribution detecting means for detecting an interference light intensity distribution with the second laser beam 1 is provided.
  • the laser phase control device provides a phase difference and optical path length between a plurality of laser beams coherently coupled via a phase delay variable unit that changes a relative phase difference between the plurality of laser beams.
  • a phase delay variable unit that changes a relative phase difference between the plurality of laser beams.
  • the coherent optical coupling device includes a laser light source that outputs a laser beam, a distribution unit that distributes the laser beam output from the laser light source to a plurality of laser beams, and the distribution A phase delay variable unit that controls the relative phase of the laser beam distributed by the unit, an amplification unit that amplifies the intensity of each of the plurality of laser beams via the phase delay variable unit, and a plurality of amplifiers amplified by the amplification unit And a laser phase controller for controlling the phase difference between the plurality of laser beams by outputting a regression control signal to the phase delay variable unit.
  • the laser phase control device for arbitrarily controlling the spatial intensity distribution of the laser beam combined with the coherent optical beam
  • the phase delay variable unit is controlled based on the detection of the phase difference and the optical path length difference between the plurality of laser beams that are composed of the laser phase control device according to the above-described invention and are coherently coupled by the synthesis unit.
  • a phase difference between the plurality of laser beams is controlled by outputting a signal.
  • a laser optical path length difference detection device having a simple and inexpensive configuration can be obtained, and a laser phase control device capable of desired phase control even when the initial deviation of the optical path length difference is large.
  • a coherent optical coupling device using the laser phase control device can be obtained.
  • FIG. 1 is a configuration diagram showing a laser optical path length difference detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the wavefront phases and interference intensities of the first laser beam 1 and the second laser beam 2 on the light detection surface of the two-dimensional detector 6 shown in FIG.
  • FIG. 3 Corresponding to FIG. 2, the detection detected by the two-dimensional detector 6 when there is an optical path phase difference ⁇ . It is explanatory drawing which shows interference strength.
  • FIG. 4 is a configuration diagram showing a laser optical path length difference detection device according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing a laser optical path length difference detection device according to Embodiment 3 of the present invention.
  • FIG. 6 is a configuration diagram showing a laser optical path length difference detection device according to a fourth embodiment of the present invention.
  • FIG. 7 is a configuration diagram showing an optical coherent coupling device to which a laser phase control device according to a fifth embodiment of the present invention is applied.
  • FIG. 1 is a configuration diagram showing a laser optical path length difference detection apparatus according to Embodiment 1 of the present invention.
  • the first laser beam 1 and the second laser beam 2 shown in FIG. 1 are divided into two laser beams, one pulse laser beam that oscillates intermittently, not shown, or a single pulse laser beam. Amplitude splitting, continued, propagated through any two optical paths of the multiple laser beam paths to be measured, and further expanded or reduced as necessary to guide the beam in parallel. is there.
  • FIG. 1 shows a case where the optical path length varying means 4 is constituted by a retro reflector whose position can be varied. Further, the first laser beam ⁇ and the second laser beam 2 are caused to have a predetermined angular difference in the traveling direction of the wavefront by the wavefront tilt generating means 5 formed of a wedge prism, and the two wavefronts at an arbitrary distance. Are superposed spatially, producing interference light.
  • the spatial distribution of the intensity of the interference light is detected by a two-dimensional detector 6 as a light intensity distribution detecting means and converted into an electric signal.
  • the two-dimensional detector 6 detects the interference light intensity between the first laser beam 1 and the second laser beam 2. It is arranged at a position where it can be detected.
  • FIG. 2 is an explanatory diagram showing the wavefront phase and interference intensity of the first laser beam 1 and the second laser beam 2 on the light detection surface of the two-dimensional detector 6.
  • the phase difference between the first laser beam 1 and the second laser beam 2 changes linearly depending on the position.
  • the interference light intensity in the two-beam interference is expressed by equation (1).
  • ⁇ 2 The phase of the second laser beam 2.
  • the interference light intensity I changes sinusoidally with respect to the phase difference ( ⁇ 1 - ⁇ 2).
  • the phase difference between the wave fronts of the first laser beam 1 and the second laser beam 2 changes linearly with respect to the position. Therefore, the interference intensity also varies sinusoidally depending on the position.
  • the first laser beam 1 and the second laser beam 2 are pulse lasers, no interference occurs when the phase difference ( ⁇ 1 ⁇ 02) exceeds a certain value. Therefore, as shown in FIG. 2, the interference light intensity appears only in a limited range centered on a position corresponding to a phase difference of 0 (hereinafter referred to as a main maximum).
  • FIG. 3 is an explanatory diagram showing the interference intensity detected by the two-dimensional detector 6 when the optical path has a phase difference ⁇ .
  • the phase difference ⁇ ⁇ of the optical path due to the phase difference ⁇ ⁇ of the optical path, the position where the phase difference between the first laser beam 1 and the second laser beam 2 becomes 0, that is, the main maximum that is the center of the interference fringes. The position is displaced. Therefore, the phase difference ⁇ of the optical path can be known by detecting the amount of movement of the position of the main maximum.
  • Phase difference of this optical path ⁇ ⁇ Reflects the optical path length difference between the propagation paths of the first laser beam 1 and the second laser beam 2, so that the optical path length difference of the propagation path can be obtained by converting the phase into the optical path length. .
  • the optical path length varying means 4 is used to change the optical path length difference of the propagation path of the first laser beam 1. If there is no power to increase the optical path length difference or reduce the gap, the optical path length difference is scanned until the two-dimensional detector 6 detects the main maximum.
  • the method for detecting the optical path length difference between the propagation paths through which any two laser beams propagated has been described above, it is also possible to detect the optical path length difference between the propagation paths of three or more laser beams. Easy to do. That is, the optical path length difference between the propagation paths of any one laser beam and all the remaining laser beams may be detected using the necessary number of the above-described devices.
  • the laser optical path length difference detection apparatus is configured as described above, and therefore has the following effects as compared with the conventional laser single path length difference detection apparatus.
  • the two-dimensional detector 6 can detect the optical path length difference between the first laser beam 1 and the second laser beam 2 within the range in which the movement of the main maximum of the interference fringes can be detected, A range can be realized.
  • the optical path length must be scanned by the optical path length varying means 4, but the scanning of the optical path length is not continuous.
  • the two-dimensional detector 6 may scan at intervals of about the phase difference that can detect the main maximum. Therefore, the time required for scanning the optical path length can be shortened.
  • the wedge prism is used as the wavefront tilt generation means, fluctuations in the wavefront tilt due to temperature changes can be minimized, and stable measurement can be performed over a long period of time.
  • FIG. 4 is a block diagram showing a laser optical path length difference detection apparatus according to Embodiment 2 of the present invention.
  • the first laser beam 1 and the second laser are arranged in front of the wavefront tilt generating means 5 with respect to the configuration of the first embodiment shown in FIG.
  • a special filter 10 for removing wavefront distortion of each wavefront of the beam 2 is further provided.
  • the first laser beam 1 and the second laser beam 2 have wavefront distortion.
  • the wavefront distortion component can be removed, stable measurement can be performed over a long period of time.
  • FIG. 5 is a block diagram showing a laser optical path length difference detection apparatus according to Embodiment 3 of the present invention.
  • the same parts as those in the first embodiment shown in FIG. in contrast to the configuration of the first embodiment shown in FIG. 1, the first and second pinholes 20a and 20b are used instead of wedge prisms as wavefront tilt generating means.
  • the first pinhole 20a and the second pinhole 20b function as wavefront inclination generating means, and are formed by drilling two small holes in a shielding plate made of an opaque thin plate.
  • the first beam 1 and a part of the second laser beam 2 are arranged so as to pass through different first pinholes 20a and second pinholes 20b, respectively.
  • the wavefront of the laser beam that has passed through the first pinhole 20a and the second pinhole 20b is converted into a spherical wave centered on the small hole by a diffraction phenomenon, and overlapped fringes are generated on the two-dimensional detector 6.
  • Such interference of diffracted light by two small apertures is generally known as Young's experiment.
  • this interference is interference by spherical waves having two finite curvatures, so that the intervals between the interference fringes are not equal.
  • a part of a spherical wave can be approximated to an inclined wavefront, so if the signal processing method is slightly changed, it is the same as in Embodiments 1 and 2.
  • the optical path length difference between the propagation paths of the two laser beams Can be detected.
  • the laser optical path length difference detection apparatus has the following effects as compared with the conventional laser single path length difference detection apparatus.
  • the wavefront distortion component can be removed by using the pinholes 20a and 20b as means for generating the wavefront inclination. This enables stable measurement over a long period of time.
  • the use of the pinholes 20a and 20b eliminates the need to use a lens or a prism, thereby enabling low cost.
  • the double slit of the first slit and the second slit may be used instead of the force pinhole in which the wavefront tilt generating means is configured by the pinholes 20a and 20b. Have the same effect.
  • FIG. 6 is a block diagram showing a laser optical path length difference detection device according to Embodiment 4 of the present invention.
  • the same parts as those of the third embodiment shown in FIG. the first laser beam 1 and the second laser beam 2 are respectively combined with the first pinhole 20a and the second laser beam 2 in the configuration of the third embodiment shown in FIG.
  • a condensing lens 21 for condensing light in the pinhole 20b is further provided.
  • the condensing lens 21 is a transmissive lens that condenses light at one point.
  • the condensing lens 21 is on the side of the pinholes 20a and 20b on which the laser is incident, and the first laser beam 1 and the second laser beam 2 are arranged so as to collect light in the small holes of the pinholes 20a and 20b, respectively.
  • the condensing lens 21 can condense most of the energy of the laser beam into the pinhole. Compared with the difference detection device, the light use efficiency can be increased.
  • the first laser beam 1 and the second laser beam 21 are collected by the condenser lens 21.
  • the laser beam 2 is focused on the first pinhole 20a and the second pinhole 20b respectively, but the first slit and the second slit double slit are used as the wavefront tilt generating means. In this case, the same effect can be obtained and the same effect as in the fourth embodiment can be obtained.
  • Embodiment 5 shows an example in which the laser optical path length difference detection device of Embodiment 1-14 is applied to a laser phase control device in an optical coherent coupling device.
  • FIG. 7 is a configuration diagram showing an optical coherent coupling device to which the laser phase control device according to the fifth embodiment of the present invention is applied.
  • An optical coherent coupling device includes a laser light source 30 that intermittently oscillates a pulse, and a plurality of mutually coherent laser beams generated by the laser light source 30.
  • a distribution unit 31 composed of a plurality of beam splitters that distribute and output to a beam, a phase delay variable device 32 that changes the relative phase difference of a plurality of laser beams to be coherently coupled, and a phase delay variable device 32
  • Amplifying unit 33 Amplifies the intensity of the output multiple laser beams and expands the beam system as necessary, and a plurality of laser beams that are output from the amplifying unit 33 are coherently coupled.
  • the spatial arrangement and angle of the multiple laser beams are converted, and the combining unit 34 composed of mirrors, etc.
  • a branch is extracted for measurement, a laser beam branching means 35 which is constituted by a beam splitter
  • the phase delay variable device 32 is equipped with a laser phase control device that outputs a regression control signal to control the phase difference between the multiple laser beams, and the spatial intensity distribution of the laser beam that is coherently optically coupled by the synthesizer 34 is arbitrarily selected. It is made to control.
  • the laser phase control device includes a laser phase difference detection device 36, a laser optical path length difference detection device 37, an optical path length / phase difference control device 38, and a phase delay variable device 32, and includes a plurality of lasers. Based on the detection of the phase difference and the optical path length difference between the plurality of laser beams coherently coupled via the phase delay variable device 32 that changes the relative phase difference of the beam, a return control signal is sent to the phase delay variable device 32. To output the plurality of records. It controls the phase difference and the optical path length difference between the beams.
  • the laser optical path length difference detection device 37 is configured in any one of the first to fourth embodiments.
  • the laser phase difference detection device 36 detects a phase difference between a plurality of laser beams, and a method of detecting the phase difference is, for example, a Mach-Zehnder interferometer disclosed in Patent Document 1. Realized.
  • the laser optical path length difference detection device 37 is the laser optical path length difference detection device shown in any one of the first to fourth embodiments.
  • the variable phase delay device 32 changes the relative phase difference between a plurality of laser beams to be coherently coupled. Any method can be used to change the relative phase difference, but in Fig. 7, this is achieved by changing the position of the mirror indicated by the diagonal lines.
  • the optical path length / phase difference control device 38 outputs a regression control signal to the phase delay variable device 32 so that the optical path length difference detected by the laser one optical path length difference detection device 37 is reduced, and then Calculate the difference between the relative phase difference of the multiple laser beams detected by the laser phase difference detector 36 and the relative phase difference stored in advance according to the purpose.
  • the relative phase difference correction amount for the phase difference to be the target value is calculated, and the regression control signal is output to the phase delay variable device 32.
  • the coherent optical coupling device configured as described above. Therefore, the coherent optical coupling is performed so that the laser beam is a pulse laser, and therefore, the relative optical path. Even when it is necessary to adjust the length difference with high accuracy, desired phase control can be performed.
  • the laser optical path length difference detection device 37 is similar to any one of the laser optical path length difference detection devices described in the first embodiment 15. Since the configuration is used, the same effect as any of the laser optical path length difference detection devices described in the embodiments 15 can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lasers (AREA)

Abstract

 小型で、かつ低コストで使い勝手のよいレーザー光路長差検出装置、レーザー光路長差検出装置、並びにコヒーレント光結合装置を提供する。  複数のレーザービーム光路の任意の2つの光路を伝搬したときの相互にコヒーレントな第一のレーザービーム1と第二のレーザービーム2の伝搬経路間の光路長差を検出するレーザー光路長差検出装置であって、第一のレーザービーム1と第二のレーザービーム2との間の光路長差を変化させる光路長差可変手段4と、第一のレーザービーム1と第二のレーザービーム2の少なくとも一方の波面を傾斜させる波面傾斜発生手段5と、波面傾斜発生手段を通過した後の第一のレーザービーム1と第二のレーザービーム2との干渉光強度分布を検出する2次元検出器6とを備える。

Description

明 細 書
レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント 光結合装置
技術分野
[0001] この発明は、レーザー装置に係るものであり、特に、相互にコヒーレントな複数のレ 一ザ一ビームを統制して扱う装置全般における光計測技術、光制御技術に関するも のである。
背景技術
[0002] 大出力が要求されるレーザー装置において、複数のレーザービームを同時に目標 に集光させることで、所望の光強度を得る方式が一般に知られている。このようなレー ザ一装置において、遠距離の微小な目標にエネルギーを集中させるために、一つの 主発振器で生成されたレーザービームを複数のレーザービームに分岐後個々に増 幅し、増幅後の複数のレーザービームを束ねるように配列させ (以下、束ねられた複 数のレーザービームを主出力ビームという)、大口径の単レーザービームと等価的な 収束性能を得ようとする技術が研究されている。ここでは、このような技術をコヒーレン ト結合と呼ぶ。コヒーレント結合を実現する装置の先行例としては、例えば特許文献 1 に記載されている。
[0003] コヒーレント結合を行うためには、主出力ビームを構成する複数のレーザービーム の電磁波の等位相面がひとつの波面とみなせるように、個々のレーザービームの位 相を統制制御する必要がある。このような制御において、複数のレーザービームの相 対的な位相差を検出する位相同期ずれ検出装置が必要となる。特許文献 1にお!、 ては、複数のレーザービームの発生源である主発振器から一部の光をビームスプリツ タで分岐させて参照光とし、主出力ビームと干渉させ、その干渉強度力 位相差を検 出する方法が示されている。
[0004] 特許文献 1 :特開平 11 340555号公報(図 5)
発明の開示
発明が解決しょうとする課題 [0005] 従来の位相同期ずれ検出装置は以上説明したように構成されているため、位相差 を検出する対象である主出力ビームと参照光とを干渉させる必要があった。しかし、 主出力ビームが、コヒーレンス長の短い、例えばパルス幅がピコ秒以下の超短パルス レーザーであった場合、参照光のパルスと主出力ビームとの伝搬経路における光路 長が一致せず、光路長差がある場合に、前記光路長差がある一定値を超えると、参 照光と主出力ビームとが干渉しないため、相対位相差を検出できないという課題があ つた o
[0006] また、前記課題を解決するためには、参照光と主出力ビームとの伝搬経路における 光路長差を一致させるために、必要に応じたダイナミックレンジと精度で検出するレ 一ザ一光路長差検出装置が必要となるが、レーザー測長器のような高価でデリケー トな計測装置を必要とした。
[0007] この発明は以上述べた課題を解決するためになされたもので、小型で、かつ低コス トで使い勝手のよいレーザー光路長差検出装置、及びレーザー光路長差検出装置 を用いたコヒーレント光結合装置用のレーザー位相制御装置、並びにそのレーザー 位相制御装置を用いたコヒーレント光結合装置を提供するものである。
課題を解決するための手段
[0008] この発明に係るレーザー光路長差検出装置は、複数のレーザービーム光路の任意 の 2つの光路を伝搬したときの相互にコヒーレントな第一のレーザービーム 1と第二の レーザービーム 2の伝搬経路間の光路長差を検出するレーザー光路長差検出装置 であって、前記第一のレーザービーム 1と前記第二のレーザービーム 2との間の光路 長差を変化させる光路長差可変手段と、前記第一のレーザービーム 1と前記第二の レーザービーム 2の少なくとも一方の波面を傾斜させる波面傾斜発生手段と、前記波 面傾斜発生手段を通過した後の前記第一のレーザービーム 1と前記第二のレーザ 一ビーム 2との干渉光強度分布を検出する光強度分布検出手段とを備えたものであ る。
[0009] また、この発明に係るレーザー位相制御装置は、複数のレーザービームの相対位 相差を変化させる位相遅延可変部を介してコヒーレント光結合された複数のレーザ 一ビーム間の位相差及び光路長差の検出に基づいて前記位相遅延可変部に回帰 制御信号を出力して前記複数のレーザービーム間の位相差及び光路長差を制御す るレーザー位相制御装置であって、前述した発明に係るレーザー光路長差検出装 置を備え、複数のレーザービーム間の光路長差を検出することを特徴とするものであ る。
[0010] さらに、この発明に係るコヒーレント光結合装置は、レーザービームを出力するレー ザ一光源と、前記レーザー光源から出力されたレーザービームを複数のレーザービ ームに分配する分配部と、前記分配部で分配されたレーザービームの相対位相を制 御する位相遅延可変部と、前記位相遅延可変部を介した複数のレーザービームの 強度をそれぞれ増幅する増幅部と、前記増幅部で増幅された複数のレーザービーム をコヒーレント光結合する合成部と、前記位相遅延可変部に回帰制御信号を出力し て前記複数のレーザービーム間の位相差を制御するレーザー位相制御装置とを備 え、前記合成部でコヒーレント光結合されたレーザービームの空間強度分布を任意 に制御するコヒーレント光結合装置において、前記レーザー位相制御装置は、前述 した発明に係るレーザー位相制御装置で構成され、前記合成部でコヒーレント光結 合された複数のレーザービーム間の位相差及び光路長差の検出に基づいて前記位 相遅延可変部に回帰制御信号を出力して前記複数のレーザービーム間の位相差を 制御することを特徴とするものである。
発明の効果
[0011] この発明によれば、簡易で安価な構成のレーザー光路長差検出装置を得ることが でき、光路長差の初期ずれが大き 、場合でも所望の位相制御が可能なレーザー位 相制御装置並びにそのレーザー位相制御装置を用いたコヒーレント光結合装置を得 ることがでさる。
図面の簡単な説明
[0012] [図 1]この発明の実施の形態 1に係るレーザー光路長差検出装置を示す構成図であ る。
[図 2]図 1に示す 2次元検出器 6の光検出面における第一のレーザービーム 1及び第 二のレーザービーム 2の波面の位相と干渉強度を示す図である。
[図 3]図 2に対応して、光路の位相差 Δ Θがあるときの 2次元検出器 6で検出される干 渉強度を示す説明図である。
[図 4]この発明の実施の形態 2に係るレーザー光路長差検出装置を示す構成図であ る。
[図 5]この発明の実施の形態 3に係るレーザー光路長差検出装置を示す構成図であ る。
[図 6]この発明の実施の形態 4に係るレーザー光路長差検出装置を示す構成図であ る。
[図 7]この発明の実施の形態 5に係るレーザー位相制御装置を適用する光コヒーレン ト結合装置を示す構成図である。
発明を実施するための最良の形態
[0013] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
[0014] 実施の形態 1.
図 1は、この発明の実施の形態 1に係るレーザー光路長差検出装置を示す構成図 である。図 1に示す第一のレーザービーム 1と第二のレーザービーム 2は、図示しな い間欠的に発振を繰り返す一つのパルスレーザービーム、あるいは単発のパルスレ 一ザ一ビームを 2本のレーザービームに振幅分岐し、続、て図示しな 、計測対象で ある複数のレーザービーム光路の任意の二つの光路を伝搬し、さらに必要に応じて ビーム径を拡大または縮小し、平行に導かれたものである。
[0015] 前記第一のレーザービーム 1と第二のレーザービーム 2は、ミラー 3を介して光路が 図示方向に屈曲される。そして、第一のレーザービーム 1が伝搬する光路長は、光路 長可変手段 4を介して変化される。図 1では、光路長可変手段 4を位置が可変可能な リトロレフレクターで構成した場合を示している。さらに、第一のレーザービーム丄と第 二のレーザービーム 2は、ゥエッジプリズムでなる波面傾斜発生手段 5によりその波面 の進行方向に所定の角度差が生じさせられ、任意距離において前記 2つの波面は 空間的に重ね合わせられ、干渉光が生じる。干渉光の強度の空間分布は、光強度 分布検出手段としての 2次元検出器 6により検出され、電気信号に変換される。 2次 元検出器 6は、第一のレーザービーム 1と第二のレーザービーム 2との干渉光強度を 検出できる位置に配置される。
[0016] 次に、 2次元検出器 6で検出した干渉光強度から、第一のレーザービーム 1と第二 のレーザービーム 2が伝搬した伝搬経路間の光路長差を検出する方法について説 明する。図 2は、 2次元検出器 6の光検出面における、第一のレーザービーム 1及び 第二のレーザービーム 2の波面の位相と干渉強度を示す説明図である。図 2に示す ように、第一のレーザービーム 1と第二のレーザービーム 2間の位相差は、位置に依 存し線形に変化する。ここで、 2光束干渉における干渉光強度は、式(1)で表される。
I = al2 + a22 + 2 - al - a2 - cos ( θ 1- Θ 2) (1)
ここで、 I:干渉光強度、
al:第一のレーザービーム 1の振幅、
a2:第二のレーザービーム 2の振幅、
Θ 1 :第一のレーザービーム 1の位相、
Θ 2 :第二のレーザービーム 2の位相である。
[0017] 式(1)から、干渉光強度 Iは、位相差( Θ 1- Θ 2)に対して、正弦的に変化する。前 記したように、 2次元検出器 6の光検出面上では、第一のレーザービーム 1と第二の レーザービーム 2との波面の位相差が位置に対して線形に変化する。従って、干渉 強度も位置によって正弦的に変化する。さらに、第一のレーザービーム 1と第二のレ 一ザ一ビーム 2はパルスレーザーであるので、位相差( Θ 1—0 2)がある一定値以上 を超えると干渉が生じなくなる。従って、干渉光強度は、図 2のように、位相差 0に相 当する位置(以下、これを主極大という)を中心とした、限られた範囲にのみ現われる
[0018] ここで、第一のレーザービーム 1と第二のレーザービーム 2とが伝搬したそれぞれの 伝搬経路間に光路長差があるとする。この光路長差で生じた、付加的な位相差を Δ Θとする。図 3は、前記光路の位相差 Δ Θがあるときの、 2次元検出器 6で検出される 干渉強度を示す説明図である。図 3に示すように、光路の位相差 Δ Θにより、第一の レーザービーム 1と第二のレーザービーム 2との位相差が 0となる位置、すなわち、干 渉縞の中心である主極大の位置が変位する。従って、この主極大の位置の移動量を 検知することにより、光路の位相差 Δ Θを知ることができる。この光路の位相差 Δ Θ は、第一のレーザービーム 1と第二のレーザービーム 2の伝搬経路間の光路長差を 反映しているので、位相を光路長に換算することで伝搬経路の光路長差を得ること ができる。
[0019] なお、検出すべき 2つのレーザービームの伝搬経路の光路長差が一定値以上とな ると、 2次元検出器 6の検出範囲外に干渉縞の主極大が形成され、位相差 Δ Θが検 知できなくなる。これを補うために、光路長可変手段 4を用いて、第一のレーザービー ム 1の伝搬経路の光路長差を変化させる。光路長差を増やす力減らすかわ力もない 場合は、 2次元検出器 6が主極大を検出するまで光路長差を走査する。
[0020] 以上、任意の 2つのレーザービームが伝搬した伝搬経路間の光路長差を検出する 方法について説明したが、 3本以上のレーザービームの伝搬経路間の光路長差を検 出することも簡単にできる。すなわち、任意のひとつのレーザービームと、残る全ての レーザービームとの伝搬経路の光路長差を、前述した装置を必要数用いてそれぞれ 検出すればよい。
[0021] 従って、実施の形態 1に係るレーザー光路長差検出装置は、以上述べたように構 成されているので、従来のレーザ一路長差検出装置と比較し、以下に述べる効果を 奏する。
第一に、 2次元検出器 6が干渉縞の主極大の移動を検出できる範囲において、第 一のレーザービーム 1と第二のレーザービーム 2との光路長差を検出できるので、広 Vヽダイナミックレンジを実現することができる。
第二に、主極大が 2次元検出器 6の検出範囲外に形成される場合は、光路長可変 手段 4で光路長を走査しなければならないが、前記光路長の走査は連続的でなくて もよぐ 2次元検出器 6が主極大を検出できる位相差程度の間隔で走査すればよい。 従って、光路長の走査に要する時間を短縮することができる。
第三に、簡易な光学系と安価な 2次元検出器 6を用いて構成したため、低コストィ匕 が可能となる。
第四に、波面傾斜発生手段としてゥエッジプリズムを用いたため、温度変化による 波面傾斜変動をごく僅かとすることができ、長期にわたり安定した計測が可能となる。
[0022] 実施の形態 2. 図 4は、この発明の実施の形態 2に係るレーザー光路長差検出装置を示す構成図 である。図 4に示す実施の形態 2において、図 1に示す実施の形態 1と同一部分は同 一符号を付してその説明は省略する。図 4に示す実施の形態 2においては、図 1に示 す実施の形態 1の構成に対し、波面傾斜発生手段 5の前に配置されて、第一のレー ザ一ビーム 1と第二のレーザービーム 2のそれぞれの波面の波面歪を除去するスぺ 一シャルフィルタ 10をさらに備えている。
[0023] この実施の形態 2に係るレーザー光路長差検出装置によれば、スペーシャルフィル タ 10をさらに備えたので、第一のレーザービーム 1及び第二のレーザービーム 2に波 面歪があっても、波面歪成分を除去できるので、長期にわたり安定した計測が可能と なる。
[0024] 実施の形態 3.
図 5は、この発明の実施の形態 3に係るレーザー光路長差検出装置を示す構成図 である。図 5に示す実施の形態 3において、図 1に示す実施の形態 1と同一部分は同 一符号を付してその説明は省略する。図 5に示す実施の形態 3においては、図 1に示 す実施の形態 1の構成に対し、波面傾斜発生手段として、ゥェッジプリズムの代わり に、第一のピンホール 20aと第二のピンホール 20bとを有する遮蔽板 20を用いて!/ヽ る。
[0025] 第一のピンホール 20aと第二のピンホール 20bは、波面傾斜発生手段として作用 するもので、不透明の薄板でなる遮蔽板に小穴を 2つ穿ったものであり、第一のレー ザ一ビーム 1と第二のレーザービーム 2の一部がそれぞれ相異なる第一のピンホー ル 20aと第二のピンホール 20bを通過するように配置される。第一のピンホール 20a と第二のピンホール 20bを通過したレーザービームの波面は、回折現象により小穴を 中心とした球面波に変換され、 2次元検出器 6上で重なり干渉縞を生じる。このような 2つの小開口による回折光の干渉は、ヤングの実験として一般に知られている。
[0026] 厳密には、この干渉は、 2つの有限の曲率をもつ球面波による干渉なので、干渉縞 の間隔は等間隔とならない。しかし、ヤングの実験で知られているように、球面波の一 部は傾斜した波面に近似して考えることができるので、信号処理方法を多少変更す れば、実施の形態 1及び 2と同様に、 2つのレーザービームの伝搬経路の光路長差 を検出することができる。
[0027] 従って、実施の形態 3に係るレーザー光路長差検出装置によれば、従来のレーザ 一路長差検出装置と比較し、次に述べる効果を奏する。
第一に、第一のレーザービーム 1及び第二のレーザービーム 2に波面歪があっても 、波面傾斜発生手段としてピンホール 20a及び 20bを使用していることにより、波面 歪成分を除去できるので、長期にわたり安定した計測が可能となる。
第二に、ピンホール 20a及び 20bを用いたことにより、レンズやプリズムを使用しなく ても済むため、低コストィ匕が可能となる。
[0028] なお、実施の形態 3では、波面傾斜発生手段をピンホール 20a及び 20bで構成し た力 ピンホールの代わりに、第一のスリットと第二のスリットのダブルスリットを使用し てもよく、同様な効果を奏する。
[0029] 実施の形態 4.
上述した実施の形態 3において、ピンホール 20a及び 20bは、入射する 2つのレー ザ一ビームのエネルギーのほとんどを捨ててしまうので、光の利用効率が悪い。この 実施の形態 4では、実施の形態 3における光の利用効率を改善する方法について述 ベる。図 6は、この発明の実施の形態 4に係るレーザー光路長差検出装置を示す構 成図である。図 6に示す実施の形態 4において、図 5に示す実施の形態 3と同一部分 は同一符号を付してその説明は省略する。図 6に示す実施の形態 4においては、図 5に示す実施の形態 3の構成に対し、第一のレーザービーム 1及び第二のレーザー ビーム 2とをそれぞれ第一のピンホール 20a及び第二のピンホール 20bに集光させる 集光レンズ 21をさらに備えている。
[0030] 集光レンズ 21は、光を 1点に集光する透過型レンズであり、ピンホール 20a及び 20 bのレーザーが入射する側にあり、第一のレーザービーム 1及び第二のレーザービー ム 2をピンホール 20a及び 20bの小穴にそれぞれ集光するように配置されている。
[0031] 従って、実施の形態 4に係るレーザー光路長差検出装置によれば、集光レンズ 21 により、レーザービームのエネルギーの多くをピンホールに集光することができるので 、従来のレーザ一路長差検出装置と比較し、光の利用効率を高めることができる。
[0032] なお、実施の形態 4では、集光レンズ 21により、第一のレーザービーム 1及び第二 のレーザービーム 2とをそれぞれ第一のピンホール 20a及び第二のピンホール 20b に集光させる例を示したが、波面傾斜発生手段として第一のスリットと第二のスリット のダブルスリットを使用する場合も同様に実施でき、実施の形態 4と同様な効果を奏 する。
[0033] 実施の形態 5.
実施の形態 5は、実施の形態 1一 4のレーザー光路長差検出装置を用いて、光コヒ 一レント結合装置におけるレーザー位相制御装置への適用する例を示すものである
[0034] 図 7は、この発明の実施の形態 5に係るレーザー位相制御装置を適用する光コヒー レント結合装置を示す構成図である。
[0035] 図 7に示す実施の形態 5に係る光コヒーレント結合装置は、間欠的にパルス発振す るレーザー光源 30と、レーザー光源 30で作られたひとつのレーザービームを複数の 相互にコヒーレントなレーザービームに分配し出力する、複数のビームスプリッタで構 成された分配部 31と、コヒーレント光結合したい複数のレーザービームの相対位相 差を変化させる位相遅延可変装置 32と、位相遅延可変装置 32を介して分配部 31 力 出力された複数のレーザービームの強度を増幅し、必要に応じてビーム系を拡 大して出力する増幅部 33と、増幅部 33の出力である複数のレーザービームがコヒー レント光結合するように、複数のレーザービームの空間配置、角度を変換する、ミラー などで構成された合成部 34と、合成部 34の出力の複数のレーザービームを計測の ため分岐抽出する、ビームスプリッタなどで構成されたレーザービーム分岐手段 35と
、位相遅延可変装置 32に回帰制御信号を出力して複数のレーザービーム間の位相 差を制御するレーザー位相制御装置とを備え、合成部 34でコヒーレント光結合され たレーザービームの空間強度分布を任意に制御するようになされて 、る。
[0036] 前記レーザー位相制御装置は、レーザー位相差検出装置 36と、レーザー光路長 差検出装置 37と、光路長,位相差制御装置 38と、位相遅延可変装置 32とから構成 され、複数のレーザービームの相対位相差を変化させる位相遅延可変装置 32を介 してコヒーレント光結合された複数のレーザービーム間の位相差及び光路長差の検 出に基づいて前記位相遅延可変装置 32に回帰制御信号を出力して前記複数のレ 一ザ一ビーム間の位相差及び光路長差を制御するものである。レーザー光路長差 検出装置 37は、実施の形態 1ないし 4のいずれかで構成される。
[0037] ここで、レーザー位相差検出装置 36は、複数のレーザービーム間の位相差を検出 するもので、位相差を検出する方式は、例えば特許文献 1に示されたマッハツエンダ 型の干渉計にて実現される。また、レーザー光路長差検出装置 37は、実施の形態 1 ないし 4のいずれかに示されたレーザー光路長差検出装置である。位相遅延可変装 置 32は、コヒーレント光結合したい複数のレーザービームの相対位相差を変化させ る。相対位相差を変化させる方法はなんでもよいが、図 7では斜線で示したミラーの 位置を変化させることで実現している。さらに、光路長'位相差制御装置 38は、レー ザ一光路長差検出装置 37で検出した光路長差が小さくなるように、位相遅延可変装 置 32に回帰制御信号を出力し、次に、レーザー位相差検出装置 36で検出した複数 のレーザービームの相対位相差と目的に応じてあら力じめ記憶されている相対位相 差との差を演算し、さらにこの差力 複数のレーザービームの相対位相差が目標値と なるための相対位相差補正量を演算し、位相遅延可変装置 32に回帰制御信号を出 力する。
[0038] 従って、図 7に示す実施の形態 5に係るコヒーレント光結合装置は、以上述べたよう に構成されて 、るので、コヒーレント光結合した 、レーザービームがパルスレーザー であり、従って、相対光路長差を高精度にあわせる必要がある場合でも、所望の位相 制御が可能となる。
[0039] また、実施の形態 5に係るレーザー位相制御装置によれば、レーザー光路長差検 出装置 37に、実施の形態 1一 5で説明したレーザー光路長差検出装置のいずれか と同様の構成を用いているので、実施の形態 1一 5で説明したレーザー光路長差検 出装置のいずれかと同様の効果が得られる。

Claims

請求の範囲
[1] 複数のレーザービーム光路の任意の 2つの光路を伝搬したときの相互にコヒーレン トな第一のレーザービームと第二のレーザービームの伝搬経路間の光路長差を検出 するレーザー光路長差検出装置であって、
前記第一のレーザービームと前記第二のレーザービームとの間の光路長差を変化 させる光路長差可変手段と、
前記第一のレーザービームと前記第二のレーザービームの少なくとも一方の波面 を傾斜させる波面傾斜発生手段と、
前記波面傾斜発生手段を通過した後の前記第一のレーザービームと前記第二の レーザービームとの干渉光強度分布を検出する光強度分布検出手段と
を備えたレーザー光路長差検出装置。
[2] 請求項 1に記載のレーザー光路長差検出装置において、
前記波面傾斜発生手段は、ゥェッジプリズムを用いた
ことを特徴とするレーザー光路長差検出装置。
[3] 請求項 1に記載のレーザー光路長差検出装置において、
前記第一のレーザービームと前記第二のレーザービームとの波面歪を除去するス ペーシャルフィルタをさらに備えた
ことを特徴とするレーザー光路長差検出装置。
[4] 請求項 1に記載のレーザー光路長差検出装置において、
前記波面傾斜発生手段は、前記第一のレーザービームと前記第二のレーザービ ームとがそれぞれ通過するように配置された第一のピンホールと第二のピンホールと を用いた
ことを特徴とするレーザー光路長差検出装置。
[5] 請求項 4に記載のレーザー光路長差検出装置において、
前記第一のレーザビームと前記第二のレーザビームとを、前記第一のピンホールと 前記第二のピンホールにそれぞれ集光させるレンズをさらに備えた
ことを特徴とするレーザー光路長差検出装置。
[6] 請求項 1に記載のレーザー光路長差検出装置において、 前記波面傾斜発生手段は、前記第一のレーザービームと前記第二のレーザービ ームとがそれぞれ通過するように配置された第一のスリットと第二のスリットとを用いた ことを特徴とするレーザー光路長差検出装置。
[7] 請求項 6に記載のレーザー光路長差検出装置において、
前記第一のレーザビームと前記第二のレーザビームとを、前記第一のスリットと前記 第二のスリットにそれぞれ集光させるレンズをさらに備えた
ことを特徴とするレーザー光路長差検出装置。
[8] 複数のレーザービームの相対位相差を変化させる位相遅延可変部を介してコヒー レント光結合された複数のレーザービーム間の位相差及び光路長差の検出に基づ いて前記位相遅延可変部に回帰制御信号を出力して前記複数のレーザービーム間 の位相差及び光路長差を制御するレーザー位相制御装置であって、
請求項 1ないし 7のいずれか 1項に記載のレーザー光路長差検出装置を備え、複 数のレーザービーム間の光路長差を検出する
ことを特徴とするレーザー位相制御装置。
[9] レーザービームを出力するレーザー光源と、
前記レーザー光源から出力されたレーザービームを複数のレーザービームに分配 する分配部と、
前記分配部で分配されたレーザービームの相対位相を制御する位相遅延可変部 と、
前記位相遅延可変部を介した複数のレーザービームの強度をそれぞれ増幅する 増幅部と、
前記増幅部で増幅された複数のレーザービームをコヒーレント光結合する合成部と 前記位相遅延可変部に回帰制御信号を出力して前記複数のレーザービーム間の 位相差を制御するレーザー位相制御装置と
を備え、前記合成部でコヒーレント光結合されたレーザービームの空間強度分布を 任意に制御するコヒーレント光結合装置において、
前記レーザー位相制御装置は、請求項 8に記載のレーザー位相制御装置で構成 され、前記合成部でコヒーレント光結合された複数のレーザービーム間の位相差及 び光路長差の検出に基づいて前記位相遅延可変部に回帰制御信号を出力して前 記複数のレーザービーム間の位相差を制御する
ことを特徴とするコヒーレント光結合装置。
PCT/JP2004/013325 2004-09-13 2004-09-13 レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置 WO2006030482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/013325 WO2006030482A1 (ja) 2004-09-13 2004-09-13 レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置
JP2006534966A JP4786540B2 (ja) 2004-09-13 2004-09-13 レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置
EP04773007A EP1793460A1 (en) 2004-09-13 2004-09-13 Laser beam path length difference detector, laser phase controller and coherent optical coupler
US11/631,308 US7440478B2 (en) 2004-09-13 2004-09-13 Laser beam path length difference detector, laser phase controller, and coherent optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013325 WO2006030482A1 (ja) 2004-09-13 2004-09-13 レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置

Publications (1)

Publication Number Publication Date
WO2006030482A1 true WO2006030482A1 (ja) 2006-03-23

Family

ID=36059749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013325 WO2006030482A1 (ja) 2004-09-13 2004-09-13 レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置

Country Status (4)

Country Link
US (1) US7440478B2 (ja)
EP (1) EP1793460A1 (ja)
JP (1) JP4786540B2 (ja)
WO (1) WO2006030482A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108850A1 (ja) * 2012-01-20 2013-07-25 三菱重工業株式会社 複数ビーム結合装置
JP2014504744A (ja) * 2010-12-29 2014-02-24 サイマー インコーポレイテッド マルチパス光学装置
JP2015005572A (ja) * 2013-06-19 2015-01-08 三菱重工業株式会社 ビーム結合装置、ビーム結合方法
JP2015521386A (ja) * 2012-05-24 2015-07-27 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation コヒーレントレーザアレイ制御システムおよび方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159737B2 (en) * 2009-04-27 2012-04-17 Phase Sensitive Innovations, Inc. Controlling the phase of optical carriers
JP6163685B2 (ja) * 2013-05-23 2017-07-19 国立研究開発法人物質・材料研究機構 3次元干渉計
KR102219614B1 (ko) * 2014-03-31 2021-02-25 기가포톤 가부시키가이샤 레이저 시스템 또는 레이저 노광 시스템
JP7071849B2 (ja) * 2018-03-09 2022-05-19 リオン株式会社 パーティクルカウンタ
CN110987199A (zh) * 2019-11-18 2020-04-10 中国科学院上海光学精密机械研究所 束间同步测量装置
CN111707447B (zh) * 2020-05-20 2021-11-23 中国兵器装备研究院 基于双环路探测的多通道光程差检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230002A (ja) * 1985-04-03 1986-10-14 Ricoh Co Ltd 干渉測定方法
JPH06160117A (ja) * 1992-11-20 1994-06-07 Copal Co Ltd 光学式変位検出装置
JPH11340555A (ja) * 1998-04-24 1999-12-10 Trw Inc 同位相波面制御を備えた高平均パワ―固体レ―ザ―システム
JP2000056280A (ja) * 1998-08-11 2000-02-25 Trw Inc 位相面制御を有する高平均パワ―・ファイバ・レ―ザ・システム
JP2000323774A (ja) * 1999-04-01 2000-11-24 Trw Inc 高速並列波面センサを有する改良高速平均パワー・ファイバ・レーザ・システム
JP2003075260A (ja) * 2001-08-30 2003-03-12 Anritsu Corp 光波長測定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248477B2 (ja) * 1974-10-23 1977-12-09
US4744659A (en) * 1985-03-20 1988-05-17 Ricoh Company, Ltd. Method of and apparatus for measuring the shape of a wavefront
JP3619113B2 (ja) 2000-03-23 2005-02-09 独立行政法人科学技術振興機構 角分散光空間干渉断層画像化装置
US6556306B2 (en) * 2001-01-04 2003-04-29 Rensselaer Polytechnic Institute Differential time domain spectroscopy method for measuring thin film dielectric properties
US6801322B2 (en) * 2001-12-13 2004-10-05 Freescale Semiconductor, Inc. Method and apparatus for IN SITU measuring a required feature of a layer during a polishing process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230002A (ja) * 1985-04-03 1986-10-14 Ricoh Co Ltd 干渉測定方法
JPH06160117A (ja) * 1992-11-20 1994-06-07 Copal Co Ltd 光学式変位検出装置
JPH11340555A (ja) * 1998-04-24 1999-12-10 Trw Inc 同位相波面制御を備えた高平均パワ―固体レ―ザ―システム
JP2000056280A (ja) * 1998-08-11 2000-02-25 Trw Inc 位相面制御を有する高平均パワ―・ファイバ・レ―ザ・システム
JP2000323774A (ja) * 1999-04-01 2000-11-24 Trw Inc 高速並列波面センサを有する改良高速平均パワー・ファイバ・レーザ・システム
JP2003075260A (ja) * 2001-08-30 2003-03-12 Anritsu Corp 光波長測定装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504744A (ja) * 2010-12-29 2014-02-24 サイマー インコーポレイテッド マルチパス光学装置
WO2013108850A1 (ja) * 2012-01-20 2013-07-25 三菱重工業株式会社 複数ビーム結合装置
JP2013148769A (ja) * 2012-01-20 2013-08-01 Mitsubishi Heavy Ind Ltd 複数ビーム結合装置
US9325149B2 (en) 2012-01-20 2016-04-26 Mitsubishi Heavy Industries, Ltd. Multi-beam combining apparatus
JP2015521386A (ja) * 2012-05-24 2015-07-27 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation コヒーレントレーザアレイ制御システムおよび方法
JP2015005572A (ja) * 2013-06-19 2015-01-08 三菱重工業株式会社 ビーム結合装置、ビーム結合方法

Also Published As

Publication number Publication date
JPWO2006030482A1 (ja) 2008-05-08
JP4786540B2 (ja) 2011-10-05
EP1793460A1 (en) 2007-06-06
US7440478B2 (en) 2008-10-21
US20080031292A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US11114814B2 (en) Relative phase measurement for coherent combining of laser beams
CN110837214B (zh) 扫描干涉光刻系统
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
KR101566383B1 (ko) 기하학적 두께와 굴절률 측정을 위한 반사형 광섬유 간섭 장치
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
JPH0552540A (ja) 干渉計レーザ表面粗さ計
KR101544962B1 (ko) 기하학적 두께와 굴절률 측정을 위한 투과형 광섬유 간섭 장치
JP2002214049A (ja) 波長モニタ
JP7274150B2 (ja) 偏光符号化波のオフアクシス記録のためのアドオン撮像モジュール
JPS6117921A (ja) 実時間波頭解析修正装置
JP4786540B2 (ja) レーザー光路長差検出装置、レーザー位相制御装置並びにコヒーレント光結合装置
JPH10332355A (ja) 干渉測定装置
JP4459961B2 (ja) レーザ位相差検出装置およびレーザ位相制御装置
US11454541B2 (en) Method for imaging or spectroscopy with a non-linear interferometer
JP2014048162A (ja) 距離測定装置
JP3843399B2 (ja) サブミクロメートル範囲における3次元構造を判定する方法及び装置
JP4290698B2 (ja) 誘導ブリルアン散乱位相共役鏡を有する増幅器で位相を自己制御する装置及び方法
JP2011257190A (ja) 実時間測定分岐型干渉計
JPH0460538B2 (ja)
KR20180124489A (ko) 광간섭 측정 장치
US6064482A (en) Interferometric measuring device for form measurement on rough surfaces
JPH06317478A (ja) 光波長・周波数検出装置
JP2007174484A (ja) 光位相遅延制御装置及び光制御型ビーム形成回路
JP2787345B2 (ja) 2波長光源素子
CN110849593A (zh) 基于声光调制器外差干涉测量光学系统波像差的测量设备

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006534966

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11631308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004773007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004773007

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631308

Country of ref document: US