JP2018006730A - 半導体装置、該半導体装置を有する表示装置 - Google Patents

半導体装置、該半導体装置を有する表示装置 Download PDF

Info

Publication number
JP2018006730A
JP2018006730A JP2017022713A JP2017022713A JP2018006730A JP 2018006730 A JP2018006730 A JP 2018006730A JP 2017022713 A JP2017022713 A JP 2017022713A JP 2017022713 A JP2017022713 A JP 2017022713A JP 2018006730 A JP2018006730 A JP 2018006730A
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
transistor
oxide
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017022713A
Other languages
English (en)
Other versions
JP6964990B2 (ja
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
岡崎 健一
Kenichi Okazaki
健一 岡崎
将志 津吹
Masashi Tsubuki
将志 津吹
晴之 馬場
Haruyuki Baba
晴之 馬場
幸恵 重信
Yukie Shigenobu
幸恵 重信
絵美 肥塚
Emi Hizuka
絵美 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2018006730A publication Critical patent/JP2018006730A/ja
Priority to JP2021171842A priority Critical patent/JP7341204B2/ja
Application granted granted Critical
Publication of JP6964990B2 publication Critical patent/JP6964990B2/ja
Priority to JP2023138788A priority patent/JP2023169187A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】酸化物半導体を有するトランジスタにおいて、電気特性の変動を抑制すると共に、信頼性を向上させる。
【解決手段】トランジスタを有する半導体装置であって、トランジスタは、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸化物半導体膜と、酸化物半導体膜上の第2の絶縁膜と、第2の絶縁膜上の第2のゲート電極と、酸化物半導体膜、及び第2のゲート電極上の第3の絶縁膜と、を有し、酸化物半導体膜は、第2のゲート電極と重なるチャネル領域と、第3の絶縁膜と接するソース領域と、第3の絶縁膜と接するドレイン領域と、を有し、第1のゲート電極と第2のゲート電極とは、電気的に接続され、トランジスタの飽和領域における電界効果移動度を測定した際に、電界効果移動度の最小値と、電界効果移動度の最大値との差が15cm/Vs以内である。
【選択図】図1

Description

本発明の一態様は、酸化物半導体膜を有する半導体装置及び該半導体装置を有する表示装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、またはそれらの製造方法に関する。
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は、半導体装置を有している場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタ(電界効果トランジスタ(FET)、または薄膜トランジスタ(TFT)ともいう)を構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(表示装置)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコンを代表とする半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
例えば、自己整列トップゲート構造を有する酸化物薄膜のトランジスタを作製する技術が開示されている(特許文献1参照)。
また、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、またはμFEという場合がある)を高めた半導体装置が開示されている(特許文献2参照)。
特開2009−278115号公報 特開2014−7399号公報
酸化物半導体膜を有するトランジスタの構造としては、例えば、ボトムゲート構造またはトップゲート構造等が挙げられる。酸化物半導体膜を有するトランジスタを表示装置に適用する場合、トップゲート構造のトランジスタよりもボトムゲート構造のトランジスタの方が、作製工程が比較的簡単であり製造コストを抑えられるため、利用される場合が多い。
しかしながら、表示装置の画面の大型化、または表示装置の画質の高精細化(例えば、4k×2k(水平方向画素数=3840画素、垂直方向画素数=2160画素)または8k×4k(水平方向画素数=7680画素、垂直方向画素数=4320画素)に代表される高精細な表示装置)が進むと、ボトムゲート構造のトランジスタでは、ゲート電極とソース電極及びドレイン電極との間の寄生容量があるため、該寄生容量によって信号遅延等が大きくなり、表示装置の画質が劣化するという問題があった。そこで、酸化物半導体膜を有するトップゲート構造のトランジスタについて、安定した半導体特性及び高い信頼性を有する構造の開発が望まれている。
上記問題に鑑み、本発明の一態様は、酸化物半導体を有するトランジスタにおいて、電気特性の変動を抑制すると共に、信頼性を向上させることを課題の1つとする。または、本発明の一態様は、酸化物半導体を有するトップゲート構造のトランジスタを提供することを課題の1つとする。または、本発明の一態様は、酸化物半導体を有するオン電流が大きいトランジスタを提供することを課題の1つとする。または、本発明の一態様は、酸化物半導体を有するオフ電流が小さいトランジスタを提供することを課題の1つとする。または、本発明の一態様は、消費電力が低減された半導体装置を提供することを課題の1つとする。または、本発明の一態様は、新規な半導体装置を提供することを課題の1つとする。
なお、上記の課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細書等の記載から自ずと明らかになるものであり、明細書等の記載から上記以外の課題を抽出することが可能である。
本発明の一態様は、トランジスタを有する半導体装置であって、トランジスタは、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸化物半導体膜と、酸化物半導体膜上の第2の絶縁膜と、第2の絶縁膜上の第2のゲート電極と、酸化物半導体膜、及び第2のゲート電極上の第3の絶縁膜と、を有し、酸化物半導体膜は、第2のゲート電極と重なるチャネル領域と、第3の絶縁膜と接するソース領域と、第3の絶縁膜と接するドレイン領域と、を有し、第1のゲート電極と第2のゲート電極とは、電気的に接続され、トランジスタの飽和領域における電界効果移動度を測定した際に、電界効果移動度の最小値と、電界効果移動度の最大値との差が15cm/Vs以内である。
上記態様において、電界効果移動度は、第1のゲート電極及び第2のゲート電極に印加される電圧を3V以上10V以下の範囲とし、且つドレイン領域に印加される電圧を10V以上20V以下の範囲とした際に測定されると好ましい。
また、上記態様において、酸化物半導体膜は、Inと、M(MはAl、Ga、Y、またはSn)と、Znと、を有すると好ましい。
また、上記態様において、In、M、及びZnの原子数比は、In:M:Zn=4:2:3近傍であり、Inが4の場合、Mが1.5以上2.5以下であり、且つZnが2以上4以下であると好ましい。
また、本発明の他の一態様は、上記各態様のいずれか一つに記載の半導体装置と表示素子とを有する表示装置である。また、本発明の他の一態様は、該表示装置とタッチセンサとを有する表示モジュールである。また、本発明の他の一態様は、上記各態様のいずれか一つに記載の半導体装置、上記表示装置、または上記表示モジュールと、操作キーまたはバッテリとを有する電子機器である。
本発明の一態様により、酸化物半導体を有するトランジスタにおいて、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、本発明の一態様により、酸化物半導体を有するトップゲート構造のトランジスタを提供することができる。または、本発明の一態様により、酸化物半導体を有するオン電流が大きいトランジスタを提供することができる。または、本発明の一態様により、酸化物半導体を有するオフ電流が小さいトランジスタを提供することができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
トランジスタのId−Vg特性を説明する図。 トランジスタのId−Vg特性及びId−Vd特性を説明する図。 GCAを基に計算されたId−Vg特性と移動度曲線(線形・飽和)を説明する図。 トランジスタを説明する上面図及び断面図。 トランジスタの実効チャネル長の概念を説明する模式図。 ドナー密度を説明する模式図。 Id−Vg特性を説明する図。 Id−Vg特性を説明する図。 界面準位密度の計算結果を説明する図。 Id−Vg特性を説明する図。 移動度曲線の形状を説明する図。 移動度曲線の計算結果を説明する図。 sDOSの結果を説明する図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 半導体装置を説明する断面図。 バンド構造を説明する図。 酸化物半導体の原子数比の範囲を説明する図。 InMZnOの結晶を説明する図。 酸化物半導体をチャネル領域に用いるトランジスタにおけるエネルギーバンドを説明する図。 酸化物半導体膜の断面TEM像、及び断面HR−TEM像を説明する図。 酸化物半導体膜の断面TEM像、及び断面HR−TEM像を説明する図。 酸化物半導体膜の断面TEM像、及び断面HR−TEM像を説明する図。 酸化物半導体膜のXRD測定結果、及び電子線回折パターンを説明する図。 酸化物半導体膜のXRD測定結果、及び電子線回折パターンを説明する図。 酸化物半導体膜のXRD測定結果、及び電子線回折パターンを説明する図。 電子線回折パターンを説明する図。 電子線回折パターンのラインプロファイルを説明する図。 電子線回折パターンのラインプロファイル、ラインプロファイルの相対輝度R、及びラインプロファイルの半値幅を説明する概念図。 電子線回折パターン、及びラインプロファイルを説明する図。 酸化物半導体膜の電子線回折パターンから見積もった相対輝度を説明する図。 酸化物半導体膜の断面TEM像及び画像解析後の断面TEM像を説明する図。 酸化物半導体膜のSIMS測定結果を説明する図。 表示装置の一態様を示す上面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 EL層の作製方法を説明する断面図。 液滴吐出装置を説明する概念図。 表示装置の一態様を示す断面図。 表示装置の一態様を示す断面図。 半導体装置の断面を説明する図。 半導体装置の断面を説明する図。 表示装置を説明するブロック図及び回路図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するためのグラフおよび回路図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するためのブロック図、回路図および波形図。 本発明の一態様を説明するための回路図およびタイミングチャート。 本発明の一態様を説明するための回路図。 本発明の一態様を説明するための回路図。 表示モジュールを説明する図。 電子機器を説明する図。 電子機器を説明する図。 表示装置を説明する斜視図。 実施例におけるトランジスタのId−Vg特性を説明する図。 実施例におけるトランジスタのId−Vg特性を説明する図。 実施例におけるトランジスタのId−Vg特性を説明する図。 実施例におけるトランジスタのId−Vg特性を説明する図。 実施例におけるトランジスタのId−Vg特性を説明する図。 実施例におけるトランジスタのId−Vg特性を説明する図。 実施例におけるトランジスタのしきい値電圧を説明する図。
以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではないことを付記する。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル領域を有しており、チャネル領域を介してソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル領域とは、電流が主として流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低いときのドレイン電流を言う場合がある。
トランジスタのオフ電流は、Vgsに依存する場合がある。従って、トランジスタのオフ電流がI以下である、とは、トランジスタのオフ電流がI以下となるVgsの値が存在することを言う場合がある。トランジスタのオフ電流は、所定のVgsにおけるオフ状態、所定の範囲内のVgsにおけるオフ状態、または、十分に低減されたオフ電流が得られるVgsにおけるオフ状態、等におけるオフ電流を指す場合がある。
一例として、しきい値電圧Vthが0.5Vであり、Vgsが0.5Vにおけるドレイン電流が1×10−9Aであり、Vgsが0.1Vにおけるドレイン電流が1×10−13Aであり、Vgsが−0.5Vにおけるドレイン電流が1×10−19Aであり、Vgsが−0.8Vにおけるドレイン電流が1×10−22Aであるようなnチャネル型トランジスタを想定する。当該トランジスタのドレイン電流は、Vgsが−0.5Vにおいて、または、Vgsが−0.5V乃至−0.8Vの範囲において、1×10−19A以下であるから、当該トランジスタのオフ電流は1×10−19A以下である、と言う場合がある。当該トランジスタのドレイン電流が1×10−22A以下となるVgsが存在するため、当該トランジスタのオフ電流は1×10−22A以下である、と言う場合がある。
また、本明細書等では、チャネル幅Wを有するトランジスタのオフ電流を、チャネル幅Wあたりを流れる電流値で表す場合がある。また、所定のチャネル幅(例えば1μm)あたりを流れる電流値で表す場合がある。後者の場合、オフ電流の単位は、電流/長さの次元を持つ単位(例えば、A/μm)で表される場合がある。
トランジスタのオフ電流は、温度に依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、室温、60℃、85℃、95℃、または125℃におけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一の温度)におけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、室温、60℃、85℃、95℃、125℃、当該トランジスタが含まれる半導体装置の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一の温度)、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを指す場合がある。
トランジスタのオフ電流は、ドレインとソースの間の電圧Vdsに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vdsが0.1V、0.8V、1V、1.2V、1.8V、2.5V,3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置等において使用されるVdsにおけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、Vdsが0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、20V、当該トランジスタが含まれる半導体装置の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置等において使用されるVds、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを指す場合がある。
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。
また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。
また、本明細書等において、トランジスタのしきい値電圧とは、トランジスタにチャネルが形成されたときのゲート電圧(Vg)を指す。具体的には、トランジスタのしきい値電圧とは、ゲート電圧(Vg)を横軸に、ドレイン電流(Id)の平方根を縦軸にプロットした曲線(Vg−√Id特性)において、最大傾きである接線を外挿したときの直線と、ドレイン電流(Id)の平方根が0(Idが0A)との交点におけるゲート電圧(Vg)を指す場合がある。あるいは、トランジスタのしきい値電圧とは、チャネル長をL、チャネル幅をWとし、Id[A]×L[μm]/W[μm]の値が1×10−9[A]となるゲート電圧(Vg)を指す場合がある。
また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が十分に低い場合は、「絶縁体」としての特性を有する場合がある。また、「半導体」と「絶縁体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書等に記載の「半導体」は、「絶縁体」に言い換えることが可能な場合がある。同様に、本明細書等に記載の「絶縁体」は、「半導体」に言い換えることが可能な場合がある。または、本明細書等に記載の「絶縁体」を「半絶縁体」に言い換えることが可能な場合がある。
また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が十分に高い場合は、「導電体」としての特性を有する場合がある。また、「半導体」と「導電体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書等に記載の「半導体」は、「導電体」に言い換えることが可能な場合がある。同様に、本明細書等に記載の「導電体」は、「半導体」に言い換えることが可能な場合がある。
また、本明細書等において、半導体の不純物とは、半導体膜を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、半導体にDOS(Density of States)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体を有する場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンを有する場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
また、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
酸化物半導体または金属酸化物の結晶構造の一例について説明する。なお、以下では、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリング法にて成膜された酸化物半導体を一例として説明する。上記ターゲットを用いて、基板温度を100℃以上130℃以下として、スパッタリング法により形成した酸化物半導体をsIGZOと呼称し、上記ターゲットを用いて、基板温度を室温(R.T.)として、スパッタリング法により形成した酸化物半導体をtIGZOと呼称する。例えば、sIGZOは、nc(nano crystal)及びCAACのいずれか一方または双方の結晶構造を有する。また、tIGZOは、ncの結晶構造を有する。なお、ここでいう室温(R.T.)とは、基板を意図的に加熱しない場合の温度を含む。
また、本明細書等において、CAC−OSまたはCAC−metal oxideとは、材料の一部では導電体の機能と、材料の一部では誘電体(または絶縁体)の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電体は、キャリアとなる電子(またはホール)を流す機能を有し、誘電体は、キャリアとなる電子を流さない機能を有する。導電体としての機能と、誘電体としての機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、本明細書等において、CAC−OSまたはCAC−metal oxideは、導電体領域、及び誘電体領域を有する。導電体領域は、上述の導電体の機能を有し、誘電体領域は、上述の誘電体の機能を有する。また、材料中において、導電体領域と、誘電体領域とは、ナノ粒子レベルで分離している場合がある。また、導電体領域と、誘電体領域とは、それぞれ材料中に偏在する場合がある。また、導電体領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
また、CAC−OSまたはCAC−metal oxideにおいて、導電体領域と、誘電体領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
(実施の形態1)
本実施の形態においては、本発明の一態様の半導体装置について、図1乃至図22を用いて説明を行う。
本発明の一態様は、トランジスタを有する半導体装置であって、トランジスタは、第1のゲート電極と、第1のゲート電極上の第1の絶縁膜と、第1の絶縁膜上の酸化物半導体膜と、酸化物半導体膜上の第2の絶縁膜と、第2の絶縁膜上の第2のゲート電極と、酸化物半導体膜、及び第2のゲート電極上の第3の絶縁膜と、を有し、酸化物半導体膜は、第2のゲート電極と重なるチャネル領域と、第3の絶縁膜と接するソース領域と、第3の絶縁膜と接するドレイン領域と、を有し、第1のゲート電極と第2のゲート電極とは、電気的に接続される。
また、上記トランジスタの飽和領域における、電界効果移動度の最小値と、電界効果移動度の最大値との差が15cm/Vs以内である。
上記の構成を別言すると、本発明の一態様の半導体装置は、チャネル領域に酸化物半導体膜を有するトランジスタであって、当該トランジスタの飽和領域における、電界効果移動度の変動が極めて少ない。このような半導体装置を、例えば有機ELディスプレイの画素のトランジスタに用いることで、高い信頼性を付与することができる。
<1−1.トランジスタの特性について>
初めにトランジスタの一般的な特性について、図2及び図3を用いて説明を行う。
[トランジスタのId−Vg特性]
まず、トランジスタのドレイン電流−ゲート電圧特性(Id−Vg特性)について説明する。図2(A)はトランジスタのId−Vg特性の一例を説明する図である。なお、図2(A)において、理解を簡単にするためにトランジスタの活性層には、多結晶シリコンを用いた場合を想定している。また、図2(A)において、縦軸がIdを横軸がVgをそれぞれ表す。
図2(A)に示すように、Id−Vg特性は、大きく分けて3つの領域に分けられる。1つ目の領域をオフ領域(OFF region)と、2つ目の領域をサブスレッショルド領域(subthreshold region)と、3つ目の領域をオン領域(ON rigion)と、それぞれ呼称する。また、サブスレッショルド領域とオン領域との境界のゲート電圧をしきい値電圧(Vth)と呼称する。
トランジスタの特性としては、オフ領域のドレイン電流(オフ電流またはIoffともいう)が低く、オン領域のドレイン電流(オン電流またはIonともいう)が高い方が望ましい。なお、トランジスタのオン電流については、電界効果移動度を指標とする場合が多い。電界効果移動度の詳細については後述する。
また、トランジスタを低い電圧で駆動させるためには、サブスレッショルド領域でのId−Vg特性の傾きが急峻である方が望ましい。サブスレッショルド領域のId−Vg特性の変化の大きさを表わす指標として、SS(subthreshold swing)またはS値などと呼称される。なお、S値は、以下の式(1)で表される。
S値は、サブスレッショルド領域において、ドレイン電流が1桁変化するのに必要なゲート電圧の変化量の最小値である。S値が小さいほど、オンとオフとのスイッチング動作を急峻に行うことができる。
[トランジスタのId−Vd特性]
次に、トランジスタのドレイン電流−ドレイン電圧特性(Id−Vd特性)について説明する。図2(B)はトランジスタのId−Vd特性の一例を説明する図である。また、図2(B)において、縦軸がIdを横軸がVdをそれぞれ表す。
図2(B)に示すように、オン領域は、さらに2つの領域に分けられる。1つ目の領域を線形領域(Linear region)と、2つ目の領域を飽和領域(Saturation region)と、それぞれ呼称する。線形領域は、ドレイン電流がドレイン電圧の上昇に伴って放物線状に大きくなる。一方で飽和領域は、ドレイン電圧が変化してもドレイン電流が大きく変化しない。なお、真空管に準じて、線形領域を3極管領域と、飽和領域を5極管領域と、それぞれ呼称する場合がある。
また、線形領域とは、Vdに対してVgが大きい(Vd<Vg)状態を指す場合がある。また、飽和領域とは、Vgに対してVdが大きい(Vg<Vd)状態を指す場合がある。ただし、実際には、トランジスタのしきい値電圧を考慮する必要がある。よって、Vgからトランジスタのしきい値電圧を差分した値がVdに対して大きい状態(Vd<Vg−Vth)を線形領域とする場合がある。同様に、Vgからトランジスタのしきい値電圧を差分した値がVdに対して小さい状態(Vg−Vth<Vd)を飽和領域とする場合がある。
トランジスタのId−Vd特性において、飽和領域の電流が一定であるような特性を、「飽和性が良い」と表現する場合がある。トランジスタの飽和性の良さは、特に有機ELディスプレイへの応用で重要である。例えば、飽和性が良いトランジスタを有機ELディスプレイの画素のトランジスタに用いることで、ドレイン電圧が変化しても画素の明るさの変化を抑制することができる。
[ドレイン電流の解析モデル]
次に、ドレイン電流の解析モデルについて説明する。ドレイン電流の解析モデルとしては、Gradual channel近似(GCA)に基づくドレイン電流の解析式が知られている。GCAに基づくとトランジスタのドレイン電流は、以下の式(2)で表される。
数式(2)において、上が線形領域におけるドレイン電流の式であり、下が飽和領域におけるドレイン電流の式である。
[電界効果移動度]
次に、電界効果移動度について説明する。トランジスタの電流駆動力の指標として、電界効果移動度が用いられる。上述したように、トランジスタのオン領域は線形領域と飽和領域に分かれる。それぞれの領域の特性から、GCAに基づくドレイン電流の解析式に基づいてトランジスタの電界効果移動度を算出することができる。区別する必要のあるときは、それぞれ線形移動度(Linear mobility)、飽和移動度(Saturation mobility)と呼ばれる。線形移動度は、以下の式(3)で表され、飽和移動度は、以下の式(4)で表される。
本明細書等においては、式(3)及び式(4)から算出される曲線を、移動度曲線と呼称する。図3に、GCAに基づくドレイン電流の解析式から計算した移動度曲線を示す。なお、図3は、トランジスタのId−Vg特性に対して、線形移動度及び飽和移動度の移動度曲線を、それぞれ重ねて示している。
図3においては、GCAに基づくドレイン電流の解析式からId−Vg特性を計算している。移動度曲線の形状は、トランジスタの内部の様子を理解するための手がかりとなる。
例えば、図3に示す飽和移動度の曲線の形状に着目する。トランジスタのキャリア(電子または正孔)は、ゲート電圧が増加することで、電界により加速されエネルギーを得る。よって、キャリアは電界によって一定のエネルギーを得るため、飽和移動度は増加する。ただし、キャリアは、電界によって無限に加速されることはなく、熱振動する格子間原子、またはイオン化した不純物原子などに衝突することによってエネルギーを失うため、飽和移動度が徐々に減少する。
<1−2.特性評価用のトランジスタの作製>
次に、本発明の一態様のトランジスタの構造について説明を行い、その後当該トランジスタを作製し、トランジスタの電気特性を評価した結果について説明する。
[トランジスタの構成例1]
図4(A)は、トランジスタ100Aの上面図であり、図4(B)は図4(A)の一点鎖線X1−X2間の断面図であり、図4(C)は図4(A)の一点鎖線Y1−Y2間の断面図である。なお、図4(A)では、明瞭化のため、絶縁膜110などの構成要素を省略して図示している。なお、トランジスタの上面図においては、以降の図面においても図4(A)と同様に、構成要素の一部を省略して図示する場合がある。また、一点鎖線X1−X2方向をチャネル長(L)方向、一点鎖線Y1−Y2方向をチャネル幅(W)方向と呼称する場合がある。
図4(A)(B)(C)に示すトランジスタ100Aは、基板102上の導電膜106と、導電膜106上の絶縁膜104と、絶縁膜104上の酸化物半導体膜108と、酸化物半導体膜108上の絶縁膜110と、絶縁膜110上の導電膜112と、絶縁膜104、酸化物半導体膜108、及び導電膜112上の絶縁膜116と、を有する。なお、酸化物半導体膜108は、導電膜112と重なるチャネル領域108iと、絶縁膜116と接するソース領域108sと、絶縁膜116と接するドレイン領域108dと、を有する。
また、絶縁膜116は、窒素または水素を有する。絶縁膜116と、ソース領域108s及びドレイン領域108dと、が接することで、絶縁膜116中の窒素または水素がソース領域108s及びドレイン領域108d中に添加される。ソース領域108s及びドレイン領域108dは、窒素または水素が添加されることで、キャリア密度が高くなる。
また、トランジスタ100Aは、絶縁膜116上の絶縁膜118と、絶縁膜116、118に設けられた開口部141aを介して、ソース領域108sに電気的に接続される導電膜120aと、絶縁膜116、118に設けられた開口部141bを介して、ドレイン領域108dに電気的に接続される導電膜120bと、を有していてもよい。また、絶縁膜118、導電膜120a、及び導電膜120b上に絶縁膜122を有していてもよい。なお、図4(B)(C)においては、絶縁膜122を設ける構成を例示したが、これに限定されず、絶縁膜122を設けない構成としてもよい。
なお、本明細書等において、絶縁膜104を第1の絶縁膜と、絶縁膜110を第2の絶縁膜と、絶縁膜116を第3の絶縁膜と、絶縁膜118を第4の絶縁膜と、絶縁膜122を第5の絶縁膜と、それぞれ呼称する場合がある。また、絶縁膜104は、第1のゲート絶縁膜としての機能を有し、絶縁膜110は、第2のゲート絶縁膜としての機能を有する。また、絶縁膜116、118は保護絶縁膜としての機能を有し、絶縁膜122は平坦化絶縁膜としての機能を有する。
また、絶縁膜110は、過剰酸素領域を有する。絶縁膜110が過剰酸素領域を有することで、酸化物半導体膜108が有するチャネル領域108i中に過剰酸素を供給することができる。よって、チャネル領域108iに形成されうる酸素欠損を過剰酸素により補填することができるため、信頼性の高い半導体装置を提供することができる。
なお、酸化物半導体膜108中に過剰酸素を供給させるためには、酸化物半導体膜108の下方に形成される絶縁膜104に過剰酸素を供給してもよい。この場合、絶縁膜104中に含まれる過剰酸素は、酸化物半導体膜108が有するソース領域108s、及びドレイン領域108dにも供給されうる。ソース領域108s、及びドレイン領域108d中に過剰酸素が供給されると、ソース領域108s、及びドレイン領域108dの抵抗が高くなる場合がある。
一方で、酸化物半導体膜108の上方に形成される絶縁膜110に過剰酸素を有する構成とすることで、チャネル領域108iにのみ選択的に過剰酸素を供給させることが可能となる。あるいは、チャネル領域108i、ソース領域108s、及びドレイン領域108dに過剰酸素を供給させたのち、ソース領域108s及びドレイン領域108dのキャリア密度を選択的に高めることで、ソース領域108s、及びドレイン領域108dの抵抗が高くなることを抑制することができる。
また、酸化物半導体膜108が有するソース領域108s及びドレイン領域108dは、それぞれ、酸素欠損を形成する元素、または酸素欠損と結合する元素を有すると好ましい。当該酸素欠損を形成する元素、または酸素欠損と結合する元素としては、代表的には水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、チタン、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。上記酸素欠損を形成する元素が、絶縁膜116中に1つまたは複数含まれる場合、絶縁膜116からソース領域108s、及びドレイン領域108dに拡散する。および/または、上記酸素欠損を形成する元素は、不純物添加処理によりソース領域108s、及びドレイン領域108d中に添加される。
不純物元素が酸化物半導体膜に添加されると、酸化物半導体膜中の金属元素と酸素の結合が切断され、酸素欠損が形成される。または、不純物元素が酸化物半導体膜に添加されると、酸化物半導体膜中の金属元素と結合していた酸素が不純物元素と結合し、金属元素から酸素が脱離され、酸素欠損が形成される。これらの結果、酸化物半導体膜においてキャリア密度が増加し、導電性が高くなる。
また、導電膜106は、第1のゲート電極としての機能を有し、導電膜112は、第2のゲート電極としての機能を有し、導電膜120aは、ソース電極としての機能を有し、導電膜120bは、ドレイン電極としての機能を有する。
また、図4(C)に示すように、絶縁膜104、110には開口部143が設けられる。また、導電膜106は、開口部143を介して、導電膜112と、電気的に接続される。よって、導電膜106と導電膜112には、同じ電位が与えられる。なお、開口部143を設けずに、導電膜106と、導電膜112と、に異なる電位を与えてもよい。または、開口部143を設けずに、導電膜106を遮光膜として用いてもよい。例えば、導電膜106を遮光性の材料により形成することで、チャネル領域108iに照射される下方からの光を抑制することができる。
また、図4(B)(C)に示すように、酸化物半導体膜108は、第1のゲート電極として機能する導電膜106と、第2のゲート電極として機能する導電膜112のそれぞれと対向するように位置し、2つのゲート電極として機能する導電膜に挟まれている。
また、導電膜112のチャネル幅方向の長さは、酸化物半導体膜108のチャネル幅方向の長さよりも長く、酸化物半導体膜108のチャネル幅方向全体は、絶縁膜110を間に挟んで導電膜112に覆われている。また、導電膜112と導電膜106とは、絶縁膜104、及び絶縁膜110に設けられる開口部143において接続されるため、酸化物半導体膜108のチャネル幅方向の側面の一方は、絶縁膜110を間に挟んで導電膜112と対向している。
別言すると、トランジスタ100Aのチャネル幅方向において、導電膜106及び導電膜112は、絶縁膜104、及び絶縁膜110に設けられる開口部143において接続すると共に、絶縁膜104、及び絶縁膜110を間に挟んで酸化物半導体膜108を取り囲む構成である。
このような構成を有することで、トランジスタ100Aに含まれる酸化物半導体膜108を、第1のゲート電極として機能する導電膜106及び第2のゲート電極として機能する導電膜112の電界によって電気的に取り囲むことができる。トランジスタ100Aのように、第1のゲート電極及び第2のゲート電極の電界によって、チャネル領域が形成される酸化物半導体膜108を電気的に取り囲むトランジスタのデバイス構造をSurrounded channel(S−channel)構造と呼ぶことができる。
トランジスタ100Aは、S−channel構造を有するため、導電膜106または導電膜112によってチャネルを誘起させるための電界を効果的に酸化物半導体膜108に印加することができるため、トランジスタ100Aの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ100Aを微細化することが可能となる。また、トランジスタ100Aは、酸化物半導体膜108が、導電膜106、及び導電膜112によって取り囲まれた構造を有するため、トランジスタ100Aの機械的強度を高めることができる。
なお、トランジスタ100Aのチャネル幅方向において、酸化物半導体膜108の開口部143が形成されていない側に、開口部143と異なる開口部を形成してもよい。
[トランジスタの作製]
次に、上記説明したトランジスタ100Aに相当するトランジスタを作製し、当該トランジスタの電気特性を評価した。本実施の形態においては、以下に示す試料A1乃至A3を作製した。
なお、試料A1乃至試料A3は、それぞれ、チャネル長Lが2μm、チャネル幅Wが3μmのトランジスタが形成された試料である。また、試料A1及び試料A2が比較用のトランジスタが形成された試料であり、試料A3が本発明の一態様のトランジスタが形成された試料である。なお、試料A1乃至試料A3は、それぞれ酸化物半導体膜の成膜条件を変えて形成し、それ以外の工程については同じ作製方法とした。
[試料A1乃至A3の作製方法]
まず、ガラス基板上に厚さ10nmのチタン膜と、厚さ100nmの銅膜とを、スパッタリング装置を用いて形成した。続いて当該導電膜をフォトリソグラフィ法により加工した。
次に、基板及び導電膜上に絶縁膜を4層積層して形成した。絶縁膜は、プラズマ化学気相堆積(PECVD)装置を用いて、真空中で連続して形成した。絶縁膜は、下から厚さ50nmの窒化シリコン膜、厚さ300nmの窒化シリコン膜、厚さ50nmの窒化シリコン膜、厚さ50nmの酸化窒化シリコン膜をそれぞれ用いた。
次に、絶縁膜上に酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工することで、半導体層を形成した。酸化物半導体膜108としては、厚さ40nmの酸化物半導体膜を形成した。なお、試料A1乃至A3において、酸化物半導体膜の成膜条件がそれぞれ異なる。
試料A1の酸化物半導体膜は、基板温度を170℃として、流量140sccmのアルゴンガスと、流量60sccmの酸素ガスとをスパッタリング装置のチャンバー内に導入し、圧力を0.6Paとし、インジウムと、ガリウムと、亜鉛とを有する金属酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])に、2.5kWの交流電力を印加することで形成した。なお、成膜ガス全体に占める酸素の割合から、「酸素流量比」と記載する場合がある。試料A1の酸化物半導体膜の成膜時における酸素流量比は30%である。
試料A2の酸化物半導体膜は、基板温度を130℃として、流量180sccmのアルゴンガスと、流量20sccmの酸素ガスとをスパッタリング装置のチャンバー内に導入し、圧力を0.6Paとし、インジウムと、ガリウムと、亜鉛とを有する金属酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])に、2.5kWの交流電力を印加することで形成した。なお、試料A2の酸化物半導体膜の成膜時における酸素流量比は10%である。
試料A3の酸化物半導体膜は、基板温度を室温(R.T.)として、流量180sccmのアルゴンガスと、流量20sccmの酸素ガスとをスパッタリング装置のチャンバー内に導入し、圧力を0.6Paとし、インジウムと、ガリウムと、亜鉛とを有する金属酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])に、2.5kWの交流電力を印加することで形成した。なお、試料A3の酸化物半導体膜の成膜時における酸素流量比は10%である。
次に、絶縁膜及び酸化物半導体層上に、絶縁膜を形成した。絶縁膜としては、厚さ150nmの酸化窒化シリコン膜を、PECVD装置を用いて形成した。
次に、熱処理を行った。当該熱処理としては、窒素と酸素との混合ガス雰囲気下で、350℃ 1時間の熱処理とした。
次に、絶縁膜の所望の領域に開口部を形成した。開口部の形成方法としては、ドライエッチング法を用いた。
次に、開口部を覆うように絶縁膜上に厚さ100nmの酸化物半導体膜を形成し、当該酸化物半導体膜を島状に加工することで、導電膜を形成した。また、導電膜を形成後、続けて、導電膜の下側に接する絶縁膜を加工することで、絶縁膜を形成した。
導電膜としては、厚さ10nmの酸化物半導体膜と、厚さ50nmの窒化チタン膜と、厚さ100nmの銅膜とを順に形成した。なお、酸化物半導体膜の成膜条件としては、基板温度を170℃として、流量200sccmの酸素ガスをスパッタリング装置のチャンバー内に導入し、圧力を0.6Paとし、インジウムと、ガリウムと、亜鉛とを有する金属酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])に、2.5kWの交流電力を印加すること形成した。また、窒化チタン膜及び銅膜としては、スパッタリング装置を用いて形成した。
次に、酸化物半導体膜、絶縁膜、及び導電膜上からプラズマ処理を行った。当該プラズマ処理としては、PECVD装置を用い、基板温度を220℃とし、アルゴンガスと窒素ガスとの混合ガス雰囲気下で行った。
次に、酸化物半導体膜、絶縁膜、及び導電膜上に絶縁膜を形成した。絶縁膜としては、厚さ100nmの窒化シリコン膜及び厚さ300nmの酸化窒化シリコン膜を、PECVD装置を用いて積層して形成した。
次に、形成した絶縁膜上にマスクを形成し、当該マスクを用いて絶縁膜に開口部を形成した。
次に、開口部を充填するように、導電膜を形成し、当該導電膜を島状に加工することで、ソース電極及びドレイン電極なる導電膜を形成した。当該導電膜としては、厚さ10nmのチタン膜と、厚さ100nmの銅膜とを、スパッタリング装置を用いて、それぞれ形成した。
次に、絶縁膜、及び導電膜上に絶縁膜を形成した。絶縁膜としては、厚さ1.5μmのアクリル系の感光性樹脂を用いた。
以上のようにして、試料A1乃至試料A3を作製した。
[トランジスタのId−Vg特性]
次に、上記作製した試料A1乃至試料A3のトランジスタのId−Vg特性を測定した。なお、トランジスタのId−Vg特性の測定条件としては、第1のゲート電極として機能する導電膜に印加する電圧(以下、ゲート電圧(Vg)ともいう)、及び第2のゲート電極として機能する導電膜に印加する電圧(以下、バックゲート電圧(Vbg)ともいう)を、−10Vから+10Vまで0.25Vのステップで印加した。また、ソース電極として機能する導電膜に印加する電圧(以下、ソース電圧(Vs)ともいう)を0V(comm)とし、ドレイン電極として機能する導電膜に印加する電圧(以下、ドレイン電圧(Vd)ともいう)を、0.1V及び20Vとした。
図1(A)(B)(C)に、試料A1、試料A2、及び試料A3のId−Vg特性結果をそれぞれ示す。なお、図1(A)(B)(C)において、第1縦軸がId(A)を、第2縦軸が電界効果移動度(μFE(cm/Vs))を、横軸がVg(V)を、それぞれ表す。なお、電界効果移動度については、Vdを20Vで測定した際の値である。
図1(A)(B)(C)に示すように、酸化物半導体膜の成膜条件を変えることで、トランジスタのId−Vg特性に異なる傾向が確認される。特に、トランジスタの電界効果移動度の移動度曲線の形状に差異が確認される。
図1(A)(B)(C)に示す試料A1乃至試料A3の移動度曲線の形状から、トランジスタの飽和領域における電界効果移動度の最小値、最大値、及び最大値から最小値を差分した結果を算出した。なお、ここでは、トランジスタの飽和領域としては、Vgが3V以上10V以下の範囲とした。当該範囲は、ディスプレイなどの用途において、よく用いられるゲート電圧となる。
試料A1においてはトランジスタの飽和領域における、電界効果移動度の最小値が9.8cm/Vsであり、最大値が28.3cm/Vsであった。すなわち、試料A1のトランジスタの飽和領域における、電界効果移動度の最小値と、電界効果移動度の最大値との差が18.5cm/Vsであった。また、試料A2においてはトランジスタの飽和領域における、電界効果移動度の最小値が23.3cm/Vsであり、最大値が51.1cm/Vsであった。すなわち、試料A2のトランジスタの飽和領域における、電界効果移動度の最小値と、電界効果移動度の最大値との差が27.8cm/Vsであった。また、試料A3においてはトランジスタの飽和領域における、電界効果移動度の最小値が55.8cm/Vsであり、最大値が67.0cm/Vsであった。すなわち、試料A3のトランジスタの飽和領域における、電界効果移動度の最小値と、電界効果移動度の最大値との差が11.2cm/Vsであった。
別言すると、試料A1は、トランジスタの飽和領域における電界効果移動度の最小値が、電界効果移動度の最大値に対し、概ね65.3%低い。また、試料A2は、トランジスタの飽和領域における電界効果移動度の最小値が、電界効果移動度の最大値に対し、概ね54.4%低い。また、試料A3は、トランジスタの飽和領域における電界効果移動度の最小値が、電界効果移動度の最大値に対し、概ね16.7%低い。このように、本発明の一態様のトランジスタが形成された試料A3は、トランジスタの飽和領域における電界効果移動度の最小値が、電界効果移動度の最大値に対し、好ましくは30%以下、さらに好ましくは20%以下の特性を有する。
このように、本発明の一態様のトランジスタが形成された試料A3は、トランジスタの飽和領域における電界効果移動度の最小値と、電界効果移動度の最大値との差が15cm/Vs以内と極めて少ない特性である。また、試料A3は、低Vg(例えば、Vgが0Vを超えて5V以内)領域において、高い電界効果移動度を有する。このような特性のトランジスタを、例えば有機ELディスプレイの画素のトランジスタに用いることで、高い電流駆動能力と、高い信頼性とを付与することができる。
<1−3.デバイスシミュレーションによる移動度曲線の形状の評価>
次に、図1(A)(B)(C)に示すトランジスタの電界効果移動度の移動度曲線の形状に差異が確認されたため、移動度曲線の形状をデバイスシミュレーションにより評価した。
なお、デバイスシミュレーションでは、移動度曲線の形状を決定する要因として、1.移動度の温度依存性、2.チャネル領域のドナー密度分布、3.酸化物半導体膜中の浅い欠陥準位密度の3つの要因を仮定した。
[1.移動度の温度依存性]
酸化物半導体膜を用いたトランジスタは、自己発熱により電界効果移動度が急激に上昇する。酸化物半導体膜の電子移動度(μ)の温度依存性は、以下に示す数式(5)で表される。
式(5)において、μ300は酸化物半導体膜の室温での電子移動度を、Tは格子温度を、それぞれ表している。式(5)に示すように、酸化物半導体膜を用いたトランジスタの電界効果移動度は、温度Tの概略1.5乗に比例して上昇する。
[2.チャネル領域のドナー密度分布]
上記作製した試料A1乃至A3のトランジスタは、酸化物半導体膜の成膜条件が異なるため、チャネル領域のドナー密度分布が異なる。別言すると、試料A1乃至A3のトランジスタは、実効チャネル長が異なる。
ここで、試料A1乃至試料A3のトランジスタの実効チャネル長について、図5を用いて説明する。
図5は、トランジスタの実効チャネル長の概念を説明する模式図である。
図5において、GEがゲート電極を、GIがゲート絶縁膜を、OSが酸化物半導体膜を、それぞれ表している。また、酸化物半導体膜中には、n型領域が形成されている。トランジスタの実効チャネル長(Leff)は、以下に示す式(6)で表される。
数式(6)において、Lがゲート長を、ΔLがチャネル長の縮小幅を、それぞれ表す。
なお、トランジスタの実効チャネル長については、例えば、TLM(Transmission Line Model)解析から求めることができる。
また、以下の説明においては、上述した実効チャネル長を基に、n型領域からチャネル領域にかけてドナー密度が徐々に減少するモデルを仮定した。つまり、ドナーがチャネル領域に向かってガウス分布に従って減少する。試料A1乃至試料A3におけるドナー密度を説明する模式図を図6(A)(B)(C)に示す。なお、図6(A)が試料A1のドナー密度を、図6(B)が試料A2のドナー密度を、図6(C)が試料A3のドナー密度を、それぞれ説明する図である。
図6(A)(B)(C)において、GEがゲート電極を、GIがゲート絶縁膜を、OSが酸化物半導体膜を、それぞれ表す。また、図6(A)(B)(C)に示す酸化物半導体膜において、ドナー密度が5×1018cm−3以上の領域を灰色で表し、ドナー密度が1×1016cm−3以下の領域を黒色で表す。
図6(A)(B)(C)に示す結果より、試料A1の実効チャネル長は2.0μmと見積もられ、試料A2の実効チャネル長は1.2μmと見積もられ、試料A3の実効チャネル長は0.8μmと見積もられた。別言すると、試料A1のΔLは0μmと見積もられ、試料A2のΔLは0.4μmと見積もられ、試料A3のΔLは0.6μmと見積もられた。
[3.酸化物半導体膜中の浅い欠陥準位密度]
次に、酸化物半導体膜中の浅い欠陥準位密度(sDOSともいう)について説明を行う。酸化物半導体膜のsDOSは、酸化物半導体膜を用いたトランジスタの電気特性から見積もることができる。以下ではトランジスタの界面準位の密度を評価し、その界面準位の密度に加え、界面準位にトラップされる電子数Ntrapを考慮した場合において、サブスレッショルドリーク電流を予測する方法について説明する。
界面準位にトラップされる電子数Ntrapは、例えば、トランジスタのドレイン電流−ゲート電圧(Id−Vg)の実測と、ドレイン電流−ゲート電圧(Id−Vg)特性の計算値とを比較することによって、評価することができる。
図7に、ソース電圧Vs=0V、ドレイン電圧Vd=0.1Vにおける、計算によって得られた理想的なId−Vg特性と、トランジスタにおける実測のId−Vg特性と、を示す。なお、トランジスタの測定結果のうち、ドレイン電流Idの測定が容易な1×10−13A以上の値のみプロットした。
計算で求めた理想的なId−Vg特性と比べて、実測のId−Vg特性はゲート電圧Vgに対するドレイン電流Idの変化が緩やかとなる。これは、伝導帯下端のエネルギー(Ecと表記する。)の近くに位置する浅い界面準位に電子がトラップされたためと考えられる。ここでは、フェルミ分布関数を用いて、浅い界面準位へトラップされる(単位面積、単位エネルギーあたりの)電子数Ntrapを考慮することで、より厳密に界面準位の密度Nitを見積もることができる。
まず、図8に示す模式的なId−Vg特性を用いて界面トラップ準位にトラップされる電子数Ntrapの評価方法について説明する。破線は計算によって得られるトラップ準位のない理想的なId−Vg特性を示す。また、破線において、ドレイン電流がId1からId2に変化するときのゲート電圧Vgの変化をΔVidとする。また、実線は、実測のId−Vg特性を示す。実線において、ドレイン電流がId1からId2に変化するときのゲート電圧Vgの変化をΔVexとする。ドレイン電流がId1、Id2のときの着目する界面における電位はそれぞれφit1、φit2とし、その変化量をΔφitとする。
図8において、実測は計算よりも傾きが小さいため、ΔVexは常にΔVidよりも大きいことがわかる。このとき、ΔVexとΔVidの差が、浅い界面準位に電子をトラップすることに要した電位差を表す。したがって、トラップされた電子による電荷の変化量ΔQtrapは以下の式(7)で表すことができる。
tgは面積当たりの絶縁体と半導体の合成容量となる。また、ΔQtrapは、トラップされた(単位面積、単位エネルギーあたりの)電子数Ntrapを用いて、式(8)で表すこともできる。なお、qは電気素量である。
式(7)と式(8)とを連立させることで式(9)を得ることができる。
次に、式(9)のΔφitについてゼロの極限を取ることで、式(10)を得ることができる。
即ち、理想的なId−Vg特性、実測のId−Vg特性および式(10)を用いて、界面においてトラップされた電子数Ntrapを見積もることができる。なお、ドレイン電流との界面における電位の関係については、上述のデバイスシミュレータを用いた計算によって求めることができる。
また、単位面積、単位エネルギーあたりの電子数Ntrapと界面準位の密度Nitは式(11)のような関係にある。
ここで、f(E)はフェルミ分布関数である。式(10)から得られたNtrapを式(11)でフィッティングすることで、Nitは決定される。このNitを設定したデバイスシミュレータを用いた計算により、Id<0.1pAを含む伝達特性を得ることができる。
次に、図7に示す実測のId−Vg特性に式(10)を適用し、Ntrapを抽出した結果を図9に白丸印で示す。ここで、図9の縦軸は半導体の伝導帯下端EcからのフェルミエネルギーEfである。破線を見るとEcのすぐ下の位置に極大値となっている。式(11)のNitとして、式(12)のテール分布を仮定すると図9の破線のように非常に良くNtrapをフィッティングでき、フィッティングパラメータとして、ピーク値Nta=1.67×1013cm−2eV−1、特性幅Wta=0.105eVが得られた。
次に、得られた界面準位のフィッティング曲線を、デバイスシミュレータを用いた計算にフィードバッグすることにより、Id−Vg特性を逆算した結果を図10に示す。図10(A)に、ドレイン電圧Vdが0.1Vおよび1.8Vの場合の計算によって得られたId−Vg特性と、ドレイン電圧Vdが0.1Vの場合及び1.8Vの場合のトランジスタにおける実測のId−Vg特性とを示す。また、図10(B)は、図10(A)のドレイン電流Idを対数としたグラフである。
計算により得られた曲線と、実測値のプロットはほぼ一致しており、計算値と測定値とで高い再現性を有することが分かる。したがって、浅い欠陥準位密度を算出する方法として、上記の方法が十分に妥当であることが分かる。
[移動度曲線の計算結果]
上述した酸化物半導体膜中のsDOSは、電界効果移動度の移動度曲線に影響を与える。特に、しきい値電圧近傍では、sDOSに電子がトラップされ移動度曲線の形状が変わる。酸化物半導体膜中のsDOSは、式(12)中のNtaとWtaと、酸化物半導体膜の厚さ(tOS)との積で表される。そこで、上述した式(12)を基に、移動度曲線の計算を行った。計算に用いたパラメータを表1に示す。
なお、本実施の形態においては、Wtaの値を変えた場合の移動度曲線について計算した。Wtaの値を変えた場合の移動度曲線の形状を図11に示す。なお、図11において、Nta=2.5×1019cm−3eV−1とし、ΔL=0とした。また、Wtaを0.015eV、0.02eV、0.025eV、0.03eV、0.035eV、0.04eV、及び0.045eVの7つの条件とした。
図11に示すように、Wtaの値が小さい、すなわちsDOSのエネルギー幅が狭いほど、移動度曲線の立ち上がりが急峻となることがわかる。また、sDOSのエネルギー幅が狭いほど、移動度曲線のピーク値が高Vg側から低Vg側にシフトし、且つピーク値が低下していることが分かる。
次に、図6(A)(B)(C)に示す試料A1乃至試料A3のドナー密度分布と、図11に示す移動度曲線の形状を基に、試料A1乃至試料A3に相当するモデルの移動度曲線の形状について計算を行った。移動度曲線の計算結果を図12に示す。
図12は、試料A1乃至試料A3に相当するモデルの移動度曲線の計算結果である。なお、試料A1では、Nta=3.0×1019cm−3eV−1とし、ΔL=0とし、Wtaを0.045eVとした。また、試料A2では、Nta=3.0×1019cm−3eV−1とし、ΔL=0.4μmとし、Wtaを0.035eVとした。試料A3では、Nta=2.5×1019cm−3eV−1とし、ΔL=0.6μmとし、Wtaを0.025eVとした。
図12に示す結果は、図1(A)(B)(C)に示す試料A1乃至試料A3の移動度曲線の形状を概ね反映した結果であると考えられる。
このように、トランジスタの電界効果移動度の移動度曲線の形状としては、sDOSの影響が大きいことが示唆された。よって、先に説明した試料A1乃至A3は、酸化物半導体膜中のsDOSの値が異なる可能性がある。
そこで、試料A1乃至A3の酸化物半導体膜中のsDOSを評価するために、試料B1乃至試料B3を作製した。試料B1乃至B3は、トランジスタのサイズが異なるのみで、それぞれ試料A1乃至A3と同じ作製方法とした。
試料B1乃至試料B3のsDOSの結果を図13に示す。なお、試料B1乃至B3のトランジスタのサイズとしては、L/W=6/50μmとした。
図13に示すように、試料B1、試料B2、試料B3の順に酸化物半導体膜中のsDOSが多い結果となった。すなわち、試料A1、試料A2、試料A3の順に酸化物半導体膜中のsDOSが多い結果であり、先に示すデバイスシミュレーションの結果が妥当であることがわかる。
また、試料B1乃至試料B3のいずれの試料においても、sDOSのピーク値が、5×1012cm−2eV−1未満となり、sDOSが極めて低い試料であることがわかる。なお、酸化物半導体膜中のsDOSのピーク値としては、好ましくは2.5×1012cm−2eV−1未満、より好ましくは1.5×1012cm−2eV−1未満、さらに好ましくは1.0×1012cm−2eV−1未満である。
このように、酸化物半導体膜中のsDOSを低減することで、移動度曲線の立ち上がりを急峻にすることができる。また、酸化物半導体膜中のsDOSを低減することで、高Vg側の移動度曲線のピーク値を低Vg側にシフトさせ、ピーク値を小さくすることができる。すなわち、酸化物半導体膜中のsDOSを低減することで、酸化物半導体膜を有するトランジスタの電界効果移動度の移動度曲線の立ち上がりを急峻にでき、且つ移動度曲線の飽和性を高めることができる。
<1−4.トランジスタの構成要素>
次に、図4(A)(B)(C)に示すトランジスタの構成要素の詳細について説明する。
[基板]
基板102としては、作製工程中の熱処理に耐えうる程度の耐熱性を有する材料を用いることができる。
具体的には、無アルカリガラス、ソーダ石灰ガラス、カリガラス、クリスタルガラス、石英またはサファイア等を用いることができる。また、無機絶縁膜を用いてもよい。当該無機絶縁膜としては、例えば、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等が挙げられる。
また、上記無アルカリガラスとしては、例えば、0.2mm以上0.7mm以下の厚さとすればよい。または、無アルカリガラスを研磨することで、上記の厚さとしてもよい。
また、無アルカリガラスとして、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の面積が大きなガラス基板を用いることができる。これにより、大型の表示装置を作製することができる。
また、基板102として、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等を用いてもよい。
また、基板102として、金属等の無機材料を用いてもよい。金属等の無機材料としては、ステンレススチールまたはアルミニウム等が挙げられる。
また、基板102として、樹脂、樹脂フィルムまたはプラスチック等の有機材料を用いてもよい。当該樹脂フィルムとしては、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミド等)、ポリイミド、ポリカーボネート、ポリウレタン、アクリル樹脂、エポキシ樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、またはシリコーンなどのシロキサン結合を有する樹脂等が挙げられる。
また、基板102として、無機材料と有機材料とを組み合わせた複合材料を用いてもよい。当該複合材料としては、金属板または薄板状のガラス板と、樹脂フィルムとを貼り合わせた材料、繊維状の金属、粒子状の金属、繊維状のガラス、または粒子状のガラスを樹脂フィルムに分散した材料、もしくは繊維状の樹脂、粒子状の樹脂を無機材料に分散した材料等が挙げられる。
なお、基板102としては、少なくとも上または下に形成される膜または層を支持できるものであればよく、絶縁膜、半導体膜、導電膜のいずれか一つまたは複数であってもよい。
[第1の絶縁膜]
絶縁膜104としては、スパッタリング法、CVD法、蒸着法、パルスレーザー堆積(PLD)法、印刷法、塗布法等を適宜用いて形成することができる。また、絶縁膜104としては、例えば、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成することができる。なお、酸化物半導体膜108との界面特性を向上させるため、絶縁膜104において少なくとも酸化物半導体膜108と接する領域は酸化物絶縁膜で形成することが好ましい。また、絶縁膜104として加熱により酸素を放出する酸化物絶縁膜を用いることで、加熱処理により絶縁膜104に含まれる酸素を、酸化物半導体膜108に移動させることが可能である。
絶縁膜104の厚さは、50nm以上、または100nm以上3000nm以下、または200nm以上1000nm以下とすることができる。絶縁膜104を厚くすることで、絶縁膜104の酸素放出量を増加させることができると共に、絶縁膜104と酸化物半導体膜108との界面における界面準位、並びに酸化物半導体膜108のチャネル領域108iに含まれる酸素欠損を低減することが可能である。
絶縁膜104として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn酸化物などを用いればよく、単層または積層で設けることができる。本実施の形態では、絶縁膜104として、窒化シリコン膜と、酸化窒化シリコン膜との積層構造を用いる。このように、絶縁膜104を積層構造として、下層側に窒化シリコン膜を用い、上層側に酸化窒化シリコン膜を用いることで、酸化物半導体膜108中に効率よく酸素を導入することができる。
[酸化物半導体膜]
酸化物半導体膜108としては、実施の形態2で詳細に説明を行う。
[第2の絶縁膜]
絶縁膜110は、酸化物半導体膜108、特にチャネル領域108iに酸素を供給する機能を有する。例えば、絶縁膜110としては、酸化物絶縁膜または窒化物絶縁膜を単層または積層して形成することができる。なお、酸化物半導体膜108との界面特性を向上させるため、絶縁膜110において、酸化物半導体膜108と接する領域は、少なくとも酸化物絶縁膜を用いて形成することが好ましい。絶縁膜110として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコンなどを用いればよい。
また、絶縁膜110の厚さは、5nm以上400nm以下、または5nm以上300nm以下、または10nm以上250nm以下とすることができる。
また、絶縁膜110は、欠陥が少ないことが好ましく、代表的には、電子スピン共鳴法(ESR:Electron Spin Resonance)で観察されるシグナルが少ない方が好ましい。例えば、上述のシグナルとしては、g値が2.001に観察されるE’センターが挙げられる。なお、E’センターは、シリコンのダングリングボンドに起因する。絶縁膜110としては、E’センター起因のスピン密度が、3×1017spins/cm以下、好ましくは5×1016spins/cm以下である酸化シリコン膜、または酸化窒化シリコン膜を用いればよい。
また、絶縁膜110には、上述のシグナル以外に二酸化窒素(NO)に起因するシグナルが観察される場合がある。当該シグナルは、Nの核スピンにより3つのシグナルに分裂しており、それぞれのg値が2.037以上2.039以下(第1のシグナルとする)、g値が2.001以上2.003以下(第2のシグナルとする)、及びg値が1.964以上1.966以下(第3のシグナルとする)に観察される。
例えば、絶縁膜110として、二酸化窒素(NO)起因のスピン密度が、1×1017spins/cm以上1×1018spins/cm未満である絶縁膜を用いると好適である。
なお、二酸化窒素(NO)を含む窒素酸化物(NO)は、絶縁膜110中に準位を形成する。当該準位は、酸化物半導体膜108のエネルギーギャップ内に位置する。そのため、窒素酸化物(NOx)が、絶縁膜110及び酸化物半導体膜108の界面に拡散すると、当該準位が絶縁膜110側において電子をトラップする場合がある。この結果、トラップされた電子が、絶縁膜110及び酸化物半導体膜108界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせてしまう。したがって、絶縁膜110としては、窒素酸化物の含有量が少ない膜を用いると、トランジスタのしきい値電圧のシフトを低減することができる。
窒素酸化物(NO)の放出量が少ない絶縁膜としては、例えば、酸化窒化シリコン膜を用いることができる。当該酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)において、窒素酸化物(NO)の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×1018cm−3以上5×1019cm−3以下である。なお、上記のアンモニアの放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上550℃以下の範囲での総量である。
窒素酸化物(NO)は、加熱処理においてアンモニア及び酸素と反応するため、アンモニアの放出量が多い絶縁膜を用いることで窒素酸化物(NO)が低減される。
なお、絶縁膜110をSIMSで分析した場合、膜中の窒素濃度が6×1020atoms/cm以下であると好ましい。
また、絶縁膜110として、ハフニウムシリケート(HfSiO)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)、酸化ハフニウムなどのhigh−k材料を用いてもよい。当該high−k材料を用いることでトランジスタのゲートリークを低減できる。
[第3の絶縁膜]
絶縁膜116は、窒素または水素を有する。また、絶縁膜116は、フッ素を有していてもよい。絶縁膜116としては、例えば、窒化物絶縁膜が挙げられる。該窒化物絶縁膜としては、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、窒化フッ化シリコン、フッ化窒化シリコン等を用いて形成することができる。絶縁膜116に含まれる水素濃度は、1×1022atoms/cm以上であると好ましい。また、絶縁膜116は、酸化物半導体膜108のソース領域108s、及びドレイン領域108dと接する。したがって、絶縁膜116と接するソース領域108s、及びドレイン領域108d中の不純物(窒素または水素)濃度が高くなり、ソース領域108s、及びドレイン領域108dのキャリア密度を高めることができる。
[第4の絶縁膜]
絶縁膜118としては、酸化物絶縁膜を用いることができる。また、絶縁膜118としては、酸化物絶縁膜と、窒化物絶縁膜との積層膜を用いることができる。絶縁膜118として、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn酸化物などを用いればよい。
また、絶縁膜118としては、外部からの水素、水等のバリア膜として機能する膜であることが好ましい。
絶縁膜118の厚さは、30nm以上500nm以下、または100nm以上400nm以下とすることができる。
[第5の絶縁膜]
絶縁膜122としては、絶縁性であればよく、無機材料または有機材料を用いて形成される。該無機材料としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜等が挙げられる。該有機材料としては、例えば、アクリル樹脂、またはポリイミド樹脂等の感光性の樹脂材料が挙げられる。
[導電膜]
導電膜106、112、120a、120bとしては、スパッタリング法、真空蒸着法、パルスレーザー堆積(PLD)法、熱CVD法等を用いて形成することができる。また、導電膜106、112、120a、120bとしては、導電性を有する金属膜、可視光を反射する機能を有する導電膜、または可視光を透過する機能を有する導電膜を用いればよい。
導電性を有する金属膜として、アルミニウム、金、白金、銀、銅、クロム、タンタル、チタン、モリブデン、タングステン、ニッケル、鉄、コバルト、パラジウムまたはマンガンから選ばれた金属元素を含む材料を用いることができる。または、上述した金属元素を含む合金を用いてもよい。
上述の導電性を有する金属膜として、具体的には、チタン膜上に銅膜を積層する二層構造、窒化チタン膜上に銅膜を積層する二層構造、窒化タンタル膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層し、さらにその上にチタン膜を形成する三層構造等を用いればよい。特に、銅元素を含む導電膜を用いることで、抵抗を低くすることが出来るため好適である。また、銅元素を含む導電膜としては、または、銅とマンガンとを含む合金膜が挙げられる。当該合金膜は、ウエットエッチング法を用いて加工できるため好適である。
なお、導電膜106、112、120a、120bとしては、窒化タンタル膜を用いると好適である。当該窒化タンタル膜は、導電性を有し、且つ、銅または水素に対して、高いバリア性を有する。また、窒化タンタル膜は、さらに自身からの水素の放出が少ないため、酸化物半導体膜108と接する金属膜、または酸化物半導体膜108の近傍の金属膜として、最も好適に用いることができる。
また、上述の導電性を有する導電膜として、導電性高分子または導電性ポリマーを用いてもよい。
また、上述の可視光を反射する機能を有する導電膜としては、金、銀、銅、またはパラジウムから選ばれた金属元素を含む材料を用いることができる。特に、銀元素を含む導電膜を用いることで、可視光における反射率を高めることができるため好適である。
また、上述の可視光を透過する機能を有する導電膜としては、インジウム、錫、亜鉛、ガリウム、またはシリコンから選ばれた元素を含む材料を用いることができる。具体的には、In酸化物、Zn酸化物、In−Sn酸化物(ITOともいう)、In−Sn−Si酸化物(ITSOともいう)、In−Zn酸化物、In−Ga−Zn酸化物等が挙げられる。
また、上述の可視光を透過する機能を有する導電膜としては、グラフェンまたはグラファイトを含む膜を用いてもよい。グラフェンを含む膜としては、酸化グラフェンを含む膜を形成し、酸化グラフェンを含む膜を還元することにより、グラフェンを含む膜を形成することができる。還元する方法としては、熱を加える方法や還元剤を用いる方法等が挙げられる。
また、導電膜112、120a、120bを、無電解めっき法により形成することができる。当該無電解めっき法により形成できる材料としては、例えば、Cu、Ni、Al、Au、Sn、Co、Ag、及びPdの中から選ばれるいずれか一つまたは複数を用いることが可能である。特に、CuまたはAgを用いると、導電膜の抵抗を低くすることができるため、好適である。
また、無電解めっき法により導電膜を形成した場合、当該導電膜の構成元素が外部に拡散しないように、当該導電膜の下に、拡散防止膜を形成してもよい。また、当該拡散防止膜と、当該導電膜との間に、導電膜を成長させることが出来るシード層を形成してもよい。上記拡散防止膜としては、例えば、スパッタリング法を用いて形成することができる。また、当該拡散防止膜としては、例えば、窒化タンタル膜または窒化チタン膜を用いることができる。また、上記シード層としては、無電解めっき法により形成することができる。また、当該シード層としては、無電解めっき法により形成することができる導電膜の材料と同様の材料を用いることができる。
なお、導電膜112として、In−Ga−Zn酸化物に代表される酸化物半導体を用いてよい。当該酸化物半導体は、絶縁膜116から窒素または水素が供給されることで、キャリア密度が高くなる。別言すると、酸化物半導体は、酸化物導電体(OC:Oxide Conductor)として機能する。したがって、酸化物半導体は、ゲート電極として用いることができる。
例えば、導電膜112としては、酸化物導電体(OC)の単層構造、金属膜の単層構造、または酸化物導電体(OC)と、金属膜との積層構造等が挙げられる。
なお、導電膜112として、遮光性を有する金属膜の単層構造、または酸化物導電体(OC)と遮光性を有する金属膜との積層構造を用いる場合、導電膜112の下方に形成されるチャネル領域108iを遮光することができるため、好適である。また、導電膜112として、酸化物半導体または酸化物導電体(OC)と、遮光性を有する金属膜との積層構造を用いる場合、酸化物半導体または酸化物導電体(OC)上に、金属膜(例えば、チタン膜、タングステン膜など)を形成することで、金属膜中の構成元素が酸化物半導体または酸化物導電体(OC)側に拡散し低抵抗化する、金属膜の成膜時のダメージ(例えば、スパッタリングダメージなど)により低抵抗化する、あるいは金属膜中に酸化物半導体または酸化物導電体(OC)中の酸素が拡散することで、酸素欠損が形成され低抵抗化する。
導電膜106、112、120a、120bの厚さとしては、30nm以上500nm以下、または100nm以上400nm以下とすることができる。
<1−5.トランジスタの構成例2>
次に、図4(A)(B)(C)に示すトランジスタと異なる構成について、図14乃至図16を用いて説明する。
図14(A)(B)は、トランジスタ100Bの断面図であり、図15(A)(B)は、トランジスタ100Cの断面図であり、図16(A)(B)は、トランジスタ100Dの断面図である。なお、トランジスタ100B、トランジスタ100C、及びトランジスタ100Dの上面図としては、図4(A)に示すトランジスタ100Aと同様であるため、ここでの説明は省略する。
図14(A)(B)に示すトランジスタ100Bは、導電膜112の積層構造、導電膜112の形状、及び絶縁膜110の形状がトランジスタ100Aと異なる。
トランジスタ100Bの導電膜112は、絶縁膜110上の導電膜112_1と、導電膜112_1上の導電膜112_2と、を有する。例えば、導電膜112_1として、酸化物導電膜を用いることにより、絶縁膜110に過剰酸素を添加することができる。上記酸化物導電膜としては、スパッタリング法を用い、酸素ガスを含む雰囲気にて形成することができる。また、上記酸化物導電膜としては、例えば、インジウムと錫とを有する酸化物、タングステンとインジウムとを有する酸化物、タングステンとインジウムと亜鉛とを有する酸化物、チタンとインジウムとを有する酸化物、チタンとインジウムと錫とを有する酸化物、インジウムと亜鉛とを有する酸化物、シリコンとインジウムと錫とを有する酸化物、インジウムとガリウムと亜鉛とを有する酸化物等が挙げられる。
また、図14(B)に示すように、開口部143において、導電膜112_2と、導電膜106とが接続される。開口部143を形成する際に、導電膜112_1となる導電膜を形成した後、開口部143を形成することで、図14(B)に示す形状とすることができる。導電膜112_1に酸化物導電膜を適用した場合、導電膜112_2と、導電膜106とが接続される構成とすることで、導電膜112と導電膜106との接触抵抗を低くすることができる。
また、トランジスタ100Bの導電膜112及び絶縁膜110は、テーパー形状である。より具体的には、導電膜112の下端部は、導電膜112の上端部よりも外側に形成される。また、絶縁膜110の下端部は、絶縁膜110の上端部よりも外側に形成される。また、導電膜112の下端部は、絶縁膜110の上端部と概略同じ位置に形成される。
トランジスタ100Bの導電膜112及び絶縁膜110をテーパー形状とすることで、トランジスタ100Aの導電膜112及び絶縁膜110が矩形の場合と比較し、絶縁膜116の被覆性を高めることができるため好適である。
なお、トランジスタ100Bのその他の構成は、先に示すトランジスタ100Aと同様であり、同様の効果を奏する。
図15(A)(B)に示すトランジスタ100Cは、導電膜112の積層構造、導電膜112の形状、及び絶縁膜110の形状がトランジスタ100Aと異なる。
トランジスタ100Cの導電膜112は、絶縁膜110上の導電膜112_1と、導電膜112_1上の導電膜112_2と、を有する。また、導電膜112_1の下端部は、導電膜112_2の上端部よりも外側に形成される。例えば、導電膜112_1と、導電膜112_2と、絶縁膜110と、を同じマスクで加工し、導電膜112_2をウエットエッチング法で、導電膜112_1及び絶縁膜110をドライエッチング法で、それぞれ加工することで、上記の構造とすることができる。
また、トランジスタ100Cの構造とすることで、酸化物半導体膜108中に、領域108fが形成される場合がある。領域108fは、チャネル領域108iとソース領域108sとの間、及びチャネル領域108iとドレイン領域108dとの間に形成される。
領域108fは、高抵抗領域あるいは低抵抗領域のいずれか一方として機能する。高抵抗領域とは、チャネル領域108iと同等の抵抗を有し、ゲート電極として機能する導電膜112が重畳しない領域である。領域108fが高抵抗領域の場合、領域108fは、所謂オフセット領域として機能する。領域108fがオフセット領域として機能する場合においては、トランジスタ100Cのオン電流の低下を抑制するために、チャネル長(L)方向において、領域108fを1μm以下とすればよい。
また、低抵抗領域とは、チャネル領域108iよりも抵抗が低く、且つソース領域108s及びドレイン領域108dよりも抵抗が高い領域である。領域108fが低抵抗領域の場合、領域108fは、所謂、LDD(Lightly Doped Drain)領域として機能する。領域108fがLDD領域として機能する場合においては、ドレイン領域の電界緩和が可能となるため、ドレイン領域の電界に起因したトランジスタのしきい値電圧の変動を低減することができる。
なお、領域108fをLDD領域とする場合には、例えば、絶縁膜116から領域108fに窒素、水素、フッ素の1以上を供給する、あるいは、絶縁膜110及び導電膜112_1をマスクとして、導電膜112_1の上方から不純物元素を添加することで、当該不純物が導電膜112_1及び絶縁膜110を通過して酸化物半導体膜108に添加されることで形成することができる。
また、図15(B)に示すように、開口部143において、導電膜112_2と、導電膜106とが接続される。
なお、トランジスタ100Cのその他の構成は、先に示すトランジスタ100Aと同様であり、同様の効果を奏する。
図16(A)(B)に示すトランジスタ100Dは、導電膜112の積層構造、導電膜112の形状、及び絶縁膜110の形状がトランジスタ100Aと異なる。
トランジスタ100Dの導電膜112は、絶縁膜110上の導電膜112_1と、導電膜112_1上の導電膜112_2と、を有する。また、導電膜112_1の下端部は、導電膜112_2の下端部よりも外側に形成される。また、絶縁膜110の下端部は、導電膜112_1の下端部よりも外側に形成される。例えば、導電膜112_1と、導電膜112_2と、絶縁膜110と、を同じマスクで加工し、導電膜112_2及び導電膜112_1をウエットエッチング法で、絶縁膜110をドライエッチング法で、それぞれ加工することで、上記の構造とすることができる。
また、トランジスタ100Cと同様に、トランジスタ100Dには、酸化物半導体膜108中に領域108fが形成される場合がある。領域108fは、チャネル領域108iとソース領域108sとの間、及びチャネル領域108iとドレイン領域108dとの間に形成される。
また、図16(B)に示すように、開口部143において、導電膜112_2と、導電膜106とが接続される。
なお、トランジスタ100Dのその他の構成は、先に示すトランジスタ100Aと同様であり、同様の効果を奏する。
<1−6.トランジスタの構成例3>
次に、図4(A)(B)(C)に示すトランジスタ100Aと異なる構成について、図17乃至図21を用いて説明する。
図17(A)(B)は、トランジスタ100Eの断面図であり、図18(A)(B)は、トランジスタ100Fの断面図であり、図19(A)(B)は、トランジスタ100Gの断面図であり、図20(A)(B)は、トランジスタ100Hの断面図であり、図21(A)(B)は、トランジスタ100Jの断面図である。なお、トランジスタ100E、トランジスタ100F、トランジスタ100G、トランジスタ100H、及びトランジスタ100Jの上面図としては、図4(A)に示すトランジスタ100Aと同様であるため、ここでの説明は省略する。
トランジスタ100E、トランジスタ100F、トランジスタ100G、トランジスタ100H、及びトランジスタ100Jは、先に示すトランジスタ100Aと酸化物半導体膜108の構造が異なる。それ以外の構成については、先に示すトランジスタ100Aと同様の構成であり、同様の効果を奏する。
図17(A)(B)に示すトランジスタ100Eが有する酸化物半導体膜108は、絶縁膜104上の酸化物半導体膜108_1と、酸化物半導体膜108_1上の酸化物半導体膜108_2と、酸化物半導体膜108_2上の酸化物半導体膜108_3と、を有する。また、チャネル領域108i、ソース領域108s、及びドレイン領域108dは、それぞれ、酸化物半導体膜108_1、酸化物半導体膜108_2、及び酸化物半導体膜108_3の3層の積層構造である。
図18(A)(B)に示すトランジスタ100Fが有する酸化物半導体膜108は、絶縁膜104上の酸化物半導体膜108_2と、酸化物半導体膜108_2上の酸化物半導体膜108_3と、を有する。また、チャネル領域108i、ソース領域108s、及びドレイン領域108dは、それぞれ、酸化物半導体膜108_2、及び酸化物半導体膜108_3の2層の積層構造である。
図19(A)(B)に示すトランジスタ100Gが有する酸化物半導体膜108は、絶縁膜104上の酸化物半導体膜108_1と、酸化物半導体膜108_1上の酸化物半導体膜108_2と、を有する。また、チャネル領域108i、ソース領域108s、及びドレイン領域108dは、それぞれ、酸化物半導体膜108_1、及び酸化物半導体膜108_2の2層の積層構造である。
図20(A)(B)に示すトランジスタ100Hが有する酸化物半導体膜108は、絶縁膜104上の酸化物半導体膜108_1と、酸化物半導体膜108_1上の酸化物半導体膜108_2と、酸化物半導体膜108_2上の酸化物半導体膜108_3と、を有する。また、チャネル領域108iは、酸化物半導体膜108_1、酸化物半導体膜108_2、及び酸化物半導体膜108_3の3層の積層構造であり、ソース領域108s、及びドレイン領域108dは、それぞれ、酸化物半導体膜108_1、及び酸化物半導体膜108_2の2層の積層構造である。なお、トランジスタ100Hのチャネル幅(W)方向の断面において、酸化物半導体膜108_3が、酸化物半導体膜108_1及び酸化物半導体膜108_2の側面を覆う。
図21(A)(B)に示すトランジスタ100Jが有する酸化物半導体膜108は、絶縁膜104上の酸化物半導体膜108_2と、酸化物半導体膜108_2上の酸化物半導体膜108_3と、を有する。また、チャネル領域108iは、酸化物半導体膜108_2、及び酸化物半導体膜108_3の2層の積層構造であり、ソース領域108s、及びドレイン領域108dは、それぞれ、酸化物半導体膜108_2の単層構造である。なお、トランジスタ100Jのチャネル幅(W)方向の断面において、酸化物半導体膜108_3が、酸化物半導体膜108_2の側面を覆う。
チャネル領域108iのチャネル幅(W)方向の側面またはその近傍においては、加工におけるダメージにより欠陥(例えば、酸素欠損)が形成されやすい、あるいは不純物の付着により汚染されやすい。そのため、チャネル領域108iが実質的に真性であっても、電界などのストレスが印加されることによって、チャネル領域108iのチャネル幅(W)方向の側面またはその近傍が活性化され、低抵抗(n型)領域となりやすい。また、チャネル領域108iのチャネル幅(W)方向の側面またはその近傍がn型領域の場合、当該n型領域がキャリアのパスとなるため、寄生チャネルが形成される場合がある。
そこで、トランジスタ100H、及びトランジスタ100Jにおいては、チャネル領域108iを積層構造とし、チャネル領域108iのチャネル幅(W)方向の側面を、積層構造の一方の層で覆う構成とする。当該構成とすることで、チャネル領域108iの側面またはその近傍の欠陥を抑制する、あるいはチャネル領域108iの側面またはその近傍への不純物の付着を低減することが可能となる。
[バンド構造]
ここで、絶縁膜104、酸化物半導体膜108_1、108_2、108_3、及び絶縁膜110のバンド構造、絶縁膜104、酸化物半導体膜108_2、108_3、及び絶縁膜110のバンド構造、並びに絶縁膜104、酸化物半導体膜108_1、108_2のバンド構造について、図22(A)(B)(C)を用いて説明する。なお、図22(A)(B)(C)は、チャネル領域108iにおけるバンド構造である。
図22(A)は、絶縁膜104、酸化物半導体膜108_1、108_2、108_3、及び絶縁膜110を有する積層構造の膜厚方向のバンド構造の一例である。また、図22(B)は、絶縁膜104、酸化物半導体膜108_2、108_3、及び絶縁膜110を有する積層構造の膜厚方向のバンド構造の一例である。また、図22(C)は、絶縁膜104、酸化物半導体膜108_1、108_2、及び絶縁膜110を有する積層構造の膜厚方向のバンド構造の一例である。なお、バンド構造は、理解を容易にするため絶縁膜104、酸化物半導体膜108_1、108_2、108_3、及び絶縁膜110の伝導帯下端のエネルギー準位(Ec)を示す。
また、図22(A)は、絶縁膜104、110として酸化シリコン膜を用い、酸化物半導体膜108_1として金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_2として金属元素の原子数比をIn:Ga:Zn=4:2:4.1の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_3として金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いる構成のバンド図である。
また、図22(B)は、絶縁膜104、110として酸化シリコン膜を用い、酸化物半導体膜108_2として金属元素の原子数比をIn:Ga:Zn=4:2:4.1の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_3として金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いる構成のバンド図である。
また、図22(C)は、絶縁膜104、110として酸化シリコン膜を用い、酸化物半導体膜108_1として金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_2として金属元素の原子数比をIn:Ga:Zn=4:2:4.1の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いて形成される酸化物半導体膜を用いる構成のバンド図である。
図22(A)に示すように、酸化物半導体膜108_1、108_2、108_3において、伝導帯下端のエネルギー準位はなだらかに変化する。また、図22(B)に示すように、酸化物半導体膜108_2、108_3において、伝導帯下端のエネルギー準位はなだらかに変化する。また、図22(C)に示すように、酸化物半導体膜108_1、108_2において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようなバンド構造を有するためには、酸化物半導体膜108_1と酸化物半導体膜108_2との界面、または酸化物半導体膜108_2と酸化物半導体膜108_3との界面において、トラップ中心や再結合中心のような欠陥準位を形成するような不純物が存在しないとする。
酸化物半導体膜108_1、108_2、108_3に連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置(スパッタリング装置)を用いて各膜を大気に触れさせることなく連続して積層することが必要となる。
図22(A)(B)(C)に示す構成とすることで酸化物半導体膜108_2がウェル(井戸)となり、上記積層構造を用いたトランジスタにおいて、チャネル領域が酸化物半導体膜108_2に形成されることがわかる。
なお、酸化物半導体膜108_1、108_3を設けることにより、欠陥準位を酸化物半導体膜108_2より遠ざけることができる。
また、欠陥準位がチャネル領域として機能する酸化物半導体膜108_2の伝導帯下端のエネルギー準位(Ec)より真空準位から遠くなることがあり、欠陥準位に電子が蓄積しやすくなってしまう。欠陥準位に電子が蓄積されることで、マイナスの固定電荷となり、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。したがって、欠陥準位が酸化物半導体膜108_2の伝導帯下端のエネルギー準位(Ec)より真空準位に近くなるような構成にすると好ましい。このようにすることで、欠陥準位に電子が蓄積しにくくなり、トランジスタのオン電流を増大させることが可能であると共に、電界効果移動度を高めることができる。
また、酸化物半導体膜108_1、108_3は、酸化物半導体膜108_2よりも伝導帯下端のエネルギー準位が真空準位に近く、代表的には、酸化物半導体膜108_2の伝導帯下端のエネルギー準位と、酸化物半導体膜108_1、108_3の伝導帯下端のエネルギー準位との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下である。すなわち、酸化物半導体膜108_1、108_3の電子親和力と、酸化物半導体膜108_2の電子親和力との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下である。
このような構成を有することで、酸化物半導体膜108_2が主な電流経路となる。すなわち、酸化物半導体膜108_2は、チャネル領域としての機能を有し、酸化物半導体膜108_1、108_3は、酸化物絶縁膜としての機能を有する。また、酸化物半導体膜108_1、108_3は、チャネル領域が形成される酸化物半導体膜108_2を構成する金属元素の一種以上から構成される酸化物半導体膜を用いると好ましい。このような構成とすることで、酸化物半導体膜108_1と酸化物半導体膜108_2との界面、または酸化物半導体膜108_2と酸化物半導体膜108_3との界面において、界面散乱が起こりにくい。従って、該界面においてはキャリアの動きが阻害されないため、トランジスタの電界効果移動度が高くなる。
また、酸化物半導体膜108_1、108_3は、チャネル領域の一部として機能することを防止するため、導電率が十分に低い材料を用いるものとする。そのため、酸化物半導体膜108_1、108_3を、その物性及び/または機能から、それぞれ酸化物絶縁膜とも呼べる。または、酸化物半導体膜108_1、108_3には、電子親和力(真空準位と伝導帯下端のエネルギー準位との差)が酸化物半導体膜108_2よりも小さく、伝導帯下端のエネルギー準位が酸化物半導体膜108_2の伝導帯下端エネルギー準位と差分(バンドオフセット)を有する材料を用いるものとする。また、ドレイン電圧の大きさに依存したしきい値電圧の差が生じることを抑制するためには、酸化物半導体膜108_1、108_3の伝導帯下端のエネルギー準位が、酸化物半導体膜108_2の伝導帯下端のエネルギー準位よりも真空準位に近い材料を用いると好適である。例えば、酸化物半導体膜108_2の伝導帯下端のエネルギー準位と、酸化物半導体膜108_1、108_3の伝導帯下端のエネルギー準位との差が、0.2eV以上、好ましくは0.5eV以上とすることが好ましい。
また、酸化物半導体膜108_1、108_3は、膜中にスピネル型の結晶構造が含まれないことが好ましい。酸化物半導体膜108_1、108_3の膜中にスピネル型の結晶構造を含む場合、該スピネル型の結晶構造と他の領域との界面において、導電膜120a、120bの構成元素が酸化物半導体膜108_2へ拡散してしまう場合がある。なお、酸化物半導体膜108_1、108_3が後述するCAAC−OSである場合、導電膜120a、120bの構成元素、例えば、銅元素のブロッキング性が高くなり好ましい。
また、本実施の形態においては、酸化物半導体膜108_1、108_3として、金属元素の原子数比をIn:Ga:Zn=1:3:2の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いる構成について例示したが、これに限定されない。例えば、酸化物半導体膜108_1、108_3として、In:Ga:Zn=1:1:1[原子数比]、In:Ga:Zn=1:1:1.2[原子数比]、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=1:3:6[原子数比]、In:Ga:Zn=1:4:5[原子数比]、In:Ga:Zn=1:5:6[原子数比]、またはIn:Ga:Zn=1:10:1[原子数比]の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いてもよい。あるいは、酸化物半導体膜108_1、108_3として、金属元素の原子数比をGa:Zn=10:1の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いてもよい。この場合、酸化物半導体膜108_2として金属元素の原子数比をIn:Ga:Zn=1:1:1の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用い、酸化物半導体膜108_1、108_3として金属元素の原子数比をGa:Zn=10:1の金属酸化物ターゲットを用いて形成される酸化物半導体膜を用いると、酸化物半導体膜108_2の伝導帯下端のエネルギー準位と、酸化物半導体膜108_1、108_3の伝導帯下端のエネルギー準位との差を0.6eV以上とすることができるため好適である。
なお、酸化物半導体膜108_1、108_3として、In:Ga:Zn=1:1:1[原子数比]の金属酸化物ターゲットを用いる場合、酸化物半導体膜108_1、108_3は、In:Ga:Zn=1:β1(0<β1≦2):β2(0<β2≦2)となる場合がある。また、酸化物半導体膜108_1、108_3として、In:Ga:Zn=1:3:4[原子数比]の金属酸化物ターゲットを用いる場合、酸化物半導体膜108_1、108_3は、In:Ga:Zn=1:β3(1≦β3≦5):β4(2≦β4≦6)となる場合がある。また、酸化物半導体膜108_1、108_3として、In:Ga:Zn=1:3:6[原子数比]の金属酸化物ターゲットを用いる場合、酸化物半導体膜108_1、108_3は、In:Ga:Zn=1:β5(1≦β5≦5):β6(4≦β6≦8)となる場合がある。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態においては、本発明の一態様に用いることのできる、酸化物半導体膜の組成、及び酸化物半導体膜の構造等について、図23乃至図38を参照して説明する。
<2−1.酸化物半導体膜の組成>
まず、酸化物半導体膜の組成について説明する。
酸化物半導体膜は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここで、酸化物半導体膜が、インジウム、元素M及び亜鉛を有する場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。元素Mに適用可能なその他の元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない。
まず、図23(A)、図23(B)、及び図23(C)を用いて、本発明の一態様に係る酸化物半導体膜が有するインジウム、元素M及び亜鉛の原子数比の好ましい範囲について説明する。なお、図23には、酸素の原子数比については記載しない。また、酸化物半導体膜が有するインジウム、元素M、及び亜鉛の原子数比のそれぞれの項を[In]、[M]、及び[Zn]とする。
図23(A)、図23(B)、及び図23(C)において、破線は、[In]:[M]:[Zn]=(1+α):(1−α):1の原子数比(−1≦α≦1)となるライン、[In]:[M]:[Zn]=(1+α):(1−α):2の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1−α):3の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1−α):4の原子数比となるライン、及び[In]:[M]:[Zn]=(1+α):(1−α):5の原子数比となるラインを表す。
また、一点鎖線は、[In]:[M]:[Zn]=1:1:βの原子数比(β≧0)となるライン、[In]:[M]:[Zn]=1:2:βの原子数比となるライン、[In]:[M]:[Zn]=1:3:βの原子数比となるライン、[In]:[M]:[Zn]=1:4:βの原子数比となるライン、[In]:[M]:[Zn]=2:1:βの原子数比となるライン、及び[In]:[M]:[Zn]=5:1:βの原子数比となるラインを表す。
また、二点鎖線は、[In]:[M]:[Zn]=(1+γ):2:(1−γ)の原子数比(−1≦γ≦1)となるラインを表す。また、図23に示す、[In]:[M]:[Zn]=0:2:1の原子数比またはその近傍値の酸化物半導体膜は、スピネル型の結晶構造をとりやすい。
図23(A)及び図23(B)では、本発明の一態様の酸化物半導体膜が有する、インジウム、元素M、及び亜鉛の原子数比の好ましい範囲の一例について示している。
一例として、図24に、[In]:[M]:[Zn]=1:1:1である、InMZnOの結晶構造を示す。また、図24は、b軸に平行な方向から観察した場合のInMZnOの結晶構造である。なお、図24に示すM、Zn、酸素を有する層(以下、(M,Zn)層)における金属元素は、元素Mまたは亜鉛を表している。この場合、元素Mと亜鉛の割合が等しいものとする。元素Mと亜鉛とは、置換が可能であり、配列は不規則である。
InMZnOは、層状の結晶構造(層状構造ともいう)をとり、図24に示すように、インジウム、および酸素を有する層(以下、In層)が1に対し、元素M、亜鉛、および酸素を有する(M,Zn)層が2となる。
また、インジウムと元素Mは、互いに置換可能である。そのため、(M,Zn)層の元素Mがインジウムと置換し、(In,M,Zn)層と表すこともできる。その場合、In層が1に対し、(In,M,Zn)層が2である層状構造をとる。
[In]:[M]:[Zn]=1:1:2となる原子数比の酸化物は、In層が1に対し、(M,Zn)層が3である層状構造をとる。つまり、[In]および[M]に対し[Zn]が大きくなると、酸化物が結晶化した場合、In層に対する(M,Zn)層の割合が増加する。
ただし、酸化物中において、In層が1層に対し、(M,Zn)層の層数が非整数である場合、In層が1層に対し、(M,Zn)層の層数が整数である層状構造を複数種有する場合がある。例えば、[In]:[M]:[Zn]=1:1:1.5である場合、In層が1に対し、(M,Zn)層が2である層状構造と、(M,Zn)層が3である層状構造とが混在する層状構造となる場合がある。
例えば、酸化物をスパッタリング装置にて成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Zn]よりも、膜の[Zn]が小さくなる場合がある。
また、酸化物中に複数の相が共存する場合がある(二相共存、三相共存など)。例えば、[In]:[M]:[Zn]=0:2:1の原子数比の近傍値である原子数比では、スピネル型の結晶構造と層状の結晶構造との二相が共存しやすい。また、[In]:[M]:[Zn]=1:0:0を示す原子数比の近傍値である原子数比では、ビックスバイト型の結晶構造と層状の結晶構造との二相が共存しやすい。酸化物中に複数の相が共存する場合、異なる結晶構造の間において、粒界(グレインバウンダリーともいう)が形成される場合がある。
また、インジウムの含有率を高くすることで、酸化物のキャリア移動度(電子移動度)を高くすることができる。
一方、酸化物中のインジウムおよび亜鉛の含有率が低くなると、キャリア移動度が低くなる。従って、[In]:[M]:[Zn]=0:1:0を示す原子数比、およびその近傍値である原子数比(例えば図23(C)に示す領域C)では、絶縁性が高くなる。
従って、本発明の一態様の酸化物は、キャリア移動度が高く、かつ、粒界が少ない層状構造となりやすい、図23(A)の領域Aで示される原子数比を有することが好ましい。
また、図23(B)に示す領域Bは、[In]:[M]:[Zn]=4:2:3から4.1、およびその近傍値を示している。近傍値には、例えば、原子数比が[In]:[M]:[Zn]=5:3:4が含まれる。領域Bで示される原子数比を有する酸化物は、特に、結晶性が高く、キャリア移動度も高い優れた酸化物である。
なお、酸化物半導体膜がIn−M−Zn酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:1.5、In:M:Zn=2:1:2.3、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:7等が好ましい。なお、成膜される酸化物半導体膜の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラス・マイナス40%程度変動することがある。例えば、スパッタリングターゲットとして、原子数比がIn:Ga:Zn=4:2:4.1を用いる場合、成膜される酸化物半導体膜の原子数比は、In:Ga:Zn=4:2:3近傍となる場合がある。
なお、本明細書等において、近傍とは、ある金属原子Mの原子数比に対して、プラス・マイナス1以内、さらに好ましくはプラス・マイナス0.5以内の範囲とすればよい。例えば、酸化物半導体膜の組成がIn:Ga:Zn=4:2:3の近傍である場合、Gaが1以上3以下(1≦Ga≦3)であり、且つZnが2以上4以下(2≦Zn≦4)、好ましくはGaが1.5以上2.5以下(1.5≦Ga≦2.5)であり、且つZnが2以上4以下(2≦Zn≦4)であればよい。
また、酸化物半導体膜が、層状構造を形成する条件は、原子数比によって一義的に定まらない。原子数比により、層状構造を形成するための難易の差はある。一方、同じ原子数比であっても、形成条件により、層状構造になる場合も層状構造にならない場合もある。従って、図示する領域は、酸化物半導体膜が層状構造を有する原子数比を示す領域であり、領域A乃至領域Cの境界は厳密ではない。
<2−2.酸化物半導体膜のキャリア密度>
次に、酸化物半導体膜のキャリア密度について、以下に説明を行う。
酸化物半導体膜のキャリア密度に影響を与える因子としては、酸化物半導体膜中の酸素欠損(Vo)、または酸化物半導体膜中の不純物などが挙げられる。
酸化物半導体膜中の酸素欠損が多くなると、該酸素欠損に水素が結合(この状態をVoHともいう)した際に、欠陥準位密度が高くなる。または、酸化物半導体膜中の不純物が多くなると、該不純物に起因し欠陥準位密度が高くなる。したがって、酸化物半導体膜中の欠陥準位密度を制御することで、酸化物半導体膜のキャリア密度を制御することができる。
ここで、酸化物半導体膜をチャネル領域に用いるトランジスタを考える。
トランジスタのしきい値電圧のマイナスシフトの抑制、またはトランジスタのオフ電流の低減を目的とする場合においては、酸化物半導体膜のキャリア密度を低くする方が好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。高純度真性の酸化物半導体膜のキャリア密度としては、8×1015cm−3未満、好ましくは1×1011cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上とすればよい。
一方で、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度の向上を目的とする場合においては、酸化物半導体膜のキャリア密度を高くする方が好ましい。酸化物半導体膜のキャリア密度を高くする場合においては、酸化物半導体膜の不純物濃度をわずかに高める、または酸化物半導体膜の欠陥準位密度をわずかに高めればよい。あるいは、酸化物半導体膜のバンドギャップをより小さくするとよい。例えば、トランジスタのId−Vg特性のオン/オフ比が取れる範囲において、不純物濃度がわずかに高い、または欠陥準位密度がわずかに高い酸化物半導体膜は、実質的に真性とみなせる。また、電子親和力が大きく、それにともなってバンドギャップが小さくなり、その結果、熱励起された電子(キャリア)の密度が増加した酸化物半導体膜は、実質的に真性とみなせる。なお、より電子親和力が大きな酸化物半導体膜を用いた場合には、トランジスタのしきい値電圧がより低くなる。
実質的に真性の酸化物半導体膜のキャリア密度は、1×10cm−3以上1×1018cm−3未満が好ましく、1×10cm−3以上1×1017cm−3以下がより好ましく、1×10cm−3以上5×1016cm−3以下がさらに好ましく、1×1010cm−3以上1×1016cm−3以下がさらに好ましく、1×1011cm−3以上1×1015cm−3以下がさらに好ましい。
また、上述の実質的に真性の酸化物半導体膜を用いることで、トランジスタの信頼性が向上する場合がある。ここで、図25を用いて、酸化物半導体膜をチャネル領域に用いるトランジスタの信頼性が向上する理由について説明する。図25は、酸化物半導体膜をチャネル領域に用いるトランジスタにおけるエネルギーバンドを説明する図である。
図25において、GEはゲート電極を、GIはゲート絶縁膜を、OSは酸化物半導体膜を、SDはソース電極またはドレイン電極を、それぞれ表す。すなわち、図25は、ゲート電極と、ゲート絶縁膜と、酸化物半導体膜と、酸化物半導体膜に接するソース電極またはドレイン電極のエネルギーバンドの一例である。
また、図25において、ゲート絶縁膜としては、酸化シリコン膜を用い、酸化物半導体膜にIn−Ga−Zn酸化物を用いる構成である。また、酸化シリコン膜中に形成されうる欠陥の遷移レベル(εf)はゲート絶縁膜の伝導帯下端から約3.1eV離れた位置に形成されるものとし、ゲート電圧(Vg)が30Vの場合の酸化物半導体膜と酸化シリコン膜との界面における酸化シリコン膜のフェルミ準位(Ef)はゲート絶縁膜の伝導帯下端から約3.6eV離れた位置に形成されるものとする。なお、酸化シリコン膜のフェルミ準位は、ゲート電圧に依存し変動する。例えば、ゲート電圧を大きくすることで、酸化物半導体膜と、酸化シリコン膜との界面における酸化シリコン膜のフェルミ準位(Ef)は低くなる。また、図25中の白丸は電子(キャリア)を表し、図25中のXは酸化シリコン膜中の欠陥準位を表す。
図25に示すように、ゲート電圧が印加された状態で、例えばキャリアが熱励起されると、欠陥準位(図中X)にキャリアがトラップされ、プラス(“+”)からニュートラル(“0”)に欠陥準位の荷電状態が変化する。すなわち、酸化シリコン膜のフェルミ準位(Ef)に上述の熱励起のエネルギーを足した値が欠陥の遷移レベル(εf)よりも高くなる場合、酸化シリコン膜中の欠陥準位の荷電状態は正の状態から中性となり、トランジスタのしきい値電圧がプラス方向に変動することになる。
また、電子親和力が異なる酸化物半導体膜を用いると、ゲート絶縁膜と酸化物半導体膜との界面のフェルミ準位が形成される深さが異なることがある。電子親和力の大きな酸化物半導体膜を用いると、ゲート絶縁膜と酸化物半導体膜との界面近傍において、ゲート絶縁膜の伝導帯下端が相対的に高くなる。この場合、ゲート絶縁膜中に形成されうる欠陥準位(図25中X)も相対的に高くなるため、ゲート絶縁膜のフェルミ準位と酸化物半導体膜のフェルミ準位とのエネルギー差が大きくなる。該エネルギー差が大きくなることにより、ゲート絶縁膜中にトラップされる電荷が少なくなる。例えば、上述の酸化シリコン膜中に形成されうる欠陥準位の荷電状態の変化が少なくなり、ゲートバイアス熱(Gate Bias Temperature:GBTともいう)ストレスにおける、トランジスタのしきい値電圧の変動を小さくできる。
また、酸化物半導体膜をチャネル領域に用いるトランジスタは、粒界におけるキャリア散乱等を減少させることができるため、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、酸化物半導体膜の欠陥準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、欠陥準位密度の高い酸化物半導体膜にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体膜中の不純物濃度を低減することが有効である。また、酸化物半導体膜中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
ここで、酸化物半導体膜中における各不純物の影響について説明する。
酸化物半導体膜において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体膜において欠陥準位が形成される。このため、酸化物半導体膜におけるシリコンや炭素の濃度と、酸化物半導体膜との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体膜にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体膜を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体膜中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体膜中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体膜に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体膜を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体膜中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体膜において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物半導体膜をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、酸化物半導体膜は、エネルギーギャップが2eV以上、または2.5eV以上であると好ましい。
また、酸化物半導体膜の厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上60nm以下である。
<2−3.酸化物半導体の構造>
次に、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC−OS(c−axis−aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、及び非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体と、に分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、及びnc−OSなどがある。
非晶質構造は、一般に、等方的であって不均質構造を持たない、準安定状態で原子の配置が固定化していない、結合角度が柔軟である、短距離秩序は有するが長距離秩序を有さない、などといわれている。
すなわち、安定な酸化物半導体を完全な非晶質(completely amorphous)酸化物半導体とは呼べない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体とは呼べない。一方、a−like OSは、等方的でないが、鬆(ボイドともいう。)を有する不安定な構造である。不安定であるという点では、a−like OSは、物性的に非晶質酸化物半導体に近い。
[CAAC−OS]
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一種である。
CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
[nc−OS]
次に、nc−OSについて説明する。
nc−OSをXRDによって解析した場合について説明する。例えば、nc−OSに対し、out−of−plane法による構造解析を行うと、配向性を示すピークが現れない。即ち、nc−OSの結晶は配向性を有さない。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
a−like OSは、鬆または低密度領域を有する。a−like OSは、鬆を有するため、不安定な構造である。
また、a−like OSは、鬆を有するため、nc−OS及びCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満である。また、nc−OSの密度及びCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満である。単結晶の密度の78%未満である酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmである。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満である。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度及びCAAC−OSの密度は5.9g/cm以上6.3g/cm未満である。
なお、同じ組成の単結晶が存在しない場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、本発明の一態様の酸化物半導体膜は、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上が混在していてもよい。その場合の一例を以下に示す。
本発明の一態様の酸化物半導体膜を、2種類の結晶部を含む酸化物半導体膜とすることができる。すなわち、2種類の結晶部が混在している酸化物半導体膜である。結晶部の一(第1の結晶部ともいう)は、膜の厚さ方向(膜面方向、膜の被形成面、または膜の表面に垂直な方向ともいう)に配向性を有する、すなわちc軸配向性を有する結晶部である。結晶部の他の一(第2の結晶部ともいう)は、c軸配向性を有さずに様々な向きに配向する結晶部である。
なお、以下では説明を容易にするために、c軸配向性を有する結晶部を第1の結晶部、c軸配向性を有さない結晶部を第2の結晶部と分けて説明しているが、これらは結晶性や結晶の大きさなどに違いがなく区別できない場合がある。すなわち、本発明の一態様の酸化物半導体膜はこれらを区別せずに表現することもできる。
例えば、本発明の一態様の酸化物半導体膜は、複数の結晶部を有し、膜中に存在する結晶部のうち、少なくとも一の結晶部がc軸配向性を有していればよい。また、膜中に存在する結晶部のうち、c軸配向性を有さない結晶部が、c軸配向性を有する結晶部よりも存在割合を多くしてもよい。一例としては、本発明の一態様の酸化物半導体膜は、その膜厚方向の断面における透過型電子顕微鏡による観察像において、複数の結晶部が観察され、当該複数の結晶部のうちc軸配向性を有さない第2の結晶部が、c軸配向性を有する第1の結晶部よりも多く観察される場合がある。別言すると、本発明の一態様の酸化物半導体膜は、c軸配向性を有さない第2の結晶部の存在割合が多い。
酸化物半導体膜中にc軸配向性を有さない第2の結晶部の存在割合を多くすることで、以下の優れた効果を奏する。
酸化物半導体膜の近傍に十分な酸素供給源がある場合において、c軸配向性を有さない第2の結晶部は、酸素の拡散経路になりうる。よって、酸化物半導体膜の近傍に十分な酸素供給源がある場合に、c軸配向性を有さない第2の結晶部を介して、c軸配向性を有する第1の結晶部に酸素を供給することができる。よって、酸化物半導体膜の膜中の酸素欠損量を低減することができる。このような酸化物半導体膜をトランジスタの半導体膜に適用することで、高い信頼性を有し、且つ高い電界効果移動度を得ることが可能となる。
また、第1の結晶部は、特定の結晶面が膜の厚さ方向に対して配向性を有する。そのため、第1の結晶部を含む酸化物半導体膜について、膜の上面に概略垂直な方向に対するX線回折(XRD:X−ray Diffraction)測定を行うと、所定の回折角(2θ)に当該第1の結晶部に由来する回折ピークが確認される。一方で酸化物半導体膜が第1の結晶部を有していても、支持基板によるX線の散乱、またはバックグラウンドの上昇により、回折ピークが十分に確認されないこともある。なお、回折ピークの高さ(強度)は、酸化物半導体膜中に含まれる第1の結晶部の存在割合に応じて大きくなり、酸化物半導体膜の結晶性を推し量る指標にもなりえる。
また、酸化物半導体膜の結晶性の評価方法の一つとして、電子線回折が挙げられる。例えば、断面に対する電子線回折測定を行い、本発明の一態様の酸化物半導体膜の電子線回折パターンを観測した場合、第1の結晶部に起因する回折スポットを有する第1の領域と、第2の結晶部に起因する回折スポットを有する第2の領域とが観測される。
第1の結晶部に起因する回折スポットを有する第1の領域は、c軸配向性を有する結晶部に由来する。一方で第2の結晶部に起因する回折スポットを有する第2の領域は、配向性を有さない結晶部、または、あらゆる向きに無秩序に配向する結晶部に由来する。そのため電子線回折に用いる電子線のビーム径、すなわち観察する領域の面積によって、異なるパターンが確認される場合がある。なお、本明細書等において、電子線のビーム径を1nmΦ以上100nmΦ以下で測定する電子線回折を、ナノビーム電子線回折(NBED:Nano Beam Electron Diffraction)と呼ぶ。
ただし、本発明の一態様の酸化物半導体膜の結晶性を、NBEDと異なる方法で評価してもよい。酸化物半導体膜の結晶性の評価方法の一例としては、電子回折、X線回折、中性子回折などが挙げられる。電子回折の中でも、先に示すNBEDの他に、透過型電子顕微鏡(TEM:Transmission Electron Microscopy)、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)、収束電子回折(CBED:Convergent Beam Electron Diffraction)、制限視野電子回折(SAED:Selected Area Electron Diffraction)などを好適に用いることができる。
また、NBEDにおいて、電子線のビーム径を大きくした条件(例えば、25nmΦ以上100nmΦ以下、または50nmΦ以上100nmΦ以下)のナノビーム電子線回折パターンでは、リング状のパターンが確認される。また当該リング状のパターンは、動径方向に輝度の分布を有する場合がある。一方、NBEDにおいて、電子線のビーム径を十分に小さくした条件(例えば1nmΦ以上10nmΦ以下)の電子線回折パターンでは、上記リング状のパターンの位置に、円周方向(θ方向ともいう)に分布した複数のスポットが確認される場合がある。すなわち、電子線のビーム径を大きくした条件でみられるリング状のパターンは、上記の複数のスポットの集合体により形成される。
<2−4.酸化物半導体膜の結晶性の評価>
以下では、条件の異なる3つの酸化物半導体膜が形成された試料(試料X1乃至試料X3)を作製し結晶性の評価を行った。まず、試料X1乃至試料X3の作製方法について、説明する。
[試料X1]
試料X1は、ガラス基板上に厚さ約100nmの酸化物半導体膜が形成された試料である。当該酸化物半導体膜は、インジウムと、ガリウムと、亜鉛とを有する。試料X1の酸化物半導体膜の形成条件としては、基板を170℃に加熱し、流量140sccmのアルゴンガスと流量60sccmの酸素ガスとをスパッタリング装置のチャンバー内に導入し、圧力を0.6Paとし、インジウムと、ガリウムと、亜鉛とを有する金属酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])に、2.5kWの交流電力を印加することで形成した。なお、試料X1の作製条件における酸素流量比は30%である。
[試料X2]
試料X2は、ガラス基板上に厚さ約100nmの酸化物半導体膜が成膜された試料である。試料X2の酸化物半導体膜の形成条件としては、基板を130℃に加熱し、流量180sccmのアルゴンガスと、流量20sccmの酸素ガスとをスパッタリング装置のチャンバー内に導入して形成した。試料X2の作製条件における酸素流量比は10%である。なお、基板温度、及び酸素流量比以外の条件としては、先に示す試料X1と同様の条件とした。
[試料X3]
試料X3は、ガラス基板上に厚さ約100nmの酸化物半導体膜が成膜された試料である。試料X3の酸化物半導体膜の形成条件としては、基板を室温(R.T.)とし、流量180sccmのアルゴンガスと、流量20sccmの酸素ガスとをスパッタリング装置のチャンバー内に導入して形成した。試料X3の作製条件における酸素流量比は10%である。なお、基板温度、及び酸素流量比以外の条件としては、先に示す試料X1と同様の条件とした。
試料X1乃至試料X3の形成条件を表2に示す。
次に、上記作製した試料X1乃至試料X3の結晶性の評価を行った。本実施の形態においては、結晶性の評価として、断面TEM観察、XRD測定、及び電子線回折を行った。
[断面TEM観察]
図26乃至図28に、試料X1乃至試料X3の断面TEM観察結果を示す。なお、図26(A)(B)は試料X1の断面TEM像であり、図27(A)(B)は試料X2の断面TEM像であり、図28(A)(B)は試料X3の断面TEM像である。
また、図26(C)は試料X1の断面の高分解能透過型電子顕微鏡(HR−TEM:High Resolution−TEM)像であり、図27(C)は試料X2の断面HR−TEM像であり、図28(C)は試料X3の断面HR−TEM像である。なお、断面HR−TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いてもよい。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって観察することができる。
図26及び図27に示すように、試料X1及び試料X2では、原子が膜厚方向に層状に配列している結晶部が観察される。特に、HR−TEM像において、層状に配列している結晶部が観察されやすい。また、図28に示すように、試料X3では原子が膜厚方向に層状に配列している様子が確認され難い。
[XRD測定]
次に、各試料のXRD測定結果について説明する。
図29(A)に試料X1のXRD測定結果を、図30(A)に試料X2のXRD測定結果を、図31(A)に試料X3のXRD測定結果を、それぞれ示す。
XRD測定では、out−of−plane法の一種である粉末法(θ−2θ法ともいう。)を用いた。θ−2θ法は、X線の入射角を変化させるとともに、X線源に対向して設けられる検出器の角度を入射角と同じにしてX線回折強度を測定する方法である。なお、X線を膜表面から約0.40°の角度から入射し、検出器の角度を変化させてX線回折強度を測定するout−of−plane法の一種であるGIXRD(Grazing−Incidence XRD)法(薄膜法またはSeemann−Bohlin法ともいう。)を用いてもよい。図29(A)、図30(A)、及び図31(A)における縦軸は回折強度を任意単位で示し、横軸は角度2θを示している。
図29(A)及び図30(A)に示すように、試料X1及び試料X2においては、2θ=31°付近に回折強度のピークが確認される。一方で、図31(A)に示すように、試料X3においては、2θ=31°付近の回折強度のピークが確認され難い、または2θ=31°付近の回折強度のピークが極めて小さい、あるいは2θ=31°付近の回折強度のピークが無い。
なお、回折強度のピークがみられた回折角(2θ=31°付近)は、単結晶InGaZnOの構造モデルにおける(009)面の回折角と一致する。したがって、試料X1及び試料X2において、上記ピークが観測されることから、c軸が膜厚方向に配向する結晶部(以下、c軸配向性を有する結晶部、または第1の結晶部ともいう)が含まれていることが確認できる。なお、試料X3については、XRD測定からでは、c軸配向性を有する結晶部が含まれているかを判断するのが困難である。
[電子線回折]
次に、試料X1乃至試料X3について、電子線回折測定を行った結果について説明する。電子線回折測定では、各試料の断面に対して電子線を垂直に入射したときの電子線回折パターンを取得する。また電子線のビーム径を、1nmΦ及び100nmΦの2つとした。
なお、電子線回折において、入射する電子線のビーム径だけでなく、試料の厚さが厚いほど、電子線回折パターンには、その奥行き方向の情報が現れることとなる。そのため、電子線のビーム径を小さくするだけでなく、試料の奥行方向の厚さを薄くすることで、より局所的な領域の情報を得ることができる。一方で、試料の奥行き方向の厚さが薄すぎる場合(例えば試料の奥行き方向の厚さが5nm以下の場合)、極微細な領域の情報しか得られない。そのため、極微細な領域に結晶が存在していた場合には、得られる電子線回折パターンは、単結晶のものと同様のパターンとなる場合がある。極微細な領域を解析する目的でない場合には、試料の奥行き方向の厚さを、例えば10nm以上100nm以下、代表的には10nm以上50nm以下とすることが好ましい。
図29(B)(C)に試料X1の電子線回折パターンを、図30(B)(C)に試料X2の電子線回折パターンを、図31(B)(C)に試料X3の電子線回折パターンを、それぞれ示す。
なお、図29(B)(C)、図30(B)(C)、及び図31(B)(C)に示す電子線回折パターンは、電子線回折パターンが明瞭になるようにコントラストが調整された画像データである。また、図29(B)(C)、図30(B)(C)、及び図31(B)(C)において、中央の最も明るい輝点は入射される電子線ビームによるものであり、電子線回折パターンの中心(ダイレクトスポットまたは透過波ともいう)である。
また、図29(B)に示すように、入射する電子線のビーム径を1nmΦとした場合に、円周状に分布した複数のスポットがみられることから、酸化物半導体膜は、極めて微小で且つ面方位があらゆる向きに配向した複数の結晶部が混在していることが分かる。また、図29(C)に示すように、入射する電子線のビーム径を100nmΦとした場合に、この複数の結晶部からの回折スポットが連なり、輝度が平均化されてリング状の回折パターンとなることが確認できる。また、図29(C)では、半径の異なる2つのリング状の回折パターンが確認できる。ここで、径の小さいほうから第1のリング、第2のリングと呼ぶこととする。第2のリングに比べて、第1のリングの方が輝度が高いことが確認できる。また、第1のリングと重なる位置に、輝度の高い2つのスポット(第1の領域)が確認される。
第1のリングの中心からの動径方向の距離は、単結晶InGaZnOの構造モデルにおける(009)面の回折スポットの中心からの動径方向の距離とほぼ一致する。また、第1の領域は、c軸配向性に起因する回折スポットである。
また、図29(C)に示すように、リング状の回折パターンが見られていることから、酸化物半導体膜中には、あらゆる向きに配向している結晶部(以下、c軸配向性を有さない結晶部、または第2の結晶部ともいう)が存在するとも言い換えることもできる。
また、2つの第1の領域は、電子線回折パターンの中心点に対して対称に配置され、輝度が同程度であることから、2回対称性を有することが推察される。また上述のように、2つの第1の領域はc軸配向性に起因する回折スポットであることから、2つの第1の領域と中心を通る線を結ぶ直線の方向が、結晶部のc軸の向きと一致する。図29(C)において上下方向が膜厚方向であることから、酸化物半導体膜中には、c軸が膜厚方向に配向する結晶部が存在していることが分かる。
このように、試料X1の酸化物半導体膜は、c軸配向性を有する結晶部と、c軸配向性を有さない結晶部とが混在している膜であることが確認できる。
図30(B)(C)及び図31(B)(C)に示す電子線回折パターンにおいても、図29(B)(C)に示す電子線回折パターンと概ね同じ結果である。ただし、c軸配向性に起因する2つのスポット(第1の領域)の輝度は、試料X1、試料X2、試料X3の順で明るく、c軸配向性を有する結晶部の存在割合が、この順で高いことが示唆される。
[酸化物半導体膜の結晶性の定量化方法]
次に、図32乃至図34を用いて、酸化物半導体膜の結晶性の定量化方法の一例について説明する。
まず、電子線回折パターンを用意する(図32(A)参照)。
なお、図32(A)は、膜厚100nmの酸化物半導体膜に対して、ビーム径100nmΦで測定した電子線回折パターンであり、図32(B)は、図32(A)に示す電子線回折パターンを、コントラスト調整した後の電子線回折パターンである。
図32(B)において、ダイレクトスポットの上下に2つの明瞭なスポット(第1の領域)が観察されている。この2つのスポット(第1の領域)はInGaZnOの構造モデルにおける(00l)に対応する回折スポット、すなわちc軸配向性を有する結晶部に起因する。一方で、上記第1の領域とは別に、第1の領域とおおよそ同心円上に輝度の低いリング状のパターン(第2の領域)が重なって見える。これは電子ビーム径を100nmΦとしたことによって、c軸配向性を有さない結晶部(第2の結晶部)の構造に起因したスポットの輝度が平均化され、リング状になったものである。
ここで、電子線回折パターンは、c軸配向性を有する結晶部に起因する回折スポットを有する第1の領域と、第2の結晶部に起因する回折スポットを有する第2の領域とが、重なって観察される。よって、第1の領域を含むラインプロファイルと、第2の領域を含むラインプロファイルとを取得し比較することで、酸化物半導体膜の結晶性の定量化が可能となる。
まず、第1の領域を含むラインプロファイル及び第2の領域を含むラインプロファイルについて、図33を用いて説明する。
図33は、InGaZnOの構造モデルに対して、(100)面より電子ビームを照射した際に得られる電子線回折のシミュレーションパターンに、領域A−A’、領域B−B’、及び領域C−C’の補助線を付した図である。
図33に示す領域A−A’は、c軸配向性を有する第1の結晶部に起因する2つの回折スポットと、ダイレクトスポットとを通る直線を含む。また、図33に示す領域B−B’及び領域C−C’は、c軸配向性を有する第1の結晶部に起因する回折スポットが観察されない領域と、ダイレクトスポットとを通る直線を含む。なお、領域A−A’と領域B−B’または領域C−C’とが交わる角度は、34°近傍、具体的には、30°以上38°以下、好ましくは32°以上36°以下、さらに好ましくは33°以上35°以下とすればよい。
なお、ラインプロファイルは、酸化物半導体膜の構造に応じて、図34に示すような傾向を有する。図34は、各構造に対するラインプロファイルのイメージ図、相対輝度R、及び電子線回折パターンで得られるc軸配向性に起因するスペクトルの半値幅(FWHM:Full Width at Half Maximum)を説明する図である。
なお、図34に示す相対輝度Rとは、領域A−A’における輝度の積分強度を、領域B−B’における輝度の積分強度または領域C−C’における輝度の積分強度で割った値である。なお、領域A−A’、領域B−B’、及び領域C−C’における輝度の積分強度としては、中央の位置に現れるダイレクトスポットに起因するバックグラウンドの輝度を除去したものである。
相対輝度Rを計算することによって、c軸配向性の強さを定量的に規定することができる。例えば、図34に示すように、単結晶の酸化物半導体膜では、領域A−A’のc軸配向性を有する第1の結晶部に起因する回折スポットのピーク強度が高く、領域B−B’及び領域C−C’にはc軸配向性を有する第1の結晶部に起因する回折スポットが見られないため、相対輝度Rは、1を超えて極めて大きくなる。また、相対輝度Rは、単結晶、CAAC(CAACの詳細については後述する)のみ、CAAC+Nanocrystal、Nanocrystal、Amorphousの順で低くなる。特に、特定の配向性を有さないNanocrystal、及びamorphousでは、相対輝度Rは1となる。
また、結晶の周期性の高い構造ほど、c軸配向性を有する第1の結晶部に起因するスペクトルの強度は高くなり、当該スペクトルの半値幅も小さくなる。そのため、単結晶の半値幅が最も小さく、CAACのみ、CAAC+Nanocrystal、Nanocrystalの順に半値幅が大きくなり、amorphousでは、半値幅が非常に大きく、ハローと呼ばれるプロファイルになる。
[ラインプロファイルによる解析]
上述のように、第1の領域における輝度の積分強度と、第2の領域における輝度の積分強度との強度比は、配向性を有する結晶部の存在割合を推し量る点で重要な情報である。
そこで、先に示す試料X1乃至試料X3の電子線回折パターンから、ラインプロファイルによる解析を行った。
試料X1のラインプロファイルによる解析結果を図35(A1)(A2)に、試料X2のラインプロファイルによる解析結果を図35(B1)(B2)に、試料X3のラインプロファイルによる解析結果を図35(C1)(C2)に、それぞれ示す。
なお、図35(A1)は、図29(C)に示す電子線回折パターンに領域A−A’、領域B−B’、及び領域C−C’を記載した電子線回折パターンであり、図35(B1)は、図30(C)に示す電子線回折パターンに領域A−A’、領域B−B’、及び領域C−C’を記載した電子線回折パターンであり、図35(C1)は、図31(C)に示す電子線回折パターンに領域A−A’、領域B−B’、及び領域C−C’を記載した電子線回折パターンである。
また、領域A−A’、領域B−B’、及び領域C−C’としては、電子線回折パターンの中心位置に現れるダイレクトスポットの輝度で規格化することにより求めることができる。またこれにより、各試料間での相対的な比較を行うことができる。
また、輝度のプロファイルを算出する際に、試料からの非弾性散乱等に起因する輝度の成分を、バックグラウンドとして差し引くと、より精度の高い比較を行うことができる。ここで非弾性散乱に起因する輝度の成分は、動径方向において極めてブロードなプロファイルを取るため、バックグラウンドの輝度を直線近似で算出してもよい。例えば、対象となるピークの両側の裾に沿って直線を引き、その直線よりも低輝度側に位置する領域をバックグラウンドとして差し引くことができる。
ここでは、上述の方法によりバックグラウンドを差し引いたデータから、領域A−A’、領域B−B’、及び領域C−C’における輝度の積分強度を算出した。そして、領域A−A’における輝度の積分強度を、領域B−B’における輝度の積分強度、または領域C−C’における輝度の積分強度で割った値を、相対輝度Rとして求めた。
図36に試料X1乃至試料X3の相対輝度Rを示す。なお、図36においては、図35(A2)、図35(B2)、及び図35(C2)に示す輝度のプロファイル中のダイレクトスポットの左右に位置するスペクトルにおいて、領域A−A’における輝度の積分強度を領域B−B’における輝度の積分強度で割った値、及び領域A−A’における輝度の積分強度を領域C−C’における輝度の積分強度で割った値をそれぞれ求めた。
図36に示すように、試料X1乃至試料X3の相対輝度は以下に示す通りである。
・試料X1の相対輝度R=25.00
・試料X2の相対輝度R=3.04
・試料X3の相対輝度R=1.05
なお、上述の相対輝度Rは、4つの位置での平均値とした。このように、相対輝度Rは、試料X1、試料X2、試料X3の順で高い。
本発明の一態様の酸化物半導体膜をトランジスタのチャネルが形成される半導体膜に用いる場合には、相対輝度Rが1を超えて40以下、好ましくは1を超えて10以下、さらに好ましくは1を超えて3以下の強度比となる酸化物半導体膜を用いると好適である。このような酸化物半導体膜を半導体膜に用いることで、電気特性の高い安定性と、ゲート電圧が低い領域での高い電界効果移動度を両立することができる。
<2−5.結晶部の存在割合>
酸化物半導体膜中の結晶部の存在割合は、断面TEM像を解析することで見積もることができる。
まず、画像解析の方法について説明する。画像解析の方法としては、高分解能で撮像されたTEM像に対して2次元高速フーリエ変換(FFT:Fast Fourier Transform)処理し、FFT像を取得する。得られたFFT像に対し、周期性を有する範囲を残し、それ以外を除去するマスク処理を施す。そしてマスク処理したFFT像を、2次元逆フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理し、FFTフィルタリング像を取得する。
これにより、結晶部のみを抽出した実空間像を得ることができる。ここで、残存した像の面積の割合から、結晶部の存在割合を見積もることができる。また、計算に用いた領域(元の像の面積ともいう)の面積から、残存した面積を差し引くことにより、結晶部以外の部分の存在割合を見積もることができる。
図37(A1)に試料X1の断面TEM像を、図37(A2)に試料X1の断面TEM像を画像解析した後に得られた像を、それぞれ示す。また、図37(B1)に試料X2の断面TEM像を、図37(B2)に試料X2の断面TEM像を画像解析した後に得られた像を、それぞれ示す。また、図37(C1)に試料X3の断面TEM像を、図37(C2)に試料X3の断面TEM像を画像解析した後に得られた像を、それぞれ示す。
画像解析後に得られた像において、酸化物半導体膜中の白く表示されている領域が、配向性を有する結晶部を含む領域に対応し、黒く表示されている領域が、配向性を有さない結晶部、または様々な向きに配向する結晶部を含む領域に対応する。
図37(A2)に示す結果より、試料X1における配向性を有する結晶部を含む領域を除く面積の割合は約43.1%であった。また、図37(B2)に示す結果より、試料X2における配向性を有する結晶部を含む領域を除く面積の割合は約61.7%であった。また、図37(C2)に示す結果より、試料X3における配向性を有する結晶部を含む領域を除く面積の割合は約89.5%であった。
このように見積もられた、酸化物半導体膜中の配向性を有する結晶部を除く部分の割合が、5%以上40%未満である場合、その酸化物半導体膜は極めて結晶性の高い膜であり、酸素欠損を作り難く、電気特性が非常に安定であるため好ましい。一方で、酸化物半導体膜中の配向性を有する結晶部を除く部分の割合が、40%以上100%未満、好ましくは60%以上90%以下である場合、その酸化物半導体膜は配向性を有する結晶部と配向性を有さない結晶部が適度な割合で混在し、電気特性の安定性と高移動度化を両立させることができる。
ここで、断面TEM像により、または断面TEM像の画像解析等により明瞭に確認できる結晶部を除く領域のことを、Lateral Growth Buffer Region(LGBR)と呼称することもできる。
<2−6.酸化物半導体膜への酸素拡散について>
次に、酸化物半導体膜への酸素の拡散のしやすさを評価した結果について説明する。
ここでは、以下に示す3つの試料(試料Y1乃至試料Y3)を作製した。
[試料Y1]
まず、ガラス基板上に、先に示す試料X1と同様の方法により、厚さ約50nmの酸化物半導体膜を成膜した。続いて、酸化物半導体膜上に、厚さ約30nmの酸化窒化シリコン膜、厚さ約100nmの酸化窒化シリコン膜、厚さ約20nmの酸化窒化シリコン膜を、プラズマCVD法により積層して形成した。なお、以下の説明において、酸化物半導体膜をOSと、酸化窒化シリコン膜をGIとしてそれぞれ記載する場合がある。
次に、窒素雰囲気下で350℃、1時間の熱処理を行った。
続いて、厚さ5nmのIn−Sn−Si酸化物膜をスパッタリング法により成膜した。
続いて、酸化窒化シリコン膜中に酸素添加処理を行った。当該酸素添加条件としては、アッシング装置を用い、基板温度を40℃とし、流量150sccmの酸素ガス(16O)と、流量100sccmの酸素ガス(18O)とをチャンバー内に導入し、圧力を15Paとし、基板側にバイアスが印加されるように、アッシング装置内に設置された平行平板の電極間に4500WのRF電力を600sec供給して行った。なお、酸素ガス(18O)を用いた理由としては、酸化窒化シリコン膜中に酸素(16O)が主成分レベルで含有されているため、酸素添加処理によって、添加される酸素を正確に測定するためである。
続いて、厚さ約100nmの窒化シリコン膜をプラズマCVD法により成膜した。
[試料Y2]
試料Y2は、試料Y1の酸化物半導体膜の成膜条件を異ならせた試料である。試料Y2は、先に示す試料X2と同様の方法により、厚さ約50nmの酸化物半導体膜を成膜した。
[試料Y3]
試料Y3は、試料Y1の酸化物半導体膜の成膜条件を異ならせた試料である。試料Y3は、先に示す試料X3と同様の方法により、厚さ約50nmの酸化物半導体膜を成膜した。
以上の工程により試料Y1乃至試料Y3を作製した。
[SIMS分析]
試料Y1乃至試料Y3について、SIMS(Secondary Ion Mass Spectrometry)分析により、18Oの濃度を測定した。なお、SIMS分析においては、上記作製した試料Y1乃至試料Y3を、熱処理を行わず評価する条件と、試料Y1乃至試料Y3を窒素雰囲気下にて350℃ 1時間の熱処理を行う条件と、試料Y1乃至試料Y3を窒素雰囲気下にて450℃、1時間の熱処理を行う条件と、の3つの条件とした。
図38(A)(B)(C)に、SIMS測定結果を示す。なお、図38(A)が試料Y1のSIMS測定結果であり、図38(B)が試料Y2のSIMS測定結果であり、図38(C)が試料Y3のSIMS測定結果である。
また、図38(A)(B)(C)においては、GI及びOSを含む領域の分析結果を示している。なお、図38(A)(B)(C)は、基板側からSIMS分析(SSDP(Substrate Side Depth Profile)−SIMSともいう)した結果である。
また、図38(A)(B)(C)において、灰色の破線が熱処理を行っていない試料のプロファイルであり、黒色の破線が350℃の熱処理を行った試料のプロファイルであり、黒色の実線が450℃の熱処理を行った試料のプロファイルである。
試料Y1乃至試料Y3のそれぞれにおいて、GI中に18Oが拡散していること、及びOS中に18Oが拡散していることが確認できる。また、試料Y1、試料Y2、試料Y3の順に、より深い位置まで18Oが拡散していることが確認できる。また、350℃及び450℃の熱処理を行うことで、さらに深い位置まで18Oが拡散していることが確認できる。
以上の結果から、配向性を有する結晶部と配向性を有さない結晶部が混在し、且つ配向性を有する結晶部の存在割合が低い酸化物半導体膜は、酸素が透過しやすい膜、言い換えると酸素が拡散しやすい膜であることが確認できる。また、350℃及び450℃の熱処理を行うことで、GI膜中の酸素がOS中に拡散することが確認できる。
以上の結果は、配向性を有する結晶部の存在割合(密度)が高いほど、厚さ方向へ酸素が拡散しにくく、当該密度が低いほど厚さ方向へ酸素が拡散しやすいことを示している。酸化物半導体膜における酸素の拡散のしやすさについて、以下のように考察することができる。
配向性を有する結晶部と、配向性を有さない極微細な結晶部が混在している酸化物半導体膜において、断面観察像で明瞭に観察できる結晶部以外の領域(LGBR)は、酸素が拡散しやすい領域、すなわち酸素の拡散経路になりうる。したがって、酸化物半導体膜の近傍に十分な酸素供給源がある場合において、LGBRを介して配向性を有する結晶部にも、酸素が供給されやすくなるため、膜中の酸素欠損量を低減することができると考えられる。
例えば、酸化物半導体膜に接して酸素を放出しやすい酸化膜を設け、加熱処理を施すことにより、当該酸化膜から放出される酸素は、LGBRにより酸化物半導体膜の膜厚方向に拡散する。そして、LGBRを経由して、配向性を有する結晶部に横方向から酸素が供給されうる。これにより、酸化物半導体膜の配向性を有する結晶部、及びこれ以外の領域に、十分に酸素が行き渡り、膜中の酸素欠損を効果的に低減することができる。
例えば、酸化物半導体膜中に、金属原子と結合していない水素原子が存在すると、これと酸素原子が結合し、OHが形成され、固定化してしまう場合がある。そこで、成膜時に低温で成膜することで酸化物半導体膜中に酸素欠損(Vo)に水素原子がトラップされた状態(VoHと呼ぶ)を一定量(例えば1×1017cm−3程度)形成することで、OHが生成されることを抑制する。またVoHは、キャリアを生成するため、酸化物半導体膜中にキャリアが一定量存在する状態となる。これにより、キャリア密度が高められた酸化物半導体膜を形成できる。また成膜時には、酸素欠損も同時に形成されるが、当該酸素欠損は、上述のようにLGBRを介して酸素を導入することにより低減することができる。このような方法により、キャリア密度が比較的高く、且つ酸素欠損が十分に低減された酸化物半導体膜を形成することができる。
また、配向性を有する結晶部以外の領域は、成膜時に配向性を有さない極めて微細な結晶部を構成するため、酸化物半導体膜には明瞭な結晶粒界は確認できない。また当該微細な結晶部は、配向性を有する複数の結晶部の間に位置する。当該微細な結晶部は、成膜時の熱により横方向に成長することで、隣接する配向性を有する結晶部と結合する。また当該微細な結晶部はキャリアを発生する領域としても機能する。これにより、このような構成を有する酸化物半導体膜は、トランジスタに適用することでその電界効果移動度を著しく向上させることができると考えられる。
また酸化物半導体膜を形成し、その上に酸化シリコン膜などの酸化物絶縁膜を成膜した後に、酸素雰囲気でのプラズマ処理を行うことが好ましい。このような処理により、膜中に酸素を供給すること以外に、水素濃度を低減することができる。例えば、プラズマ処理中に、同時にチャンバー内に残存するフッ素も酸化物半導体膜中にドープされる場合がある。フッ素はマイナスの電荷を帯びたフッ素原子として存在し、プラスの電荷を帯びた水素原子とクーロン力により結合し、HFが生成される。HFは当該プラズマ処理中に酸化物半導体膜外へ放出され、その結果として、酸化物半導体膜中の水素濃度を低減することができる。また、プラズマ処理において、酸素原子と水素原子とが結合してHOとして膜外へ放出される場合もある。
また、酸化物半導体膜に酸化シリコン膜(または酸化窒化シリコン膜)が積層された構成を考える。酸化シリコン膜中のフッ素は、膜中の水素と結合し、電気的に中性であるHFとして存在しうるため、酸化物半導体膜の電気特性に影響を与えない。なお、Si−F結合が生じる場合もあるがこれも電気的に中性となる。また酸化シリコン膜中のHFは、酸素の拡散に対して影響しないと考えられる。
以上のようなメカニズムにより、酸化物半導体膜中の酸素欠損が低減され、且つ膜中の金属原子と結合していない水素が低減されることにより、信頼性を高めることができると考えられる。また酸化物半導体膜のキャリア密度が一定以上であることで、電気特性が向上すると考えられる。
<2−7.酸化物半導体膜の成膜方法>
以下では、本発明の一態様の酸化物半導体膜の成膜方法について説明する。
本発明の一態様の酸化物半導体膜は、酸素を含む雰囲気下にてスパッタリング法によって成膜することができる。
成膜時の基板温度は、室温以上150℃以下、好ましくは50℃以上150℃以下、より好ましくは100℃以上150℃以下、代表的には130℃の温度とすることが好ましい。基板の温度を上述の範囲とすることで、配向性を有する結晶部と、配向性を有さない結晶部との割合を制御することができる。
また、成膜時の酸素の流量比(酸素分圧)を、1%以上33%未満、好ましくは5%以上30%以下、より好ましくは5%以上20%以下、さらに好ましくは5%以上15%以下、代表的には10%とすることが好ましい。酸素流量を低減することにより、配向性を有さない結晶部をより多く膜中に含ませることができる。
したがって、成膜時の基板温度と、成膜時の酸素流量を上述の範囲とすることで、配向性を有する結晶部と、配向性を有さない結晶部とが混在した酸化物半導体膜を得ることができる。また、基板温度と酸素流量を上述の範囲内とすることにより、配向性を有する結晶部と配向性を有さない結晶部の存在割合を制御することが可能となる。
酸化物半導体膜の成膜に用いることの可能な酸化物ターゲットとしては、In−Ga−Zn系酸化物に限られず、例えば、In−M−Zn系酸化物(Mは、Al、Ga、Y、またはSn)を適用することができる。
また、複数の結晶粒を有する多結晶酸化物を含むスパッタリングターゲットを用いて、酸化物半導体膜である結晶部を含む酸化物半導体膜を成膜すると、多結晶酸化物を含まないスパッタリングターゲットを用いた場合に比べて、結晶性を有する酸化物半導体膜が得られやすい。
以下に、酸化物半導体膜の成膜メカニズムにおける一考察について説明する。スパッタリング用ターゲットが複数の結晶粒を有し、且つ、その結晶粒が層状構造を有しており、当該結晶粒に劈開しやすい界面が存在する場合、当該スパッタリング用ターゲットにイオンを衝突させることで、結晶粒が劈開して、平板状又はペレット状のスパッタリング粒子が得られることがある。該得られた平板状又はペレット状のスパッタリング粒子が、基板上に堆積することでナノ結晶を含む酸化物半導体膜が成膜されると考えられる。また、基板を加熱することにより、基板表面において当該ナノ結晶同士の結合、または再配列が進むことにより、配向性を有する結晶部を含む酸化物半導体膜が形成されやすくなると考えられる。
なお、ここではスパッタリング法により形成する方法について説明したが、特にスパッタリング法を用いることで、結晶性の制御が容易であるため好ましい。なお、スパッタリング法以外に、例えばパルスレーザー堆積(PLD)法、プラズマ化学気相堆積(PECVD)法、熱CVD(Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法、真空蒸着法などを用いてもよい。熱CVD法の例としては、MOCVD(Metal Organic Chemical Vapor Deposition)法が挙げられる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態においては、本発明の一態様の半導体装置を有する表示装置の一例について、図39乃至図46を用いて以下説明を行う。
図39は、表示装置の一例を示す上面図である。図39に示す表示装置700は、第1の基板701上に設けられた画素部702と、第1の基板701に設けられたソースドライバ回路部704及びゲートドライバ回路部706と、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706を囲むように配置されるシール材712と、第1の基板701に対向するように設けられる第2の基板705と、を有する。なお、第1の基板701と第2の基板705は、シール材712によって封止されている。すなわち、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706は、第1の基板701とシール材712と第2の基板705によって封止されている。なお、図39には図示しないが、第1の基板701と第2の基板705の間には表示素子が設けられる。
また、表示装置700は、第1の基板701上のシール材712によって囲まれている領域とは異なる領域に、画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706と、それぞれと電気的に接続されるFPC端子部708(FPC:Flexible printed circuit)が設けられる。また、FPC端子部708には、FPC716が接続され、FPC716によって画素部702、ソースドライバ回路部704、及びゲートドライバ回路部706に各種信号等が供給される。また、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708には、信号線710が各々接続されている。FPC716により供給される各種信号等は、信号線710を介して、画素部702、ソースドライバ回路部704、ゲートドライバ回路部706、及びFPC端子部708に与えられる。
また、表示装置700にゲートドライバ回路部706を複数設けてもよい。また、表示装置700としては、ソースドライバ回路部704、及びゲートドライバ回路部706を画素部702と同じ第1の基板701に形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ回路部706のみを第1の基板701に形成しても良い、またはソースドライバ回路部704のみを第1の基板701に形成しても良い。この場合、ソースドライバ回路またはゲートドライバ回路等が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を、第1の基板701に形成する構成としても良い。なお、別途形成した駆動回路基板の接続方法は、特に限定されるものではなく、COG(Chip On Glass)方法、ワイヤボンディング方法などを用いることができる。
また、表示装置700が有する画素部702、ソースドライバ回路部704及びゲートドライバ回路部706は、複数のトランジスタを有している。
また、表示装置700は、様々な素子を有することが出来る。該素子の一例としては、例えば、エレクトロルミネッセンス(EL)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子、LEDなど)、発光トランジスタ素子(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク素子、電気泳動素子、エレクトロウェッティング素子、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)ディスプレイ(例えば、グレーティングライトバルブ(GLV)、デジタルマイクロミラーデバイス(DMD)、デジタル・マイクロ・シャッター(DMS)素子、インターフェロメトリック・モジュレーション(IMOD)素子など)、圧電セラミックディスプレイなどが挙げられる。
また、EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク素子又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、表示装置700における表示方式は、プログレッシブ方式やインターレース方式等を用いることができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、Rの画素とGの画素とBの画素とW(白)の画素の四画素から構成されてもよい。または、ペンタイル配列のように、RGBのうちの2色分で一つの色要素を構成し、色要素によって、異なる2色を選択して構成してもよい。またはRGBに、イエロー、シアン、マゼンタ等を一色以上追加してもよい。なお、色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用することもできる。
また、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色発光(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルタともいう。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有する素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合よりも、さらに消費電力を低減できる場合がある。
また、カラー化方式としては、上述の白色発光からの発光の一部をカラーフィルタを通すことで赤色、緑色、青色に変換する方式(カラーフィルタ方式)の他、赤色、緑色、青色の発光をそれぞれ用いる方式(3色方式)、または青色発光からの発光の一部を赤色や緑色に変換する方式(色変換方式、量子ドット方式)を適用してもよい。
本実施の形態においては、表示素子として液晶素子及びEL素子を用いる構成について、図40乃至図42を用いて説明する。なお、図40及び図41は、図39に示す一点鎖線Q−Rにおける断面図であり、表示素子として液晶素子を用いた構成である。また、図42は、図39に示す一点鎖線Q−Rにおける断面図であり、表示素子としてEL素子を用いた構成である。
まず、図40乃至図42に示す共通部分について最初に説明し、次に異なる部分について以下説明する。
<3−1.表示装置の共通部分に関する説明>
図40乃至図42に示す表示装置700は、引き回し配線部711と、画素部702と、ソースドライバ回路部704と、FPC端子部708と、を有する。また、引き回し配線部711は、信号線710を有する。また、画素部702は、トランジスタ750及び容量素子790を有する。また、ソースドライバ回路部704は、トランジスタ752を有する。
トランジスタ750及びトランジスタ752は、先に示すトランジスタ100Bと同様の構成である。なお、トランジスタ750及びトランジスタ752の構成については、先の実施の形態に示す、その他のトランジスタを用いてもよい。
本実施の形態で用いるトランジスタは、高純度化し、酸素欠損の形成を抑制した酸化物半導体膜を有する。該トランジスタは、オフ電流を低くすることができる。よって、画像信号等の電気信号の保持時間を長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。
また、本実施の形態で用いるトランジスタは、比較的高い電界効果移動度が得られるため、高速駆動が可能である。例えば、このような高速駆動が可能なトランジスタを液晶表示装置に用いることで、画素部のスイッチングトランジスタと、駆動回路部に使用するドライバトランジスタを同一基板上に形成することができる。すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる必要がないため、半導体装置の部品点数を削減することができる。また、画素部においても、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができる。
容量素子790は、トランジスタ750が有する第1のゲート電極と機能する導電膜と同一の導電膜を加工する工程を経て形成される下部電極と、トランジスタ750が有するソース電極及びドレイン電極として機能する導電膜と同一の導電膜を加工する工程を経て形成される上部電極と、を有する。また、下部電極と上部電極との間には、トランジスタ750が有する第1のゲート絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を経て形成される絶縁膜と、トランジスタ750の保護絶縁膜として機能する絶縁膜と同一の絶縁膜を形成する工程を経て形成される絶縁膜とが設けられる。すなわち、容量素子790は、一対の電極間に誘電体膜として機能する絶縁膜が挟持された積層型の構造である。
また、図40乃至図42において、トランジスタ750、トランジスタ752、及び容量素子790上に平坦化絶縁膜770が設けられている。
また、図40乃至図42においては、画素部702が有するトランジスタ750と、ソースドライバ回路部704が有するトランジスタ752と、を同じ構造のトランジスタを用いる構成について例示したが、これに限定されない。例えば、画素部702と、ソースドライバ回路部704とは、異なるトランジスタを用いてもよい。具体的には、画素部702にトップゲート型のトランジスタを用い、ソースドライバ回路部704にボトムゲート型のトランジスタを用いる構成、あるいは画素部702にボトムゲート型のトランジスタを用い、ソースドライバ回路部704にトップゲート型のトランジスタを用いる構成などが挙げられる。なお、上記のソースドライバ回路部704を、ゲートドライバ回路部と読み替えてもよい。
また、信号線710は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。信号線710として、例えば、銅元素を含む材料を用いた場合、配線抵抗に起因する信号遅延等が少なく、大画面での表示が可能となる。
また、FPC端子部708は、接続電極760、異方性導電膜780、及びFPC716を有する。なお、接続電極760は、トランジスタ750、752のソース電極及びドレイン電極として機能する導電膜と同じ工程を経て形成される。また、接続電極760は、FPC716が有する端子と異方性導電膜780を介して、電気的に接続される。
また、第1の基板701及び第2の基板705としては、例えばガラス基板を用いることができる。また、第1の基板701及び第2の基板705として、可撓性を有する基板を用いてもよい。該可撓性を有する基板としては、例えばプラスチック基板等が挙げられる。
また、第1の基板701と第2の基板705の間には、構造体778が設けられる。構造体778は、絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、第1の基板701と第2の基板705の間の距離(セルギャップ)を制御するために設けられる。なお、構造体778として、球状のスペーサを用いていても良い。
また、第2の基板705側には、ブラックマトリクスとして機能する遮光膜738と、カラーフィルタとして機能する着色膜736と、遮光膜738及び着色膜736に接する絶縁膜734が設けられる。
<3−2.液晶素子を用いる表示装置の構成例>
図40に示す表示装置700は、液晶素子775を有する。液晶素子775は、導電膜772、導電膜774、及び液晶層776を有する。導電膜774は、第2の基板705側に設けられ、対向電極としての機能を有する。図40に示す表示装置700は、導電膜772と導電膜774に印加される電圧によって、液晶層776の配向状態が変わることによって光の透過、非透過が制御され画像を表示することができる。
また、導電膜772は、トランジスタ750が有するソース電極及びドレイン電極として機能する導電膜と電気的に接続される。導電膜772は、平坦化絶縁膜770上に形成され画素電極、すなわち表示素子の一方の電極として機能する。
導電膜772としては、可視光において透光性のある導電膜、または可視光において反射性のある導電膜を用いることができる。可視光において透光性のある導電膜としては、例えば、インジウム(In)、亜鉛(Zn)、錫(Sn)の中から選ばれた一種を含む材料を用いるとよい。可視光において反射性のある導電膜としては、例えば、アルミニウム、または銀を含む材料を用いるとよい。
導電膜772に可視光において反射性のある導電膜を用いる場合、表示装置700は、反射型の液晶表示装置となる。また、導電膜772に可視光において透光性のある導電膜を用いる場合、表示装置700は、透過型の液晶表示装置となる。
また、導電膜772上の構成を変えることで、液晶素子の駆動方式を変えることができる。この場合の一例を図41に示す。また、図41に示す表示装置700は、液晶素子の駆動方式として横電界方式(例えば、FFSモード)を用いる構成の一例である。図41に示す構成の場合、導電膜772上に絶縁膜773が設けられ、絶縁膜773上に導電膜774が設けられる。この場合、導電膜774は、共通電極(コモン電極ともいう)としての機能を有し、絶縁膜773を介して、導電膜772と導電膜774との間に生じる電界によって、液晶層776の配向状態を制御することができる。
また、図40及び図41において図示しないが、導電膜772または導電膜774のいずれか一方または双方に、液晶層776と接する側に、それぞれ配向膜を設ける構成としてもよい。また、図40及び図41において図示しないが、偏光部材、位相差部材、反射防止部材などの光学部材(光学基板)などは適宜設けてもよい。例えば、偏光基板及び位相差基板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用いてもよい。
表示素子として液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
また、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要である。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。また、ブルー相を示す液晶材料は、視野角依存性が小さい。
また、表示素子として液晶素子を用いる場合、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モードなどを用いることができる。
また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、例えば、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASVモードなどを用いることができる。
<3−3.発光素子を用いる表示装置>
図42に示す表示装置700は、発光素子782を有する。発光素子782は、導電膜772、EL層786、及び導電膜788を有する。図42に示す表示装置700は、発光素子782が有するEL層786が発光することによって、画像を表示することができる。なお、EL層786は、有機化合物、または量子ドットなどの無機化合物を有する。
有機化合物に用いることのできる材料としては、蛍光性材料または燐光性材料などが挙げられる。また、量子ドットに用いることのできる材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料、などが挙げられる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム(Cd)、セレン(Se)、亜鉛(Zn)、硫黄(S)、リン(P)、インジウム(In)、テルル(Te)、鉛(Pb)、ガリウム(Ga)、ヒ素(As)、アルミニウム(Al)、等の元素を有する量子ドット材料を用いてもよい。
また、上述の有機化合物、及び無機化合物としては、例えば、蒸着法(真空蒸着法を含む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用いて形成することができる。また、EL層786としては、低分子材料、中分子材料(オリゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
ここで、液滴吐出法を用いてEL層786を形成する方法について、図43を用いて説明する。図43(A)乃至図43(D)は、EL層786の作製方法を説明する断面図である。
まず、平坦化絶縁膜770上に導電膜772が形成され、導電膜772の一部を覆うように絶縁膜730が形成される(図43(A)参照)。
次に、絶縁膜730の開口である導電膜772の露出部に、液滴吐出装置783より液滴784を吐出し、組成物を含む層785を形成する。液滴784は、溶媒を含む組成物であり、導電膜772上に付着する(図43(B)参照)。
なお、液滴784を吐出する工程を減圧下で行ってもよい。
次に、組成物を含む層785より溶媒を除去し、固化することによってEL層786を形成する(図43(C)参照)。
なお、溶媒の除去方法としては、乾燥工程または加熱工程を行えばよい。
次に、EL層786上に導電膜788を形成し、発光素子782を形成する(図43(D)参照)。
このようにEL層786を液滴吐出法で行うと、選択的に組成物を吐出することができるため、材料のロスを削減することができる。また、形状を加工するためのリソグラフィ工程なども必要ないために工程も簡略化することができ、低コスト化が達成できる。
なお、上記説明した液滴吐出法とは、組成物の吐出口を有するノズル、あるいは1つ又は複数のノズルを有するヘッド等の液滴を吐出する手段を有するものの総称とする。
次に、液滴吐出法に用いる液滴吐出装置について、図44を用いて説明する。図44は、液滴吐出装置1400を説明する概念図である。
液滴吐出装置1400は、液滴吐出手段1403を有する。また、液滴吐出手段1403は、ヘッド1405と、ヘッド1412とを有する。
ヘッド1405、及びヘッド1412は制御手段1407に接続され、それがコンピュータ1410で制御することにより予めプログラミングされたパターンに描画することができる。
また、描画するタイミングとしては、例えば、基板1402上に形成されたマーカー1411を基準に行えば良い。あるいは、基板1402の外縁を基準にして基準点を確定させても良い。ここでは、マーカー1411を撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発生させて制御手段1407に送る。
撮像手段1404としては、電荷結合素子(CCD)や相補型金属−酸化物−半導体(CMOS)を利用したイメージセンサなどを用いることができる。なお、基板1402上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405、ヘッド1412を個別に制御することができる。吐出する材料は、材料供給源1413、材料供給源1414より配管を通してヘッド1405、ヘッド1412にそれぞれ供給される。
ヘッド1405の内部は、点線1406が示すように液状の材料を充填する空間と、吐出口であるノズルを有する構造となっている。図示しないが、ヘッド1412もヘッド1405と同様な内部構造を有する。ヘッド1405とヘッド1412のノズルを異なるサイズで設けると、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで、複数種の発光材料などをそれぞれ吐出し、描画することができ、広領域に描画する場合は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画することができる。大型基板を用いる場合、ヘッド1405、ヘッド1412は基板上を、図44中に示すX、Y、Zの矢印の方向に自在に走査し、描画する領域を自由に設定することができ、同じパターンを一枚の基板に複数描画することができる。
また、組成物を吐出する工程は、減圧下で行ってもよい。吐出時に基板を加熱しておいてもよい。組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、その目的、温度と時間が異なるものである。乾燥の工程、焼成の工程は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉などにより行う。なお、この加熱処理を行うタイミング、加熱処理の回数は特に限定されない。乾燥と焼成の工程を良好に行うためには、そのときの温度は、基板の材質及び組成物の性質に依存する。
以上のように、液滴吐出装置を用いてEL層786を作製することができる。
再び、図42に示す表示装置700の説明に戻る。
また、図42に示す表示装置700には、平坦化絶縁膜770及び導電膜772上に絶縁膜730が設けられる。絶縁膜730は、導電膜772の一部を覆う。なお、発光素子782はトップエミッション構造である。したがって、導電膜788は透光性を有し、EL層786が発する光を透過する。なお、本実施の形態においては、トップエミッション構造について、例示するが、これに限定されない。例えば、導電膜772側に光を射出するボトムエミッション構造や、導電膜772及び導電膜788の双方に光を射出するデュアルエミッション構造にも適用することができる。
また、発光素子782と重なる位置に、着色膜736が設けられ、絶縁膜730と重なる位置、引き回し配線部711、及びソースドライバ回路部704に遮光膜738が設けられている。また、着色膜736及び遮光膜738は、絶縁膜734で覆われている。また、発光素子782と絶縁膜734の間は封止膜732で充填されている。なお、図42に示す表示装置700においては、着色膜736を設ける構成について例示したが、これに限定されない。例えば、EL層786を塗り分けにより形成する場合においては、着色膜736を設けない構成としてもよい。
<3−4.表示装置に入出力装置を設ける構成例>
また、図41及び図42に示す表示装置700に入出力装置を設けてもよい。当該入出力装置としては、例えば、タッチパネル等が挙げられる。
図41に示す表示装置700にタッチパネル791を設ける構成を図45に、図42に示す表示装置700にタッチパネル791を設ける構成を図46に、それぞれ示す。
図45は図41に示す表示装置700にタッチパネル791を設ける構成の断面図であり、図46は図42に示す表示装置700にタッチパネル791を設ける構成の断面図である。
まず、図45及び図46に示すタッチパネル791について、以下説明を行う。
図45及び図46に示すタッチパネル791は、基板705と着色膜736との間に設けられる、所謂インセル型のタッチパネルである。タッチパネル791は、遮光膜738、及び着色膜736を形成する前に、基板705側に形成すればよい。
なお、タッチパネル791は、遮光膜738と、絶縁膜792と、電極793と、電極794と、絶縁膜795と、電極796と、絶縁膜797と、を有する。例えば、指やスタイラスなどの被検知体が近接することで、電極793と、電極794との相互容量の変化を検知することができる。
また、図45及び図46に示すトランジスタ750の上方においては、電極793と、電極794との交差部を明示している。電極796は、絶縁膜795に設けられた開口部を介して、電極794を挟む2つの電極793と電気的に接続されている。なお、図45及び図46においては、電極796が設けられる領域を画素部702に設ける構成を例示したが、これに限定されず、例えば、ソースドライバ回路部704に形成してもよい。
電極793及び電極794は、遮光膜738と重なる領域に設けられる。また、図45に示すように、電極793は、発光素子782と重ならないように設けられると好ましい。また、図46に示すように、電極793は、液晶素子775と重ならないように設けられると好ましい。別言すると、電極793は、発光素子782及び液晶素子775と重なる領域に開口部を有する。すなわち、電極793はメッシュ形状を有する。このような構成とすることで、電極793は、発光素子782が射出する光を遮らない構成とすることができる。または、電極793は、液晶素子775を透過する光を遮らない構成とすることができる。したがって、タッチパネル791を配置することによる輝度の低下が極めて少ないため、視認性が高く、且つ消費電力が低減された表示装置を実現できる。なお、電極794も同様の構成とすればよい。
また、電極793及び電極794が発光素子782と重ならないため、電極793及び電極794には、可視光の透過率が低い金属材料を用いることができる。または、電極793及び電極794が液晶素子775と重ならないため、電極793及び電極794には、可視光の透過率が低い金属材料を用いることができる。
そのため、可視光の透過率が高い酸化物材料を用いた電極と比較して、電極793及び電極794の抵抗を低くすることが可能となり、タッチパネルのセンサ感度を向上させることができる。
例えば、電極793、794、796には、導電性のナノワイヤを用いてもよい。当該ナノワイヤは、直径の平均値が1nm以上100nm以下、好ましくは5nm以上50nm以下、より好ましくは5nm以上25nm以下の大きさとすればよい。また、上記ナノワイヤとしては、Agナノワイヤ、Cuナノワイヤ、またはAlナノワイヤ等の金属ナノワイヤ、あるいは、カーボンナノチューブなどを用いればよい。例えば、電極664、665、667のいずれか一つあるいは全部にAgナノワイヤを用いる場合、可視光における光透過率を89%以上、シート抵抗値を40Ω/□以上100Ω/□以下とすることができる。
また、図45及び図46においては、インセル型のタッチパネルの構成について例示したが、これに限定されない。例えば、表示装置700上に形成する、所謂オンセル型のタッチパネルや、表示装置700に貼り合わせて用いる、所謂アウトセル型のタッチパネルとしてもよい。
このように、本発明の一態様の表示装置は、様々な形態のタッチパネルと組み合わせて用いることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
本実施の形態では、本発明の一態様の半導体装置の一例について説明する。本実施の形態で示すトランジスタは、微細化に適したトランジスタである。
<4−1.微細化に適したトランジスタの構成例>
図47には、トランジスタ200の一例を示す。図47(A)はトランジスタ200の上面を示す。なお、図の明瞭化のため、図47(A)において一部の膜は省略されている。また、図47(B)は、図47(A)に示す一点鎖線X1−X2に対応する断面図であり、図47(C)はY1−Y2に対応する断面図である。
トランジスタ200は、ゲート電極として機能する導電体205(導電体205a、および導電体205b)、および導電体260(導電体260aおよび導電体260b)と、ゲート絶縁層として機能する絶縁体220、絶縁体222、絶縁体224、および絶縁体250と、チャネルが形成される領域を有する酸化物半導体230(酸化物半導体230a、酸化物半導体230b、および酸化物半導体230c)と、ソースまたはドレインの一方として機能する導電体240aと、ソースまたはドレインの他方として機能する導電体240bと、過剰酸素を有する絶縁体280と、を有する。
また、酸化物半導体230は、酸化物半導体230aと、酸化物半導体230a上の酸化物半導体230bと、酸化物半導体230b上の酸化物半導体230cと、を有する。なお、トランジスタ200をオンさせると、主として酸化物半導体230bに電流が流れる(チャネルが形成される)。一方、酸化物半導体230aおよび酸化物半導体230cは、酸化物半導体230bとの界面近傍(混合領域となっている場合もある)は電流が流れる場合があるものの、そのほかの領域は絶縁体として機能する場合がある。
図47に示す構造は、ゲート電極として機能する導電体260が、導電体260a、および導電体260bを有する積層構造である。また、ゲート電極として機能する導電体260上に絶縁体270を有する。
導電体205は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等である。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
例えば、導電体205aとして、水素に対するバリア性を有する導電体として、窒化タンタル等を用い、導電体205bとして、導電性が高いタングステンを積層するとよい。当該組み合わせを用いることで、配線としての導電性を保持したまま、酸化物半導体230への水素の拡散を抑制することができる。なお、図47では、導電体205a、および導電体205bの2層構造を示したが、当該構成に限定されず、単層でも3層以上の積層構造でもよい。
絶縁体220、および絶縁体224は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、絶縁体224として過剰酸素を含む(化学量論的組成よりも過剰に酸素を含む)絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を、トランジスタ200を構成する酸化物に接して設けることにより、酸化物中の酸素欠損を補償することができる。なお、絶縁体220と絶縁体224とは、必ずしも同じ材料を用いて形成しなくともよい。
絶縁体222は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることが好ましい。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
なお、絶縁体222が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
絶縁体220及び絶縁体224の間に、high−k材料を含む絶縁体222を有することで、特定の条件で絶縁体222が電子を捕獲し、しきい値電圧を増大させることができる。つまり、絶縁体222が負に帯電する場合がある。
例えば、絶縁体220、および絶縁体224に、酸化シリコンを用い、絶縁体222に、酸化ハフニウム、酸化アルミニウム、酸化タンタルのような電子捕獲準位の多い材料を用いた場合、半導体装置の使用温度、あるいは保管温度よりも高い温度(例えば、125℃以上450℃以下、代表的には150℃以上300℃以下)の下で、導電体205の電位をソース電極やドレイン電極の電位より高い状態を、10ミリ秒以上、代表的には1分以上維持することで、トランジスタ200を構成する酸化物から導電体205に向かって、電子が移動する。この時、移動する電子の一部が、絶縁体222の電子捕獲準位に捕獲される。
絶縁体222の電子捕獲準位に必要な量の電子を捕獲させたトランジスタは、しきい値電圧がプラス側にシフトする。なお、導電体205の電圧の制御によって電子の捕獲する量を制御することができ、それに伴ってしきい値電圧を制御することができる。当該構成を有することで、トランジスタ200は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。
また、電子を捕獲する処理は、トランジスタの作製過程におこなえばよい。例えば、トランジスタのソース導電体あるいはドレイン導電体に接続する導電体の形成後、あるいは、前工程(ウェハー処理)の終了後、あるいは、ウェハーダイシング工程後、パッケージ後等、工場出荷前のいずれかの段階で行うとよい。
また、絶縁体220、絶縁体222、絶縁体224の膜厚を適宜調整することで、しきい値電圧を制御することができる。または、非導通時のリーク電流の小さいトランジスタを提供することができる。また、安定した電気特性を有するトランジスタを提供することができる。または、オン電流の大きいトランジスタを提供することができる。または、サブスレッショルドスイング値の小さいトランジスタを提供することができる。または、信頼性の高いトランジスタを提供することができる。
酸化物半導体230a、酸化物半導体230b、および酸化物半導体230cは、In−M−Zn酸化物(MはAl、Ga、Y、またはSn)等の金属酸化物で形成される。また、酸化物半導体230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
絶縁体250は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体250として、絶縁体224と同様に、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を酸化物半導体230に接して設けることにより、酸化物半導体230中の酸素欠損を低減することができる。
また、絶縁体250は、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、窒化シリコンなどの、酸素や水素に対してバリア性のある絶縁膜を用いることができる。このような材料を用いて形成した場合、酸化物半導体230からの酸素の放出や、外部からの水素等の不純物の混入を防ぐ層として機能する。
なお、絶縁体250は、絶縁体220、絶縁体222、および絶縁体224と同様の積層構造を有していてもよい。絶縁体250が、電子捕獲準位に必要な量の電子を捕獲させた絶縁体を有することで、トランジスタ200は、しきい値電圧をプラス側にシフトすることができる。当該構成を有することで、トランジスタ200は、ゲート電圧が0Vであっても非導通状態(オフ状態ともいう)であるノーマリーオフ型のトランジスタとなる。
また、図47に示す半導体装置において、酸化物半導体230と導電体260の間に、絶縁体250の他にバリア膜を設けてもよい。もしくは、酸化物半導体230cにバリア性があるものを用いてもよい。
例えば、過剰酸素を含む絶縁膜を酸化物半導体230に接して設け、さらにバリア膜で包み込むことで、酸化物を化学量論比組成とほぼ一致するような状態、または化学量論的組成より酸素が多い過飽和の状態とすることができる。また、酸化物半導体230への水素等の不純物の侵入を防ぐことができる。
導電体240aと、および導電体240bは、一方がソース電極として機能し、他方がドレイン電極として機能する。
導電体240aと、導電体240bとは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を用いることができる。また、図では単層構造を示したが、2層以上の積層構造としてもよい。
例えば、チタン膜とアルミニウム膜を積層するとよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
また、ゲート電極として機能を有する導電体260は、例えばアルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属を用いてもよい。また、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体、ニッケルシリサイド等のシリサイドを用いてもよい。
例えば、アルミニウム膜上にチタン膜を積層する二層構造とするとよい。また、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造としてもよい。
また、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、導電体260は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属の積層構造とすることもできる。
導電体260aは、熱CVD法、MOCVD法またはALD法を用いて形成する。特に、原子層堆積(ALD:Atomic Layer Deposition)法を用いて形成することが好ましい。ALD法等により形成することで、絶縁体250に対するプラズマによるダメージを減らすことができる。また、被覆性を向上させることができるため、導電体260aをALD法等により形成することが好ましい。従って、信頼性が高いトランジスタ200を提供することができる。
また、導電体260bは、タンタル、タングステン、銅、アルミニウムなどの導電性が高い材料を用いて形成する。
また、導電体260を覆うように、絶縁体270を設ける。絶縁体280に酸素が脱離する酸化物材料を用いる場合、導電体260が、脱離した酸素により酸化することを防止するため、絶縁体270は、酸素に対してバリア性を有する物質を用いる。
例えば、絶縁体270には、酸化アルミニウムなどの金属酸化物を用いることができる。また絶縁体270は、導電体260の酸化を防止する程度に設けられていればよい。例えば、絶縁体270の膜厚は、1nm以上10nm以下、好ましくは3nm以上7nm以下として設ける。
従って、導電体260の酸化を抑制し、絶縁体280から、脱離した酸素を効率的に酸化物半導体230へと供給することができる。
トランジスタ200の上方には、絶縁体280を設ける。絶縁体280には、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。つまり、絶縁体280には、化学量論的組成よりも酸素が過剰に存在する領域(以下、過剰酸素領域ともいう)が形成されていることが好ましい。特に、トランジスタ200に酸化物半導体を用いる場合、トランジスタ200近傍の層間膜などに、酸素過剰領域を有する絶縁体を設けることで、トランジスタ200の酸素欠損を低減することで、信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。
例えばこのような材料として、酸化シリコンまたは酸化窒化シリコンを含む材料を用いることが好ましい。または、金属酸化物を用いることもできる。なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
また、トランジスタ200を覆う絶縁体280は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
<4−2.微細化に適したトランジスタの応用例>
以下では、異なる組成のトランジスタを積層して用いる場合の例について説明する。
図48に示す半導体装置は、トランジスタ400と、トランジスタ200、および容量素子410を有している。
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを半導体装置(記憶装置)に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ない半導体装置(記憶装置)とすることが可能となるため、消費電力を十分に低減することができる。
半導体装置は、図48に示すようにトランジスタ400、トランジスタ200、容量素子410を有する。トランジスタ200はトランジスタ400の上方に設けられ、容量素子410はトランジスタ400、およびトランジスタ200の上方に設けられている。
トランジスタ400は、基板401上に設けられ、導電体406、絶縁体404、基板401の一部からなる半導体領域402、およびソース領域またはドレイン領域として機能する低抵抗領域408a、および低抵抗領域408bを有する。
トランジスタ400は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域402のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域408a、および低抵抗領域408bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ400をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域408a、および低抵抗領域408bは、半導体領域402に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体406は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数を定めることで、しきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図48に示すトランジスタ400は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
トランジスタ400を覆って、絶縁体420、絶縁体422、絶縁体424、および絶縁体426が順に積層して設けられている。
絶縁体420、絶縁体422、絶縁体424、および絶縁体426として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
絶縁体422は、その下方に設けられるトランジスタ400などによって生じる段差を平坦化する平坦化膜として機能する。絶縁体422の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
絶縁体424には、例えば、基板401、またはトランジスタ400などから、トランジスタ200が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ400との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
なお、絶縁体426は、絶縁体424よりも誘電率が低いことが好ましい。例えば、絶縁体426の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体424の比誘電率は、絶縁体426の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体420、絶縁体422、絶縁体424、および絶縁体426には容量素子410、またはトランジスタ200と電気的に接続する導電体428、および導電体430等が埋め込まれている。なお、導電体428、および導電体430はプラグ、または配線として機能を有する。なお、後述するが、プラグまたは配線として機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体428、および導電体430等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
また、導電体428、および導電体430は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体424が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ400とトランジスタ200とは、バリア層により分離することができ、トランジスタ400からトランジスタ200への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ400からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体424と接する構造であることが好ましい。
また、絶縁体426、および導電体430上に、配線層を設けてもよい。例えば、図48において、絶縁体450、絶縁体452、及び絶縁体454が順に積層して設けられている。また、絶縁体450、絶縁体452、及び絶縁体454には、導電体456が形成されている。導電体456は、プラグ、または配線として機能を有する。なお導電体456は、導電体428、および導電体430と同様の材料を用いて設けることができる。
また、導電体456は、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。なお、導電体456に銅を用いる場合、銅の拡散を抑制する導電体と積層して設けることが好ましい。銅の拡散を抑制する導電体として、例えばタンタル、窒化タンタル等のタンタルを含む合金、ルテニウム、およびルテニウムを含む合金等を用いるとよい。
また、例えば、絶縁体450は、銅の拡散を抑制する、または、酸素、および水素に対するバリア性を有する絶縁体を用いることが好ましい。例えば、銅の拡散を抑制する膜の一例として、窒化シリコンを用いることができる。従って、絶縁体424と同様の材料を用いることができる。
特に、銅の拡散を抑制する絶縁体450が有する開口部に接して銅の拡散を抑制する導電体を設け、銅の拡散を抑制する導電体上に銅を積層して設けることが好ましい。当該構成により、配線の周辺に銅が拡散することを抑制することができる。
絶縁体454上には、絶縁体458、絶縁体210、絶縁体212、および絶縁体214が、順に積層して設けられている。絶縁体458、絶縁体210、絶縁体212、および絶縁体214のいずれかまたは全部を、銅の拡散を抑制する、または酸素や水素に対してバリア性のある物質を用いることが好ましい。
絶縁体458、および絶縁体212には、例えば、基板401、またはトランジスタ400を設ける領域などから、トランジスタ200を設ける領域に、銅の拡散を抑制する、または、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体424と同様の材料を用いることができる。
また、絶縁体210は、絶縁体420と同様の材料を用いることができる。例えば、絶縁体210として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、例えば、絶縁体214には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
絶縁体214上には、絶縁体216を設ける。絶縁体216は、絶縁体420と同様の材料を用いることができる。例えば、絶縁体216として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体458、絶縁体210、絶縁体212、絶縁体214、及び絶縁体216には、導電体218、及びトランジスタ200を構成する導電体205等が埋め込まれている。なお、導電体218は、容量素子410、またはトランジスタ400と電気的に接続するプラグ、または配線としての機能を有する。導電体218は、導電体428、および導電体430と同様の材料を用いて設けることができる。
特に、絶縁体458、絶縁体212、および絶縁体214と接する領域の導電体218は、銅の拡散を抑制する、または、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ400とトランジスタ200とは、銅の拡散を抑制する、または、酸素、水素、および水に対するバリア性を有する層で、完全により分離することができる。つまり、導電体456からの銅の拡散を抑制し、トランジスタ400からトランジスタ200への水素の拡散を抑制することができる。
絶縁体214の上方には、トランジスタ200、および絶縁体280が設けられている。また、図48に示すトランジスタ200は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
絶縁体280上には、絶縁体282、絶縁体284、および絶縁体470が順に積層して設けられている。また、絶縁体220、絶縁体222、絶縁体224、絶縁体280、絶縁体282、絶縁体284、および絶縁体470には、導電体244等が埋め込まれている。また、トランジスタ200が有する導電体240aおよび導電体240b等の導電体上に、上層の導電体と接続する導電体245等が設けられる。なお、導電体244は、容量素子410、トランジスタ200、またはトランジスタ400と電気的に接続するプラグ、または配線として機能を有する。導電体244は、導電体428、および導電体430と同様の材料を用いて設けることができる。
なお、絶縁体282、および絶縁体284のいずれか、または両方に、酸素や水素に対してバリア性のある物質を用いることが好ましい。従って、絶縁体282には、絶縁体214と同様の材料を用いることができる。また、絶縁体284には、絶縁体212と同様の材料を用いることができる。
例えば、絶縁体282には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ200への混入を防止することができる。また、トランジスタ200を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ200に対する保護膜として用いることに適している。
絶縁体284には、容量素子410を設ける領域から、トランジスタ200が設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。従って、絶縁体424と同様の材料を用いることができる。
例えば、水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ200等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、トランジスタ200と、トランジスタ400との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
従って、トランジスタ200、および過剰酸素領域を含む絶縁体280を、絶縁体210、絶縁体212、および絶縁体214の積層構造と、絶縁体282、及び絶縁体284の積層構造により挟む構成とすることができる。また、絶縁体210、絶縁体212、絶縁体214、絶縁体282、及び絶縁体284は、酸素、または、水素、および水などの不純物の拡散を抑制するバリア性を有する。
絶縁体280、およびトランジスタ200から放出された酸素が、容量素子410、またはトランジスタ400が形成されている層へ拡散することを抑制することができる。または、絶縁体282よりも上方の層、および絶縁体214よりも下方の層から、水素、および水等の不純物が、トランジスタ200へ、拡散することを抑制することができる。
つまり、絶縁体280の過剰酸素領域から酸素を、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給でき、酸素欠損を低減することができる。また、トランジスタ200におけるチャネルが形成される酸化物が不純物により、酸素欠損が形成されることを防止することができる。よって、トランジスタ200におけるチャネルが形成される酸化物を、欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
絶縁体470の上方には、容量素子410、および導電体474が設けられている。容量素子410は、絶縁体470上に設けられ、導電体462と、絶縁体480、絶縁体482、および絶縁体484と、導電体466とを有する。なお、導電体474は、容量素子410、トランジスタ200、またはトランジスタ400と電気的に接続するプラグ、または配線として機能を有する。
導電体462は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料である銅やアルミニウム等を用いればよい。
なお、導電体474は、容量素子の電極として機能する導電体462と同様の材料を用いて設けることができる。
導電体474、および導電体462上に、絶縁体480、絶縁体482、および絶縁体484を設ける。絶縁体480、絶縁体482、および絶縁体484には例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよい。なお、図では3層構造としたが、単層、2層、または4層以上の積層構造としてもよい。
例えば、絶縁体480、および絶縁体484には、酸化窒化シリコンなどの絶縁耐力が大きい材料を用い、絶縁体484には、酸化アルミニウムなどの高誘電率(high−k)材料と、酸化窒化シリコンなどの絶縁耐力が大きい材料を用いて、積層構造を設けることが好ましい。当該構成により、容量素子410は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子410の静電破壊を抑制することができる。
導電体462上に、絶縁体480、絶縁体482、および絶縁体484を介して、導電体466を設ける。なお、導電体466は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料である銅やアルミニウム等を用いればよい。
例えば、図48に示すように、絶縁体480、絶縁体482、および絶縁体484を、導電体462の上面および側面を覆うように設ける。さらに、導電体466を、絶縁体480、絶縁体482、および絶縁体484を介して、導電体462の上面および側面を覆うように設ける。
つまり、導電体462の側面においても、容量として機能するため、容量素子の投影面積当たりの容量を増加させることができる。従って、半導体装置の小面積化、高集積化、微細化が可能となる。
導電体466、および絶縁体484上には、絶縁体460が設けられている。絶縁体460は、絶縁体420と同様の材料を用いて設けることができる。また、容量素子410を覆う絶縁体460は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
以上が応用例についての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
本実施の形態では、本発明の一態様の半導体装置を有する表示装置について、図49を用いて説明を行う。
<5.表示装置の回路構成>
図49(A)に示す表示装置は、表示素子の画素を有する領域(以下、画素部502という)と、画素部502の外側に配置され、画素を駆動するための回路を有する回路部(以下、駆動回路部504という)と、素子の保護機能を有する回路(以下、保護回路506という)と、端子部507と、を有する。なお、保護回路506は、設けない構成としてもよい。
駆動回路部504の一部、または全部は、画素部502と同一基板上に形成されていることが望ましい。これにより、部品数や端子数を減らすことが出来る。駆動回路部504の一部、または全部が、画素部502と同一基板上に形成されていない場合には、駆動回路部504の一部、または全部は、COGやTAB(Tape Automated Bonding)によって、実装することができる。
画素部502は、X行(Xは2以上の自然数)Y列(Yは2以上の自然数)に配置された複数の表示素子を駆動するための回路(以下、画素回路501という)を有し、駆動回路部504は、画素を選択する信号(走査信号)を出力する回路(以下、ゲートドライバ504aという)、画素の表示素子を駆動するための信号(データ信号)を供給するための回路(以下、ソースドライバ504b)などの駆動回路を有する。
ゲートドライバ504aは、シフトレジスタ等を有する。ゲートドライバ504aは、端子部507を介して、シフトレジスタを駆動するための信号が入力され、信号を出力する。例えば、ゲートドライバ504aは、スタートパルス信号、クロック信号等が入力され、パルス信号を出力する。ゲートドライバ504aは、走査信号が与えられる配線(以下、走査線GL_1乃至GL_Xという)の電位を制御する機能を有する。なお、ゲートドライバ504aを複数設け、複数のゲートドライバ504aにより、走査線GL_1乃至GL_Xを分割して制御してもよい。または、ゲートドライバ504aは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ゲートドライバ504aは、別の信号を供給することも可能である。
ソースドライバ504bは、シフトレジスタ等を有する。ソースドライバ504bは、端子部507を介して、シフトレジスタを駆動するための信号の他、データ信号の元となる信号(画像信号)が入力される。ソースドライバ504bは、画像信号を元に画素回路501に書き込むデータ信号を生成する機能を有する。また、ソースドライバ504bは、スタートパルス、クロック信号等が入力されて得られるパルス信号に従って、データ信号の出力を制御する機能を有する。また、ソースドライバ504bは、データ信号が与えられる配線(以下、データ線DL_1乃至DL_Yという)の電位を制御する機能を有する。または、ソースドライバ504bは、初期化信号を供給することができる機能を有する。ただし、これに限定されず、ソースドライバ504bは、別の信号を供給することも可能である。
ソースドライバ504bは、例えば複数のアナログスイッチなどを用いて構成される。ソースドライバ504bは、複数のアナログスイッチを順次オン状態にすることにより、画像信号を時分割した信号をデータ信号として出力できる。また、シフトレジスタなどを用いてソースドライバ504bを構成してもよい。
複数の画素回路501のそれぞれは、走査信号が与えられる複数の走査線GLの一つを介してパルス信号が入力され、データ信号が与えられる複数のデータ線DLの一つを介してデータ信号が入力される。また、複数の画素回路501のそれぞれは、ゲートドライバ504aによりデータ信号のデータの書き込み及び保持が制御される。例えば、m行n列目の画素回路501は、走査線GL_m(mはX以下の自然数)を介してゲートドライバ504aからパルス信号が入力され、走査線GL_mの電位に応じてデータ線DL_n(nはY以下の自然数)を介してソースドライバ504bからデータ信号が入力される。
図49(A)に示す保護回路506は、例えば、ゲートドライバ504aと画素回路501の間の配線である走査線GLに接続される。または、保護回路506は、ソースドライバ504bと画素回路501の間の配線であるデータ線DLに接続される。または、保護回路506は、ゲートドライバ504aと端子部507との間の配線に接続することができる。または、保護回路506は、ソースドライバ504bと端子部507との間の配線に接続することができる。なお、端子部507は、外部の回路から表示装置に電源及び制御信号、及び画像信号を入力するための端子が設けられた部分をいう。
保護回路506は、自身が接続する配線に一定の範囲外の電位が与えられたときに、該配線と別の配線とを導通状態にする回路である。
図49(A)に示すように、画素部502と駆動回路部504にそれぞれ保護回路506を設けることにより、ESD(Electro Static Discharge:静電気放電)などにより発生する過電流に対する表示装置の耐性を高めることができる。ただし、保護回路506の構成はこれに限定されず、例えば、ゲートドライバ504aに保護回路506を接続した構成、またはソースドライバ504bに保護回路506を接続した構成とすることもできる。あるいは、端子部507に保護回路506を接続した構成とすることもできる。
また、図49(A)においては、ゲートドライバ504aとソースドライバ504bによって駆動回路部504を形成している例を示しているが、この構成に限定されない。例えば、ゲートドライバ504aのみを形成し、別途用意されたソースドライバ回路が形成された基板(例えば、単結晶半導体膜、多結晶半導体膜で形成された駆動回路基板)を実装する構成としても良い。
また、図49(A)に示す複数の画素回路501は、例えば、図49(B)に示す構成とすることができる。
図49(B)に示す画素回路501は、液晶素子570と、トランジスタ550と、容量素子560と、を有する。トランジスタ550に先の実施の形態に示すトランジスタを適用することができる。
液晶素子570の一対の電極の一方の電位は、画素回路501の仕様に応じて適宜設定される。液晶素子570は、書き込まれるデータにより配向状態が設定される。なお、複数の画素回路501のそれぞれが有する液晶素子570の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の画素回路501の液晶素子570の一対の電極の一方に異なる電位を与えてもよい。
例えば、液晶素子570を備える表示装置の駆動方法としては、TNモード、STNモード、VAモード、ASM(Axially Symmetric Aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、MVAモード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFSモード、又はTBA(Transverse Bend Alignment)モードなどを用いてもよい。また、表示装置の駆動方法としては、上述した駆動方法の他、ECB(Electrically Controlled Birefringence)モード、PDLC(Polymer Dispersed Liquid Crystal)モード、PNLC(Polymer Network Liquid Crystal)モード、ゲストホストモードなどがある。ただし、これに限定されず、液晶素子及びその駆動方式として様々なものを用いることができる。
m行n列目の画素回路501において、トランジスタ550のソース電極またはドレイン電極の一方は、データ線DL_nに電気的に接続され、他方は液晶素子570の一対の電極の他方に電気的に接続される。また、トランジスタ550のゲート電極は、走査線GL_mに電気的に接続される。トランジスタ550は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子560の一対の電極の一方は、電位が供給される配線(以下、電位供給線VL)に電気的に接続され、他方は、液晶素子570の一対の電極の他方に電気的に接続される。なお、電位供給線VLの電位の値は、画素回路501の仕様に応じて適宜設定される。容量素子560は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図49(B)の画素回路501を有する表示装置では、例えば、図49(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ550をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ550がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図49(A)に示す複数の画素回路501は、例えば、図49(C)に示す構成とすることができる。
また、図49(C)に示す画素回路501は、トランジスタ552、554と、容量素子562と、発光素子572と、を有する。トランジスタ552及びトランジスタ554のいずれか一方または双方に先の実施の形態に示すトランジスタを適用することができる。
トランジスタ552のソース電極及びドレイン電極の一方は、データ信号が与えられる配線(以下、信号線DL_nという)に電気的に接続される。さらに、トランジスタ552のゲート電極は、ゲート信号が与えられる配線(以下、走査線GL_mという)に電気的に接続される。
トランジスタ552は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
容量素子562の一対の電極の一方は、電位が与えられる配線(以下、電位供給線VL_aという)に電気的に接続され、他方は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
容量素子562は、書き込まれたデータを保持する保持容量としての機能を有する。
トランジスタ554のソース電極及びドレイン電極の一方は、電位供給線VL_aに電気的に接続される。さらに、トランジスタ554のゲート電極は、トランジスタ552のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572のアノード及びカソードの一方は、電位供給線VL_bに電気的に接続され、他方は、トランジスタ554のソース電極及びドレイン電極の他方に電気的に接続される。
発光素子572としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、発光素子572としては、これに限定されず、無機材料からなる無機EL素子を用いても良い。
なお、電位供給線VL_a及び電位供給線VL_bの一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。
図49(C)の画素回路501を有する表示装置では、例えば、図49(A)に示すゲートドライバ504aにより各行の画素回路501を順次選択し、トランジスタ552をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた画素回路501は、トランジスタ552がオフ状態になることで保持状態になる。さらに、書き込まれたデータ信号の電位に応じてトランジスタ554のソース電極とドレイン電極の間に流れる電流量が制御され、発光素子572は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
本実施の形態では、上述の実施の形態で説明したトランジスタの適用可能な回路構成の一例について、図50乃至図53を用いて説明する。
<6.インバータ回路の構成例>
図50(A)には、駆動回路が有するシフトレジスタやバッファ等に適用することができるインバータの回路図を示す。インバータ800は、入力端子INに与える信号の論理を反転した信号を出力端子OUTに出力する。インバータ800は、複数のOSトランジスタを有する。信号SBGは、OSトランジスタの電気特性を切り替えることができる信号である。
図50(B)は、インバータ800の一例である。インバータ800は、OSトランジスタ810、およびOSトランジスタ820を有する。インバータ800は、nチャネル型トランジスタのみで作製することができるため、CMOS(Complementary Metal Oxide Semiconductor)でインバータ(CMOSインバータ)を作製する場合と比較して、低コストで作製することが可能である。
なお、OSトランジスタを有するインバータ800は、Siトランジスタで構成されるCMOS上に配置することもできる。インバータ800は、CMOSの回路に重ねて配置できるため、インバータ800を追加する分の回路面積の増加を抑えることができる。
OSトランジスタ810、820は、フロントゲートとして機能する第1ゲートと、バックゲートとして機能する第2ゲートと、ソースまたはドレインの一方として機能する第1端子と、ソースまたはドレインの他方として機能する第2端子とを有する。
OSトランジスタ810の第1ゲートは、第2端子に接続される。OSトランジスタ810の第2ゲートは、信号SBGを供給する配線に接続される。OSトランジスタ810の第1端子は、電圧VDDを与える配線に接続される。OSトランジスタ810の第2端子は、出力端子OUTに接続される。
OSトランジスタ820の第1ゲートは、入力端子INに接続される。OSトランジスタ820の第2ゲートは、入力端子INに接続される。OSトランジスタ820の第1端子は、出力端子OUTに接続される。OSトランジスタ820の第2端子は、電圧VSSを与える配線に接続される。
図50(C)は、インバータ800の動作を説明するためのタイミングチャートである。図50(C)のタイミングチャートでは、入力端子INの信号波形、出力端子OUTの信号波形、信号SBGの信号波形、およびOSトランジスタ810のしきい値電圧の変化について示している。
信号SBGをOSトランジスタ810の第2ゲートに与えることで、OSトランジスタ810のしきい値電圧を制御することができる。
信号SBGは、しきい値電圧をマイナスシフトさせるための電圧VBG_A、しきい値電圧をプラスシフトさせるための電圧VBG_Bを有する。第2ゲートに電圧VBG_Aを与えることで、OSトランジスタ810はしきい値電圧VTH_Aにマイナスシフトさせることができる。また、第2ゲートに電圧VBG_Bを与えることで、OSトランジスタ810は、しきい値電圧VTH_Bにプラスシフトさせることができる。
前述の説明を可視化するために、図51(A)には、トランジスタの電気特性の一つである、Id−Vgカーブを示す。
上述したOSトランジスタ810の電気特性は、第2ゲートの電圧を電圧VBG_Aのように大きくすることで、図51(A)中の破線840で表される曲線にシフトさせることができる。また、上述したOSトランジスタ810の電気特性は、第2ゲートの電圧を電圧VBG_Bのように小さくすることで、図51(A)中の実線841で表される曲線にシフトさせることができる。図51(A)に示すように、OSトランジスタ810は、信号SBGを電圧VBG_Aあるいは電圧VBG_Bというように切り替えることで、しきい値電圧をプラスシフトあるいはマイナスシフトさせることができる。
しきい値電圧をしきい値電圧VTH_Bにプラスシフトさせることで、OSトランジスタ810は電流が流れにくい状態とすることができる。図51(B)には、この状態を可視化して示す。
図51(B)に図示するように、OSトランジスタ810に流れる電流Iを極めて小さくすることができる。そのため、入力端子INに与える信号がハイレベルでOSトランジスタ820はオン状態(ON)のとき、出力端子OUTの電圧を急峻に下降させることができる。
図51(B)に図示したように、OSトランジスタ810に流れる電流が流れにくい状態とすることができるため、図50(C)に示すタイミングチャートにおける出力端子の信号波形831を急峻に変化させることができる。電圧VDDを与える配線と、電圧VSSを与える配線との間に流れる貫通電流を少なくすることができるため、低消費電力での動作を行うことができる。
また、しきい値電圧をしきい値電圧VTH_Aにマイナスシフトさせることで、OSトランジスタ810は電流が流れやすい状態とすることができる。図51(C)には、この状態を可視化して示す。図51(C)に図示するように、このとき流れる電流Iを少なくとも電流Iよりも大きくすることができる。そのため、入力端子INに与える信号がローレベルでOSトランジスタ820はオフ状態(OFF)のとき、出力端子OUTの電圧を急峻に上昇させることができる。図51(C)に図示したように、OSトランジスタ810に流れる電流が流れやすい状態とすることができるため、図50(C)に示すタイミングチャートにおける出力端子の信号波形832を急峻に変化させることができる。
なお、信号SBGによるOSトランジスタ810のしきい値電圧の制御は、OSトランジスタ820の状態が切り替わる以前、すなわち時刻T1やT2よりも前に行うことが好ましい。例えば、図50(C)に図示するように、入力端子INに与える信号がハイレベルに切り替わる時刻T1よりも前に、しきい値電圧VTH_Aから、しきい値電圧VTH_BにOSトランジスタ810のしきい値電圧を切り替えることが好ましい。また、図50(C)に図示するように、入力端子INに与える信号がローレベルに切り替わる時刻T2よりも前に、しきい値電圧VTH_Bからしきい値電圧VTH_AにOSトランジスタ810のしきい値電圧を切り替えることが好ましい。
なお、図50(C)のタイミングチャートでは、入力端子INに与える信号に応じて信号SBGを切り替える構成を示したが、別の構成としてもよい。例えば、しきい値電圧を制御するための電圧は、フローティング状態としたOSトランジスタ810の第2ゲートに保持させる構成としてもよい。当該構成を実現可能な回路構成の一例について、図52(A)に示す。
図52(A)では、図50(B)で示した回路構成に加えて、OSトランジスタ850を有する。OSトランジスタ850の第1端子は、OSトランジスタ810の第2ゲートに接続される。またOSトランジスタ850の第2端子は、電圧VBG_B(あるいは電圧VBG_A)を与える配線に接続される。OSトランジスタ850の第1ゲートは、信号Sを与える配線に接続される。OSトランジスタ850の第2ゲートは、電圧VBG_B(あるいは電圧VBG_A)を与える配線に接続される。
図52(A)の動作について、図52(B)のタイミングチャートを用いて説明する。
OSトランジスタ810のしきい値電圧を制御するための電圧は、入力端子INに与える信号がハイレベルに切り替わる時刻T3よりも前に、OSトランジスタ810の第2ゲートに与える構成とする。信号SをハイレベルとしてOSトランジスタ850をオン状態とし、ノードNBGにしきい値電圧を制御するための電圧VBG_Bを与える。
ノードNBGが電圧VBG_Bとなった後は、OSトランジスタ850をオフ状態とする。OSトランジスタ850は、オフ電流が極めて小さいため、オフ状態にし続けることで、一旦ノードNBGに保持させたしきい値電圧VBG_Bを保持することができる。そのため、OSトランジスタ850の第2ゲートに電圧VBG_Bを与える動作の回数が減るため、電圧VBG_Bの書き換えに要する分の消費電力を小さくすることができる。
なお、図50(B)及び図52(A)の回路構成では、OSトランジスタ810の第2ゲートに与える電圧を外部からの制御によって与える構成について示したが、別の構成としてもよい。例えば、しきい値電圧を制御するための電圧を、入力端子INに与える信号を基に生成し、OSトランジスタ810の第2ゲートに与える構成としてもよい。当該構成を実現可能な回路構成の一例について、図53(A)に示す。
図53(A)では、図50(B)で示した回路構成において、入力端子INとOSトランジスタ810の第2ゲートとの間にCMOSインバータ860を有する。CMOSインバータ860の入力端子は、入力端子INに接続される。CMOSインバータ860の出力端子は、OSトランジスタ810の第2ゲートに接続される。
図53(A)の動作について、図53(B)のタイミングチャートを用いて説明する。図53(B)のタイミングチャートでは、入力端子INの信号波形、出力端子OUTの信号波形、CMOSインバータ860の出力波形IN_B、及びOSトランジスタ810のしきい値電圧の変化について示している。
入力端子INに与える信号の論理を反転した信号である出力波形IN_Bは、OSトランジスタ810のしきい値電圧を制御する信号とすることができる。したがって、図51(A)乃至図51(C)で説明したように、OSトランジスタ810のしきい値電圧を制御できる。例えば、図53(B)における時刻T4となるとき、入力端子INに与える信号がハイレベルでOSトランジスタ820はオン状態となる。このとき、出力波形IN_Bはローレベルとなる。そのため、OSトランジスタ810は電流が流れにくい状態とすることができ、出力端子OUTの電圧を急峻に下降させることができる。
また、図53(B)における時刻T5となるとき、入力端子INに与える信号がローレベルでOSトランジスタ820はオフ状態となる。このとき、出力波形IN_Bはハイレベルとなる。そのため、OSトランジスタ810は電流が流れやすい状態とすることができ、出力端子OUTの電圧を急峻に上昇させることができる。
以上説明したように本実施の形態の構成では、OSトランジスタを有するインバータにおける、バックゲートの電圧を入力端子INの信号の論理にしたがって切り替える。当該構成とすることで、OSトランジスタのしきい値電圧を制御することができる。入力端子INに与える信号によってOSトランジスタのしきい値電圧を制御することで、出力端子OUTの電圧を急峻に変化させることができる。また、電源電圧を与える配線間の貫通電流を小さくすることができる。そのため、低消費電力化を図ることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
本実施の形態では、上述の実施の形態で説明した酸化物半導体を有するトランジスタ(OSトランジスタ)を、複数の回路に用いる半導体装置の一例について、図54乃至図57を用いて説明する。
<7.半導体装置の回路構成例>
図54(A)は、半導体装置900のブロック図である。半導体装置900は、電源回路901、回路902、電圧生成回路903、回路904、電圧生成回路905および回路906を有する。
電源回路901は、基準となる電圧VORGを生成する回路である。電圧VORGは、単一の電圧ではなく、複数の電圧でもよい。電圧VORGは、半導体装置900の外部から与えられる電圧Vを基に生成することができる。半導体装置900は、外部から与えられる単一の電源電圧を基に電圧VORGを生成できる。そのため半導体装置900は、外部から電源電圧を複数与えることなく動作することができる。
回路902、904および906は、異なる電源電圧で動作する回路である。例えば回路902の電源電圧は、電圧VORGと電圧VSS(VORG>VSS)とを基に印加される電圧である。また、例えば回路904の電源電圧は、電圧VPOGと電圧VSS(VPOG>VORG)とを基に印加される電圧である。また、例えば回路906の電源電圧は、電圧VORGと電圧VSSと電圧VNEG(VORG>VSS>VNEG)とを基に印加される電圧である。なお電圧VSSは、グラウンド電位(GND)と等電位とすれば、電源回路901で生成する電圧の種類を削減できる。
電圧生成回路903は、電圧VPOGを生成する回路である。電圧生成回路903は、電源回路901から与えられる電圧VORGを基に電圧VPOGを生成できる。そのため、回路904を有する半導体装置900は、外部から与えられる単一の電源電圧を基に動作することができる。
電圧生成回路905は、電圧VNEGを生成する回路である。電圧生成回路905は、電源回路901から与えられる電圧VORGを基に電圧VNEGを生成できる。そのため、回路906を有する半導体装置900は、外部から与えられる単一の電源電圧を基に動作することができる。
図54(B)は電圧VPOGで動作する回路904の一例、図54(C)は回路904を動作させるための信号の波形の一例である。
図54(B)では、トランジスタ911を示している。トランジスタ911のゲートに与える信号は、例えば、電圧VPOGと電圧VSSを基に生成される。当該信号は、トランジスタ911を導通状態とする動作時に電圧VPOG、非導通状態とする動作時に電圧VSSとする。電圧VPOGは、図54(C)に図示するように、電圧VORGより大きい。そのため、トランジスタ911は、ソース(S)とドレイン(D)との間をより確実に導通状態にできる。その結果、回路904は、誤動作が低減された回路とすることができる。
図54(D)は電圧VNEGで動作する回路906の一例、図54(E)は回路906を動作させるための信号の波形の一例である。
図54(D)では、バックゲートを有するトランジスタ912を示している。トランジスタ912のゲートに与える信号は、例えば、電圧VORGと電圧VSSを基にして生成される。当該信号は、トランジスタ912を導通状態とする動作時に電圧VORG、非導通状態とする動作時に電圧VSSを基に形成される。また、トランジスタ912のバックゲートに与える信号は、電圧VNEGを基に生成される。電圧VNEGは、図54(E)に図示するように、電圧VSS(GND)より小さい。そのため、トランジスタ912の閾値電圧は、プラスシフトするように制御することができる。そのため、トランジスタ912をより確実に非導通状態とすることができ、ソース(S)とドレイン(D)との間を流れる電流を小さくできる。その結果、回路906は、誤動作が低減され、且つ低消費電力化が図られた回路とすることができる。
なお、電圧VNEGは、トランジスタ912のバックゲートに直接与える構成としてもよい。あるいは、電圧VORGと電圧VNEGを基に、トランジスタ912のゲートに与える信号を生成し、当該信号をトランジスタ912のバックゲートに与える構成としてもよい。
また図55(A)(B)には、図54(D)(E)の変形例を示す。
図55(A)に示す回路図では、電圧生成回路905と、回路906と、の間に制御回路921によって導通状態が制御できるトランジスタ922を示す。トランジスタ922は、nチャネル型のOSトランジスタとする。制御回路921が出力する制御信号SBGは、トランジスタ922の導通状態を制御する信号である。また回路906が有するトランジスタ912A、912Bは、トランジスタ922と同じOSトランジスタである。
図55(B)のタイミングチャートには、制御信号SBGの電位の変化を示し、トランジスタ912A、912Bのバックゲートの電位の状態をノードNBGの電位の変化で示す。制御信号SBGがハイレベルのときにトランジスタ922が導通状態となり、ノードNBGが電圧VNEGとなる。その後、制御信号SBGがローレベルのときにノードNBGが電気的にフローティングとなる。トランジスタ922は、OSトランジスタであるため、オフ電流が小さい。そのため、ノードNBGが電気的にフローティングであっても、一旦与えた電圧VNEGを保持することができる。
また、図56(A)には、上述した電圧生成回路903に適用可能な回路構成の一例を示す。図56(A)に示す電圧生成回路903は、ダイオードD1乃至D5、キャパシタC1乃至C5、およびインバータINVを有する5段のチャージポンプである。クロック信号CLKは、キャパシタC1乃至C5に直接、あるいはインバータINVを介して与えられる。インバータINVの電源電圧を、電圧VORGと電圧VSSとを基に印加される電圧とすると、クロック信号CLKを与えることによって、電圧VORGの5倍の正電圧に昇圧された電圧VPOGを得ることができる。なお、ダイオードD1乃至D5の順方向電圧は0Vとしている。また、チャージポンプの段数を変更することで、所望の電圧VPOGを得ることができる。
また、図56(B)には、上述した電圧生成回路905に適用可能な回路構成の一例を示す。図56(B)に示す電圧生成回路905は、ダイオードD1乃至D5、キャパシタC1乃至C5、およびインバータINVを有する4段のチャージポンプである。クロック信号CLKは、キャパシタC1乃至C5に直接、あるいはインバータINVを介して与えられる。インバータINVの電源電圧を、電圧VORGと電圧VSSとを基に印加される電圧とすると、クロック信号CLKを与えることによって、グラウンド、すなわち電圧VSSから電圧VORGの4倍の負電圧に降圧された電圧VNEGを得ることができる。なお、ダイオードD1乃至D5の順方向電圧は0Vとしている。また、チャージポンプの段数を変更することで、所望の電圧VNEGを得ることができる。
なお、上述した電圧生成回路903の回路構成は、図56(A)で示す回路図の構成に限らない。例えば、電圧生成回路903の変形例を図57(A)乃至図57(C)に示す。なお、電圧生成回路903の変形例は、図57(A)乃至図57(C)に示す電圧生成回路903A乃至903Cにおいて、各配線に与える電圧を変更すること、あるいは素子の配置を変更することで実現可能である。
図57(A)に示す電圧生成回路903Aは、トランジスタM1乃至M10、キャパシタC11乃至C14、およびインバータINV1を有する。クロック信号CLKは、トランジスタM1乃至M10のゲートに直接、あるいはインバータINV1を介して与えられる。クロック信号CLKを与えることによって、電圧VORGの4倍の正電圧に昇圧された電圧VPOGを得ることができる。なお、段数を変更することで、所望の電圧VPOGを得ることができる。図57(A)に示す電圧生成回路903Aは、トランジスタM1乃至M10をOSトランジスタとすることでオフ電流を小さくでき、キャパシタC11乃至C14に保持した電荷の漏れを抑制できる。そのため、効率的に電圧VORGから電圧VPOGへの昇圧を図ることができる。
また、図57(B)に示す電圧生成回路903Bは、トランジスタM11乃至M14、キャパシタC15、C16、およびインバータINV2を有する。クロック信号CLKは、トランジスタM11乃至M14のゲートに直接、あるいはインバータINV2を介して与えられる。クロック信号CLKを与えることによって、電圧VORGの2倍の正電圧に昇圧された電圧VPOGを得ることができる。図57(B)に示す電圧生成回路903Bは、トランジスタM11乃至M14をOSトランジスタとすることでオフ電流を小さくでき、キャパシタC15、C16に保持した電荷の漏れを抑制できる。そのため、効率的に電圧VORGから電圧VPOGへの昇圧を図ることができる。
また、図57(C)に示す電圧生成回路903Cは、インダクタInd1、トランジスタM15、ダイオードD6、およびキャパシタC17を有する。トランジスタM15は、制御信号ENによって、導通状態が制御される。制御信号ENによって、電圧VORGが昇圧された電圧VPOGを得ることができる。図57(C)に示す電圧生成回路903Cは、インダクタInd1を用いて電圧の昇圧を行うため、変換効率の高い電圧の昇圧を行うことができる。
以上説明したように本実施の形態の構成では、半導体装置が有する回路に必要な電圧を内部で生成することができる。そのため半導体装置は、外部から与える電源電圧の数を削減できる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態8)
本実施の形態では、本発明の一態様の半導体装置を有する表示モジュール及び電子機器について、図58乃至図61を用いて説明を行う。
<8−1.表示モジュール>
図58に示す表示モジュール7000は、上部カバー7001と下部カバー7002との間に、FPC7003に接続されたタッチパネル7004、FPC7005に接続された表示パネル7006、バックライト7007、フレーム7009、プリント基板7010、バッテリ7011を有する。
本発明の一態様の半導体装置は、例えば、表示パネル7006に用いることができる。
上部カバー7001及び下部カバー7002は、タッチパネル7004及び表示パネル7006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル7004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル7006に重畳して用いることができる。また、表示パネル7006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。また、表示パネル7006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。
バックライト7007は、光源7008を有する。なお、図58において、バックライト7007上に光源7008を配置する構成について例示したが、これに限定さない。例えば、バックライト7007の端部に光源7008を配置し、さらに光拡散板を用いる構成としてもよい。なお、有機EL素子等の自発光型の発光素子を用いる場合、または反射型パネル等の場合においては、バックライト7007を設けない構成としてもよい。
フレーム7009は、表示パネル7006の保護機能の他、プリント基板7010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム7009は、放熱板としての機能を有していてもよい。
プリント基板7010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリ7011による電源であってもよい。バッテリ7011は、商用電源を用いる場合には、省略可能である。
また、表示モジュール7000は、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
<8−2.電子機器1>
次に、図59(A)乃至図59(E)に電子機器の一例を示す。
図59(A)は、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。
ここではカメラ8000として、レンズ8006を筐体8001から取り外して交換することが可能な構成としたが、レンズ8006と筐体が一体となっていてもよい。
カメラ8000は、シャッターボタン8004を押すことにより、撮像することができる。また、表示部8002はタッチパネルとしての機能を有し、表示部8002をタッチすることにより撮像することも可能である。
カメラ8000の筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
筐体8101は、カメラ8000のマウントと係合するマウントを有しており、ファインダー8100をカメラ8000に取り付けることができる。また当該マウントには電極を有し、当該電極を介してカメラ8000から受信した映像等を表示部8102に表示させることができる。
ボタン8103は、電源ボタンとしての機能を有する。ボタン8103により、表示部8102の表示のオン・オフを切り替えることができる。
カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。
なお、図59(A)では、カメラ8000とファインダー8100とを別の電子機器とし、これらを脱着可能な構成としたが、カメラ8000の筐体8001に、表示装置を備えるファインダーが内蔵されていてもよい。
図59(B)は、ヘッドマウントディスプレイ8200の外観を示す図である。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した画像データ等の映像情報を表示部8204に表示させることができる。また、本体8203に設けられたカメラで使用者の眼球やまぶたの動きを捉え、その情報をもとに使用者の視点の座標を算出することにより、使用者の視点を入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に複数の電極が設けられていてもよい。本体8203は使用者の眼球の動きに伴って電極に流れる電流を検知することにより、使用者の視点を認識する機能を有していてもよい。また、当該電極に流れる電流を検知することにより、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能を有していてもよい。また、使用者の頭部の動きなどを検出し、表示部8204に表示する映像をその動きに合わせて変化させてもよい。
表示部8204に、本発明の一態様の表示装置を適用することができる。
図59(C)(D)(E)は、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると好適である。表示部8302を湾曲して配置することで、使用者が高い臨場感を感じることができる。なお、本実施の形態においては、表示部8302を1つ設ける構成について例示したが、これに限定されず、例えば、表示部8302を2つ設ける構成としてもよい。この場合、使用者の片方の目に1つの表示部が配置されるような構成とすると、視差を用いた3次元表示等を行うことも可能となる。
なお、表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の半導体装置を有する表示装置は、極めて精細度が高いため、図59(E)のようにレンズ8305を用いて拡大したとしても、使用者に画素が視認されることなく、より現実感の高い映像を表示することができる。
<8−3.電子機器2>
次に、図59(A)乃至図59(E)に示す電子機器と、異なる電子機器の一例を図60(A)乃至図60(G)に示す。
図60(A)乃至図60(G)に示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図60(A)乃至図60(G)に示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信または受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表示部に表示する機能、等を有することができる。なお、図60(A)乃至図60(G)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。また、図60(A)乃至図60(G)には図示していないが、電子機器には、複数の表示部を有する構成としてもよい。また、該電子機器にカメラ等を設け、静止画を撮影する機能、動画を撮影する機能、撮影した画像を記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図60(A)乃至図60(G)に示す電子機器の詳細について、以下説明を行う。
図60(A)は、テレビジョン装置9100を示す斜視図である。テレビジョン装置9100は、表示部9001を大画面、例えば、50インチ以上、または100インチ以上の表示部9001を組み込むことが可能である。
図60(B)は、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えば電話機、手帳又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具体的には、スマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像情報をその複数の面に表示することができる。例えば、3つの操作ボタン9050(操作アイコンまたは単にアイコンともいう)を表示部9001の一の面に表示することができる。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することができる。なお、情報9051の一例としては、電子メールやSNS(ソーシャル・ネットワーキング・サービス)や電話などの着信を知らせる表示、電子メールやSNSなどの題名、電子メールやSNSなどの送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置に、情報9051の代わりに、操作ボタン9050などを表示してもよい。
図60(C)は、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば、携帯情報端末9102の使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、その表示(ここでは情報9053)を確認することができる。具体的には、着信した電話の発信者の電話番号又は氏名等を、携帯情報端末9102の上方から観察できる位置に表示する。使用者は、携帯情報端末9102をポケットから取り出すことなく、表示を確認し、電話を受けるか否かを判断できる。
図60(D)は、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子9006を介さずに無線給電により行ってもよい。
図60(E)(F)(G)は、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図60(E)が携帯情報端末9201を展開した状態の斜視図であり、図60(F)が携帯情報端末9201を展開した状態または折り畳んだ状態の一方から他方に変化する途中の状態の斜視図であり、図60(G)が携帯情報端末9201を折り畳んだ状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることにより、携帯情報端末9201を展開した状態から折りたたんだ状態に可逆的に変形させることができる。例えば、携帯情報端末9201は、曲率半径1mm以上150mm以下で曲げることができる。
次に、図59(A)乃至図59(E)に示す電子機器、及び図60(A)乃至図60(G)に示す電子機器と異なる電子機器の一例を図61(A)(B)に示す。図61(A)(B)は、複数の表示パネルを有する表示装置の斜視図である。なお、図61(A)は、複数の表示パネルが巻き取られた形態の斜視図であり、図61(B)は、複数の表示パネルが展開された状態の斜視図である。
図61(A)(B)に示す表示装置9500は、複数の表示パネル9501と、軸部9511と、軸受部9512と、を有する。また、複数の表示パネル9501は、表示領域9502と、透光性を有する領域9503と、を有する。
また、複数の表示パネル9501は、可撓性を有する。また、隣接する2つの表示パネル9501は、それらの一部が互いに重なるように設けられる。例えば、隣接する2つの表示パネル9501の透光性を有する領域9503を重ね合わせることができる。複数の表示パネル9501を用いることで、大画面の表示装置とすることができる。また、使用状況に応じて、表示パネル9501を巻き取ることが可能であるため、汎用性に優れた表示装置とすることができる。
また、図61(A)(B)においては、表示領域9502が隣接する表示パネル9501で離間する状態を図示しているが、これに限定されず、例えば、隣接する表示パネル9501の表示領域9502を隙間なく重ねあわせることで、連続した表示領域9502としてもよい。
本実施の形態において述べた電子機器は、何らかの情報を表示するための表示部を有することを特徴とする。ただし、本発明の一態様の半導体装置は、表示部を有さない電子機器にも適用することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
本実施例においては、トランジスタが形成された試料(試料C1乃至試料C4、試料D1、及び試料E1)を作製し、当該トランジスタの電気特性について評価を行った。
<1−1.各試料の構成>
試料C1乃至試料C4は、チャネル領域に酸化物半導体膜を用いた試料であり、試料D1は、チャネル領域にn型のLTPS(Low Temparature Poly Silicon)を用いた試料であり、試料E1は、チャネル領域にp型のLTPSを用いた試料である。すなわち、試料C1乃至試料C4は、本発明の一態様の試料であり、試料D1及び試料E1は、比較用の試料である。
また、試料C1乃至試料C4は、それぞれトランジスタのサイズが異なるのみで、作製方法は同じである。
試料C1のトランジスタサイズをL/W=2/3μmとし、試料C2のトランジスタサイズをL/W=3/3μmとし、試料C3のトランジスタサイズをL/W=6/3μmとし、試料C4のトランジスタサイズをL/W=10/3μmとした。
また、比較用の試料D1及び試料E1のトランジスタサイズはL/W=6/3μmとした。
<1−2.試料C1乃至試料C4の作製方法>
まず、試料C1乃至試料C4の作製方法について、説明を行う。
試料C1乃至試料C4としては、実施の形態1に示す試料A3と同様の作製方法により形成した。
<1−3.試料D1及び試料E1の作製方法>
試料D1及び試料E1としては、半導体層にLTPSを用いた試料であり、トランジスタの作製方法としては、試料C1乃至試料C4と同様とした。
<1−4.トランジスタのId−Vg特性>
試料C1に形成されたトランジスタのId−Vg特性を図62に、試料C2に形成されたトランジスタのId−Vg特性を図63に、試料C3に形成されたトランジスタのId−Vg特性を図64に、試料C4に形成されたトランジスタのId−Vg特性を図65に、それぞれ示す。また、試料D1に形成されたトランジスタのId−Vg特性を図66に、試料E1に形成されたトランジスタのId−Vg特性を図67に、それぞれ示す。
なお、トランジスタのId−Vg特性の測定条件としては、第1のゲート電極として機能する導電膜に印加する電圧(以下、ゲート電圧(Vg)ともいう)、及び第2のゲート電極として機能する導電膜に印加する電圧(以下、バックゲート電圧(Vbg)ともいう)を、−10Vから+10Vまで0.25Vのステップで印加した。また、ソース電極として機能する導電膜に印加する電圧(以下、ソース電圧(Vs)ともいう)を0V(comm)とし、ドレイン電極として機能する導電膜に印加する電圧(以下、ドレイン電圧(Vd)ともいう)を、各試料によって変えて測定した。
試料C1乃至試料C4に形成されたトランジスタのId−Vg特性のドレイン電圧(Vd)の測定条件としては、3V、4V、5V、6V、7V、8V、9V、及び10Vとした。また、試料D1及び試料E1に形成されたトランジスタのId−Vg特性のドレイン電圧(Vd)の測定条件としては、5V、10V、15V、及び20Vとした。
なお、図62乃至図65において、ドレイン電圧(Vd)が3V、4V、5V、6V、7V、8V、9V、及び10Vの測定結果を、それぞれ重ねて示している。また、図66及び図67においては、ドレイン電圧(Vd)が5V、10V、15V、及び20Vの測定結果を、それぞれ重ねて示している。
また、図62乃至図67において、第1縦軸がId(A)を、第2縦軸が電界効果移動度(μFE(cm/Vs))を、横軸がVg(V)を、それぞれ表す。
図62乃至図65に示すように、本発明の一態様の試料C1乃至試料C4においては、飽和領域での移動度曲線の飽和性が良いのが確認できる。そこで、図62乃至図65に示す試料C1乃至試料C4の移動度曲線における、Vgが3V以上10V以下の範囲において、電界効果移動度の最大値、最小値、及び最大値から最小値を差分した結果をまとめた。まとめた結果を表3に示す。
図62乃至図65、及び表3に示すように、本発明の一態様の半導体装置は、移動度曲線の飽和性がよく、飽和領域において電界効果移動度の最大値と、最小値との差が15cm/Vs以内であることが確認された。一方で、比較用の試料である試料D1及び試料E1においては、図66及び図67に示すように、電界効果移動度の最大値と、最小値との差が大きいことが確認された。
このように、本発明の一態様の半導体装置は、移動度曲線の飽和性が極めて良好である。このような特性のトランジスタを、例えば有機ELディスプレイの画素のトランジスタに用いることで、高い信頼性を付与することができる。あるいは、上述のトランジスタをセンサなどに用いると安定した出力特性を得ることができる。なお、上述の特性としては、トランジスタの半導体層としてLTPSを用いた場合においては、なし得ない効果であり、トランジスタの半導体層として本発明の一態様の酸化物半導体膜を用いることで得られる優れた効果である。
次に、試料C1乃至試料C4のしきい値電圧(Vth)の結果を図68に示す。なお、トランジスタのしきい値電圧(Vth)としては、定電流法で算出した。なお、定電流法とは、Id−Vg特性の結果から、L/W=1となるようにIdを規格化して、一定電流(ここでは、1nA)が流れる場合のVgをしきい値電圧(Vth)とする方法である。
図68に示すように、Vdが増加しても試料C1乃至試料C4のしきい値電圧が概ね一定であることが分かる。したがって、本発明の一態様の試料C1乃至試料C4は、安定した電気特性を有する。
なお、本実施例に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
100A トランジスタ
100B トランジスタ
100C トランジスタ
100D トランジスタ
100E トランジスタ
100F トランジスタ
100G トランジスタ
100H トランジスタ
100J トランジスタ
102 基板
104 絶縁膜
106 導電膜
108 酸化物半導体膜
108_1 酸化物半導体膜
108_2 酸化物半導体膜
108_3 酸化物半導体膜
108d ドレイン領域
108f 領域
108i チャネル領域
108s ソース領域
110 絶縁膜
112 導電膜
112_1 導電膜
112_2 導電膜
116 絶縁膜
118 絶縁膜
120a 導電膜
120b 導電膜
122 絶縁膜
141a 開口部
141b 開口部
143 開口部
200 トランジスタ
205 導電体
205a 導電体
205b 導電体
210 絶縁体
212 絶縁体
214 絶縁体
216 絶縁体
218 導電体
220 絶縁体
222 絶縁体
224 絶縁体
230 酸化物半導体
230a 酸化物半導体
230b 酸化物半導体
230c 酸化物半導体
240a 導電体
240b 導電体
244 導電体
245 導電体
250 絶縁体
260 導電体
260a 導電体
260b 導電体
270 絶縁体
280 絶縁体
282 絶縁体
284 絶縁体
400 トランジスタ
401 基板
402 半導体領域
404 絶縁体
406 導電体
408a 低抵抗領域
408b 低抵抗領域
410 容量素子
420 絶縁体
422 絶縁体
424 絶縁体
426 絶縁体
428 導電体
430 導電体
450 絶縁体
452 絶縁体
454 絶縁体
456 導電体
458 絶縁体
460 絶縁体
462 導電体
466 導電体
470 絶縁体
474 導電体
480 絶縁体
482 絶縁体
484 絶縁体
501 画素回路
502 画素部
504 駆動回路部
504a ゲートドライバ
504b ソースドライバ
506 保護回路
507 端子部
550 トランジスタ
552 トランジスタ
554 トランジスタ
560 容量素子
562 容量素子
570 液晶素子
572 発光素子
664 電極
665 電極
667 電極
700 表示装置
701 基板
702 画素部
704 ソースドライバ回路部
705 基板
706 ゲートドライバ回路部
708 FPC端子部
710 信号線
711 配線部
712 シール材
716 FPC
730 絶縁膜
732 封止膜
734 絶縁膜
736 着色膜
738 遮光膜
750 トランジスタ
752 トランジスタ
760 接続電極
770 平坦化絶縁膜
772 導電膜
773 絶縁膜
774 導電膜
775 液晶素子
776 液晶層
778 構造体
780 異方性導電膜
782 発光素子
783 液滴吐出装置
784 液滴
785 層
786 EL層
788 導電膜
790 容量素子
791 タッチパネル
792 絶縁膜
793 電極
794 電極
795 絶縁膜
796 電極
797 絶縁膜
800 インバータ
810 OSトランジスタ
820 OSトランジスタ
831 信号波形
832 信号波形
840 破線
841 実線
850 OSトランジスタ
860 CMOSインバータ
900 半導体装置
901 電源回路
902 回路
903 電圧生成回路
903A 電圧生成回路
903B 電圧生成回路
903C 電圧生成回路
904 回路
905 電圧生成回路
906 回路
911 トランジスタ
912 トランジスタ
912A トランジスタ
912B トランジスタ
921 制御回路
922 トランジスタ
1400 液滴吐出装置
1402 基板
1403 液滴吐出手段
1404 撮像手段
1405 ヘッド
1406 点線
1407 制御手段
1408 記憶媒体
1409 画像処理手段
1410 コンピュータ
1411 マーカー
1412 ヘッド
1413 材料供給源
1414 材料供給源
7000 表示モジュール
7001 上部カバー
7002 下部カバー
7003 FPC
7004 タッチパネル
7005 FPC
7006 表示パネル
7007 バックライト
7008 光源
7009 フレーム
7010 プリント基板
7011 バッテリ
8000 カメラ
8001 筐体
8002 表示部
8003 操作ボタン
8004 シャッターボタン
8006 レンズ
8100 ファインダー
8101 筐体
8102 表示部
8103 ボタン
8200 ヘッドマウントディスプレイ
8201 装着部
8202 レンズ
8203 本体
8204 表示部
8205 ケーブル
8206 バッテリ
8300 ヘッドマウントディスプレイ
8301 筐体
8302 表示部
8304 固定具
8305 レンズ
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9050 操作ボタン
9051 情報
9052 情報
9053 情報
9054 情報
9055 ヒンジ
9100 テレビジョン装置
9101 携帯情報端末
9102 携帯情報端末
9200 携帯情報端末
9201 携帯情報端末
9500 表示装置
9501 表示パネル
9502 表示領域
9503 領域
9511 軸部
9512 軸受部

Claims (7)

  1. トランジスタを有する半導体装置であって、
    前記トランジスタは、
    第1のゲート電極と、
    前記第1のゲート電極上の第1の絶縁膜と、
    前記第1の絶縁膜上の酸化物半導体膜と、
    前記酸化物半導体膜上の第2の絶縁膜と、
    前記第2の絶縁膜上の第2のゲート電極と、
    前記酸化物半導体膜、及び前記第2のゲート電極上の第3の絶縁膜と、を有し、
    前記酸化物半導体膜は、
    前記第2のゲート電極と重なるチャネル領域と、
    前記第3の絶縁膜と接するソース領域と、
    前記第3の絶縁膜と接するドレイン領域と、を有し、
    前記第1のゲート電極と前記第2のゲート電極とは、電気的に接続され、
    前記トランジスタの飽和領域における電界効果移動度を測定した際に、前記電界効果移動度の最小値と、前記電界効果移動度の最大値との差が15cm/Vs以内である、
    ことを特徴とする半導体装置。
  2. 請求項1において、
    前記電界効果移動度は、
    前記第1のゲート電極及び前記第2のゲート電極に印加される電圧を3V以上10V以下の範囲とし、且つ前記ドレイン領域に印加される電圧を10V以上20V以下の範囲とした際に測定される、
    ことを特徴とする半導体装置。
  3. 請求項1において、
    前記酸化物半導体膜は、
    Inと、M(MはAl、Ga、Y、またはSn)と、Znと、を有する、
    ことを特徴とする半導体装置。
  4. 請求項3において、
    前記In、前記M、及び前記Znの原子数比は、
    In:M:Zn=4:2:3近傍であり、
    前記Inが4の場合、前記Mが1.5以上2.5以下であり、且つ前記Znが2以上4以下である、
    ことを特徴とする半導体装置。
  5. 請求項1乃至請求項4のいずれか一項に記載の半導体装置と、
    表示素子と、を有する、
    ことを特徴とする表示装置。
  6. 請求項5に記載の表示装置と、
    タッチセンサと、を有する、
    ことを特徴とする表示モジュール。
  7. 請求項1乃至請求項4のいずれか一項に記載の半導体装置、請求項5に記載の表示装置、または請求項6に記載の表示モジュールと、
    操作キーまたはバッテリと、を有する、
    ことを特徴とする電子機器。
JP2017022713A 2016-02-12 2017-02-10 半導体装置 Active JP6964990B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021171842A JP7341204B2 (ja) 2016-02-12 2021-10-20 半導体装置
JP2023138788A JP2023169187A (ja) 2016-02-12 2023-08-29 半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016024579 2016-02-12
JP2016024579 2016-02-12
JP2016125375 2016-06-24
JP2016125375 2016-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021171842A Division JP7341204B2 (ja) 2016-02-12 2021-10-20 半導体装置

Publications (2)

Publication Number Publication Date
JP2018006730A true JP2018006730A (ja) 2018-01-11
JP6964990B2 JP6964990B2 (ja) 2021-11-10

Family

ID=59561764

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017022713A Active JP6964990B2 (ja) 2016-02-12 2017-02-10 半導体装置
JP2021171842A Active JP7341204B2 (ja) 2016-02-12 2021-10-20 半導体装置
JP2023138788A Pending JP2023169187A (ja) 2016-02-12 2023-08-29 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021171842A Active JP7341204B2 (ja) 2016-02-12 2021-10-20 半導体装置
JP2023138788A Pending JP2023169187A (ja) 2016-02-12 2023-08-29 半導体装置

Country Status (5)

Country Link
US (1) US10115742B2 (ja)
JP (3) JP6964990B2 (ja)
KR (2) KR102655935B1 (ja)
CN (2) CN109121438B (ja)
WO (1) WO2017137869A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230141498A (ko) 2022-03-30 2023-10-10 가부시키가이샤 재팬 디스프레이 반도체 장치의 제조 방법
KR20230141493A (ko) 2022-03-30 2023-10-10 가부시키가이샤 재팬 디스프레이 반도체 장치의 제조 방법
WO2023238521A1 (ja) * 2022-06-10 2023-12-14 株式会社ジャパンディスプレイ 薄膜トランジスタおよび電子機器
KR20240007599A (ko) 2022-07-08 2024-01-16 가부시키가이샤 재팬 디스프레이 반도체 장치
KR20240009869A (ko) 2022-07-14 2024-01-23 가부시키가이샤 재팬 디스프레이 반도체 장치
DE102023208538A1 (de) 2022-09-09 2024-03-14 Japan Display Inc. Halbleitervorrichtung
EP4340042A1 (en) 2022-09-13 2024-03-20 Japan Display Inc. Semiconductor device
KR20240043693A (ko) 2022-09-27 2024-04-03 가부시키가이샤 재팬 디스프레이 반도체 장치의 제조 방법
KR20240046023A (ko) 2022-09-30 2024-04-08 가부시키가이샤 재팬 디스프레이 반도체 장치
KR20240047305A (ko) 2022-10-04 2024-04-12 가부시키가이샤 재팬 디스프레이 반도체 장치 및 그 제조 방법
DE102023211597A1 (de) 2022-11-28 2024-05-29 Japan Display Inc. Halbleitervorrichtung
KR20240133589A (ko) 2023-02-27 2024-09-04 가부시키가이샤 재팬 디스프레이 반도체 장치
DE102024202034A1 (de) 2023-03-31 2024-10-02 Japan Display Inc. Halbleitervorrichtung und verfahren zu ihrer herstellung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121438B (zh) * 2016-02-12 2022-02-18 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
KR20240027878A (ko) 2016-03-22 2024-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 상기 반도체 장치를 포함하는 표시 장치
KR102660829B1 (ko) * 2016-10-20 2024-04-25 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JP7085491B2 (ja) 2016-12-02 2022-06-16 株式会社半導体エネルギー研究所 半導体装置
CN108462843A (zh) * 2017-02-22 2018-08-28 松下知识产权经营株式会社 摄像装置及摄像模块
CN107293493A (zh) * 2017-06-06 2017-10-24 武汉华星光电技术有限公司 铟镓锌氧化物薄膜晶体管的制作方法
CN115616803A (zh) * 2018-03-14 2023-01-17 群创光电股份有限公司 电子装置
JPWO2020089726A1 (ja) * 2018-11-02 2021-11-18 株式会社半導体エネルギー研究所 半導体装置
CN110109293A (zh) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 液晶无机配向薄膜的制造方法
CN110967768B (zh) * 2019-12-17 2022-03-22 东北师范大学 一种可探测全范围材质物体的柔性可贴合复合式接近传感器及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176865A (ja) * 2008-01-23 2009-08-06 Canon Inc 薄膜トランジスタ及びその製造方法
JP2015195327A (ja) * 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 半導体装置
JP2016006871A (ja) * 2014-05-30 2016-01-14 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
JP5046452B2 (ja) * 2000-10-26 2012-10-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
JP4620046B2 (ja) 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2708335A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
WO2006051995A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
AU2005302963B2 (en) 2004-11-10 2009-07-02 Cannon Kabushiki Kaisha Light-emitting device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR101496148B1 (ko) 2008-05-15 2015-02-27 삼성전자주식회사 반도체소자 및 그 제조방법
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
CN103928476A (zh) * 2008-10-03 2014-07-16 株式会社半导体能源研究所 显示装置及其制造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
CN103730509B (zh) * 2008-11-07 2018-03-30 株式会社半导体能源研究所 半导体器件
JP5743407B2 (ja) 2010-01-15 2015-07-01 キヤノン株式会社 トランジスタの駆動方法及び該方法で駆動されるトランジスタを含む表示装置
US8383434B2 (en) * 2010-02-22 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
JP2012033836A (ja) 2010-08-03 2012-02-16 Canon Inc トップゲート型薄膜トランジスタ及びこれを備えた表示装置
GB201013820D0 (en) * 2010-08-18 2010-09-29 Cambridge Display Tech Ltd Low contact resistance organic thin film transistors
JP5552547B2 (ja) * 2010-09-13 2014-07-16 パナソニック株式会社 金属酸化物半導体の製造方法
JP5995504B2 (ja) 2012-04-26 2016-09-21 富士フイルム株式会社 電界効果型トランジスタ及びその製造方法、表示装置、イメージセンサ並びにx線センサ
CN104380473B (zh) 2012-05-31 2017-10-13 株式会社半导体能源研究所 半导体装置
DE112013005331T5 (de) 2012-11-08 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Metalloxidfilm und Verfahren zur Bildung eines Metalloxidfilms
JP6475424B2 (ja) 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 半導体装置
CN104867981B (zh) 2014-02-21 2020-04-21 株式会社半导体能源研究所 半导体膜、晶体管、半导体装置、显示装置以及电子设备
TWI646658B (zh) 2014-05-30 2019-01-01 日商半導體能源研究所股份有限公司 半導體裝置
US9722090B2 (en) 2014-06-23 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first gate oxide semiconductor film, and second gate
US9461179B2 (en) 2014-07-11 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure
US20160155759A1 (en) 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
KR20170101233A (ko) * 2014-12-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링용 타깃의 제작 방법
US9647132B2 (en) 2015-01-30 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US9837547B2 (en) * 2015-05-22 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide conductor and display device including the semiconductor device
WO2017098369A1 (en) 2015-12-11 2017-06-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device, and display device
CN109121438B (zh) * 2016-02-12 2022-02-18 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
US9905579B2 (en) * 2016-03-18 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
KR102296809B1 (ko) * 2016-06-03 2021-08-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물 및 전계 효과 트랜지스터

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176865A (ja) * 2008-01-23 2009-08-06 Canon Inc 薄膜トランジスタ及びその製造方法
JP2015195327A (ja) * 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 半導体装置
JP2016006871A (ja) * 2014-05-30 2016-01-14 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230141498A (ko) 2022-03-30 2023-10-10 가부시키가이샤 재팬 디스프레이 반도체 장치의 제조 방법
KR20230141493A (ko) 2022-03-30 2023-10-10 가부시키가이샤 재팬 디스프레이 반도체 장치의 제조 방법
WO2023238521A1 (ja) * 2022-06-10 2023-12-14 株式会社ジャパンディスプレイ 薄膜トランジスタおよび電子機器
KR20240007599A (ko) 2022-07-08 2024-01-16 가부시키가이샤 재팬 디스프레이 반도체 장치
KR20240009869A (ko) 2022-07-14 2024-01-23 가부시키가이샤 재팬 디스프레이 반도체 장치
DE102023208538A1 (de) 2022-09-09 2024-03-14 Japan Display Inc. Halbleitervorrichtung
KR20240035705A (ko) 2022-09-09 2024-03-18 가부시키가이샤 재팬 디스프레이 반도체 장치
EP4340042A1 (en) 2022-09-13 2024-03-20 Japan Display Inc. Semiconductor device
KR20240036459A (ko) 2022-09-13 2024-03-20 가부시키가이샤 재팬 디스프레이 반도체 장치
KR20240043693A (ko) 2022-09-27 2024-04-03 가부시키가이샤 재팬 디스프레이 반도체 장치의 제조 방법
KR20240046023A (ko) 2022-09-30 2024-04-08 가부시키가이샤 재팬 디스프레이 반도체 장치
KR20240047305A (ko) 2022-10-04 2024-04-12 가부시키가이샤 재팬 디스프레이 반도체 장치 및 그 제조 방법
DE102023211597A1 (de) 2022-11-28 2024-05-29 Japan Display Inc. Halbleitervorrichtung
KR20240079175A (ko) 2022-11-28 2024-06-04 가부시키가이샤 재팬 디스프레이 반도체 장치
KR20240133589A (ko) 2023-02-27 2024-09-04 가부시키가이샤 재팬 디스프레이 반도체 장치
DE102024202034A1 (de) 2023-03-31 2024-10-02 Japan Display Inc. Halbleitervorrichtung und verfahren zu ihrer herstellung

Also Published As

Publication number Publication date
KR102655935B1 (ko) 2024-04-11
KR20180124040A (ko) 2018-11-20
JP2023169187A (ja) 2023-11-29
CN109121438A (zh) 2019-01-01
JP6964990B2 (ja) 2021-11-10
KR20230168285A (ko) 2023-12-13
CN109121438B (zh) 2022-02-18
WO2017137869A1 (en) 2017-08-17
JP2022020682A (ja) 2022-02-01
CN114284364A (zh) 2022-04-05
JP7341204B2 (ja) 2023-09-08
US20170236844A1 (en) 2017-08-17
US10115742B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
JP7341204B2 (ja) 半導体装置
US12087825B2 (en) Metal oxide film and semiconductor device
JP6970511B2 (ja) トランジスタ
KR102527306B1 (ko) 금속 산화물막, 반도체 장치, 및 표시 장치
JP2021180335A (ja) 半導体装置
JP2017188674A (ja) 複合酸化物半導体、およびその作製方法
WO2017109642A1 (ja) 金属酸化物膜、および半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6964990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250