JP2017107713A - ナトリウムイオン二次電池および正極活物質粒子 - Google Patents

ナトリウムイオン二次電池および正極活物質粒子 Download PDF

Info

Publication number
JP2017107713A
JP2017107713A JP2015240023A JP2015240023A JP2017107713A JP 2017107713 A JP2017107713 A JP 2017107713A JP 2015240023 A JP2015240023 A JP 2015240023A JP 2015240023 A JP2015240023 A JP 2015240023A JP 2017107713 A JP2017107713 A JP 2017107713A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
ion secondary
electrode active
sodium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240023A
Other languages
English (en)
Other versions
JP6672758B2 (ja
Inventor
将一郎 酒井
Shoichiro Sakai
将一郎 酒井
篤史 福永
Atsushi Fukunaga
篤史 福永
新田 耕司
Koji Nitta
耕司 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015240023A priority Critical patent/JP6672758B2/ja
Priority to CN201680069807.8A priority patent/CN108292738B/zh
Priority to PCT/JP2016/083412 priority patent/WO2017098855A1/ja
Priority to US15/780,670 priority patent/US10593993B2/en
Priority to KR1020187015723A priority patent/KR20180084065A/ko
Publication of JP2017107713A publication Critical patent/JP2017107713A/ja
Application granted granted Critical
Publication of JP6672758B2 publication Critical patent/JP6672758B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】ナトリウムイオン二次電池の正極において、正極合剤のゲル化を抑制するとともに、抵抗の増加を抑制する。【解決手段】ナトリウムイオン二次電池は、正極、負極、前記正極と前記負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含む。前記正極は、正極活物質粒子、導電助剤、およびバインダを含み、前記正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層と、を備える。前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、前記バインダは、フッ素樹脂を含む。【選択図】図1

Description

本発明は、ナトリウムイオン二次電池における正極活物質粒子の改良に関する。
近年、電気エネルギーを蓄えることができる高エネルギー密度の電池として、非水電解質二次電池の需要が拡大している。非水電解質二次電池の中では、軽量かつ高い起電力を有する点で、リチウムイオン二次電池が有望である。しかし、リチウムイオン二次電池の市場の拡大に伴い、リチウム資源の価格が上昇している。そこで、より安価で安定なナトリウム化合物を正極活物質として用いるナトリウムイオン二次電池が注目を集めつつある。
リチウムイオン二次電池およびナトリウムイオン二次電池では、正極は、正極活物質、導電助剤、およびバインダなどを含む正極合剤を含む。正極活物質として、リチウムイオン二次電池では、リチウム含有遷移金属酸化物などのリチウム化合物が使用され、ナトリウムイオン二次電池では、ナトリウム含有遷移金属酸化物などのナトリウム化合物が使用されている。バインダとしては、ポリフッ化ビニリデン(PVDF:poly vinylidene fluoride)などのフッ素樹脂が汎用されている。正極活物質として使用されるリチウム化合物またはナトリウム化合物は塩基性を示すため、正極合剤がゲル化を引き起こす場合がある。
特許文献1および特許文献2では、リチウムイオン二次電池の正極において、正極合剤のゲル化を抑制するため、有機酸または無機酸を添加することが提案されている。特許文献1では、マレイン酸、シトラコン酸、およびマロン酸が正極合剤に使用され、特許文献2では、酢酸や、リン酸、硫酸などが正極合剤に使用されている。
特許文献3では、ナトリウム含有遷移金属化合物を電極活物質として用いるナトリウムイオン二次電池の電極において、バインダとして、ハロゲン化ビニリデン由来の構造単位を有さないポリマーを用いることが提案されている。
特開平9−306502号公報 特開平10−79244号公報 特開2012−134129号公報
ナトリウムイオン二次電池では、フッ素樹脂などのハロゲン含有樹脂をバインダとして用いると、正極合剤を調製する際にゲル化が極めて顕著になる場合がある。このような観点から、特許文献3では、ハロゲン化ビニリデン由来の構造単位を有さないバインダが使用されている。正極合剤がゲル化すると、正極集電体に塗布することができなくなったり、塗布できる場合でも、正極合剤の構成成分の分散状態にバラつきが生じて、電池特性が損なわれたりする。特に、ロールを用いてラージスケールで正極合剤を正極集電体に塗布する場合には、ゲル化が極めて顕著になり、塗布自体が困難になる。
リチウムイオン二次電池に関する特許文献1または特許文献2では、正極合剤のゲル化を抑制する目的で、マレイン酸や酢酸などを添加している。しかし、これらの酸をナトリウムイオン二次電池の正極合剤に添加する場合、酸の使用量が多くなるため、正極の抵抗が大きくなり、電池性能が低下する。また、正極活物質がNiおよびMnを含む場合には、正極合剤に酸を添加しても、ゲル化を十分に抑制することは難しい。
本発明の目的は、ナトリウムイオン二次電池の正極において、正極合剤のゲル化を抑制するとともに、抵抗の増加を抑制することである。
本発明の一局面は、正極、負極、前記正極と前記負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含み、
前記正極は、正極活物質粒子、導電助剤、およびバインダを含み、
前記正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層と、を備え、
前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、
前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、
前記バインダは、フッ素樹脂を含む、ナトリウムイオン二次電池に関する。
本発明の他の一局面は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層とを備え、
前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、
前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む、ナトリウムイオン二次電池用の正極活物質粒子に関する。
本発明によれば、ナトリウムイオン二次電池の正極において、ゲル化を抑制することができるとともに、抵抗の増加を抑制することができる。
本発明の一実施形態に係るナトリウムイオン二次電池を概略的に示す縦断面図である。 実施例1〜3および比較例1の充放電サイクル数に対する容量維持率の推移を示すグラフである。 実施例1〜3および比較例1の充放電サイクル数に対するIRドロップの推移を示すグラフである。 実施例3および比較例1における初回放電時(0.1C放電)、15サイクル放電時(0.1C放電)、および40サイクル放電時(0.01C放電)の放電容量に対する電圧の変化を示すグラフである。
[発明の実施形態の説明]
最初に、本発明の実施形態の内容を列記して説明する。
本発明の一実施形態は、正極、負極、正極と負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含むナトリウムイオン二次電池に関する。正極は、正極活物質粒子、導電助剤、およびバインダを含み、正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、酸化物粒子を被覆する被覆層と、を備える。酸化物粒子は、NiおよびMnを含む酸化物Aを含み、被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、バインダは、フッ素樹脂を含む。なお、酸化物粒子は、ナトリウムイオンを吸蔵および放出するものであり、正極活物質としての機能を有する。
本発明の他の一実施形態に係る正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、酸化物粒子を被覆する被覆層とを備える。酸化物粒子は、NiおよびMnを含む酸化物Aを含み、被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む。
一般に、フッ素樹脂は、塩基性条件下では、ゲル化を引き起こし易い。特に、フッ化ビニリデン単位やフッ化ビニル単位などを含むフッ素樹脂では、フッ酸の引抜きによりポリエン構造を形成し易く、これによりゲル化を起こし易い。ナトリウムイオンを吸蔵および放出する正極活物質は高い塩基性を示す。例えば、酸化物Aを含む酸化物粒子を、水100質量部に対して2質量部分散させて得られる水分散液のpHは、11以上であり、場合によっては12以上と極めて高い。そのため、このような高い塩基性の正極活物質を、フッ素樹脂を含むバインダと組み合わせて用いると、正極合剤のゲル化が顕著になる。
正極合剤のゲル化が起こると、正極合剤を正極集電体に担持させる(具体的には、塗布または充填する)ことができなくなる。実験室などの小さなスケールで正極を作製する場合には、正極合剤のゲル化が起こる前に、正極合剤を正極集電体に塗布したり、正極を成形したりすることができる。しかし、ロールを用いるようなラージスケールで正極を作製する場合には、粘度の変動の影響が顕著に現れ、正極合剤を安定して正極集電体に塗布することが極めて困難となる。また、正極合剤を正極集電体に担持させることができても、構成成分の分布が均一な正極合剤層を形成することができない。正極合剤を乾燥して正極を作製する過程で、ゲル化が起こり、正極の特性を損なう場合もある。
リチウムイオン二次電池では、正極合剤のゲル化を抑制する目的で、マレイン酸や酢酸などが添加されることがある。しかし、NiおよびMnを含むナトリウムイオン二次電池用の正極活物質は、塩基性が非常に高い。そのため、上記のような酸をリチウムイオン二次電池の場合と同程度の量で正極合剤に添加してもゲル化を十分に抑制することが困難である。特に、ラージスケールで正極を作製する場合には、ゲル化が著しくなり、正極合剤を正極集電体に塗布できなくなる。また、正極合剤を正極集電体に塗布できるまで、酸を添加すると、酸の添加量が多くなり、正極の抵抗が増加する。
バインダは、ゲル化すると劣化し易くなり、電池の長期特性に影響を与える。バインダのゲル化により、正極において構成成分の分布が不均一になると、正極と電解質との界面におけるナトリウムイオンの吸蔵および放出の際の抵抗が増したり、正極における導電性が低下したりする。その結果、初期の放電容量の低下を招く。また、このような状態で充放電を繰り返すと、正極合剤が正極集電体から剥離したり、正極活物質の粒子が脱落したりして、容量が低下し、サイクル特性が低下する。
本実施形態では、NiおよびMnを含む酸化物Aを含む酸化物粒子を、セラミックスおよび/または炭素質材料(材料B)を含む被覆層で被覆したものを正極活物質粒子として用いる。このように、正極活物質粒子が被覆層を有することで、正極活物質粒子の塩基性が緩和される。例えば、水100質量部に対して、2質量部の正極活物質粒子を分散させて得られる水分散液では、水分散液のpHを10以下(好ましくは9以下)にまで低下させることができる。
そのため、酸化物Aが正極合剤を極めてゲル化し易いにも拘わらず、ゲル化を抑制できる。特に、ラージスケールで正極を作製する場合でも、ゲル化を抑制できるため、安定して正極を製造することができる。また、酸を添加しなくても正極合剤のゲル化を抑制できるため、正極の抵抗が増加するのを抑制することができる。正極合剤を正極集電体に担持させた後、正極が完成するまでの間に、ゲル化が進行することも抑制できる。そのため、構成成分の分散状態が良好な(つまり、より均一な)正極が得られる。バインダの劣化が抑制されることに加え、被覆層により正極活物質粒子の微細化も抑制される。よって、ナトリウムイオン二次電池の初期の放電容量およびサイクル特性の低下を抑制することもできる。
材料Bの量は、酸化物粒子100質量部に対して、例えば、1質量部〜10質量部であり、3質量部〜7質量部であることが好ましく、3質量部〜5質量部であることがさらに好ましい。材料Bの量がこのような範囲であることで、酸化物粒子の塩基性を緩和する効果が高まり、正極合剤のゲル化をさらに抑制することができる。また、正極の抵抗の増加を抑制し易いことに加え、サイクル特性の低下を抑制することもできる。
バインダの量は、正極活物質粒子100質量部に対して、例えば、0.5質量部〜5質量部であり、1質量部〜3質量部であることが好ましい。バインダの量がこのような範囲である場合、正極活物質粒子を結着し易いながらも、正極合剤のゲル化を効果的に抑制することができる。
酸化物Aとしては、式(1):NaMeO(元素Meは、Ni、Mn、およびTiを少なくとも含む遷移金属元素であり、xは元素Meに対するNaの比率であり、完全放電状態におけるxは、2/3〜1である。)で表されるナトリウム含有遷移金属酸化物が好ましい。このような金属酸化物において、例えば、NiとMnとTiとの化学量論比は、5:3:2である。結晶構造を制御し易い観点から、酸化物Aにおいて、完全放電状態におけるxは0.9〜1であり、元素Meに占めるNiの比率は0.45以上であり、元素Meに占めるTiの比率が0.15以上であることが好ましい。
上記のような金属酸化物は、高い塩基性を示し、正極合剤のゲル化が顕著になり易い。本実施形態では、酸化物粒子がこのような金属酸化物を含む場合でも、被覆層の存在により、正極活物質粒子の塩基性を緩和することができるため、正極合剤のゲル化を抑制することができる。また、上記金属酸化物を用いることで、高容量化することもできる。
材料Bのうち、セラミックスとしては、ジルコニアおよびアルミナからなる群より選択される少なくとも一種などが好ましい。これらのセラミックスを用いる場合、ゲル化の抑制効果をさらに高めることができる。また、正極の抵抗を抑制し易く、サイクル特性の低下を抑制することもできる。
[発明の実施形態の詳細]
本発明の実施形態に係るナトリウムイオン二次電池用の正極活物質粒子およびナトリウムイオン二次電池の具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、添付の特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
(ナトリウムイオン二次電池用の正極活物質粒子)
正極活物質粒子は、ナトリウムイオンを吸蔵および放出(もしくは挿入および脱離)する酸化物粒子と、酸化物粒子を被覆する被覆層とを備える。
酸化物粒子は、NiおよびMnを含む酸化物Aを含む。酸化物粒子において、少なくとも酸化物Aがナトリウムイオンを吸蔵および放出することが好ましい。このような酸化物Aとしては、ナトリウムが層間に出入りする層状構造を有するものが好ましいが、特に限定されない。高容量を確保する観点からは、酸化物粒子は、できるだけ多くの酸化物Aを含むことが好ましく、酸化物粒子の90質量%以上を酸化物Aが占めることが好ましい。
酸化物Aとしては、式(1):NaMeO(ここで、Meは、遷移金属元素であり、xは元素Meに対するNaの比率である。)で表されるナトリウム含有遷移金属酸化物が挙げられる。xは充放電により変化する値である。完全放電状態におけるxは、典型的には、1または2/3であるが、多少の幅があってもよい。例えば、式(1)で表されるナトリウム含有遷移金属酸化物には、式(1a):Nax−αMe1+α(αは、−0.03≦α≦0.03を充足する)で表されるものも含まれるものとする。
酸化物Aは、元素Meとして、少なくともNiおよびMnを含んでいればよいが、Ni、MnおよびTiを少なくとも含む場合が好ましい。これらの元素以外に、元素Meは、例えば、Cr、Fe、および/またはCoなどを含んでもよい。このような元素Meを含む酸化物Aは、塩基性が高くなり易いが、本実施形態によれば、正極活物質粒子の塩基性を効果的に緩和することができる。
正極に使用される正極活物質粒子は、酸化物Aを一種含んでいてもよく、組成が異なる二種以上の酸化物Aを含んでもよい。
好ましい実施形態において、酸化物Aは、酸素配列を持つMeO層の積層構造を含む。P2型結晶構造では、ナトリウムは、MeO層間の三角柱サイトを占有する。O3型結晶構造では、ナトリウムは、MeO層間の六配位八面体サイトを占有する。酸化物Aは、このような積層構造を有することで、ナトリウムイオンを可逆的に吸蔵および放出することができる。具体的には、放電時に、MeO層の層間にナトリウムイオンが吸蔵され、充電時に、MeO層の層間からナトリウムイオンが放出される。酸化物Aが層状O3型の結晶構造を有する場合、層状P2型の結晶構造と比べて、溶媒に対する溶解性が高いため、正極合剤のゲル化が顕著になり易い。本実施形態では、酸化物Aが層状O3型の結晶構造を有する場合であっても、正極合剤のゲル化を効果的に抑制することができる。
ナトリウム含有遷移金属酸化物において、完全放電状態における元素Meに対するNaの化学量論比を、xとするとき、式(1)におけるxは、例えば、0.97x≦x≦1.03xであり、0.98x≦x≦1.02xであってもよい。完全放電状態でこのようなx値を有するナトリウム含有遷移金属酸化物は、ナトリウムイオンを可逆的に安定に吸蔵および放出することができる。
なお、式(1)(または式(1a))で表されるナトリウム含有遷移金属酸化物に関し、元素Meに対するNaの化学量論比xとは、結晶構造の種類に応じて決定される値である。ナトリウム含有遷移金属酸化物が、層状P2型結晶構造を有する場合、完全放電状態におけるxは2/3である。また、ナトリウム含有遷移金属酸化物が、層状O3型結晶構造を有する場合、完全放電状態におけるxは1である。
式(1)(および式(1a))で表されるナトリウム含有遷移金属酸化物において、元素Meの80原子%以上(例えば、80〜100原子%)を、NiおよびMn(さらには、Ni、MnおよびTi)で構成することが望ましい。
元素Meは、Ni、Mn、およびTiの組み合わせを含むことが好ましい。元素Meがこのような組み合わせである場合、ナトリウム含有遷移金属酸化物の結晶構造は、好ましくは層状O3型である。このとき、xは多少の幅があってもよく、例えば、完全放電状態におけるxは、0.9〜1であってもよい。層状O3型のナトリウム含有遷移金属酸化物において、完全放電状態におけるxは0.9〜1であり、元素Meに占めるNiの比率は0.45以上であり、元素Meに占めるTiの比率は0.15以上であることが好ましい。
層状O3型のナトリウム含有遷移金属酸化物において、NiとMnとTiとの化学量論比には多少の幅があってもよい。具体的に、Ni、Mn、およびTiの各元素の比率は、化学量論比を100原子%とするとき、例えば、90原子%〜110原子%または95原子%〜105原子%の範囲であってもよい。また、Ni、Mn、およびTiの比率の合計が1となるようにすることが望ましい。
正極活物質粒子において、酸化物粒子を被覆する被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む。被覆層を形成することで、正極活物質粒子の安定性が増し、塩基性物質の溶出が抑制されると考えられる。本実施形態では、酸化物粒子の表面を、材料Bを含む被覆層で覆っても、正極の抵抗の増加が抑制される。また、ナトリウムイオン二次電池の充放電も可能である。そのため、正極活物質粒子では、抵抗の増加や充放電性に影響しない程度に、酸化物粒子が被覆されずに露出していると考えられる。それにも拘わらず、本実施形態では、予想外に正極活物質粒子の塩基性が緩和される。よって、正極の製造時には問題にならない程度にゲル化が抑制されるものと考えられる。
セラミックスとしては、例えば、ジルコニア、アルミナ、窒化ケイ素、および炭化ケイ素からなる群より選択される少なくとも一種が挙げられる。理由は定かではないが、正極合剤のゲル化を抑制する効果を高め易い観点から、ジルコニアおよび/またはアルミナを用いることが好ましい。特に、ジルコニアを用いる場合には、正極の抵抗およびサイクル特性の低下を抑制する効果がさらに高まる。
炭素質材料としては、例えば、カーボンブラック、黒鉛、炭素繊維(気相法炭素繊維など)、およびカーボンナノチューブからなる群より選択される少なくとも一種が挙げられる。被覆層に炭素質材料を用いる場合、正極の抵抗を低減し易い。
被覆は、酸化物粒子よりもサイズが小さな材料Bの粒子を、酸化物粒子の表面にまぶし付けることにより行ってもよいが、メカノケミカル処理(メカノフュージョン処理も含む)などにより行うことが好ましい。材料Bの被覆には、公知の方法が採用できる。
正極活物質粒子の平均粒子径D50は、例えば、5μm〜15μmであり、好ましくは7μm〜12μmである。正極活物質粒子の平均粒子径がこのような範囲である場合、ゲル化を抑制する効果が得られ易く、充放電サイクルを繰り返した場合の正極活物質粒子の劣化を抑制し易い。
なお、平均粒子径D50とは、レーザー回折式粒度分布測定装置などを用いて求められる体積基準の粒度分布において、累積体積が50%となる粒子径(つまり、メジアン径)を意味する。
BET法により測定される正極活物質粒子の比表面積は、特に限定されないが、例えば、0.3m/g〜1.0m/gである。比表面積がこのような範囲である場合、高容量を確保し易いことに加え、正極合剤のゲル化をさらに抑制し易い。
(ナトリウムイオン二次電池)
(正極)
正極は、上記の正極活物質粒子に加え、導電助剤、およびバインダを含む。以下に正極活物質粒子以外の構成要素について説明する。
正極に使用されるバインダは、フッ素樹脂を含む。フッ素樹脂としては、例えば、テトラフルオロエチレンに由来するモノマー単位、ヘキサフルオロプロピレンに由来するモノマー単位、フッ化ビニリデンに由来するモノマー単位(フッ化ビニリデン単位)、フッ化ビニルに由来するモノマー単位(フッ化ビニル単位)などのフッ素含有モノマー単位を含むフッ素含有ポリマーが挙げられる。フッ素樹脂は、これらのフッ素含有モノマー単位を一種含むものであってもよく、二種以上含むものであってもよい。また、フッ素樹脂は、フッ素含有モノマー単位以外の共重合性モノマー単位を含む共重合体であってもよい。
特に、フッ化ビニリデン単位やフッ化ビニル単位を含むフッ素樹脂は、塩基性雰囲気下ではフッ酸の引抜反応を受け易く、ポリエン構造を形成してゲル化(架橋も含む)が起こり易い。本実施形態では、正極活物質粒子が被覆層を有することで塩基性が緩和されるため、このようなフッ素樹脂を用いる場合であっても、ゲル化を抑制することができる。
フッ素樹脂としては、PVDF、ポリフッ化ビニル、フッ化ビニリデン単位とフッ化ビニル単位とを含む共重合体、フッ化ビニリデン単位および/またはフッ化ビニル単位と他のフッ素含有モノマー単位(例えば、テトラフルオロエチレン単位、および/またはヘキサフルオロプロピレン単位など)と必要により他の共重合性モノマー単位とを含む共重合体、フッ化ビニリデン単位および/またはフッ化ビニル単位と他の共重合性モノマー単位とを含む共重合体などが好ましい。
共重合性モノマーとしては、ハロゲン含有モノマー、非ハロゲン系の共重合性モノマーなどが挙げられる。ハロゲン含有モノマーとしては、塩化ビニルなどの塩素含有モノマーが例示される。非ハロゲン系の共重合性モノマーとしては、エチレン、プロピレンなどのオレフィン;アクリル酸、メタクリル酸、もしくはこれらのエステルまたは塩などのアクリルモノマー;アクリロニトリル、酢酸ビニル、スチレンなどのビニルモノマーなどが例示できる。フッ素樹脂は、これらの共重合性モノマーに由来する単位を、一種含んでいてもよく、二種以上含んでいてもよい。
本実施形態では、フッ素樹脂が、ポリエン構造を形成し易いフッ化ビニリデンやフッ化ビニルのブロックを含む場合であっても、ゲル化を有効に抑制することができる。このようなフッ素樹脂としては、PVDF、フッ化ビニリデンブロック共重合体、ポリフッ化ビニル、フッ化ビニルブロック共重合体が例示される。ブロック共重合体を構成する共重合性モノマーとしては、フッ化ビニリデンおよびフッ化ビニル以外のフッ素含有モノマーや上記例示の他の共重合性モノマーが使用できる。
フッ素樹脂において、フッ素含有モノマー単位の含有量は、例えば、30mol%以上であり、50mol%以上または70mol%以上であることが好ましい。フッ素樹脂におけるフッ素含有モノマー単位の含有量は100mol%以下である。フッ素樹脂におけるフッ化ビニリデン単位およびフッ化ビニル単位の含有量の合計が、このような範囲であってもよい。この場合、フッ化ビニリデン単位および/またはフッ化ビニル単位の含有量が多いため、一般にゲル化が起こり易いが、本実施形態では、このようなフッ素樹脂を用いる場合であっても、ゲル化を効果的に抑制できる。
バインダは、フッ素樹脂(第1ポリマー)以外のポリマー(第2ポリマー)を含んでもよい。バインダ中のフッ素樹脂の含有量は、例えば、80質量%〜100質量%である。
第2ポリマーとしては、ナトリウムイオン二次電池の正極に使用される公知のバインダから適宜選択でき、例えば、ポリオレフィン樹脂、スチレンブタジエンゴムなどのゴム状重合体、ポリアミド樹脂、ポリアミドイミドなどのポリイミド樹脂、ポリビニルピロリドン、ポリビニルアルコール、および/またはセルロースエーテル(カルボキシメチルセルロースおよびその塩など)などが挙げられる。
導電助剤としては、特に制限されないが、例えば、被覆層を構成する炭素質材料として例示したものなどが挙げられる。導電助剤は、正極活物質粒子およびバインダとともに、正極合剤中に混合して使用される。そのため、導電助剤は、通常、正極中にバインダなどとともに分散されている。
正極の導電性を確保し易い観点からは、導電助剤の量は、正極活物質粒子100質量部当たり、例えば、1質量部〜15質量部の範囲から適宜選択でき、1質量部〜10質量部であってもよい。
正極は、正極活物質粒子、導電助剤、およびバインダを含む正極合剤を、正極集電体に担持させ、正極集電体の厚み方向に圧縮し、乾燥させることにより形成できる。正極合剤は、通常、スラリーの形態で使用される。正極合剤スラリーは、正極合剤の構成成分を分散媒に分散させることにより調製される。
分散媒としては、例えば、N−メチル−2−ピロリドン(NMP:N−methyl−2−pyrrolidone)などの有機溶媒を用いることが好ましく、必要により、有機溶媒と水との混合溶媒を用いてもよい。
正極合剤には、必要に応じて公知の添加剤を添加してもよい。また、正極合剤のゲル化を抑制する観点から、正極合剤には、必要に応じて、有機酸や無機酸を添加してもよい
正極集電体は、金属箔でもよく、金属多孔体(金属繊維の不織布、および/または金属多孔体シートなど)であってもよい。金属多孔体としては、三次元網目状の骨格(特に、中空の骨格)を有する金属多孔体も使用できる。正極集電体の材質としては、特に限定されないが、正極電位での安定性の観点から、アルミニウム、および/またはアルミニウム合金などが好ましい。金属箔の厚みは、例えば10μm〜50μmであり、金属多孔体の厚みは、例えば100μm〜2000μmである。
正極集電体が金属箔である場合、正極合剤スラリーは金属箔の表面に塗布される。正極集電体が金属多孔体である場合、正極合剤スラリーは金属多孔体の表面に塗布してもよく、金属多孔体の内部に充填してもよい。正極合剤スラリーのゲル化が抑制されることで、正極合剤スラリーを正極集電体に容易に塗布または充填することができ、均一な塗膜を形成することができる。圧縮は、例えば、一対のロール間に、正極合剤を担持させた正極集電体を供給し、ロールで圧延することにより行ってもよい。正極合剤を正極集電体に担持させた後、圧縮する前に、必要に応じて、乾燥処理を行ってもよい。
(負極)
負極は、負極活物質を含む。負極は、負極集電体と、負極集電体に担持された負極活物質(または負極合剤)とを含んでもよい。
負極集電体は、正極集電体について記載したような金属箔または金属多孔体であってもよい。負極集電体の厚みは、正極集電体の場合について記載した範囲から適宜選択できる。
負極集電体の材質としては、特に制限されないが、ナトリウムと合金化せず、負極電位で安定であることから、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金、および/またはステンレス鋼などが好ましい。
負極活物質としては、例えば、ナトリウムイオンを可逆的に吸蔵および放出(もしくは挿入および脱離)する材料、ナトリウムと合金化する材料などが挙げられる。
このような負極活物質としては、ナトリウム、チタン、亜鉛、インジウム、スズ、ケイ素などの金属またはその合金、もしくはその化合物;および炭素質材料などが例示できる。なお、合金は、上記の金属以外に、さらに他のアルカリ金属および/またはアルカリ土類金属などを含んでもよい。
金属化合物としては、チタン酸リチウム(LiTiおよび/またはLiTi12など)などのリチウム含有チタン酸化物、およびチタン酸ナトリウム(NaTiおよび/またはNaTi12など)などのナトリウム含有チタン酸化物が例示できる。リチウム含有チタン酸化物(またはナトリウム含有チタン酸化物)において、チタンの一部、および/またはリチウム(またはナトリウム)の一部を他元素で置換してもよい。
炭素質材料としては、易黒鉛化性炭素(ソフトカーボン)、および/または難黒鉛化性炭素(ハードカーボン)などが例示できる。
負極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。
これらの材料のうち、上記化合物(ナトリウム含有チタン酸化物など)、および/または炭素質材料(ハードカーボンなど)などが好ましい。
負極は、正極の場合に準じて、例えば、負極集電体に、負極活物質を含む負極合剤を塗布または充填し、必要に応じて、厚み方向に圧縮(または圧延)することにより形成できる。適当な段階で乾燥処理を行ってもよい。また、負極としては、負極集電体の表面に、蒸着、またはスパッタリングなどの気相法で負極活物質の堆積膜を形成することにより得られるものを用いてもよい。また、シート状の金属または合金を、そのまま負極として用いてもよく、集電体に圧着したものを負極として用いてもよい。負極活物質には、必要に応じて、ナトリウムイオンをプレドープしてもよい。
負極合剤は、負極活物質に加え、さらに導電助剤および/またはバインダを含むことができる。
導電助剤としては、正極の被覆層について例示した炭素質材料から適宜選択できる。負極活物質に対する導電助剤の量も、正極活物質粒子に対する導電助剤の量について例示した範囲から適宜選択できる。
分散媒としては、NMPなどの有機溶媒、および/または水などが例示できる。
バインダの種類は特に制限されず、例えば、PVDF、ポリテトラフルオロエチレンなどのフッ素樹脂の他、正極のバインダとして例示した第2ポリマーから適宜選択できる。バインダは、一種を単独で使用してもよく、二種以上を組み合わせて用いてもよい。
バインダの量は、特に制限されないが、高い結着性および容量を確保し易い観点から、負極活物質100質量部当たり、例えば、0.5質量部〜15質量部の範囲から選択でき、1質量部〜12質量部であってもよい。
(セパレータ)
正極と負極との間に介在させるセパレータとしては、例えば、樹脂製の微多孔膜、および/または不織布などが使用できる。セパレータの材質は、電池の使用温度を考慮して選択できる。微多孔膜または不織布を形成する繊維に含まれる樹脂としては、例えば、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、および/またはポリイミド樹脂などが例示できる。不織布を形成する繊維は、ガラス繊維などの無機繊維であってもよい。セパレータは、セラミックス粒子などの無機フィラーを含んでもよい。無機フィラーは、セパレータにコーティングされた状態であってもよい。
セパレータの厚みは、特に限定されないが、例えば、10μm〜300μmの範囲から選択できる。
(電解質)
電解質としては、ナトリウムイオンを含む非水電解質が使用される。非水電解質としては、例えば、非水溶媒(または有機溶媒)にナトリウムイオンとアニオンとの塩(ナトリウム塩)を溶解させた電解質(有機電解質)、およびナトリウムイオンとアニオンとを含むイオン液体(溶融塩電解質)などが用いられる。
電解質におけるナトリウム塩またはナトリウムイオンの濃度は、例えば、0.3mol/L〜10mol/Lの範囲から適宜選択できる。
(有機電解質)
有機電解質は、非水溶媒(有機溶媒)およびナトリウム塩に加え、イオン液体および/または添加剤などを含むことができるが、高い低温特性を確保し易い観点からは、電解質中の非水溶媒およびナトリウム塩の含有量の合計は、例えば、60質量%〜100質量%である。
ナトリウム塩を構成するアニオン(第1アニオン)の種類は特に限定されず、例えば、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、過塩素酸イオン、ビス(オキサラト)ボレートイオン(B(C )、トリス(オキサラト)ホスフェートイオン(P(C )、トリフルオロメタンスルホン酸イオン(CFSO )、およびビススルホニルアミドアニオンなどが挙げられる。ナトリウム塩は、一種を単独で用いてもよく、第1アニオンの種類が異なるナトリウム塩を二種以上組み合わせて用いてもよい。
上記のビススルホニルアミドアニオンとしては、例えば、ビス(フルオロスルホニル)アミドアニオン(FSA:bis(fluorosulfonyl)amide anion))、ビス(トリフルオロメチルスルホニル)アミドアニオン(TFSA:bis(trifluoromethylsulfonyl)amide anion)、(フルオロスルホニル)(パーフルオロアルキルスルホニル)アミドアニオン[(FSO)(CFSO)Nなど]、ビス(パーフルオロアルキルスルホニル)アミドアニオン[N(SOCF 、N(SO など]などが挙げられる。
非水溶媒は、特に限定されず、ナトリウムイオン二次電池に使用される公知の非水溶媒が使用できる。非水溶媒は、イオン伝導度の観点から、例えば、エチレンカーボネート、プロピレンカーボネート、およびブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、およびエチルメチルカーボネートなどの鎖状カーボネート;ならびに、γ−ブチロラクトンなどの環状炭酸エステルなどを好ましく用いることができる。非水溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
(溶融塩電解質)
電解質としてイオン液体を用いる場合、電解質は、カチオンとアニオンとを含むイオン液体に加え、非水溶媒および/または添加剤などを含むことができる。ただし、電解質の分解を抑制し易い観点からは、電解質中のイオン液体の含有量を、70質量%〜100質量%としてもよい。
イオン液体は、ナトリウムイオン(第2カチオン)に加え、ナトリウムイオン以外のカチオン(第3カチオン)を含むことができる。第3カチオンとしては、有機カチオン、およびナトリウムイオン以外の無機カチオンなどが例示できる。イオン液体は、第3カチオンを、一種含んでもよく、二種以上組合せて含んでもよい。
無機カチオンとしては、例えば、ナトリウムイオン以外のアルカリ金属イオン(カリウムイオンなど)、および/またはアルカリ土類金属イオン(マグネシウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが挙げられる。
有機カチオンとしては、脂肪族アミン、脂環族アミンまたは芳香族アミンに由来するカチオン(例えば、第4級アンモニウムカチオンなど)の他、窒素含有へテロ環を有するカチオン(つまり、環状アミンに由来するカチオン)などの窒素含有オニウムカチオン、イオウ含有オニウムカチオン、リン含有オニウムカチオンなどが例示できる。
有機カチオンのうち、特に、第4級アンモニウムカチオンの他、窒素含有ヘテロ環骨格として、ピロリジン、ピリジン、またはイミダゾール骨格を有するカチオンが好ましい。
有機カチオンの具体例としては、テトラエチルアンモニウムカチオン、メチルトリエチルアンモニウムカチオンなどのテトラアルキルアンモニウムカチオン;1−メチル−1−プロピルピロリジニウムカチオン(Py13:1−methyl−1−propylpyrrolidinium cation)、1−ブチル−1−メチルピロリジニウムカチオン;1−エチル−3−メチルイミダゾリウムカチオン、1−ブチル−3−メチルイミダゾリウムカチオンなどが挙げられる。
アニオンとしては、ビススルホニルアミドアニオンを用いることが好ましい。ビススルホニルアミドアニオンとしては、有機電解質について例示したものから適宜選択できる。ビススルホニルアミドアニオンのうち、特に、FSAおよび/またはTFSAが好ましい。
ナトリウムイオン二次電池は、例えば、(a)正極と、負極と、正極および負極の間に介在するセパレータとで電極群を形成する工程、ならびに(b)電極群および電解質を電池ケース内に収容する工程を経ることにより製造できる。
図1は、本発明の一実施形態に係るナトリウムイオン二次電池を概略的に示す縦断面図である。ナトリウムイオン二次電池は、積層型の電極群、電解質(図示せず)およびこれらを収容する角型のアルミニウム製の電池ケース10を具備する。電池ケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋体13とで構成されている。
蓋体13の中央には、電池ケース10の内圧が上昇したときに内部で発生したガスを放出するための安全弁16が設けられている。安全弁16を中央にして、蓋体13の一方側寄りには、蓋体13を貫通する外部正極端子が設けられ、蓋体13の他方側寄りの位置には、蓋体13を貫通する外部負極端子14が設けられる。
積層型の電極群は、いずれも矩形のシート状である、複数の正極2と複数の負極3およびこれらの間に介在する複数のセパレータ1により構成されている。図1では、セパレータ1は、正極2を包囲するように袋状に形成されているが、セパレータの形態は特に限定されない。複数の正極2と複数の負極3は、電極群内で積層方向に交互に配置される。
各正極2の一端部には、正極リード片2aを形成してもよい。複数の正極2の正極リード片2aを束ねるとともに、電池ケース10の蓋体13に設けられた外部正極端子に接続することにより、複数の正極2が並列に接続される。同様に、各負極3の一端部には、負極リード片3aを形成してもよい。複数の負極3の負極リード片3aを束ねるとともに、電池ケース10の蓋体13に設けられた外部負極端子14に接続することにより、複数の負極3が並列に接続される。正極リード片2aの束と負極リード片3aの束は、互いの接触を避けるように、電極群の一端面の左右に、間隔を空けて配置することが望ましい。
外部正極端子および外部負極端子14は、いずれも柱状であり、少なくとも外部に露出する部分が螺子溝を有する。各端子の螺子溝にはナット7が嵌められ、ナット7を回転することにより蓋体13に対してナット7が固定される。各端子の電池ケース10内部に収容される部分には、鍔部8が設けられており、ナット7の回転により、鍔部8が、蓋体13の内面に、O−リング状のガスケット9を介して固定される。
電極群は、積層タイプに限らず、正極と負極とをセパレータを介して捲回することにより形成したものであってもよい。負極に金属ナトリウムが析出するのを防止する観点から、正極よりも負極の寸法を大きくしてもよい。
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
実施例1
(1)正極活物質粒子の作製
NaTi0.2Ni0.5Mn0.3粒子(酸化物粒子、平均粒子径D50:9μm)を、ジルコニア(材料B、平均粒子径D50:100nm)とともに、メカニカルアロイングすることにより、酸化物粒子の表面にジルコニアの被覆層を形成した。酸化物粒子と、材料Bとの質量比は、100:7とした。得られた粒子(正極活物質粒子)の平均粒子径D50は、9μmであり、BET比表面積は0.5m/gであった。
(2)正極の作製
上記(1)で得られた正極活物質粒子と、ファーネスブラック(導電助剤)と、PVDF(バインダ)のNMP溶液とを混合することにより、正極合剤ペーストを調製した。このとき、正極活物質粒子と、導電助剤と、バインダとの質量比を、95:3:2とした。正極合剤ペーストを、厚さ20μmのアルミニウム箔の片面に塗布し、乾燥させ、圧縮して、厚さ80μmの正極を作製した。正極は、直径12mmのコイン型に打ち抜き、さらに乾燥させた。
(3)ナトリウムイオン二次電池の組み立て
金属ナトリウムディスク(アルドリッチ社製、厚さ200μm)をアルミニウム集電体に圧着して、総厚220μmの負極を作製した。負極は、直径12mmのコイン型に打ち抜いた。
コイン型の負極およびセパレータを十分に乾燥させた。その後、浅底の円筒型のAl/SUSクラッド製容器に、コイン型の負極を載置し、その上にコイン型のセパレータを介してコイン型の正極を載置し、所定量の電解質を容器内に注液した。その後、周縁に絶縁ガスケットを具備する浅底の円筒型のAl/SUSクラッド製封口板で、容器の開口を封口した。これにより、容器底面と封口板との間で、負極、セパレータおよび正極からなる電極群に圧力を印加し、部材間の接触を確保した。こうして、設計容量1.5mAhのコイン型のナトリウムイオン二次電池を作製した。
なお、セパレータとしては、シリカコーティングされたポリオレフィン不織布(日本板硝子(株)製、NPS、厚さ50μm)を用いた。電解質としては、Na・FSAとPy13・FSAとを、40:60のモル比で含むイオン液体(電解質中のイオン液体の含有量:100質量%)を用いた。
実施例2
実施例1の(1)において、酸化物粒子と、材料Bとの質量比を、100:5に変更したこと以外は実施例1と同様にして正極活物質粒子を作製した。正極活物質粒子の平均粒子径D50は、9μmであった。得られた正極活物質粒子を用いたこと以外は、実施例1と同様にして、正極合剤ペーストを調製し、電池を作製し、評価を行った。
実施例3
実施例1の(1)において、酸化物粒子と、材料Bとの質量比を、100:3に変更したこと以外は実施例1と同様にして正極活物質粒子を作製した。正極活物質粒子の平均粒子径D50は、9μmであった。得られた正極活物質粒子を用いたこと以外は、実施例1と同様にして、正極合剤ペーストを調製し、電池を作製し、評価を行った。
比較例1
実施例1の(1)において使用したものと同じジルコニアの被覆層を有さない酸化物粒子を正極活物質粒子として用いた。これ以外は、実施例1と同様にして、正極合剤ペーストを調製し、電池を作製し、評価を行った。
《評価》
(a)正極合剤のゲル化
実施例および比較例と同様の手順で正極合剤ペーストを調製し、スパチュラでかき混ぜて、ゲル化の程度を確認した。実施例1〜3については、調製から1日経過した後でも正極合剤ペーストがゲル化していないのに対し、比較例1では調製から10分後には正極合剤ペーストがゲル化して塗布できなくなった。
(b)正極活物質粒子の水分散液のpH
実施例および比較例で用いた正極活物質粒子2質量部を、水100質量部に分散させて得られる水分散液のpHをpHメータにより測定した。その結果、各例について、pHは、8.9(実施例1)、9.0(実施例2)、9.6(実施例3)、11.4(比較例1)となった。
(c)サイクル特性
ナトリウムイオン二次電池を、60℃になるまで加熱し、(i)および(ii)の条件を充放電の1サイクルとして、充放電を所定サイクル繰り返した。各サイクルでの放電容量を求めた。初回の放電容量を100%としたときの各サイクルでの放電容量の比率(容量維持率)(%)を求めた。また、各サイクルの充放電曲線から、充電時のプラトー電圧と、放電時のプラトー電圧とを求め、両者の差をIRドロップ(V)として算出し、その推移を調べた。実施例3と比較例1については、初回放電時と、15サイクルの放電時とで、容量(mAh/g)に対する電圧(V)の変化を求めた。
(i)0.1Cの電流値で、上限電圧(充電終止電圧)4.4Vまで充電
(ii)0.1Cの電流値で、下限電圧(放電終止電圧)2.4Vまで放電
実施例3と比較例1については、下記の(iii)および(iv)の条件を充放電の1サイクルとして、充放電を所定サイクル繰り返した。初回放電時と、15サイクルの放電時とで、容量(mAh/g)に対する電圧(V)の変化を求めた。
(iii)0.01Cの電流値で、上限電圧(充電終止電圧)4.4Vまで充電
(iv)0.01Cの電流値で、下限電圧(放電終止電圧)2.4Vまで放電
評価結果を、図2〜図4に示す。図2は、充放電サイクル数に対する容量維持率の推移を示すグラフである。図3は、充放電サイクル数に対するIRドロップの推移を示すグラフである。図4は、実施例3および比較例1における初回放電時(0.1C放電)および15サイクル放電時(0.1C放電)、ならびに40サイクル放電時(0.01C放電)の放電容量に対する電圧の変化を示すグラフである。実施例1〜3をA1〜A3とし、比較例1をB1とした。
図2および図3に示されるように、実施例では、比較例に比べて抵抗の増加が抑制されており、サイクル特性の低下も抑制されている。また、図4に示されるように、比較例に比べて実施例では、抵抗の増加が抑制されている。また、レートを遅くした場合には、初回放電時に匹敵する容量が得られた。
本発明の一実施形態に係るナトリウムイオン二次電池によれば、正極合剤のゲル化が抑制される。また、ナトリウムイオン二次電池は、抵抗の増加が抑制され、サイクル特性に優れている。そのため、例えば、家庭用または工業用の大型電力貯蔵装置、電気自動車、ハイブリッド自動車などの電源としての利用が期待される。
1:セパレータ
2:正極
2a:正極リード片
3:負極
3a:負極リード片
7:ナット
8:鍔部
9:ガスケット
10:電池ケース
12:容器本体
13:蓋体
14:外部負極端子
16:安全弁

Claims (8)

  1. 正極、負極、前記正極と前記負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含み、
    前記正極は、正極活物質粒子、導電助剤、およびバインダを含み、
    前記正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層と、を備え、
    前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、
    前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、
    前記バインダは、フッ素樹脂を含む、ナトリウムイオン二次電池。
  2. 前記材料Bの量は、前記酸化物粒子100質量部に対して、1質量部〜10質量部である、請求項1に記載のナトリウムイオン二次電池。
  3. 前記バインダの量は、前記正極活物質粒子100質量部に対して、0.5質量部〜5質量部である、請求項1または請求項2に記載のナトリウムイオン二次電池。
  4. 前記酸化物Aは、式(1):NaMeO(元素Meは、Ni、Mn、およびTiを少なくとも含む遷移金属元素であり、xは前記元素Meに対するNaの比率であり、完全放電状態におけるxは、2/3〜1である。)で表されるナトリウム含有遷移金属酸化物である、請求項1〜請求項3のいずれか1項に記載のナトリウムイオン二次電池。
  5. 前記ナトリウム含有遷移金属酸化物において、完全放電状態におけるxは0.9〜1であり、前記元素Meに占めるNiの比率は0.45以上であり、前記元素Meに占めるTiの比率は0.15以上である、請求項4に記載のナトリウムイオン二次電池。
  6. 前記セラミックスは、ジルコニアおよびアルミナからなる群より選択される少なくとも一種である、請求項1〜請求項5のいずれか1項に記載のナトリウムイオン二次電池。
  7. ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層とを備え、
    前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、
    前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む、ナトリウムイオン二次電池用の正極活物質粒子。
  8. 水100質量部に対して、2質量部の前記正極活物質粒子を分散させて得られる水分散液のpHは、10以下である、請求項7に記載のナトリウムイオン二次電池用の正極活物質粒子。
JP2015240023A 2015-12-09 2015-12-09 ナトリウムイオン二次電池および正極活物質粒子 Active JP6672758B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015240023A JP6672758B2 (ja) 2015-12-09 2015-12-09 ナトリウムイオン二次電池および正極活物質粒子
CN201680069807.8A CN108292738B (zh) 2015-12-09 2016-11-10 钠离子二次电池和正极活性物质粒子
PCT/JP2016/083412 WO2017098855A1 (ja) 2015-12-09 2016-11-10 ナトリウムイオン二次電池および正極活物質粒子
US15/780,670 US10593993B2 (en) 2015-12-09 2016-11-10 Sodium ion secondary battery and positive electrode active material particles
KR1020187015723A KR20180084065A (ko) 2015-12-09 2016-11-10 나트륨 이온 이차 전지 및 정극 활물질 입자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240023A JP6672758B2 (ja) 2015-12-09 2015-12-09 ナトリウムイオン二次電池および正極活物質粒子

Publications (2)

Publication Number Publication Date
JP2017107713A true JP2017107713A (ja) 2017-06-15
JP6672758B2 JP6672758B2 (ja) 2020-03-25

Family

ID=59013093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240023A Active JP6672758B2 (ja) 2015-12-09 2015-12-09 ナトリウムイオン二次電池および正極活物質粒子

Country Status (5)

Country Link
US (1) US10593993B2 (ja)
JP (1) JP6672758B2 (ja)
KR (1) KR20180084065A (ja)
CN (1) CN108292738B (ja)
WO (1) WO2017098855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149820A (ja) * 2019-03-12 2020-09-17 住友化学株式会社 ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、ナトリウム二次電池および正極活物質中間体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084522B (zh) * 2022-06-20 2023-05-23 芜湖天弋能源科技有限公司 一种钠离子电池正极浆料添加剂
CN115036487B (zh) * 2022-06-27 2024-04-30 湖南工程学院 具有超结构的层状氧化物钠离子电池正极材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298121A (ja) * 1995-04-25 1996-11-12 Fuji Photo Film Co Ltd 非水二次電池
JP2011236117A (ja) * 2010-04-16 2011-11-24 Sumitomo Chemical Co Ltd 複合金属酸化物およびナトリウム二次電池
JP2015082356A (ja) * 2013-10-21 2015-04-27 日立化成株式会社 リチウムイオン二次電池用電解液、その電解液を用いたリチウムイオン二次電池、およびリチウムイオン二次電池を用いた充放電装置
JP2015153584A (ja) * 2014-02-13 2015-08-24 住友電気工業株式会社 ナトリウム溶融塩電池
JP2015170567A (ja) * 2014-03-10 2015-09-28 住友電気工業株式会社 ナトリウム溶融塩電池およびその使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540097B2 (ja) 1996-05-17 2004-07-07 呉羽化学工業株式会社 非水系電池用電極合剤および非水系電池
JPH1079244A (ja) 1996-09-04 1998-03-24 Toray Ind Inc 電極およびそれを用いた非水電解液系二次電池
CN101378124A (zh) * 2007-08-28 2009-03-04 德固赛(中国)投资有限公司 二次电池及其正极活性物质
CN102640332B (zh) * 2010-09-27 2014-11-05 松下电器产业株式会社 锂离子二次电池用正极活性物质粒子、使用了该正极活性物质粒子的正极及锂离子二次电池
JP5874328B2 (ja) 2010-11-29 2016-03-02 住友化学株式会社 電極合剤ペースト、電極および非水電解質二次電池
JP2014107141A (ja) * 2012-11-28 2014-06-09 Sumitomo Electric Ind Ltd 溶融塩電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298121A (ja) * 1995-04-25 1996-11-12 Fuji Photo Film Co Ltd 非水二次電池
JP2011236117A (ja) * 2010-04-16 2011-11-24 Sumitomo Chemical Co Ltd 複合金属酸化物およびナトリウム二次電池
JP2015082356A (ja) * 2013-10-21 2015-04-27 日立化成株式会社 リチウムイオン二次電池用電解液、その電解液を用いたリチウムイオン二次電池、およびリチウムイオン二次電池を用いた充放電装置
JP2015153584A (ja) * 2014-02-13 2015-08-24 住友電気工業株式会社 ナトリウム溶融塩電池
JP2015170567A (ja) * 2014-03-10 2015-09-28 住友電気工業株式会社 ナトリウム溶融塩電池およびその使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROAKI YOSHIDA, ET AL.: "P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries", CHEM. COMM., vol. 50, no. 28, JPN6019018233, 11 April 2014 (2014-04-11), GB, pages 3677 - 3680, ISSN: 0004087280 *
KALIYAPPAN, KARTHIKEYAN ET AL.: "Highly Stable Na2/3(Mn0.54Ni0.13Co0.13)O2 Cathode Modified by Atomic Layer Deposition for Sodium-Ion", CHEM SUS CHEM, vol. Vol.8/Issue 15, JPN7017000448, June 2015 (2015-06-01), pages 2537 - 2543, ISSN: 0004087281 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020149820A (ja) * 2019-03-12 2020-09-17 住友化学株式会社 ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、ナトリウム二次電池および正極活物質中間体

Also Published As

Publication number Publication date
CN108292738A (zh) 2018-07-17
CN108292738B (zh) 2021-01-12
US20180351197A1 (en) 2018-12-06
US10593993B2 (en) 2020-03-17
KR20180084065A (ko) 2018-07-24
JP6672758B2 (ja) 2020-03-25
WO2017098855A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6477708B2 (ja) ナトリウムイオン二次電池用正極およびナトリウムイオン二次電池
JP4728647B2 (ja) 非水電解液を含む電気二重層コンデンサもしくは二次電池
TWI686977B (zh) 半固體電解質層、電池單元薄片及二次電池
WO2016056495A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
JP6592380B2 (ja) ナトリウムイオン二次電池用電解質およびナトリウムイオン二次電池
JP6672758B2 (ja) ナトリウムイオン二次電池および正極活物質粒子
JP2015222628A (ja) ナトリウム含有遷移金属酸化物の製造方法およびナトリウムイオン二次電池用正極の製造方法
JP6459795B2 (ja) ナトリウムイオン二次電池
JP6189233B2 (ja) ナトリウム溶融塩電池およびその使用方法
WO2016056493A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
JP2016162742A (ja) ナトリウム二次電池、ナトリウム二次電池の充放電システムおよびナトリウム二次電池の充放電方法
JP6349998B2 (ja) ナトリウムイオン二次電池
JP6544010B2 (ja) ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、およびナトリウム二次電池
WO2018230238A1 (ja) 半固体電解質、電極、半固体電解質層付き電極、および二次電池
JP2016038945A (ja) 溶融塩電解質および溶融塩電池
WO2016056494A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
WO2021065164A1 (ja) 非水電解質二次電池
JP6369251B2 (ja) ナトリウム溶融塩電池用正極、およびそれを用いたナトリウム溶融塩電池
JP2017041319A (ja) ナトリウム二次電池、その充放電システムおよび充放電方法
JP2008130690A (ja) 電気化学キャパシタ及び電気化学キャパシタ用非水系電解液
JP2016096050A (ja) ナトリウム二次電池の充放電システムおよび充放電方法、ならびにナトリウム二次電池
JP2015133183A (ja) ナトリウム溶融塩電池
JP2020198291A (ja) 正極活物質及びそれを用いた二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6672758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250