WO2017098855A1 - ナトリウムイオン二次電池および正極活物質粒子 - Google Patents

ナトリウムイオン二次電池および正極活物質粒子 Download PDF

Info

Publication number
WO2017098855A1
WO2017098855A1 PCT/JP2016/083412 JP2016083412W WO2017098855A1 WO 2017098855 A1 WO2017098855 A1 WO 2017098855A1 JP 2016083412 W JP2016083412 W JP 2016083412W WO 2017098855 A1 WO2017098855 A1 WO 2017098855A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
ion secondary
electrode active
sodium ion
Prior art date
Application number
PCT/JP2016/083412
Other languages
English (en)
French (fr)
Inventor
将一郎 酒井
篤史 福永
新田 耕司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/780,670 priority Critical patent/US10593993B2/en
Priority to KR1020187015723A priority patent/KR20180084065A/ko
Priority to CN201680069807.8A priority patent/CN108292738B/zh
Publication of WO2017098855A1 publication Critical patent/WO2017098855A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sodium ion secondary battery and positive electrode active material particles.
  • Patent Document 1 and Patent Document 2 it is proposed to add an organic acid or an inorganic acid in the positive electrode of a lithium ion secondary battery in order to suppress gelation of the positive electrode mixture.
  • maleic acid, citraconic acid, and malonic acid are used for the positive electrode mixture
  • Patent Document 2 acetic acid, phosphoric acid, sulfuric acid, and the like are used for the positive electrode mixture.
  • Patent Document 3 proposes to use a polymer having no structural unit derived from vinylidene halide as a binder in an electrode of a sodium ion secondary battery using a sodium-containing transition metal compound as an electrode active material.
  • the sodium ion secondary battery of the present invention includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte having sodium ion conductivity.
  • the positive electrode includes positive electrode active material particles, conductive material.
  • the positive electrode active material particles include an auxiliary agent and a binder, and the positive electrode active material particles include oxide particles that occlude and release sodium ions, and a coating layer that covers the oxide particles.
  • the oxide particles include Ni and Mn.
  • the coating layer is a sodium ion secondary battery including at least one material B selected from the group consisting of ceramics and carbonaceous materials, and the binder includes a fluororesin.
  • Oxide particles that occlude and release sodium ions and a coating layer that coats the oxide particles include an oxide A that includes Ni and Mn, and the coating layer includes ceramics and carbon
  • a positive electrode active material particle for a sodium ion secondary battery comprising at least one material B selected from the group consisting of porous materials.
  • FIG. 1 is a longitudinal sectional view schematically showing a sodium ion secondary battery according to an embodiment of the present invention. It is a graph which shows transition of the capacity
  • FIG. It is a graph which shows transition of IR drop with respect to the number of charge / discharge cycles of Example 1 to Example 3 and Comparative Example 1.
  • the graph which shows the change of the voltage with respect to the discharge capacity at the time of the first discharge (0.1 C discharge), the 15 cycle discharge (0.1 C discharge), and the 40 cycle discharge (0.01 C discharge) in Example 3 and Comparative Example 1. It is.
  • Patent Document 1 or Patent Document 2 relating to a lithium ion secondary battery
  • maleic acid, acetic acid, or the like is added for the purpose of suppressing gelation of the positive electrode mixture.
  • these acids are added to the positive electrode mixture of the sodium ion secondary battery, so the resistance of the positive electrode increases and the battery performance decreases.
  • the positive electrode active material contains Ni and Mn, it is difficult to sufficiently suppress gelation even if an acid is added to the positive electrode mixture.
  • An object of the present invention is to suppress gelation of a positive electrode mixture and to suppress increase in resistance in a positive electrode of a sodium ion secondary battery.
  • One embodiment of the present invention relates to a sodium ion secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte having sodium ion conductivity.
  • the positive electrode includes positive electrode active material particles, a conductive additive, and a binder, and the positive electrode active material particles include oxide particles that occlude and release sodium ions, and a coating layer that covers the oxide particles.
  • the oxide particles contain oxide A containing Ni and Mn, the coating layer contains at least one material B selected from the group consisting of ceramics and carbonaceous materials, and the binder contains a fluororesin.
  • the oxide particles occlude and release sodium ions and have a function as a positive electrode active material.
  • the positive electrode active material particles according to another embodiment of the present invention include oxide particles that occlude and release sodium ions, and a coating layer that covers the oxide particles.
  • the oxide particles contain oxide A containing Ni and Mn, and the coating layer contains at least one material B selected from the group consisting of ceramics and carbonaceous materials.
  • a fluororesin tends to cause gelation under basic conditions.
  • a fluororesin containing a vinylidene fluoride unit, a vinyl fluoride unit, or the like a polyene structure is easily formed by drawing out hydrofluoric acid, thereby causing gelation.
  • a positive electrode active material that occludes and releases sodium ions exhibits high basicity.
  • the pH of the aqueous dispersion obtained by dispersing 2 parts by mass of oxide particles containing oxide A with respect to 100 parts by mass of water is 11 or more, and in some cases, the pH is extremely high as 12 or more. Therefore, when such a highly basic positive electrode active material is used in combination with a binder containing a fluororesin, gelation of the positive electrode mixture becomes remarkable.
  • the positive electrode mixture cannot be supported on the positive electrode current collector (specifically, applied or filled).
  • the positive electrode mixture can be applied to the positive electrode current collector or the positive electrode can be molded before the positive electrode mixture is gelled.
  • the influence of fluctuation in viscosity appears remarkably, and it becomes extremely difficult to stably apply the positive electrode mixture to the positive electrode current collector.
  • a positive electrode mixture layer having a uniform distribution of the constituent components cannot be formed. In the process of preparing the positive electrode by drying the positive electrode mixture, gelation may occur and the characteristics of the positive electrode may be impaired.
  • maleic acid or acetic acid may be added for the purpose of suppressing gelation of the positive electrode mixture.
  • the positive electrode active material for a sodium ion secondary battery containing Ni and Mn is very basic. Therefore, even if the above acid is added to the positive electrode mixture in the same amount as that of the lithium ion secondary battery, it is difficult to sufficiently suppress gelation. In particular, when a positive electrode is produced on a large scale, gelation becomes remarkable and the positive electrode mixture cannot be applied to the positive electrode current collector. Further, when an acid is added until the positive electrode mixture can be applied to the positive electrode current collector, the amount of acid added increases, and the resistance of the positive electrode increases.
  • the binder is easily deteriorated when it is gelled, which affects the long-term characteristics of the battery. If the distribution of the constituent components in the positive electrode becomes non-uniform due to the gelation of the binder, the resistance at the time of insertion and extraction of sodium ions at the interface between the positive electrode and the electrolyte increases, or the conductivity in the positive electrode decreases. As a result, the initial discharge capacity is reduced. In addition, when charging and discharging are repeated in such a state, the positive electrode mixture is peeled off from the positive electrode current collector or the particles of the positive electrode active material are dropped, resulting in a decrease in capacity and cycle characteristics.
  • oxide particles containing oxide A containing Ni and Mn and covered with a coating layer containing ceramics and / or carbonaceous material (material B) are used as positive electrode active material particles.
  • the positive electrode active material particles have the coating layer, the basicity of the positive electrode active material particles is relaxed.
  • the pH of the aqueous dispersion can be lowered to 10 or less (preferably 9 or less). .
  • the gelation of the positive electrode mixture can be suppressed even though the oxide A is very easy to gel the positive electrode mixture.
  • gelation of the positive electrode mixture can be suppressed, so that the positive electrode can be produced stably.
  • the increase in the resistance of the positive electrode can be suppressed.
  • the coating layer also suppresses the refinement of the positive electrode active material particles. Therefore, the initial discharge capacity and cycle characteristics of the sodium ion secondary battery can be suppressed.
  • the amount of the material B is, for example, 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the oxide particles, preferably 3 parts by mass to 7 parts by mass, and 3 parts by mass to 5 parts by mass. More preferably.
  • the amount of the binder is, for example, 0.5 to 5 parts by mass and preferably 1 to 3 parts by mass with respect to 100 parts by mass of the positive electrode active material particles.
  • the oxide A the formula (1): Na x MeO 2 (the element Me is a transition metal element containing at least Ni, Mn, and Ti, x is a ratio of Na to the element Me, and in a fully discharged state. x is preferably from 2/3 to 1.
  • the metal oxide as described above exhibits high basicity, and the gelation of the positive electrode mixture tends to be remarkable.
  • the oxide particles include such a metal oxide, the basicity of the positive electrode active material particles is relaxed due to the presence of the coating layer, and thus gelation of the positive electrode mixture is suppressed. Further, by using the metal oxide for the positive electrode, the capacity of the sodium secondary battery can be increased.
  • the ceramic is preferably at least one selected from the group consisting of zirconia and alumina.
  • the positive electrode active material particles include oxide particles that occlude and release sodium ions, and a coating layer that covers the oxide particles.
  • the oxide particles include oxide A containing Ni and Mn. In the oxide particles, it is preferable that at least oxide A occludes and releases sodium ions.
  • Such an oxide A is preferably one having a layered structure in which sodium enters and leaves between layers, but is not particularly limited. From the viewpoint of increasing the capacity of the sodium secondary battery, the oxide particles preferably contain as much oxide A as possible, and the oxide A preferably occupies 90% by mass or more of the oxide particles.
  • a sodium-containing transition metal oxide represented by the formula (1) Na x MeO 2 (where Me is a transition metal element and x is a ratio of Na to the element Me). Is mentioned. x is a value which changes by charging / discharging. X in the fully discharged state is typically 1 or 2/3, but may have some width.
  • the sodium-containing transition metal oxide represented by the formula (1) has the formula (1a): Na x- ⁇ Me 1 + ⁇ O 2 ( ⁇ satisfies ⁇ 0.03 ⁇ ⁇ ⁇ 0.03) Also included are those represented by
  • the oxide A only needs to contain at least Ni and Mn as the element Me, but preferably contains at least Ni, Mn, and Ti.
  • the element Me may include, for example, Cr, Fe, and / or Co.
  • the oxide A containing such an element Me tends to be highly basic, but according to this embodiment, the basicity of the positive electrode active material particles can be effectively relaxed.
  • the positive electrode active material particles used for the positive electrode may contain one kind of oxide A, or may contain two or more kinds of oxides A having different compositions.
  • the oxide A includes a stacked structure of MeO 2 layers having an oxygen arrangement.
  • sodium occupies triangular prism sites between MeO 2 layers.
  • the O3 type crystal structure sodium occupies six-coordinate octahedral sites MeO 2 layers.
  • Oxide A can occlude and release sodium ions reversibly by having such a laminated structure. Specifically, sodium ions are occluded between the layers of the MeO 2 layer during discharging, and sodium ions are released from the layers of the MeO 2 layer during charging.
  • the layered O3 type crystal structure is more soluble in the solvent than the layered P2 type crystal structure, and thus the positive electrode mixture is likely to be gelled easily. .
  • gelation of the positive electrode mixture can be effectively suppressed even when the oxide A has a layered O3 type crystal structure.
  • x in the formula (1) is, for example, 0.97x q ⁇ x ⁇ 1.03x q , and the may be 0.98x q ⁇ x ⁇ 1.02x q.
  • a sodium-containing transition metal oxide having such an x value in a fully discharged state can stably absorb and release sodium ions reversibly.
  • the stoichiometric ratio x q of Na to the element Me is a value determined according to the type of crystal structure. It is.
  • Sodium-containing transition metal oxide, if having a layered P2 type crystal structure, the x q in a completely discharged state is 2/3.
  • sodium-containing transition metal oxide, if having a layered O3 crystal structure, the x q in a completely discharged state is 1.
  • the sodium-containing transition metal oxide represented by the formula (1) (and the formula (1a) 80 atomic% or more (for example, 80 atomic% to 100 atomic%) of the element Me, Ni and Mn (further, Ni, Mn and Ti) are desirable.
  • the element Me preferably includes a combination of Ni, Mn, and Ti.
  • the crystal structure of the sodium-containing transition metal oxide is preferably a layered O3 type.
  • x q may even have some width, e.g., x q in a completely discharged state, may be from 1 to 0.9.
  • x q is 1 to 0.9 in a completely discharged state
  • the ratio of Ni to total element Me is at least 0.45
  • the ratio of Ti to total element Me is It is preferably 0.15 or more.
  • the stoichiometric ratio of Ni, Mn, and Ti may be somewhat wide. Specifically, the ratio of each element of Ni, Mn, and Ti is, for example, in the range of 90 atomic% to 110 atomic% or 95 atomic% to 105 atomic% when the stoichiometric ratio is 100 atomic%. May be. Further, it is desirable that the total ratio of Ni, Mn, and Ti is 1.
  • the coating layer covering the oxide particles contains at least one material B selected from the group consisting of ceramics and carbonaceous materials.
  • the ceramic examples include at least one selected from the group consisting of zirconia, alumina, silicon nitride, and silicon carbide. Although the reason is not certain, it is preferable to use zirconia and / or alumina from the viewpoint of easily improving the effect of suppressing the gelation of the positive electrode mixture. In particular, when zirconia is used, the effect of suppressing an increase in resistance of the positive electrode and a decrease in cycle characteristics is further enhanced.
  • Examples of the carbonaceous material include at least one selected from the group consisting of carbon black, graphite, carbon fibers (such as vapor grown carbon fibers), and carbon nanotubes.
  • carbon black graphite
  • carbon fibers such as vapor grown carbon fibers
  • carbon nanotubes When a carbonaceous material is used for the coating layer, it is easy to suppress an increase in the resistance of the positive electrode.
  • the coating may be performed by applying particles of the material B having a smaller size than the oxide particles to the surface of the oxide particles, but is preferably performed by mechanochemical treatment (including mechanofusion treatment).
  • mechanochemical treatment including mechanofusion treatment.
  • a known method can be employed for coating the material B.
  • the average particle diameter D 50 of the positive electrode active material particles for example, a 15 ⁇ m from 5 [mu] m, preferably 12 ⁇ m from 7 [mu] m.
  • the average particle diameter of the positive electrode active material particles is in such a range, the effect of suppressing the gelation of the positive electrode mixture is easily obtained, and the deterioration of the positive electrode active material particles when the charge / discharge cycle is repeated is easily suppressed.
  • the average particle diameter D 50, the volume-based particle size distribution obtained by using a laser diffraction particle size distribution measuring apparatus means a particle diameter cumulative volume of 50% (that is, median diameter).
  • the specific surface area of the positive electrode active material particles measured by the BET method is not particularly limited, and is, for example, 0.3 m 2 / g to 1.0 m 2 / g.
  • the specific surface area is in such a range, in addition to easily increasing the capacity of the sodium secondary battery, it is easier to further suppress gelation of the positive electrode mixture.
  • a positive electrode contains a conductive support agent and a binder in addition to said positive electrode active material particle.
  • the components other than the positive electrode active material particles will be described below.
  • the binder used for the positive electrode includes a fluororesin.
  • fluororesins include monomer units derived from tetrafluoroethylene, monomer units derived from hexafluoropropylene, monomer units derived from vinylidene fluoride (vinylidene fluoride units), and monomer units derived from vinyl fluoride (fluorine).
  • fluorine-containing polymers containing fluorine-containing monomer units such as vinyl fluoride units).
  • the fluororesin may contain one or more of these fluorine-containing monomer units. Further, the fluororesin may be a copolymer containing a copolymerizable monomer unit other than the fluorine-containing monomer unit.
  • a fluororesin containing a vinylidene fluoride unit or a vinyl fluoride unit is easily subjected to a hydrofluoric acid pulling reaction in a basic atmosphere, and easily forms a polyene structure to cause gelation (including crosslinking).
  • gelation since basicity is eased because the positive electrode active material particles have a coating layer, gelation can be suppressed even when such a fluororesin is used.
  • fluororesins examples include polyvinylidene fluoride (PVDF), polyvinyl fluoride, copolymers containing vinylidene fluoride units and vinyl fluoride units, vinylidene fluoride units and / or vinyl fluoride units and other fluorine-containing monomer units.
  • PVDF polyvinylidene fluoride
  • copolymers for example, tetrafluoroethylene units and / or hexafluoropropylene units
  • other copolymerizable monomer units as required, vinylidene fluoride units and / or vinyl fluoride units and other copolymers
  • a copolymer containing a functional monomer unit is preferred.
  • Examples of the copolymerizable monomer include halogen-containing monomers and non-halogen-based copolymerizable monomers.
  • Examples of the halogen-containing monomer include chlorine-containing monomers such as vinyl chloride.
  • Examples of non-halogen copolymerizable monomers include olefins such as ethylene and propylene; acrylic monomers such as acrylic acid, methacrylic acid, and esters or salts thereof; vinyl monomers such as acrylonitrile, vinyl acetate, and styrene.
  • the fluororesin may contain one or more types of units derived from these copolymerizable monomers.
  • gelation can be effectively suppressed even when the fluororesin contains a vinylidene fluoride or vinyl fluoride block that easily forms a polyene structure.
  • a fluororesin examples include PVDF, vinylidene fluoride block copolymer, polyvinyl fluoride, and vinyl fluoride block copolymer.
  • the copolymerizable monomer constituting the block copolymer fluorine-containing monomers other than vinylidene fluoride and vinyl fluoride and other copolymerizable monomers exemplified above can be used.
  • the content of the fluorine-containing monomer unit is, for example, 30 mol% or more, and preferably 50 mol% or more or 70 mol% or more. Content of the fluorine-containing monomer unit in a fluororesin is 100 mol% or less.
  • the total content of vinylidene fluoride units and vinyl fluoride units in the fluororesin may be in such a range. In this case, since the content of vinylidene fluoride units and / or vinyl fluoride units is large, gelation generally tends to occur. However, in this embodiment, gelation is performed even when such a fluororesin is used. It can be effectively suppressed.
  • the binder may include a polymer (second polymer) other than the fluororesin (first polymer).
  • the content of the fluororesin in the binder is, for example, 80% by mass to 100% by mass.
  • a 2nd polymer it can select suitably from the well-known binder used for the positive electrode of a sodium ion secondary battery, for example, polyolefin resin, rubber-like polymers, such as a styrene butadiene rubber, polyimide resins, such as a polyamide resin and a polyamideimide, Examples include polyvinyl pyrrolidone, polyvinyl alcohol, and / or cellulose ether (such as carboxymethyl cellulose and a salt thereof).
  • the conductive auxiliary agent is not particularly limited, and examples thereof include those exemplified as the carbonaceous material constituting the coating layer.
  • a conductive support agent is mixed and used in a positive electrode mixture with positive electrode active material particles and a binder. Therefore, the conductive auxiliary agent is usually dispersed together with a binder or the like in the positive electrode.
  • the amount of the conductive auxiliary agent can be appropriately selected from, for example, a range of 1 to 15 parts by mass per 100 parts by mass of the positive electrode active material particles. Part.
  • the positive electrode can be formed by supporting a positive electrode mixture containing positive electrode active material particles, a conductive additive, and a binder on a positive electrode current collector, compressing in the thickness direction of the positive electrode current collector, and drying.
  • the positive electrode mixture is usually used in the form of a slurry.
  • the positive electrode mixture slurry is prepared by dispersing the components of the positive electrode mixture in a dispersion medium.
  • an organic solvent such as N-methyl-2-pyrrolidone (NMP) is preferably used. If necessary, a mixed solvent of an organic solvent and water may be used. You may add a well-known additive to a positive mix as needed. In addition, from the viewpoint of suppressing gelation of the positive electrode mixture, an organic acid or an inorganic acid may be added to the positive electrode mixture as necessary.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode current collector may be a metal foil or a metal porous body (such as a metal fiber nonwoven fabric and / or a metal porous body sheet).
  • a metal porous body such as a metal fiber nonwoven fabric and / or a metal porous body sheet.
  • a metal porous body having a three-dimensional network skeleton can also be used.
  • the material of the positive electrode current collector is not particularly limited, but aluminum and / or aluminum alloy is preferable from the viewpoint of stability at the positive electrode potential.
  • the thickness of the metal foil is, for example, 10 ⁇ m to 50 ⁇ m, and the thickness of the metal porous body is, for example, 100 ⁇ m to 2000 ⁇ m.
  • the positive electrode mixture slurry is applied to the surface of the metal foil.
  • the positive electrode mixture slurry may be applied to the surface of the metal porous body or filled inside the metal porous body. By suppressing the gelation of the positive electrode mixture slurry, the positive electrode mixture slurry can be easily applied or filled into the positive electrode current collector, and a uniform coating film can be formed.
  • the compression may be performed, for example, by supplying a positive electrode current collector carrying a positive electrode mixture between a pair of rolls and rolling with a roll. After the positive electrode mixture is supported on the positive electrode current collector, it may be subjected to a drying treatment as necessary before compression.
  • the negative electrode includes a negative electrode active material.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material (or a negative electrode mixture) carried on the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a metal porous body as described for the positive electrode current collector. The thickness of the negative electrode current collector can be appropriately selected from the range described for the case of the positive electrode current collector.
  • the material of the negative electrode current collector is not particularly limited, but is not alloyed with sodium and is stable at the negative electrode potential, so aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, and / or stainless steel Etc. are preferable.
  • Examples of the negative electrode active material include a material that reversibly absorbs and releases sodium ions and a material that is alloyed with sodium.
  • Examples of such a negative electrode active material include metals such as sodium, titanium, zinc, indium, tin, and silicon, or alloys thereof, or compounds thereof; and carbonaceous materials.
  • the alloy may further contain other alkali metal and / or alkaline earth metal in addition to the above metal.
  • the metal compound examples include lithium-containing titanium oxides such as lithium titanate (such as Li 2 Ti 3 O 7 and / or Li 4 Ti 5 O 12 ), and sodium titanate (Na 2 Ti 3 O 7 and / or Na 4). Examples thereof include sodium-containing titanium oxides such as Ti 5 O 12 .
  • lithium-containing titanium oxide or sodium-containing titanium oxide
  • a part of titanium and / or a part of lithium (or sodium) may be substituted with another element.
  • Examples of the carbonaceous material include soft carbon and / or hard carbon.
  • a negative electrode active material can be used individually by 1 type or in combination of 2 or more types. Of these materials, the above compounds (such as sodium-containing titanium oxide) and / or carbonaceous materials (such as hard carbon) are preferable.
  • the negative electrode can be formed, for example, by coating or filling a negative electrode current collector with a negative electrode mixture containing a negative electrode active material and, if necessary, compressing (or rolling) in the thickness direction. .
  • a drying treatment may be performed at an appropriate stage.
  • you may use what is obtained by forming the deposit film of a negative electrode active material by vapor phase methods, such as vapor deposition or sputtering, on the surface of a negative electrode collector.
  • a sheet-like metal or alloy may be used as it is as a negative electrode, or a material that is pressure-bonded to a current collector may be used as a negative electrode.
  • the negative electrode active material may be pre-doped with sodium ions as necessary.
  • the negative electrode mixture can further contain a conductive additive and / or a binder in addition to the negative electrode active material.
  • a conductive support agent it can select suitably from the carbonaceous material illustrated about the coating layer of the positive electrode.
  • the amount of the conductive additive for the negative electrode active material can also be appropriately selected from the ranges exemplified for the amount of the conductive additive for the positive electrode active material particles.
  • the dispersion medium include organic solvents such as NMP and / or water.
  • the type of the binder is not particularly limited, and can be appropriately selected from, for example, the second polymer exemplified as the binder for the positive electrode in addition to the fluororesin such as PVDF and polytetrafluoroethylene.
  • a binder may be used individually by 1 type and may be used in combination of 2 or more type.
  • the amount of the binder is not particularly limited, but can be selected from a range of, for example, 0.5 to 15 parts by mass per 100 parts by mass of the negative electrode active material from the viewpoint of ensuring high binding properties and capacity. It may be 12 parts by mass from the part.
  • a resin microporous film and / or a nonwoven fabric can be used as the separator interposed between the positive electrode and the negative electrode.
  • the material of the separator can be selected in consideration of the operating temperature of the battery.
  • the resin contained in the fibers forming the microporous film or the nonwoven fabric include polyolefin resin, polyphenylene sulfide resin, polyamide resin, and / or polyimide resin.
  • the fibers forming the nonwoven fabric may be inorganic fibers such as glass fibers.
  • the separator may include an inorganic filler such as ceramic particles. The inorganic filler may be coated on the separator. Although the thickness of a separator is not specifically limited, For example, it can select from the range of 10 micrometers-300 micrometers.
  • Nonaqueous electrolytes include, for example, an electrolyte (organic electrolyte) in which a salt (sodium salt) of sodium ions and anions is dissolved in a nonaqueous solvent (organic solvent), and an ionic liquid (molten salt) containing sodium ions and anions Electrolyte) is used.
  • the concentration of sodium salt or sodium ion in the electrolyte can be appropriately selected from the range of 0.3 mol / L to 10 mol / L, for example.
  • Organic electrolyte can contain an ionic liquid and / or an additive in addition to a non-aqueous solvent (organic solvent) and a sodium salt. From the viewpoint of easily securing good low-temperature characteristics, the non-aqueous solvent in the electrolyte is used.
  • the total content of sodium salt is, for example, 60% by mass to 100% by mass.
  • the kind of the anion (first anion) constituting the sodium salt is not particularly limited.
  • a sodium salt may be used individually by 1 type, and may use it in combination of 2 or more types of sodium salts from which the kind of 1st anion differs.
  • bissulfonylamide anion examples include bis (fluorosulfonyl) amide anion (FSA), bis (trifluoromethylsulfonyl) amide anion (TFSA), (fluorosulfonyl) (perfluoroalkylsulfonyl) amide anion [(FSO 2 ) (CF 3 SO 2 ) N — and the like], bis (perfluoroalkylsulfonyl) amide anion [N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 — and the like] and the like. .
  • the non-aqueous solvent is not particularly limited, and a known non-aqueous solvent used for sodium ion secondary batteries can be used.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate; and ⁇ -butyrolactone.
  • the cyclic carbonate of the above can be preferably used.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the electrolyte can include a nonaqueous solvent and / or an additive in addition to the ionic liquid containing a cation and an anion.
  • the content of the ionic liquid in the electrolyte may be 70% by mass to 100% by mass.
  • the ionic liquid can contain cations (third cation) other than sodium ions in addition to sodium ions (second cation).
  • third cation include organic cations and inorganic cations other than sodium ions.
  • the ionic liquid may contain one kind of third cation, or may contain two or more kinds in combination.
  • inorganic cations include alkali metal ions (potassium ions, etc.) other than sodium ions, and / or alkaline earth metal ions (magnesium ions, calcium ions, etc.), ammonium ions, and the like.
  • Organic cations include cations derived from aliphatic amines, alicyclic amines or aromatic amines (for example, quaternary ammonium cations), as well as cations having nitrogen-containing heterocycles (that is, derived from cyclic amines). Examples thereof include nitrogen-containing onium cations such as cations), sulfur-containing onium cations, and phosphorus-containing onium cations.
  • organic cations in particular, a cation having a pyrrolidine, pyridine, or imidazole skeleton as a nitrogen-containing heterocyclic skeleton in addition to a quaternary ammonium cation is preferable.
  • organic cation examples include tetraalkylammonium cation such as tetraethylammonium cation and methyltriethylammonium cation; 1-methyl-1-propylpyrrolidinium cation (Py13), 1-butyl-1-methylpyrrolidinium cation; Examples thereof include 1-ethyl-3-methylimidazolium cation and 1-butyl-3-methylimidazolium cation.
  • a bissulfonylamide anion is preferably used as the anion.
  • the bissulfonylamide anion can be appropriately selected from those exemplified for the organic electrolyte.
  • FSA and / or TFSA are particularly preferable.
  • a sodium ion secondary battery includes, for example, (a) a step of forming an electrode group with a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; and (b) an electrode group and an electrolyte are accommodated in a battery case. It can manufacture by passing through the process to do.
  • FIG. 1 is a longitudinal sectional view schematically showing a sodium ion secondary battery according to an embodiment of the present invention.
  • the sodium ion secondary battery includes a stacked electrode group, an electrolyte (not shown), and a rectangular aluminum battery case 10 that houses them.
  • the battery case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
  • a safety valve 16 is provided for releasing gas generated inside when the internal pressure of the battery case 10 rises.
  • An external positive electrode terminal that penetrates the lid body 13 is provided near the one side of the lid body 13 with the safety valve 16 at the center, and an external negative electrode that penetrates the lid body 13 at a position near the other side of the lid body 13.
  • a terminal 14 is provided.
  • the stacked electrode group is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of separators 1 interposed therebetween, all in the form of a rectangular sheet.
  • the separator 1 is formed in a bag shape so as to surround the positive electrode 2, but the form of the separator is not particularly limited.
  • the plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction within the electrode group.
  • a positive electrode lead piece 2 a may be formed at one end of each positive electrode 2.
  • the plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 a of the plurality of positive electrodes 2 and connecting them to an external positive terminal provided on the lid 13 of the battery case 10.
  • a negative electrode lead piece 3 a may be formed at one end of each negative electrode 3.
  • the plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 a of the plurality of negative electrodes 3 and connecting them to the external negative terminal 14 provided on the lid 13 of the battery case 10.
  • the bundle of the positive electrode lead pieces 2a and the bundle of the negative electrode lead pieces 3a are desirably arranged on the left and right sides of one end face of the electrode group with an interval so as to avoid mutual contact.
  • Both the external positive terminal and the external negative terminal 14 are columnar, and at least a portion exposed to the outside has a screw groove.
  • a nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid 13 by rotating the nut 7.
  • a flange 8 is provided in a portion of each terminal accommodated in the battery case 10, and by rotation of the nut 7, the flange 8 attaches an O-ring-shaped gasket 9 to the inner surface of the lid 13. Fixed through.
  • the electrode group is not limited to a laminated type, and may be formed by winding a positive electrode and a negative electrode through a separator. From the viewpoint of preventing metallic sodium from being deposited on the negative electrode, the size of the negative electrode may be made larger than that of the positive electrode.
  • Example 1 (1) Preparation of positive electrode active material particles NaTi 0.2 Ni 0.5 Mn 0.3 O 2 particles (oxide particles, average particle diameter D 50 : 9 ⁇ m) were converted into zirconia (material B, average particle diameter D 50 : 100 nm) and mechanically alloyed to form a coating layer of zirconia on the surface of the oxide particles.
  • the mass ratio between the oxide particles and the material B was 100: 7.
  • the average particle diameter D 50 of the particles obtained (positive electrode active material particles) is 9 .mu.m, BET specific surface area was 0.5 m 2 / g.
  • the coin-shaped negative electrode and separator were sufficiently dried. Thereafter, a coin-type negative electrode is placed on a shallow cylindrical Al / SUS clad container, and a coin-type positive electrode is placed thereon via a coin-type separator, and a predetermined amount of electrolyte is placed in the container. The solution was poured into the inside. Thereafter, the opening of the container was sealed with a shallow cylindrical Al / SUS clad sealing plate having an insulating gasket on the periphery. Thereby, a pressure was applied to the electrode group consisting of the negative electrode, the separator, and the positive electrode between the bottom surface of the container and the sealing plate to ensure contact between the members. Thus, a coin-type sodium ion secondary battery having a design capacity of 1.5 mAh was produced.
  • a silica-coated polyolefin nonwoven fabric manufactured by Nippon Sheet Glass Co., Ltd., NPS, thickness 50 ⁇ m
  • an ionic liquid containing Na ⁇ FSA and Py13 ⁇ FSA at a molar ratio of 40:60 content of ionic liquid in the electrolyte: 100% by mass
  • Example 2 Cathode active material particles were produced in the same manner as in Example 1 except that the mass ratio of the oxide particles to the material B in Example 1 (1) was changed to 100: 5.
  • the average particle diameter D 50 of the positive electrode active material particle was 9 .mu.m. Except having used the obtained positive electrode active material particle, it carried out similarly to Example 1, the positive electrode mixture paste was prepared, the battery was produced, and evaluation was performed.
  • Example 3 Positive electrode active material particles were produced in the same manner as in Example 1 except that the mass ratio of the oxide particles and the material B in Example 1 (1) was changed to 100: 3. The average particle diameter D 50 of the positive electrode active material particle was 9 .mu.m. Except having used the obtained positive electrode active material particle, it carried out similarly to Example 1, the positive electrode mixture paste was prepared, the battery was produced, and evaluation was performed.
  • Example 1 Oxide particles not having the same zirconia coating layer as used in Example 1 (1) were used as positive electrode active material particles. Except this, it carried out similarly to Example 1, prepared the positive mix paste, produced the battery, and evaluated.
  • (B) pH of aqueous dispersion of positive electrode active material particles The pH of the aqueous dispersion obtained by dispersing 2 parts by mass of the positive electrode active material particles used in Examples and Comparative Examples in 100 parts by mass of water was measured with a pH meter. As a result, for each example, the pH was 8.9 (Example 1), 9.0 (Example 2), 9.6 (Example 3), and 11.4 (Comparative Example 1).
  • Example 3 and Comparative Example 1 the following conditions (iii) and (iv) were set as one charge / discharge cycle, and charge / discharge was repeated for a predetermined cycle.
  • the change in voltage (V) with respect to capacity (mAh / g) was determined during the first discharge and during 40 cycles of discharge.
  • (Iii) Charge up to upper limit voltage (end-of-charge voltage) of 4.4V at a current value of 0.01C
  • iv) Discharge down to lower limit voltage (end-of-discharge voltage) of 2.4V at a current value of 0.01C
  • FIG. 2 is a graph showing the transition of the capacity maintenance rate with respect to the number of charge / discharge cycles.
  • FIG. 3 is a graph showing the transition of IR drop with respect to the number of charge / discharge cycles.
  • FIG. 4 shows the voltage versus discharge capacity in Example 3 and Comparative Example 1 during the initial discharge (0.1 C discharge), 15 cycle discharge (0.1 C discharge), and 40 cycle discharge (0.01 C discharge). It is a graph which shows a change. Examples 1 to 3 were designated as A1 to A3, and Comparative Example 1 was designated as B1.
  • an increase in resistance is suppressed as compared with the comparative example, and a decrease in cycle characteristics is also suppressed. Further, as shown in FIG. 4, the increase in resistance is suppressed in the example compared to the comparative example. Further, when the current value at the time of discharge was reduced, a capacity comparable to that at the first discharge was obtained even during 40 cycle discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の目的は、ナトリウムイオン二次電池の正極において、正極合剤のゲル化を抑制するとともに、抵抗の増加を抑制することである。本発明は、正極、負極、前記正極と前記負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含み、前記正極は、正極活物質粒子、導電助剤、およびバインダを含み、前記正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層と、を備え、前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、前記バインダは、フッ素樹脂を含む、ナトリウムイオン二次電池に関する。

Description

ナトリウムイオン二次電池および正極活物質粒子
 本発明は、ナトリウムイオン二次電池および正極活物質粒子に関する。
本出願は、2015年12月9日出願の日本出願第2015-240023号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1および特許文献2では、リチウムイオン二次電池の正極において、正極合剤のゲル化を抑制するため、有機酸または無機酸を添加することが提案されている。特許文献1では、マレイン酸、シトラコン酸、およびマロン酸が正極合剤に使用され、特許文献2では、酢酸や、リン酸、硫酸などが正極合剤に使用されている。
 特許文献3では、ナトリウム含有遷移金属化合物を電極活物質として用いるナトリウムイオン二次電池の電極において、バインダとして、ハロゲン化ビニリデン由来の構造単位を有さないポリマーを用いることが提案されている。
特開平9-306502号公報 特開平10-79244号公報 特開2012-134129号公報
 本発明のナトリウムイオン二次電池は、正極、負極、前記正極と前記負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含み、前記正極は、正極活物質粒子、導電助剤、およびバインダを含み、前記正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層と、を備え、前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、前記バインダは、フッ素樹脂を含む、ナトリウムイオン二次電池である。
ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層とを備え、前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む、ナトリウムイオン二次電池用の正極活物質粒子である。
本発明の一実施形態に係るナトリウムイオン二次電池を概略的に示す縦断面図である。 実施例1から実施例3および比較例1の充放電サイクル数に対する容量維持率の推移を示すグラフである。 実施例1から実施例3および比較例1の充放電サイクル数に対するIRドロップの推移を示すグラフである。 実施例3および比較例1における初回放電時(0.1C放電)、15サイクル放電時(0.1C放電)、および40サイクル放電時(0.01C放電)の放電容量に対する電圧の変化を示すグラフである。
[本開示が解決しようとする課題]
 ナトリウムイオン二次電池では、フッ素樹脂などのハロゲン含有樹脂をバインダとして用いると、正極合剤を調製する際にゲル化が極めて顕著になる場合がある。このような観点から、特許文献3では、ハロゲン化ビニリデン由来の構造単位を有さないバインダが使用されている。正極合剤がゲル化すると、正極集電体に塗布することができなくなったり、塗布できる場合でも、正極合剤の構成成分の分散状態にバラつきが生じて、電池特性が損なわれたりする。特に、ロールを用いてラージスケールで正極合剤を正極集電体に塗布する場合には、ゲル化が極めて顕著になり、塗布自体が困難になる。
 リチウムイオン二次電池に関する特許文献1または特許文献2では、正極合剤のゲル化を抑制する目的で、マレイン酸や酢酸などを添加している。しかし、これらの酸をナトリウムイオン二次電池の正極合剤に添加する場合、酸の使用量が多くなるため、正極の抵抗が大きくなり、電池性能が低下する。また、正極活物質がNiおよびMnを含む場合には、正極合剤に酸を添加しても、ゲル化を十分に抑制することは難しい。
 本発明の目的は、ナトリウムイオン二次電池の正極において、正極合剤のゲル化を抑制するとともに、抵抗の増加を抑制することである。
[本開示の効果]
本発明によれば、ナトリウムイオン二次電池の正極において、ゲル化を抑制することができるとともに、抵抗の増加を抑制することができる。
[本発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
 本発明の一実施形態は、正極、負極、正極と負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含むナトリウムイオン二次電池に関する。
正極は、正極活物質粒子、導電助剤、およびバインダを含み、正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、酸化物粒子を被覆する被覆層と、を備える。酸化物粒子は、NiおよびMnを含む酸化物Aを含み、被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、バインダは、フッ素樹脂を含む。なお、酸化物粒子は、ナトリウムイオンを吸蔵および放出するものであり、正極活物質としての機能を有する。
 本発明の他の一実施形態に係る正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、酸化物粒子を被覆する被覆層とを備える。酸化物粒子は、NiおよびMnを含む酸化物Aを含み、被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む。
 一般に、フッ素樹脂は、塩基性条件下では、ゲル化を引き起こし易い。特に、フッ化ビニリデン単位やフッ化ビニル単位などを含むフッ素樹脂では、フッ酸の引抜きによりポリエン構造を形成し易く、これによりゲル化を起こし易い。ナトリウムイオンを吸蔵および放出する正極活物質は高い塩基性を示す。例えば、酸化物Aを含む酸化物粒子を、水100質量部に対して2質量部分散させて得られる水分散液のpHは、11以上であり、場合によっては12以上と極めて高い。そのため、このような高い塩基性の正極活物質を、フッ素樹脂を含むバインダと組み合わせて用いると、正極合剤のゲル化が顕著になる。
 正極合剤のゲル化が起こると、正極合剤を正極集電体に担持させる(具体的には、塗布または充填する)ことができなくなる。実験室などの小さなスケールで正極を作製する場合には、正極合剤のゲル化が起こる前に、正極合剤を正極集電体に塗布したり、正極を成形したりすることができる。しかし、ロールを用いるようなラージスケールで正極を作製する場合には、粘度の変動の影響が顕著に現れ、正極合剤を安定して正極集電体に塗布することが極めて困難となる。また、正極合剤を正極集電体に担持させることができても、構成成分の分布が均一な正極合剤層を形成することができない。正極合剤を乾燥して正極を作製する過程で、ゲル化が起こり、正極の特性を損なう場合もある。
 リチウムイオン二次電池では、正極合剤のゲル化を抑制する目的で、マレイン酸や酢酸などが添加されることがある。しかし、NiおよびMnを含むナトリウムイオン二次電池用の正極活物質は、塩基性が非常に高い。そのため、上記のような酸をリチウムイオン二次電池の場合と同程度の量で正極合剤に添加してもゲル化を十分に抑制することが困難である。特に、ラージスケールで正極を作製する場合には、ゲル化が著しくなり、正極合剤を正極集電体に塗布できなくなる。また、正極合剤を正極集電体に塗布できるまで、酸を添加すると、酸の添加量が多くなり、正極の抵抗が増加する。
 バインダは、ゲル化すると劣化し易くなり、電池の長期特性に影響を与える。バインダのゲル化により、正極において構成成分の分布が不均一になると、正極と電解質との界面におけるナトリウムイオンの吸蔵および放出の際の抵抗が増したり、正極における導電性が低下したりする。その結果、初期の放電容量の低下を招く。また、このような状態で充放電を繰り返すと、正極合剤が正極集電体から剥離したり、正極活物質の粒子が脱落したりして、容量が低下し、サイクル特性が低下する。
 本実施形態では、NiおよびMnを含む酸化物Aを含む酸化物粒子を、セラミックスおよび/または炭素質材料(材料B)を含む被覆層で被覆したものを正極活物質粒子として用いる。このように、正極活物質粒子が被覆層を有することで、正極活物質粒子の塩基性が緩和される。例えば、水100質量部に対して、2質量部の正極活物質粒子を分散させて得られる水分散液では、水分散液のpHを10以下(好ましくは9以下)にまで低下させることができる。
 そのため、酸化物Aが正極合剤を極めてゲル化し易いにも拘わらず、正極合剤のゲル化を抑制できる。特に、ラージスケールで正極を作製する場合でも、正極合剤のゲル化を抑制できるため、安定して正極を製造することができる。また、酸を添加しなくても正極合剤のゲル化を抑制できるため、正極の抵抗が増加するのを抑制することができる。正極合剤を正極集電体に担持させた後、正極が完成するまでの間に、正極合剤のゲル化が進行することも抑制できる。そのため、構成成分の分散状態が良好な(つまり、より均一な)正極が得られる。バインダの劣化が抑制されることに加え、被覆層により正極活物質粒子の微細化も抑制される。よって、ナトリウムイオン二次電池の初期の放電容量およびサイクル特性の低下を抑制することもできる。
 材料Bの量は、酸化物粒子100質量部に対して、例えば、1質量部から10質量部であり、3質量部から7質量部であることが好ましく、3質量部から5質量部であることがさらに好ましい。材料Bの量をこのような範囲とすることで、正極活物質粒子の塩基性を緩和する効果が高まり、正極合剤のゲル化がさらに抑制される。よって、正極の抵抗の増加がさらに抑制され、ナトリウム二次電池のサイクル特性の低下がさらに抑制される。
 バインダの量は、正極活物質粒子100質量部に対して、例えば、0.5質量部から5質量部であり、1質量部から3質量部であることが好ましい。バインダの量をこのような範囲とすることで、正極活物質粒子を結着しつつ、正極合剤のゲル化を効果的に抑制することができる。
 酸化物Aとしては、式(1):NaMeO(元素Meは、Ni、Mn、およびTiを少なくとも含む遷移金属元素であり、xは元素Meに対するNaの比率であり、完全放電状態におけるxは、2/3から1である。)で表されるナトリウム含有遷移金属酸化物が好ましい。このような金属酸化物において、例えば、NiとMnとTiとの化学量論比は、5:3:2である。結晶構造を制御し易い観点から、酸化物Aにおいて、完全放電状態におけるxは0.9から1であり、元素Meに占めるNiの比率は0.45以上であり、元素Meに占めるTiの比率が0.15以上であることが好ましい。
 上記のような金属酸化物は、高い塩基性を示し、正極合剤のゲル化が顕著になり易い。
本実施形態では、酸化物粒子がこのような金属酸化物を含む場合でも、被覆層の存在により、正極活物質粒子の塩基性が緩和されるため、正極合剤のゲル化が抑制される。また、上記の金属酸化物を正極に用いることで、ナトリウム二次電池を高容量化することができる。
 材料Bのうち、セラミックスとしては、ジルコニアおよびアルミナからなる群より選択される少なくとも一種などが好ましい。これらのセラミックスを被覆層に用いることで、正極活物質粒子の塩基性を緩和する効果が高まり、正極合剤のゲル化がさらに抑制される。よって、正極の抵抗の増加がさらに抑制され、ナトリウム二次電池のサイクル特性の低下がさらに抑制される。
[発明の実施形態の詳細]
 本発明の実施形態に係るナトリウムイオン二次電池用の正極活物質粒子およびナトリウムイオン二次電池の具体例を、適宜図面を参照しつつ以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、添付の特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
(ナトリウムイオン二次電池用の正極活物質粒子)
 正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、酸化物粒子を被覆する被覆層とを備える。
 酸化物粒子は、NiおよびMnを含む酸化物Aを含む。酸化物粒子において、少なくとも酸化物Aがナトリウムイオンを吸蔵および放出することが好ましい。このような酸化物Aとしては、ナトリウムが層間に出入りする層状構造を有するものが好ましいが、特に限定されない。ナトリウム二次電池の高容量化の観点からは、酸化物粒子は、できるだけ多くの酸化物Aを含むことが好ましく、酸化物粒子の90質量%以上を酸化物Aが占めることが好ましい。
 酸化物Aとしては、式(1):NaMeO(ここで、Meは、遷移金属元素であり、xは元素Meに対するNaの比率である。)で表されるナトリウム含有遷移金属酸化物が挙げられる。xは充放電により変化する値である。完全放電状態におけるxは、典型的には、1または2/3であるが、多少の幅があってもよい。例えば、式(1)で表されるナトリウム含有遷移金属酸化物には、式(1a):Nax-αMe1+α(αは、-0.03≦α≦0.03を充足する)で表されるものも含まれるものとする。
 酸化物Aは、元素Meとして、少なくともNiおよびMnを含んでいればよいが、Ni、MnおよびTiを少なくとも含む場合が好ましい。これらの元素以外に、元素Meは、例えば、Cr、Fe、および/またはCoなどを含んでもよい。このような元素Meを含む酸化物Aは、塩基性が高くなり易いが、本実施形態によれば、正極活物質粒子の塩基性を効果的に緩和することができる。
 正極に使用される正極活物質粒子は、酸化物Aを一種含んでもよく、組成が異なる二種以上の酸化物Aを含んでもよい。
 好ましい実施形態において、酸化物Aは、酸素配列を持つMeO層の積層構造を含む。P2型結晶構造では、ナトリウムは、MeO層間の三角柱サイトを占有する。O3型結晶構造では、ナトリウムは、MeO層間の六配位八面体サイトを占有する。酸化物Aは、このような積層構造を有することで、ナトリウムイオンを可逆的に吸蔵および放出することができる。具体的には、放電時に、MeO層の層間にナトリウムイオンが吸蔵され、充電時に、MeO層の層間からナトリウムイオンが放出される。酸化物Aが層状O3型の結晶構造を有する場合、層状O3型の結晶構造は層状P2型の結晶構造に比べて、溶媒に対する溶解性が高いため、正極合剤のゲル化が顕著になり易い。本実施形態では、酸化物Aが層状O3型の結晶構造を有する場合であっても、正極合剤のゲル化を効果的に抑制することができる。
 ナトリウム含有遷移金属酸化物において、完全放電状態における元素Meに対するNaの化学量論比を、xとするとき、式(1)におけるxは、例えば、0.97x≦x≦1.03xであり、0.98x≦x≦1.02xであってもよい。完全放電状態でこのようなx値を有するナトリウム含有遷移金属酸化物は、ナトリウムイオンを可逆的に安定に吸蔵および放出することができる。
 なお、式(1)(または式(1a))で表されるナトリウム含有遷移金属酸化物に関し、元素Meに対するNaの化学量論比xとは、結晶構造の種類に応じて決定される値である。ナトリウム含有遷移金属酸化物が、層状P2型結晶構造を有する場合、完全放電状態におけるxは2/3である。また、ナトリウム含有遷移金属酸化物が、層状O3型結晶構造を有する場合、完全放電状態におけるxは1である。
 式(1)(および式(1a))で表されるナトリウム含有遷移金属酸化物において、元素Meの80原子%以上(例えば、80原子%から100原子%)を、NiおよびMn(さらには、Ni、MnおよびTi)で構成することが望ましい。
 元素Meは、Ni、Mn、およびTiの組み合わせを含むことが好ましい。元素Meがこのような組み合わせである場合、ナトリウム含有遷移金属酸化物の結晶構造は、好ましくは層状O3型である。このとき、xは多少の幅があってもよく、例えば、完全放電状態におけるxは、0.9から1であってもよい。層状O3型のナトリウム含有遷移金属酸化物において、完全放電状態におけるxは0.9から1であり、元素Meに占めるNiの比率は0.45以上であり、元素Meに占めるTiの比率は0.15以上であることが好ましい。
 層状O3型のナトリウム含有遷移金属酸化物において、NiとMnとTiとの化学量論比には多少の幅があってもよい。具体的に、Ni、Mn、およびTiの各元素の比率は、化学量論比を100原子%とするとき、例えば、90原子%から110原子%または95原子%から105原子%の範囲であってもよい。また、Ni、Mn、およびTiの比率の合計が1となるようにすることが望ましい。
 正極活物質粒子において、酸化物粒子を被覆する被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む。被覆層を形成することで、正極活物質粒子の安定性が増し、塩基性物質の溶出が抑制されると考えられる。本実施形態では、酸化物粒子の表面を、材料Bを含む被覆層で覆っても、正極の抵抗の増加が抑制され、ナトリウムイオン二次電池の充放電も可能である。そのため、正極活物質粒子において、正極の抵抗や充放電性に影響しない程度に、酸化物粒子が被覆されずに露出していると考えられる。それにも拘わらず、本実施形態では、予想外に正極活物質粒子の塩基性が緩和される。よって、正極の製造時には問題にならない程度にゲル化が抑制されるものと考えられる。
 セラミックスとしては、例えば、ジルコニア、アルミナ、窒化ケイ素、および炭化ケイ素からなる群より選択される少なくとも一種が挙げられる。理由は定かではないが、正極合剤のゲル化を抑制する効果を高め易い観点から、ジルコニアおよび/またはアルミナを用いることが好ましい。特に、ジルコニアを用いる場合には、正極の抵抗の増加およびサイクル特性の低下を抑制する効果がさらに高まる。
 炭素質材料としては、例えば、カーボンブラック、黒鉛、炭素繊維(気相法炭素繊維など)、およびカーボンナノチューブからなる群より選択される少なくとも一種が挙げられる。被覆層に炭素質材料を用いる場合、正極の抵抗の増加を抑制し易い。
 被覆は、酸化物粒子よりもサイズが小さな材料Bの粒子を、酸化物粒子の表面にまぶし付けることにより行ってもよいが、メカノケミカル処理(メカノフュージョン処理も含む)などにより行うことが好ましい。材料Bの被覆には、公知の方法が採用できる。
 正極活物質粒子の平均粒子径D50は、例えば、5μmから15μmであり、好ましくは7μmから12μmである。正極活物質粒子の平均粒子径がこのような範囲である場合、正極合剤のゲル化を抑制する効果が得られ易く、充放電サイクルを繰り返した場合の正極活物質粒子の劣化を抑制し易い。
 なお、平均粒子径D50とは、レーザー回折式粒度分布測定装置などを用いて求められる体積基準の粒度分布において、累積体積が50%となる粒子径(つまり、メジアン径)を意味する。
 BET法により測定される正極活物質粒子の比表面積は、特に限定されないが、例えば、0.3m/gから1.0m/gである。比表面積がこのような範囲である場合、ナトリウム二次電池を高容量化し易いことに加え、正極合剤のゲル化をさらに抑制し易い。
(ナトリウムイオン二次電池)
 (正極)
 正極は、上記の正極活物質粒子に加え、導電助剤、およびバインダを含む。以下に正極活物質粒子以外の構成要素について説明する。
 正極に使用されるバインダは、フッ素樹脂を含む。フッ素樹脂としては、例えば、テトラフルオロエチレンに由来するモノマー単位、ヘキサフルオロプロピレンに由来するモノマー単位、フッ化ビニリデンに由来するモノマー単位(フッ化ビニリデン単位)、フッ化ビニルに由来するモノマー単位(フッ化ビニル単位)などのフッ素含有モノマー単位を含むフッ素含有ポリマーが挙げられる。フッ素樹脂は、これらのフッ素含有モノマー単位を一種含むものであってもよく、二種以上含むものであってもよい。また、フッ素樹脂は、フッ素含有モノマー単位以外の共重合性モノマー単位を含む共重合体であってもよい。
 特に、フッ化ビニリデン単位やフッ化ビニル単位を含むフッ素樹脂は、塩基性雰囲気下ではフッ酸の引抜反応を受け易く、ポリエン構造を形成してゲル化(架橋も含む)が起こり易い。本実施形態では、正極活物質粒子が被覆層を有することで塩基性が緩和されるため、このようなフッ素樹脂を用いる場合であっても、ゲル化を抑制することができる。
 フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル、フッ化ビニリデン単位とフッ化ビニル単位とを含む共重合体、フッ化ビニリデン単位および/またはフッ化ビニル単位と他のフッ素含有モノマー単位(例えば、テトラフルオロエチレン単位、および/またはヘキサフルオロプロピレン単位など)と必要により他の共重合性モノマー単位とを含む共重合体、フッ化ビニリデン単位および/またはフッ化ビニル単位と他の共重合性モノマー単位とを含む共重合体などが好ましい。
 共重合性モノマーとしては、ハロゲン含有モノマー、非ハロゲン系の共重合性モノマーなどが挙げられる。ハロゲン含有モノマーとしては、塩化ビニルなどの塩素含有モノマーが例示される。非ハロゲン系の共重合性モノマーとしては、エチレン、プロピレンなどのオレフィン;アクリル酸、メタクリル酸、もしくはこれらのエステルまたは塩などのアクリルモノマー;アクリロニトリル、酢酸ビニル、スチレンなどのビニルモノマーなどが例示できる。フッ素樹脂は、これらの共重合性モノマーに由来する単位を、一種含んでいてもよく、二種以上含んでいてもよい。
 本実施形態では、フッ素樹脂が、ポリエン構造を形成し易いフッ化ビニリデンやフッ化ビニルのブロックを含む場合であっても、ゲル化を有効に抑制することができる。このようなフッ素樹脂としては、PVDF、フッ化ビニリデンブロック共重合体、ポリフッ化ビニル、フッ化ビニルブロック共重合体が例示される。ブロック共重合体を構成する共重合性モノマーとしては、フッ化ビニリデンおよびフッ化ビニル以外のフッ素含有モノマーや上記例示の他の共重合性モノマーが使用できる。
 フッ素樹脂において、フッ素含有モノマー単位の含有量は、例えば、30mol%以上であり、50mol%以上または70mol%以上であることが好ましい。フッ素樹脂におけるフッ素含有モノマー単位の含有量は100mol%以下である。フッ素樹脂におけるフッ化ビニリデン単位およびフッ化ビニル単位の含有量の合計が、このような範囲であってもよい。この場合、フッ化ビニリデン単位および/またはフッ化ビニル単位の含有量が多いため、一般にゲル化が起こり易いが、本実施形態では、このようなフッ素樹脂を用いる場合であっても、ゲル化を効果的に抑制できる。
 バインダは、フッ素樹脂(第1ポリマー)以外のポリマー(第2ポリマー)を含んでもよい。バインダ中のフッ素樹脂の含有量は、例えば、80質量%から100質量%である。
 第2ポリマーとしては、ナトリウムイオン二次電池の正極に使用される公知のバインダから適宜選択でき、例えば、ポリオレフィン樹脂、スチレンブタジエンゴムなどのゴム状重合体、ポリアミド樹脂、ポリアミドイミドなどのポリイミド樹脂、ポリビニルピロリドン、ポリビニルアルコール、および/またはセルロースエーテル(カルボキシメチルセルロースおよびその塩など)などが挙げられる。
 導電助剤としては、特に制限されないが、例えば、被覆層を構成する炭素質材料として例示したものなどが挙げられる。導電助剤は、正極活物質粒子およびバインダとともに、正極合剤中に混合して使用される。そのため、導電助剤は、通常、正極中にバインダなどとともに分散されている。
 正極の導電性を確保し易い観点からは、導電助剤の量は、正極活物質粒子100質量部当たり、例えば、1質量部から15質量部の範囲から適宜選択でき、1質量部から10質量部であってもよい。
 正極は、正極活物質粒子、導電助剤、およびバインダを含む正極合剤を、正極集電体に担持させ、正極集電体の厚み方向に圧縮し、乾燥させることにより形成できる。正極合剤は、通常、スラリーの形態で使用される。正極合剤スラリーは、正極合剤の構成成分を分散媒に分散させることにより調製される。
 分散媒としては、例えば、N-メチル-2-ピロリドン(NMP)などの有機溶媒を用いることが好ましく、必要により、有機溶媒と水との混合溶媒を用いてもよい。
 正極合剤には、必要に応じて公知の添加剤を添加してもよい。また、正極合剤のゲル化を抑制する観点から、正極合剤には、必要に応じて、有機酸や無機酸を添加してもよい
 正極集電体は、金属箔でもよく、金属多孔体(金属繊維の不織布、および/または金属多孔体シートなど)であってもよい。金属多孔体としては、三次元網目状の骨格(特に、中空の骨格)を有する金属多孔体も使用できる。正極集電体の材質としては、特に限定されないが、正極電位での安定性の観点から、アルミニウム、および/またはアルミニウム合金などが好ましい。金属箔の厚みは、例えば10μmから50μmであり、金属多孔体の厚みは、例えば100μmから2000μmである。
 正極集電体が金属箔である場合、正極合剤スラリーは金属箔の表面に塗布される。正極集電体が金属多孔体である場合、正極合剤スラリーは金属多孔体の表面に塗布してもよく、金属多孔体の内部に充填してもよい。正極合剤スラリーのゲル化が抑制されることで、正極合剤スラリーを正極集電体に容易に塗布または充填することができ、均一な塗膜を形成することができる。圧縮は、例えば、一対のロール間に、正極合剤を担持させた正極集電体を供給し、ロールで圧延することにより行ってもよい。正極合剤を正極集電体に担持させた後、圧縮する前に、必要に応じて、乾燥処理を行ってもよい。
 (負極)
 負極は、負極活物質を含む。負極は、負極集電体と、負極集電体に担持された負極活物質(または負極合剤)とを含んでもよい。
 負極集電体は、正極集電体について記載したような金属箔または金属多孔体であってもよい。負極集電体の厚みは、正極集電体の場合について記載した範囲から適宜選択できる。
 負極集電体の材質としては、特に制限されないが、ナトリウムと合金化せず、負極電位で安定であることから、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金、および/またはステンレス鋼などが好ましい。
 負極活物質としては、例えば、ナトリウムイオンを可逆的に吸蔵および放出する材料、ナトリウムと合金化する材料などが挙げられる。
 このような負極活物質としては、ナトリウム、チタン、亜鉛、インジウム、スズ、ケイ素などの金属またはその合金、もしくはその化合物;および炭素質材料などが例示できる。なお、合金は、上記の金属以外に、さらに他のアルカリ金属および/またはアルカリ土類金属などを含んでもよい。
 金属化合物としては、チタン酸リチウム(LiTiおよび/またはLiTi12など)などのリチウム含有チタン酸化物、およびチタン酸ナトリウム(NaTiおよび/またはNaTi12など)などのナトリウム含有チタン酸化物が例示できる。リチウム含有チタン酸化物(またはナトリウム含有チタン酸化物)において、チタンの一部、および/またはリチウム(またはナトリウム)の一部を他元素で置換してもよい。
 炭素質材料としては、ソフトカーボン、および/またはハードカーボンなどが例示できる。
 負極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。
 これらの材料のうち、上記化合物(ナトリウム含有チタン酸化物など)、および/または炭素質材料(ハードカーボンなど)などが好ましい。
 負極は、正極の場合に準じて、例えば、負極集電体に、負極活物質を含む負極合剤を塗布または充填し、必要に応じて、厚み方向に圧縮(または圧延)することにより形成できる。適当な段階で乾燥処理を行ってもよい。また、負極としては、負極集電体の表面に、蒸着、またはスパッタリングなどの気相法で負極活物質の堆積膜を形成することにより得られるものを用いてもよい。また、シート状の金属または合金を、そのまま負極として用いてもよく、集電体に圧着したものを負極として用いてもよい。負極活物質には、必要に応じて、ナトリウムイオンをプレドープしてもよい。
 負極合剤は、負極活物質に加え、さらに導電助剤および/またはバインダを含むことができる。
 導電助剤としては、正極の被覆層について例示した炭素質材料から適宜選択できる。負極活物質に対する導電助剤の量も、正極活物質粒子に対する導電助剤の量について例示した範囲から適宜選択できる。
 分散媒としては、NMPなどの有機溶媒、および/または水などが例示できる。
 バインダの種類は特に制限されず、例えば、PVDF、ポリテトラフルオロエチレンなどのフッ素樹脂の他、正極のバインダとして例示した第2ポリマーから適宜選択できる。
バインダは、一種を単独で使用してもよく、二種以上を組み合わせて用いてもよい。
 バインダの量は、特に制限されないが、高い結着性および容量を確保し易い観点から、負極活物質100質量部当たり、例えば、0.5質量部から15質量部の範囲から選択でき、1質量部から12質量部であってもよい。
 (セパレータ)
 正極と負極との間に介在させるセパレータとしては、例えば、樹脂製の微多孔膜、および/または不織布などが使用できる。セパレータの材質は、電池の使用温度を考慮して選択できる。微多孔膜または不織布を形成する繊維に含まれる樹脂としては、例えば、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、および/またはポリイミド樹脂などが例示できる。不織布を形成する繊維は、ガラス繊維などの無機繊維であってもよい。セパレータは、セラミックス粒子などの無機フィラーを含んでもよい。無機フィラーは、セパレータにコーティングされた状態であってもよい。
セパレータの厚みは、特に限定されないが、例えば、10μmから300μmの範囲から選択できる。
 (電解質)
 電解質としては、ナトリウムイオンを含む非水電解質が使用される。非水電解質としては、例えば、非水溶媒(有機溶媒)にナトリウムイオンとアニオンとの塩(ナトリウム塩)を溶解させた電解質(有機電解質)、およびナトリウムイオンとアニオンとを含むイオン液体(溶融塩電解質)などが用いられる。
電解質におけるナトリウム塩またはナトリウムイオンの濃度は、例えば、0.3mol/Lから10mol/Lの範囲から適宜選択できる。
 (有機電解質)
 有機電解質は、非水溶媒(有機溶媒)およびナトリウム塩に加え、イオン液体および/または添加剤などを含むことができるが、良好な低温特性を確保し易い観点からは、電解質中の非水溶媒およびナトリウム塩の含有量の合計は、例えば、60質量%から100質量%である。
 ナトリウム塩を構成するアニオン(第1アニオン)の種類は特に限定されず、例えば、ヘキサフルオロリン酸イオン、テトラフルオロホウ酸イオン、過塩素酸イオン、ビス(オキサラト)ボレートイオン(B(C )、トリス(オキサラト)ホスフェートイオン(P(C )、トリフルオロメタンスルホン酸イオン(CFSO )、およびビススルホニルアミドアニオンなどが挙げられる。ナトリウム塩は、一種を単独で用いてもよく、第1アニオンの種類が異なるナトリウム塩を二種以上組み合わせて用いてもよい。
 上記のビススルホニルアミドアニオンとしては、例えば、ビス(フルオロスルホニル)アミドアニオン(FSA)、ビス(トリフルオロメチルスルホニル)アミドアニオン(TFSA)、(フルオロスルホニル)(パーフルオロアルキルスルホニル)アミドアニオン[(FSO)(CFSO)Nなど]、ビス(パーフルオロアルキルスルホニル)アミドアニオン[N(SOCF 、N(SO など]などが挙げられる。
 非水溶媒は、特に限定されず、ナトリウムイオン二次電池に使用される公知の非水溶媒が使用できる。非水溶媒は、イオン伝導度の観点から、例えば、エチレンカーボネート、プロピレンカーボネート、およびブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、およびエチルメチルカーボネートなどの鎖状カーボネート;ならびに、γ-ブチロラクトンなどの環状炭酸エステルなどを好ましく用いることができる。非水溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 (溶融塩電解質)
 電解質としてイオン液体を用いる場合、電解質は、カチオンとアニオンとを含むイオン液体に加え、非水溶媒および/または添加剤などを含むことができる。ただし、電解質の分解を抑制し易い観点からは、電解質中のイオン液体の含有量を、70質量%から100質量%としてもよい。
 イオン液体は、ナトリウムイオン(第2カチオン)に加え、ナトリウムイオン以外のカチオン(第3カチオン)を含むことができる。第3カチオンとしては、有機カチオン、およびナトリウムイオン以外の無機カチオンなどが例示できる。イオン液体は、第3カチオンを、一種含んでもよく、二種以上組合せて含んでもよい。
 無機カチオンとしては、例えば、ナトリウムイオン以外のアルカリ金属イオン(カリウムイオンなど)、および/またはアルカリ土類金属イオン(マグネシウムイオン、カルシウムイオンなど)、アンモニウムイオンなどが挙げられる。
 有機カチオンとしては、脂肪族アミン、脂環族アミンまたは芳香族アミンに由来するカチオン(例えば、第4級アンモニウムカチオンなど)の他、窒素含有へテロ環を有するカチオン(つまり、環状アミンに由来するカチオン)などの窒素含有オニウムカチオン、イオウ含有オニウムカチオン、リン含有オニウムカチオンなどが例示できる。
 有機カチオンのうち、特に、第4級アンモニウムカチオンの他、窒素含有ヘテロ環骨格として、ピロリジン、ピリジン、またはイミダゾール骨格を有するカチオンが好ましい。
 有機カチオンの具体例としては、テトラエチルアンモニウムカチオン、メチルトリエチルアンモニウムカチオンなどのテトラアルキルアンモニウムカチオン;1-メチル-1-プロピルピロリジニウムカチオン(Py13)、1-ブチル-1-メチルピロリジニウムカチオン;1-エチル-3-メチルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオンなどが挙げられる。
 アニオンとしては、ビススルホニルアミドアニオンを用いることが好ましい。ビススルホニルアミドアニオンとしては、有機電解質について例示したものから適宜選択できる。
ビススルホニルアミドアニオンのうち、特に、FSAおよび/またはTFSAが好ましい。
 ナトリウムイオン二次電池は、例えば、(a)正極と、負極と、正極および負極の間に介在するセパレータとで電極群を形成する工程、ならびに(b)電極群および電解質を電池ケース内に収容する工程を経ることにより製造できる。
 図1は、本発明の一実施形態に係るナトリウムイオン二次電池を概略的に示す縦断面図である。ナトリウムイオン二次電池は、積層型の電極群、電解質(図示せず)およびこれらを収容する角型のアルミニウム製の電池ケース10を具備する。電池ケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋体13とで構成されている。
 蓋体13の中央には、電池ケース10の内圧が上昇したときに内部で発生したガスを放出するための安全弁16が設けられている。安全弁16を中央にして、蓋体13の一方側寄りには、蓋体13を貫通する外部正極端子が設けられ、蓋体13の他方側寄りの位置には、蓋体13を貫通する外部負極端子14が設けられている。
 積層型の電極群は、いずれも矩形のシート状である、複数の正極2と複数の負極3およびこれらの間に介在する複数のセパレータ1により構成されている。図1では、セパレータ1は、正極2を包囲するように袋状に形成されているが、セパレータの形態は特に限定されない。複数の正極2と複数の負極3は、電極群内で積層方向に交互に配置される。
 各正極2の一端部には、正極リード片2aを形成してもよい。複数の正極2の正極リード片2aを束ねるとともに、電池ケース10の蓋体13に設けられた外部正極端子に接続することにより、複数の正極2が並列に接続される。同様に、各負極3の一端部には、負極リード片3aを形成してもよい。複数の負極3の負極リード片3aを束ねるとともに、電池ケース10の蓋体13に設けられた外部負極端子14に接続することにより、複数の負極3が並列に接続される。正極リード片2aの束と負極リード片3aの束は、互いの接触を避けるように、電極群の一端面の左右に、間隔を空けて配置することが望ましい。
 外部正極端子および外部負極端子14は、いずれも柱状であり、少なくとも外部に露出する部分が螺子溝を有する。各端子の螺子溝にはナット7が嵌められ、ナット7を回転することにより蓋体13に対してナット7が固定される。各端子の電池ケース10内部に収容される部分には、鍔部8が設けられており、ナット7の回転により、鍔部8が、蓋体13の内面に、O-リング状のガスケット9を介して固定される。
 電極群は、積層タイプに限らず、正極と負極とをセパレータを介して捲回することにより形成したものであってもよい。負極に金属ナトリウムが析出するのを防止する観点から、正極よりも負極の寸法を大きくしてもよい。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(1)正極活物質粒子の作製
 NaTi0.2Ni0.5Mn0.3粒子(酸化物粒子、平均粒子径D50:9μm)を、ジルコニア(材料B、平均粒子径D50:100nm)とともに、メカニカルアロイングすることにより、酸化物粒子の表面にジルコニアの被覆層を形成した。酸化物粒子と、材料Bとの質量比は、100:7とした。得られた粒子(正極活物質粒子)の平均粒子径D50は、9μmであり、BET比表面積は0.5m/gであった。
(2)正極の作製
 上記(1)で得られた正極活物質粒子と、ファーネスブラック(導電助剤)と、PVDF(バインダ)をNMP(分散媒)とともに混合することにより、正極合剤ペーストを調製した。このとき、正極活物質粒子と、導電助剤と、バインダとの質量比を、95:3:2とした。正極合剤ペーストを、厚さ20μmのアルミニウム箔の片面に塗布し、乾燥させ、圧縮して、厚さ80μmの正極を作製した。正極は、直径12mmのコイン型に打ち抜き、さらに乾燥させた。
(3)ナトリウムイオン二次電池の組み立て
 金属ナトリウムディスク(アルドリッチ社製、厚さ200μm)をアルミニウム集電体に圧着して、総厚220μmの負極を作製した。負極は、直径12mmのコイン型に打ち抜いた。
 コイン型の負極およびセパレータを十分に乾燥させた。その後、浅底の円筒型のAl/SUSクラッド製容器に、コイン型の負極を載置し、その上にコイン型のセパレータを介してコイン型の正極を載置し、所定量の電解質を容器内に注液した。その後、周縁に絶縁ガスケットを具備する浅底の円筒型のAl/SUSクラッド製封口板で、容器の開口を封口した。これにより、容器底面と封口板との間で、負極、セパレータおよび正極からなる電極群に圧力を印加し、部材間の接触を確保した。こうして、設計容量1.5mAhのコイン型のナトリウムイオン二次電池を作製した。
 なお、セパレータとしては、シリカコーティングされたポリオレフィン不織布(日本板硝子(株)製、NPS、厚さ50μm)を用いた。電解質としては、Na・FSAとPy13・FSAとを、40:60のモル比で含むイオン液体(電解質中のイオン液体の含有量:100質量%)を用いた。
[実施例2]
 実施例1の(1)において、酸化物粒子と、材料Bとの質量比を、100:5に変更したこと以外は実施例1と同様にして正極活物質粒子を作製した。正極活物質粒子の平均粒子径D50は、9μmであった。得られた正極活物質粒子を用いたこと以外は、実施例1と同様にして、正極合剤ペーストを調製し、電池を作製し、評価を行った。
[実施例3]
 実施例1の(1)において、酸化物粒子と、材料Bとの質量比を、100:3に変更したこと以外は実施例1と同様にして正極活物質粒子を作製した。正極活物質粒子の平均粒子径D50は、9μmであった。得られた正極活物質粒子を用いたこと以外は、実施例1と同様にして、正極合剤ペーストを調製し、電池を作製し、評価を行った。
[比較例1]
 実施例1の(1)において使用したものと同じジルコニアの被覆層を有さない酸化物粒子を正極活物質粒子として用いた。これ以外は、実施例1と同様にして、正極合剤ペーストを調製し、電池を作製し、評価を行った。
<評価>
(a)正極合剤のゲル化
 実施例および比較例と同様の手順で正極合剤ペーストを調製し、スパチュラでかき混ぜて、ゲル化の程度を確認した。実施例1から実施例3については、調製から1日経過した後でも正極合剤ペーストがゲル化していないのに対し、比較例1では調製から10分後には正極合剤ペーストがゲル化して塗布できなくなった。
(b)正極活物質粒子の水分散液のpH
 実施例および比較例で用いた正極活物質粒子2質量部を、水100質量部に分散させて得られる水分散液のpHをpHメータにより測定した。その結果、各例について、pHは、8.9(実施例1)、9.0(実施例2)、9.6(実施例3)、11.4(比較例1)となった。
(c)サイクル特性
 ナトリウムイオン二次電池を、60℃になるまで加熱し、(i)および(ii)の条件を充放電の1サイクルとして、充放電を所定サイクル繰り返した。各サイクルでの放電容量を求めた。初回の放電容量を100%としたときの各サイクルでの放電容量の比率(容量維持率)(%)を求めた。また、各サイクルの充放電曲線から、充電時のプラトー電圧と、放電時のプラトー電圧とを求め、両者の差をIRドロップ(V)として算出し、その推移を調べた。実施例3と比較例1については、初回放電時と、15サイクルの放電時とで、容量(mAh/g)に対する電圧(V)の変化を求めた。
 (i)0.1Cの電流値で、上限電圧(充電終止電圧)4.4Vまで充電
 (ii)0.1Cの電流値で、下限電圧(放電終止電圧)2.4Vまで放電
 実施例3と比較例1については、下記の(iii)および(iv)の条件を充放電の1サイクルとして、充放電を所定サイクル繰り返した。初回放電時と、40サイクルの放電時とで、容量(mAh/g)に対する電圧(V)の変化を求めた。
 (iii)0.01Cの電流値で、上限電圧(充電終止電圧)4.4Vまで充電
 (iv)0.01Cの電流値で、下限電圧(放電終止電圧)2.4Vまで放電
 評価結果を、図2から図4に示す。図2は、充放電サイクル数に対する容量維持率の推移を示すグラフである。図3は、充放電サイクル数に対するIRドロップの推移を示すグラフである。図4は、実施例3および比較例1における初回放電時(0.1C放電)および15サイクル放電時(0.1C放電)、ならびに40サイクル放電時(0.01C放電)の放電容量に対する電圧の変化を示すグラフである。実施例1から実施例3をA1からA3とし、比較例1をB1とした。
 図2および図3に示されるように、実施例では、比較例に比べて抵抗の増加が抑制されており、サイクル特性の低下も抑制されている。また、図4に示されるように、比較例に比べて実施例では、抵抗の増加が抑制されている。また、放電時の電流値を小さくした場合には、40サイクル放電時においても初回放電時に匹敵する容量が得られた。
 1:セパレータ
 2:正極
2a:正極リード片
 3:負極
3a:負極リード片
 7:ナット
 8:鍔部
 9:ガスケット
 10:電池ケース
 12:容器本体
 13:蓋体
 14:外部負極端子
 16:安全弁

Claims (8)

  1.  正極、負極、前記正極と前記負極との間に介在するセパレータ、およびナトリウムイオン伝導性を有する非水電解質を含み、
     前記正極は、正極活物質粒子、導電助剤、およびバインダを含み、
     前記正極活物質粒子は、ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層と、を備え、
     前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、
     前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含み、
     前記バインダは、フッ素樹脂を含む、ナトリウムイオン二次電池。
  2.  前記材料Bの量は、前記酸化物粒子100質量部に対して、1質量部から10質量部である、請求項1に記載のナトリウムイオン二次電池。
  3.  前記バインダの量は、前記正極活物質粒子100質量部に対して、0.5質量部から5質量部である、請求項1または請求項2に記載のナトリウムイオン二次電池。
  4.  前記酸化物Aは、式(1):NaMeOで表されるナトリウム含有遷移金属酸化物であり、元素Meは、Ni、Mn、およびTiを少なくとも含む遷移金属元素であり、xは前記元素Meに対するNaの比率であり、完全放電状態におけるxは、2/3から1である、請求項1から請求項3のいずれか1項に記載のナトリウムイオン二次電池。
  5.  前記ナトリウム含有遷移金属酸化物において、完全放電状態におけるxは0.9から1であり、前記元素Meに占めるNiの比率は0.45以上であり、前記元素Meに占めるTiの比率は0.15以上である、請求項4に記載のナトリウムイオン二次電池。
  6.  前記セラミックスは、ジルコニアおよびアルミナからなる群より選択される少なくとも一種である、請求項1から請求項5のいずれか1項に記載のナトリウムイオン二次電池。
  7.  ナトリウムイオンを吸蔵および放出する酸化物粒子と、前記酸化物粒子を被覆する被覆層とを備え、
     前記酸化物粒子は、NiおよびMnを含む酸化物Aを含み、
     前記被覆層は、セラミックスおよび炭素質材料からなる群より選択される少なくとも一種の材料Bを含む、ナトリウムイオン二次電池用の正極活物質粒子。
  8.  水100質量部に対して、2質量部の前記正極活物質粒子を分散させて得られる水分散液のpHは、10以下である、請求項7に記載のナトリウムイオン二次電池用の正極活物質粒子。
PCT/JP2016/083412 2015-12-09 2016-11-10 ナトリウムイオン二次電池および正極活物質粒子 WO2017098855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/780,670 US10593993B2 (en) 2015-12-09 2016-11-10 Sodium ion secondary battery and positive electrode active material particles
KR1020187015723A KR20180084065A (ko) 2015-12-09 2016-11-10 나트륨 이온 이차 전지 및 정극 활물질 입자
CN201680069807.8A CN108292738B (zh) 2015-12-09 2016-11-10 钠离子二次电池和正极活性物质粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-240023 2015-12-09
JP2015240023A JP6672758B2 (ja) 2015-12-09 2015-12-09 ナトリウムイオン二次電池および正極活物質粒子

Publications (1)

Publication Number Publication Date
WO2017098855A1 true WO2017098855A1 (ja) 2017-06-15

Family

ID=59013093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083412 WO2017098855A1 (ja) 2015-12-09 2016-11-10 ナトリウムイオン二次電池および正極活物質粒子

Country Status (5)

Country Link
US (1) US10593993B2 (ja)
JP (1) JP6672758B2 (ja)
KR (1) KR20180084065A (ja)
CN (1) CN108292738B (ja)
WO (1) WO2017098855A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435742A (zh) * 2019-01-11 2020-07-21 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及钠离子电池
JP7560939B2 (ja) * 2019-03-12 2024-10-03 住友化学株式会社 ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、ナトリウム二次電池
CN115084522B (zh) * 2022-06-20 2023-05-23 芜湖天弋能源科技有限公司 一种钠离子电池正极浆料添加剂
CN115036487B (zh) * 2022-06-27 2024-04-30 湖南工程学院 具有超结构的层状氧化物钠离子电池正极材料及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153584A (ja) * 2014-02-13 2015-08-24 住友電気工業株式会社 ナトリウム溶融塩電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298121A (ja) * 1995-04-25 1996-11-12 Fuji Photo Film Co Ltd 非水二次電池
JP3540097B2 (ja) 1996-05-17 2004-07-07 呉羽化学工業株式会社 非水系電池用電極合剤および非水系電池
JPH1079244A (ja) 1996-09-04 1998-03-24 Toray Ind Inc 電極およびそれを用いた非水電解液系二次電池
CN101378124A (zh) * 2007-08-28 2009-03-04 德固赛(中国)投资有限公司 二次电池及其正极活性物质
WO2011129419A1 (ja) * 2010-04-16 2011-10-20 住友化学株式会社 複合金属酸化物、正極活物質、正極およびナトリウム二次電池
WO2012042727A1 (ja) * 2010-09-27 2012-04-05 パナソニック株式会社 リチウムイオン二次電池用正極活物質粒子、その正極活物質粒子を用いた正極およびリチウムイオン二次電池
JP5874328B2 (ja) 2010-11-29 2016-03-02 住友化学株式会社 電極合剤ペースト、電極および非水電解質二次電池
JP2014107141A (ja) * 2012-11-28 2014-06-09 Sumitomo Electric Ind Ltd 溶融塩電池およびその製造方法
JP2015082356A (ja) * 2013-10-21 2015-04-27 日立化成株式会社 リチウムイオン二次電池用電解液、その電解液を用いたリチウムイオン二次電池、およびリチウムイオン二次電池を用いた充放電装置
JP6189233B2 (ja) * 2014-03-10 2017-08-30 住友電気工業株式会社 ナトリウム溶融塩電池およびその使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153584A (ja) * 2014-02-13 2015-08-24 住友電気工業株式会社 ナトリウム溶融塩電池

Also Published As

Publication number Publication date
JP6672758B2 (ja) 2020-03-25
CN108292738A (zh) 2018-07-17
US10593993B2 (en) 2020-03-17
KR20180084065A (ko) 2018-07-24
US20180351197A1 (en) 2018-12-06
JP2017107713A (ja) 2017-06-15
CN108292738B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6477708B2 (ja) ナトリウムイオン二次電池用正極およびナトリウムイオン二次電池
TWI686977B (zh) 半固體電解質層、電池單元薄片及二次電池
JP6459795B2 (ja) ナトリウムイオン二次電池
WO2017098855A1 (ja) ナトリウムイオン二次電池および正極活物質粒子
JP5677271B2 (ja) 電極、非水電解質電池および電池パック
WO2016056495A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
JP5766761B2 (ja) 非水電解質電池
JP2015222628A (ja) ナトリウム含有遷移金属酸化物の製造方法およびナトリウムイオン二次電池用正極の製造方法
WO2016056493A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
JP6189233B2 (ja) ナトリウム溶融塩電池およびその使用方法
JP2016162742A (ja) ナトリウム二次電池、ナトリウム二次電池の充放電システムおよびナトリウム二次電池の充放電方法
JP6349998B2 (ja) ナトリウムイオン二次電池
JP6544010B2 (ja) ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、およびナトリウム二次電池
WO2018230238A1 (ja) 半固体電解質、電極、半固体電解質層付き電極、および二次電池
WO2021246525A1 (ja) 非水電解質蓄電素子及びその製造方法
WO2018198168A1 (ja) 二次電池用電池部材、並びに、二次電池及びその製造方法
WO2016056494A1 (ja) ナトリウムイオン二次電池用電解液およびナトリウムイオン二次電池
WO2021065164A1 (ja) 非水電解質二次電池
JP6369251B2 (ja) ナトリウム溶融塩電池用正極、およびそれを用いたナトリウム溶融塩電池
WO2019198329A1 (ja) 絶縁層、電池セルシート、電池
JP2017041319A (ja) ナトリウム二次電池、その充放電システムおよび充放電方法
JP2022033631A (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2021018925A (ja) 非水電解液、並びにそれを用いた半固体電解質シート及び半固体電解質複合シート
CN115136343A (zh) 锂离子二次电池用电极及锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187015723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872755

Country of ref document: EP

Kind code of ref document: A1