JP2016178234A - 半導体受光デバイス - Google Patents

半導体受光デバイス Download PDF

Info

Publication number
JP2016178234A
JP2016178234A JP2015058196A JP2015058196A JP2016178234A JP 2016178234 A JP2016178234 A JP 2016178234A JP 2015058196 A JP2015058196 A JP 2015058196A JP 2015058196 A JP2015058196 A JP 2015058196A JP 2016178234 A JP2016178234 A JP 2016178234A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light
receiving device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2015058196A
Other languages
English (en)
Inventor
春彦 吉田
Haruhiko Yoshida
春彦 吉田
和哉 大平
Kazuya Ohira
和哉 大平
江崎 瑞仙
Zuisen Ezaki
瑞仙 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015058196A priority Critical patent/JP2016178234A/ja
Priority to US15/068,205 priority patent/US9755097B2/en
Publication of JP2016178234A publication Critical patent/JP2016178234A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Led Devices (AREA)

Abstract

【課題】 基板側から光が入射可能で、かつ光吸収層での入射光の吸収効率を向上させることが可能な受光デバイスを提供する。
【解決手段】 基板と、前記基板上に配置された光吸収層を含む半導体層と、前記基板と前記半導体層の間に配置され、光が前記基板側から入射される、屈折率が周期的に変化する第1の構造体層と、前記半導体層上に配置された反射層と、前記光吸収層に電圧を印加する一対の電極と、を備えることを特徴とする半導体受光デバイス。
【選択図】図1

Description

実施形態は、半導体受光デバイスに関する。
周知のように半導体受光デバイスは、入射した光を光電変換して光を検知する半導体デバイスである。半導体受光デバイスは、半導体層の光吸収層の端面で光を受光する端面受光デバイスと、半導体層の光吸収層の面で光を受光する面受光デバイスとに分類される。
端面受光デバイスは、光吸収層の端面から光が入射し、光が光吸収層の面に沿って拡散するため、光吸収層での光吸収効率が高く、高い光電変換性能を有する。しかしながら、端面受光デバイスは受光部である端面において高い精度で光カップリングを実現することが難しく、構造が複雑化する。
他方、面受光デバイスは例えば特許文献1に開示されている。当該面受光デバイスは、例えばIII−V族半導体から作られる基板と、この基板上に形成され、波長選択性を有するフィルタ部と、このフィルタ部上に形成され、光吸収層を有する光検知部とを備える。この受光デバイスは、光が基板側からフィルタ部を通して光検知部に入射されるため、光カップリングが容易になる。
特開2003−234494号公報
実施形態は、基板側から光が入射可能で、かつ光吸収層での入射光の吸収効率を向上させることが可能な半導体受光デバイスを提供する。
前記課題を解決するために、実施形態によると、基板と、前記基板上に配置された光吸収層を含む半導体層と、前記基板と前記半導体層の間に配置され、光が前記基板側から入射される、屈折率が周期的に変化する第1の構造体層と、前記半導体層上に配置された反射層と、前記光吸収層に電圧を印加する一対の電極とを備えることを特徴とする半導体受光デバイスが提供される。
実施形態に係る半導体受光デバイスを示す断面図である。 実施形態に係る半導体受光デバイスの製造工程を示す断面図である。 実施形態に係る半導体受光デバイスの製造工程を示す断面図である。 実施形態に係る半導体受光デバイスの製造工程を示す断面図である。 実施形態に係る別の半導体受光デバイスを示す断面図である。 実施形態に係る別の半導体受光デバイスの製造工程を示す断面図である。 実施形態に係る別の半導体受光デバイスの製造工程を示す断面図である。 実施形態に係る別の半導体受光デバイスの製造工程を示す断面図である。 実施形態に係る別の半導体受光デバイスの製造工程を示す断面図である。 互いに周期の異なる第1、第2の構造体層を組込んだ実施形態の半導体受光デバイスにおいて、光を基板を通して第1の構造体層に入射したときの、伝播光、反射光および透過光の出力比を示す特性図である。
以下、実施形態に係る半導体受光デバイスを詳細に説明する。
実施形態に係る半導体受光デバイスは、基板を備える。光吸収層を含む半導体層は、基板の主面に配置されている。屈折率が周期的に変化する第1の構造体層は、基板と半導体層の間に配置されている。第1の構造体層には、光が基板側から例えばスポットとして入射される。反射層は、半導体層上に配置されている。光吸収層に電圧を印加する一対の電極を備えている。
前記基板は、例えば光透過性の高いシリコン基板を用いることができる。
前記半導体層の光吸収層は、入射される前記光の一波長分の厚さを有することが好ましい。光吸収層を含む半導体層は、例えばIII−V族の半導体から作られる。III−V族の半導体は、例えばInP系半導体、GaAs系半導体、またはGaN系半導体を挙げることができる。
前記InP系半導体から作られる光吸収層を含む半導体層は、InGaAsP/InGaAsPの多重量子井戸層(光吸収層)を中心にして上下にInGaAsPの光閉じ込め層、InGaAsPまたはInPのクラッド層、InPまたはInGaAsのコンタクト層がそれぞれ形成された構造を有する。
別のInP系半導体から作られる光吸収層を含む半導体層は、InGaAlAs/InGaAlAsの多重量子井戸層(光吸収層)を中心にして上下にInGaAlAsの光閉じ込め層、InGaAlAsまたはInPのクラッド層、InPまたはInGaAsのコンタクト層がそれぞれ形成された構造を有する。
前記GaAs系半導体から作られる光吸収層を含む半導体層は、InGaAs/GaAsの多重量子井戸層(光吸収層)を中心にして上下にAlGaAsまたはGaAsの光閉じ込め層、AlGaAsまたはGaAsのクラッド層、GaAsのコンタクト層がそれぞれ形成された構造を有する。
別のGaAs系半導体から作られる光吸収層を含む半導体層は、AlGaAs/GaAsの多重量子井戸層(光吸収層)を中心にして上下にAlGaAsの光閉じ込め層、AlGaAsまたはGaAsのクラッド層、GaAsのコンタクト層がそれぞれ形成された構造を有する。
さらに別のGaAs系半導体から作られる光吸収層を含む半導体層は、AlGaInP/GaAsの多重量子井戸層(光吸収層)を中心にして上下にAlGaInPの光閉じ込め層、AlGaInPまたはGaAsのクラッド層、GaAsのコンタクト層がそれぞれ形成された構造を有する。
前記GaN系半導体から作られる光吸収層を含む半導体層は、InGaN/AlGaNの多重量子井戸層(光吸収層)を中心にして上下にAlGaNまたはGaNの光閉じ込め層、AlGaNまたはGaNのクラッド層、GaNまたはInGaNのコンタクト層がそれぞれ形成された構造を有する。
なお、前記各III−V系半導体から作られる半導体層において、基板側に配置されるクラッド層およびコンタクト層は1つの層(コンタクト層を兼ねるクラッド層)で形成し、上層側のクラッド層およびコンタクト層は1つのクラッド層のみで形成してもよい。
また、光吸収層を含む半導体層は例えばII−VI族の半導体(CdZnSSeのようなZnSe系半導体)から作ることもできる。
前記第1の構造体層は、例えばフォトニック結晶から作られる。フォトニック結晶は、母材層に当該母材層と異なる屈折率を持つ複数の領域を一次元方向または二次元方向に周期的に配置した構造を有する。具体的には、フォトニック結晶は例えばアモルファスシリコンのような母材層に複数の帯状孔を一次元方向に周期的に開口するか、または複数の円形、矩形の孔を二次元方向に周期的に開口し、これらの孔に母材に比べて低屈折率の誘電体層を埋め込んだ構造を有する。低屈折率の誘電体は、例えばSiO2、SiN,AlN,Al23,AlOx(xは1<x<1.5)を挙げることができる。
ここで、光の入射側である第1の構造体層の周期は入射される光の波長により選択される。例えば、入射される光の波長が長い場合には第1の構造体層の周期を長くし、入射される光の波長が短い場合には第1の構造体層の周期を短くする。
反射層は、例えば金属ミラーを含む。金属ミラーを用いる形態において、光が可視光の場合には金属ミラーは例えばAgから作ることができる。光が近赤外の場合には、金属ミラーは例えばAu,Al,Cuから作ることができる。
反射層は、斜め方向から入射される光に対する吸収性が金属ミラー比べて低い多層反射膜を含むことが好ましい。多層反射膜は、例えば高屈折率半導体層と低屈折率半導体層を交互に積層した分布反射型(Distributed Bragg Reflector: DBR)のミラーを挙げることができる。高屈折率半導体層と低屈折率半導体層は、例えばp型またはn型InP層とp型またはn型AlGaInAs層の組合せ、p型またはn型InP層とp型またはn型InGaAsP層の組み合わせ、p型またはn型GaAs層とp型またはn型AlGaAs層の組合せ等を挙げることができる。
反射層は、前記半導体層に多層反射膜および金属ミラーをこの順序で積層した構造であってもよい。
反射層は、前記半導体層に屈折率が周期的に変化する第2の構造体層および金属ミラーをこの順序で積層した構造にしてもよい。第2の構造体層は、半導体層に対して直接接して配置されるか、または絶縁層を間に挟んで配置される。
第1、第2の構造体層は、互いに異なる周期を有することが好ましい。
一対の電極は、前述した複数のIII−V族(またはII−VI族)の半導体層のうちの最下層および最上層に位置する層(例えばコンタクト層)にそれぞれ接続される。コンタクトされる層がInP系である場合、第2導電型(例えばp型)側の電極にはTi/Pt/AuまたはZn/Auを用いることができ、第1導電型(例えばn型)側の電極にはTi/Pt/Auを用いることができる。コンタクトされる層がGaAs系である場合、第2導電型(例えばp型)側の電極にはTi/Pt/Auを用いることができ、第1導電型(例えばn型)側の電極にはAuGe/Ni/Auを用いることができる。
一対の電極のうちの一方の電極が前記半導体層を覆う形態において、当該一方の電極は前記金属ミラーを兼ねることができる。
次に、実施形態に係る半導体受光デバイスを図1を参照してより具体的に説明する。
図1は、実施形態に係る半導体受光デバイスの断面図である。半導体受光デバイスは、例えば光透過性の高いシリコンから作られる例えば矩形状の基板1を備える。基板1の主面には、絶縁膜2および屈折率が周期的に変化する、フォトニック結晶からなる第1の構造体層3が部分的に形成されている。すなわち、絶縁膜2および第1の構造体層3は所望の形状、例えば円形状にパターン化されている。フォトニック結晶は、例えば母材層3aに複数の帯状孔を一次元方向に周期的に開口し、これらの孔に母材に比べて低屈折率の誘電体層3bをそれぞれ埋め込んだ構造を有する。円形状の絶縁膜2および第1の構造体層3を除く基板1には、基板と同材質の層、例えばアモルファスシリコン層4が第1の構造体層3表面と面一になるように形成されている。つまり、第1の構造体層3はアモルファスシリコン層4にその表面が当該アモルファスシリコン層4表面と面一になるように埋め込まれている。
第1の構造体層3を含むアモルファスシリコン層4の表面には、第1導電型半導体(例えばn型InP半導体)からなるコンタクトを兼ねるクラッド層5が形成されている。クラッド層5上には、第1導電型半導体からなる光閉じ込め層6、半導体からなる光吸収層7、第2導電型半導体(例えばp型InP半導体)からなる光閉じ込め層8、第2導電型半導体からなるクラッド層9がこの順序で積層されている。なお、コンタクトを兼ねるクラッド層5、光閉じ込め層6、光吸収層7、光閉じ込め層8およびクラッド層9により半導体層10を構成している。
半導体層10の最上層に位置するクラッド層9の表面には、反射層としての多層反射膜11が形成されている。多層反射膜11は、高屈折率半導体層と低屈折率半導体層を交互に積層した分布反射型(Distributed Bragg Reflector: DBR)ミラーである。高屈折率半導体層と低屈折率半導体層は、例えばp型InP層11bとp型AlGaInAs層11aとである。半導体層10の最下層に位置するクラッド層5の所望深さの表層から最上層のクラッド層9および多層反射膜11は、メサ形成により円錐台形の積層体構造をなし、この積層体構造の周辺に最下層に位置するクラッド層5が露出している。
例えばSi34からなる絶縁膜(パッシベーション膜)12は、前記円錐台形の積層体構造の表面および露出した最下層に位置するクラッド層5表面を被覆している。多層反射膜11の上面に位置し、かつその上面周縁を除く絶縁膜12部分には、例えば円形の電極コンタクト穴13が開口されている。露出した最下層に位置するクラッド層5上に位置する絶縁膜12部分には、例えばリング状の電極コンタクト穴14が前記円錐台形の積層体構造に対して同心円状に開口されている。円形キャップ状の第2導電型用電極(例えばp型用電極)15は、絶縁膜12表面に前記円錐台形の積層体構造を覆うように設けられている。また、p型用電極15は円形の電極コンタクト穴13を通して多層反射膜11の最上層に位置するp型InP層11aに接続されている。このようなp型用電極15は、多層反射膜101含む円錐台形の積層体構造を覆っているため、反射層の金属ミラーを兼ねることができる。リング状の第1導電型用電極(例えばn型用電極)16は、露出した最下層のクラッド層5上に位置する絶縁膜12表面にp型用電極15に対して同心円状に設けられている。また、n型用電極16はリング状の電極コンタクト穴14を通して半導体層10の最下層に位置するクラッド層5に接続されている。
次に、前述した図1に示す半導体受光デバイスの製造方法を図2〜図4を参照して説明する。
まず、図2の(A)に示すように基板1表面に絶縁層2、母材層3a,絶縁層21をこの順序で堆積する。つづいて、絶縁層21上にフォトリソグラフィ技術により例えば複数の帯状孔が一次元方向に周期的に開口されたレジストパターン(図示せず)を形成する。当該レジストパターンをマスクとして絶縁層21を選択的にエッチングして複数の帯状孔21aを一次元方向に周期的に形成する。パターニングされた絶縁層21をマスクとして母材層3aを選択的にエッチングすることにより、当該母材層3aに複数の帯状孔3cを一次元方向に周期的に形成する(図2の(B)図示)。
次いで、複数の帯状孔21aを含む絶縁層21表面に図示しない誘電体層(例えば絶縁層21と同じ材料)を堆積して、母材層3aの複数の帯状孔3cおよび絶縁層21の複数の帯状孔21a内を誘電体で埋め込む。その後、誘電体層および絶縁層21を化学機械研磨(CMP)により研磨および表面平坦化を行う。このCMPにより、図2の(C)に示すように母材層3aと、当該母材層3aの複数の帯状孔3c内に埋込まれ、母材に比べて低屈折率の誘電体層3bとを含むフォトフォトニック結晶からなる第1の構造体層3が形成される。つづいて、第1の構造体層3を除く母材層3aおよびその下層の絶縁層2を選択的にエッチング除去する。エッチング部を含む全面に例えばアモルファスシリコン層を当該エッチング部に十分に埋まる程度の厚さで堆積する。その後、アモルファスシリコン層をCMPにより研磨および表面平坦化を行って、図3の(D)に示すように当該エッチング部にアモルファスシリコン層4を第1の構造体層3表面と面一になるように埋め込む。すなわち、第1の構造体層3はアモルファスシリコン層4にその表面が当該アモルファスシリコン層4表面と面一になるように埋め込まれる。
また、III−V族半導体からなる基板50の表面に例えば高屈折率半導体層と低屈折率半導体層(例えばp型InP層11aとp型AlGaInAs層11b)を交互に積層した分布反射型(Distributed Bragg Reflector: DBR)ミラーである多層反射膜11をエピタキシャル成長(有機金属化学気相成長法:MOCVDまたは分子線エピタキシャル成長法:MBE)により形成する。つづいて、第2導電型半導体(例えばp型InP半導体)からなるクラッド層9、第2導電型半導体からなる光閉じ込め層8、半導体からなる光吸収層7、第1導電型半導体(例えばn型InP半導体)からなる光閉じ込め層6および第1導電型半導体からなるコンタクトを兼ねるクラッド層5をエピタキシャル成長(有機金属化学気相成長法:MOCVDまたは分子線エピタキシャル成長法:MBE)によりこの順序で積層して半導体層10を形成する(図3(E)図示)。
次いで、III−V族半導体からなる基板50を反転させ、最下層に位置する第1導電型半導体(例えばn型InP半導体)からなるコンタクトを兼ねるクラッド層5を基板1の最上層に位置する第1の構造体層3を含むアモルファスシリコン層4の表面に当接させ、接合を行う(図3の(F)図示)。このとき、第1の構造体層3を含むアモルファスシリコン層4上には第1導電型半導体(例えばn型InP半導体)からなるコンタクトを兼ねるクラッド層5が形成される。クラッド層5上には、第1導電型半導体からなる光閉じ込め層6、半導体からなる光吸収層7、第2導電型半導体(例えばp型InP半導体)からなる光閉じ込め層8、第2導電型半導体からなるクラッド層9がこの順序で積層され、さらにこれらの層からなる半導体層10上に多層反射膜11が積層される。つづいて、上部側位置するIII−V族半導体からなる基板50をCMPまたはウェットエッチングにより全て除去する(図4の(G)図示)。
次いで、多層反射膜11から半導体層10の最下層に位置するクラッド層5の所望深さの表層に亘ってメサエッチングを施すことにより、図4の(H)に示すように円錐台形の積層体構造を形成すると共に、当該積層体構造の周辺に半導体層10の最下層に位置するクラッド層5を露出させる。
次いで、積層体構造を含む全面に例えばSi34からなる絶縁膜(パッシベーション膜)12を堆積する。つづいて、多層反射膜11の上面に位置し、かつその上面周縁を除く絶縁膜12部分を選択的にエッチング除去して例えば円形の電極コンタクト穴13を開口する。同時に、露出した最下層のクラッド層5上に位置する絶縁膜12部分を選択的にエッチング除去して、例えばリング状の電極コンタクト穴14を円錐台形の積層体構造に対して同心円状に開口する。ひきつづき、全面に所望厚さの第2導電型用電極材料膜(例えばp型用電極材料膜)を堆積する。当該電極材料膜をパターニングすることにより、円錐台形の積層体構造を覆い、円形の電極コンタクト穴13を通して多層反射膜11の最上層に位置するp型InP層11aと接続する円形キャップ状の第2導電型用電極(例えばp型用電極)15を形成する。その後、全面に所望厚さの第1導電型用電極材料膜(例えばn型用電極材料膜)を堆積する。当該電極材料膜をパターニングすることにより、露出した最下層のクラッド層5上に位置する絶縁膜12表面にp型用電極15に対して同心円状で、リング状の電極コンタクト穴14を通して最下層のクラッド層5と接続するリング状の第1導電型用電極(例えばn型用電極)16を形成する(図4の(I)図示)。その後、外形加工を施して前述した図1に示す半導体受光デバイスを製造する。
以上説明した図1に示す実施形態に係る半導体受光デバイスは、光吸収層7を含む半導体層10と基板1の間に屈折率が周期的に変化する、例えばフォトニック結晶からなる第1の構造体層3が配置している。このような構成において、半導体層10中の光吸収層7にp型用電極15およびn型用電極16から電圧を印加して逆バイアスを加えた状態で、半導体層10にその下方の基板1側から光を入射させると、入射光は第1の構造体層3で屈折して光吸収層7に向かい、光吸収層7内を層方向に拡散する。
また、半導体層10上に反射層である多層反射膜11を配置することによって、前記光吸収層7内を層方向に拡散する光のうち、その上方(外部)に放出する光は前記多層反射膜11で反射されて光吸収層に戻される。戻った光は、前記第1の構造体層3で屈折して半導体層10の光吸収層7に向かい、光吸収層7内を層方向に拡散する。
このように基板1側からの入射光は、屈折率が周期的に変化する第1の構造体層3で屈折して半導体層10の光吸収層7に向かい、光吸収層7内を層方向に拡散し、かつ光吸収層7の外部に放出する光は前記多層反射膜11で反射されて光吸収層7に戻され、戻った光は記第1の構造体層3で屈折して半導体層10の光吸収層7に向かい、光吸収層7内を層方向に再び拡散する、屈折、反射を繰り返す。その結果、光が基板1側から光吸収層7に入射、つまり光吸収層7の面に入射、しても前記第1の構造体層3と多層反射膜11による作用によって、入射光を光吸収層7内にその層方向に沿って拡散できる。すなわち、入射光に対する光吸収層7での光吸収効率の増大によって、光吸収層7での光結合効率が増大して高い効率で光電変換がなされる。従って、一対の電極15,16から大きな電流を取出すことができるため、高感度の光検出が可能な半導体受光デバイスを提供できる。
なお、図1に示す反射層としての多層反射膜の代わりに金属ミラーを用いても同様な効果を奏する。しかし、金属ミラーは傾斜して入射した光に対して吸収する性質を有する。これに対し、多層反射膜は傾斜して入射した光に対する吸収が低く、大部分の光を反射するため、金属ミラーを用いた場合に比べて入射光に対する光吸収層7での光吸収効率をより増大できる。
さらに、図2〜図4に示す実施形態に係る半導体受光デバイスの製造方法によれば、予め基板(例えばシリコン基板)1の最上層に屈折率が周期的に変化する第1の構造体層3をアモルファスシリコン層4内に埋め込んで形成し、一方III−V族半導体基板50の最上層に例えばn型InP半導体からなるコンタクトを兼ねるクラッド層5を形成し、アモルファスシリコン層4とn型InP半導体からなるクラッド層5とを互いに当接させることにより、Si−InPの良好な結合性によって強固に貼り合せることが可能になる。その結果、その後のIII−V族半導体基板50を除去することによって、シリコン基板1に対するIII−V族の半導体層10の格子不整合を考慮せずに、シリコン基板1上に高品質のIII−V族の半導体層10を形成することが可能になる。
次に、実施形態に係る別の半導体受光デバイスを図5を参照してより具体的に説明する。
図5は、実施形態に係る別の半導体受光デバイスの断面図である。半導体受光デバイスは、例えば光透過性の高いシリコンから作られる例えば矩形状の基板101を備える。基板101の主面には、絶縁層102、屈折率が周期的に変化する、フォトニック結晶からなる第1の構造体層103および絶縁層104がこの順序で積層されている。フォトニック結晶は、例えば母材層103aに複数の帯状孔を一次元方向に周期的に開口し、これらの孔に母材に比べて低屈折率の誘電体層103bをそれぞれ埋め込んだ構造を有する。
絶縁層104の表面には、円形の第1導電型半導体からなるコンタクト層105が形成されている。コンタクト層105上には、第1導電型半導体からなるクラッド層106、第1導電型半導体からなる光閉じ込め層107、半導体からなる光吸収層108、第2導電型半導体からなる光閉じ込め層109、第2導電型半導体からなるクラッド層110、および第2導電型半導体からなるコンタクト層111がこの順序で積層されている。第1導電型のコンタクト層105から第2導電型のコンタクト層111までの積層体により半導体層160を構成している。第1導電型半導体からなるクラッド層106から最上層のコンタクト層111までの各層は、互いに同じ径を有し、円形の第1導電型半導体からなるコンタクト層105より小さい径の円形であり、かつ第1導電型半導体からなるコンタクト層105上に当該第1導電型半導体からなるコンタクト層105に対して同心円状に積層されている。このため、クラッド層106から最上層のコンタクト層111までの積層体の周縁に位置する当該第1導電型半導体からなるコンタクト層105部分は、リング状に露出される。
半導体層160の最上層に位置するコンタクト層111の表面には、絶縁層112、屈折率が周期的に変化する、フォトニック結晶からなる第2の構造体層113および絶縁層114がこの順序で積層されている。フォトニック結晶は、例えば母材層113aに複数の円形孔を二次元方向に周期的に開口し、これらの孔に母材に比べて低屈折率の誘電体層113bをそれぞれ埋め込んだ構造を有する。絶縁層112、第2の構造体層113および絶縁層114の各層は、互いに同じ径を有し、円形のコンタクト層111より小さい径を持つ円形であり、かつコンタクト層111上に当該コンタクト層111に対して同心円状に積層されている。このため、絶縁層112、第2の構造体層113および絶縁層114の積層体の周縁に位置するコンタクト層111部分は、リング状に露出される。
円形キャップ状の第2導電型用電極115は、第2導電型半導体からなるコンタクト層111の露出部分に絶縁層112、第2の構造体層113および絶縁層114の各層を覆うように設けている。電極115は、絶縁層114の表面と、絶縁層112、第2の構造体層113および絶縁層114の各層の側面とに接触して配置されている。リング状の第1導電型用電極116は、第1導電型半導体からなるコンタクト層105の露出部分に円形キャップ状の第2導電型用電極115に対して同心円状に設けている。
次に、前述した図5に示す半導体受光デバイスの製造方法を図6〜図9を参照して説明する。
まず、図6の(A)に示すように基板101表面に絶縁層102、母材層103a,絶縁層141をこの順序で堆積する。つづいて、絶縁層141上にフォトリソグラフィ技術により例えば複数の帯状孔が一次元方向に周期的に開口されたレジストパターン(図示せず)を形成する。当該レジストパターンをマスクとして絶縁層141を選択的にエッチングして複数の帯状孔141aを一次元方向に周期的に形成する。パターニングされた絶縁層141をマスクとして母材層103aを選択的にエッチングすることにより、当該母材層103aに複数の帯状孔103cを一次元方向に周期的に形成する(図6の(B)図示)。ひきつづき、複数の帯状孔141aを含む絶縁層141表面に図示しない誘電体層(例えば絶縁層141と同じ材料)を堆積して、母材層103aの複数の帯状孔103cおよび絶縁層141の複数の帯状孔141a内を誘電体で埋め込む。その後、絶縁層141表面の誘電体層を化学機械研磨(CMP)により研磨および表面平坦化を行う。このCMPにより、図6の(C)に示すように母材層103aと、当該母材層103aの複数の帯状孔103c内に埋込まれた、母材に比べて低屈折率の誘電体層103bとを含むフォトフォトニック結晶からなる第1の構造体層103が形成される。なお、絶縁層141の複数の帯状孔141aも絶縁層141と同材料の誘電体層で埋込まれる。
また、III−V族半導体からなる基板150の表面に第2導電型半導体からなるコンタクト層111、第2導電型半導体からなるクラッド層110、第2導電型半導体からなる光閉じ込め層109、半導体からなる光吸収層108、第1導電型半導体からなる光閉じ込め層107、第1導電型半導体からなるクラッド層106および第1導電型半導体からなるコンタクト層105をエピタキシャル成長(有機金属化学気相成長法:MOCVDまたは分子線エピタキシャル成長法:MBE)によりこの順序で積層して半導体層160を形成する。つづいて、最上層のコンタクト層105表面に絶縁層151(絶縁層141と同材料)を堆積する(図7の(D)図示)。
次いで、III−V族半導体からなる基板150を反転させ、最下層に位置する絶縁層151を前記基板101の最上層に位置する絶縁層141表面に当接させ、絶縁層(例えばSiO2層)同士の接合、貼り合せを行う(図7の(E)図示)。このとき、絶縁層151と絶縁層141とは接合して厚い絶縁層104になる。また、絶縁層104上には第1導電型半導体からなるコンタクト層105、第1導電型半導体からなるクラッド層106、第1導電型半導体からなる光閉じ込め層107、半導体からなる光吸収層108、第2導電型半導体からなる光閉じ込め層109、第2導電型半導体からなるクラッド層110および第2導電型半導体からなるコンタクト層111がこの順序で積層した半導体層160が形成される。つづいて、上部側に位置するIII−V族半導体からなる基板150をCMPまたはウェットエッチングにより全て除去する(図7の(F)図示)。
次いで、半導体層160の最上層に位置するコンタクト層111の表面に絶縁層112、母材層113a,絶縁層114をこの順序で堆積する(図7の(G)図示)。つづいて、絶縁層114上にフォトリソグラフィ技術により例えば複数の円形孔を二次元方向に周期的に開口したレジストパターン(図示せず)を形成する。当該レジストパターンをマスクとして絶縁層114の所望領域を選択的にエッチングして複数の円形孔114aを二次元方向に周期的に形成する。複数の円形孔114aを有する絶縁層114をマスクとして母材層113aを選択的にエッチングすることにより、当該母材層113aの一部に複数の円形孔113cを二次元方向に周期的に形成する(図8の(H)図示)。ひきつづき、複数の円形孔114aを含む絶縁層114表面に図示しない誘電体層(例えば絶縁層114と同じ材料)を堆積して、母材層113aの複数の円形孔113cおよび絶縁層114の複数の円形孔114a内を誘電体で埋め込む。その後、絶縁層114表面の誘電体層を化学機械研磨(CMP)により研磨および表面平坦化を行う。このCMPにより、図8の(I)に示すように母材層113aと、当該母材層113aの複数の円形孔内に埋込まれた、母材に比べて低屈折率の誘電体層113bとを含むフォトフォトニック結晶からなる第2の構造体層113を形成する。絶縁層114の複数の円形孔114aも絶縁層114と同材料の誘電体層で埋込まれる。
次いで、絶縁層112、第2の構造体層113および絶縁層114をパターニングして最上層のコンタクト層111表面に絶縁層112、第2の構造体層113および絶縁層114からなる円柱状の積層体を形成する。つづいて、第1導電型半導体からなるコンタクト層105を除く、第1導電型半導体からなるクラッド層106、第1導電型半導体からなる光閉じ込め層107、半導体からなる光吸収層108、第2導電型半導体からなる光閉じ込め層109、第2導電型半導体からなるクラッド層110および第2導電型半導体からなるコンタクト層111を選択的にエッチングして前記円柱状の積層体より径の大きいメサ形成を行う。このメサ形成は、図8の(J)に示すようにクラッド層106からコンタクト層111までの各層を前記円柱状の積層体に対して同心円状で、同積層体より径の大きい円柱状にエッチングする。このようなエッチングおよびメサ形成において、クラッド層106から最上層のコンタクト層111までの円柱状の積層体の周縁に位置する第1導電型のコンタクト層105部分が露出される。また、絶縁層112、第2の構造体層113および絶縁層114からなる前記積層体の周縁に位置する最上層のコンタクト層111部分がリング状に露出される。
次いで、全面に所望厚さの第2導電型用電極材料膜を堆積する。当該電極材料膜をパターニングすることによりコンタクト層111の露出部分に円形キャップ状の第2導電型用電極115を絶縁層112、第2の構造体層113および絶縁層114の各層を覆うように形成する。つづいて、第2導電型用の電極115を含む全面に第1導電型用電極材料膜を堆積する。当該電極材料膜をパターニングすることにより第1導電型半導体からなるコンタクト層105の露出部分にリング状の第1導電型用電極116を円形キャップ状の第1導電型用の電極115に対して同心円状に形成する(図9の(K)図示)。その後、外形加工を施して前述した図5に示す半導体受光デバイスを製造する。
以上説明した図5に示す実施形態に係る半導体受光デバイスは、光吸収層108を含む半導体層160と基板101の間に屈折率が周期的に変化する、例えばフォトニック結晶からなる第1の構造体層103を配置し、かつ半導体層160と金属ミラーとしても作用する第2導電型用電極115の間に屈折率が周期的に変化する、例えばフォトニック結晶からなる第2の構造体層113を配置している。このような構成において、半導体層160中の光吸収層108にp型用電極115およびn型用電極116から電圧を印加して逆バイアスを掛けた状態で、半導体層160にその下方の基板101側から光を入射させると、入射光は第1の構造体層103で屈折して光吸収層108に向かい、光吸収層108内を層方向に拡散する。この拡散過程で、光吸収層108の上方(第2の構造体層113側)に向かう光は、第2の構造体層113で屈折して半導体層160の光吸収層108に戻され、再び、光吸収層108内を層方向に拡散する。
従って、基板101側からの入射光は屈折率が周期的に変化する第1の構造体層103で屈折して半導体層160の光吸収層108に向かい、光吸収層108内を層方向に拡散し、かつ光吸収層108の上方(第2の構造体層113側)に向かう光は第2の構造体層113で屈折して半導体層160の光吸収層108に戻され、再び、光吸収層108内を層方向に拡散し、さらに第2の構造体層113を透過した光は第2の構造体層113の上方の金属ミラーを兼ねる第2導電型用電極115で反射され、第2の構造体層113で屈折して光吸収層108に戻され、光吸収層108内を層方向に拡散する、第1、第2の構造体層103,113の間での屈折、および金属ミラーを兼ねる第2導電型用電極115での反射を繰り返す。その結果、光が基板101側から光吸収層108に入射、つまり光吸収層108の面に入射、しても前記第1の構造層103と第2の構造体層113と金属ミラーを兼ねる第2導電型用電極115による作用によって、入射光は光吸収層108内をその層方向に沿ってより広い領域で拡散できる。すなわち、入射光に対する光吸収層108での光吸収効率をより一層増加し、光吸収層108での光結合効率が一層増大してより高い効率で光電変換がなされるため、p型用電極115およびn型用電極116からより大きな電流を取出すことができる。従って、より高感度の光検出が可能な半導体受光デバイスを提供できる。
反射層として第2の構造体層113を備える形態において、第1、第2の構造体層は互いに異なる周期を有することが好ましい。この効果を前述した図5を参照して説明する。
図5に示す基板101をシリコンから作り、絶縁層102,104,112,114をSiO2から作った。絶縁層102上の第1の構造体層103は、アモルファスシリコンからなる母材層103aと、母材層103aに複数の帯状孔を一次元方向に周期的に開口し、これらの帯状孔をアモルファスシリコンに比べて低屈折率の誘電体層であるSiO2層103bを埋め込んだフォトニック結晶から作った。なお、母材層103aは300nmの厚さにし、かつSiO2層103bの間隔(周期)は700nmに一定とした。
絶縁層104の表面に厚さ0.2μmのp型GaAsコンタクト層105を形成した。p型GaAsコンタクト層105上には、厚さ0.5μmのp型AlGaAsクラッド層106、厚さ0.2μmのp型GaAs光閉じ込め層107、InGaAs/GaAs多重量子井戸層(光吸収層)108、厚さ0.2μmのn型GaAs光閉じ込め層109、厚さ0.5μmのn型AlGaAsクラッド層110、および厚さ0.2μmのn型GaAsコンタクト層111をこの順序で積層した。
絶縁層112上の第2構造体層113は、アモルファスシリコンからなる母材層113aと、母材層113aに複数の円形孔を二次元方向に周期的に開口し、これらの円形孔をアモルファスシリコンに比べて低屈折率の誘電体層であるSiO2層113bを埋め込んだフォトニック結晶から作った。なお、母材層103aは300nmの厚さにし、かつ円形孔のSiO2層113bの二次元方向の間隔(周期)は680nmから10nm毎、増加して750nmまで変化させた。
p型GaAsコンタクト層105に接続させた電極116は、Ti/Pt/Auで作り、n型GaAsコンタクト層111に接続させた電極115はAuGe/Ni/Auで作った。
このように第1の構造体層103の周期を700nmと一定にし、第2の構造体層113の周期を680〜750nmに変化させた半導体受光デバイスにおいて、光を基板を通して第1の構造体層103に入射したときの、伝播光、反射光および透過光の出力比の変化を図10に示す。図10中のGは伝播光、Rは反射光、およびTは透過光、をそれぞれ示す。
図10から明らかなように第2の構造体層113の周期が第1の構造体層103のそれと同等であると、伝播光の出力比が小さくなり、逆に反射光の出力比が増大する。
他方、第2の構造体層113の周期が第1の構造体層103のそれより、小さくする、または大きくする、すなわち第1の構造体層103のそれと異ならせると、伝播光の出力比が大きくなり、逆に反射光の出力比が減少する。その結果、より高感度の光検出が可能な半導体受光デバイスを提供できる。
特に、第1、第2の構造体層103,113の周期を互いに異なるせる場合、第2の構造体層113の周期を第1の構造体層103のそれより大きくすることによって、伝播光の出力比をより大きくできるため、好ましい。
さらに、前述した図6〜図9に示す実施形態に係る別の半導体受光デバイスの製造方法によれば、予め基板(例えばシリコン基板)101上に屈折率が周期的に変化する第1の構造体層103を形成し、最上層にSiO2からなる絶縁層141を形成し、一方III−V族半導体基板150上に光吸収層108を含むIII−V族の半導体層160を形成し、最上層にSiO2からなる絶縁層151を形成し、各基板101,150の絶縁層141と絶縁層151とを互いに当接させることにより、SiO2−SiO2の良好な結合性によって強固に貼り合せることが可能になる。その結果、その後のIII−V族半導体基板の除去することによって、シリコン基板101に対するIII−V族の半導体層160の格子不整合を考慮せずに、シリコン基板101上に高品質のIII−V族の半導体層160を形成することが可能になる。
本発明のいつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の種々の形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,101…基板、3,103…第1の構造体層、7,108…光吸収層、10,160…半導体層、11…多層反射膜、15,16,115,116…電極、113…第2の構造体層。

Claims (10)

  1. 基板と、
    前記基板上に配置された光吸収層を含む半導体層と、
    前記基板と前記半導体層の間に配置され、光が前記基板側から入射される、屈折率が周期的に変化する第1の構造体層と、
    前記半導体層上に配置された反射層と、
    前記光吸収層に電圧を印加する一対の電極と
    を備えることを特徴とする半導体受光デバイス。
  2. 前記光吸収層を含む前記半導体層はIII−V族半導体から作られることを特徴とする請求項1記載の半導体受光デバイス。
  3. 前記半導体層の前記光吸収層は、入射される前記光の一波長分の厚さを有することを特徴とする請求項1記載の半導体受光デバイス。
  4. 前記反射層は、金属ミラーを含むことを特徴とする請求項1ないし3いずれか1項記載の半導体受光デバイス。
  5. 前記反射層は、多層反射膜を含むことを特徴とする請求項1ないし3いずれか1項記載の半導体受光デバイス。
  6. 前記反射層は、前記半導体層に前記多層反射膜および金属ミラーを順次積層した構造を有することを特徴とする請求項5記載の半導体受光デバイス。
  7. 前記反射層は、前記半導体層に屈折率が周期的に変化する第2の構造体層および前記金属ミラーを順次積層した構造を有することを特徴とする請求項4記載の半導体受光デバイス。
  8. 前記第1、第2の構造体層は、フォトニック結晶から作られることを特徴とする請求項7記載の半導体受光デバイス。
  9. 前記第1、第2の構造体層は、互いに異なる周期を有することを特徴とする請求項7または8記載の半導体受光デバイス。
  10. 前記一対の電極のうちの一方の電極が前記半導体層を覆う形態において、当該一方の電極は前記金属ミラーを兼ねることを特徴とする請求項4,6または7いずれか1項記載の半導体受光デバイス。
JP2015058196A 2015-03-20 2015-03-20 半導体受光デバイス Abandoned JP2016178234A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015058196A JP2016178234A (ja) 2015-03-20 2015-03-20 半導体受光デバイス
US15/068,205 US9755097B2 (en) 2015-03-20 2016-03-11 Semiconductor photoreceiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058196A JP2016178234A (ja) 2015-03-20 2015-03-20 半導体受光デバイス

Publications (1)

Publication Number Publication Date
JP2016178234A true JP2016178234A (ja) 2016-10-06

Family

ID=56925610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058196A Abandoned JP2016178234A (ja) 2015-03-20 2015-03-20 半導体受光デバイス

Country Status (2)

Country Link
US (1) US9755097B2 (ja)
JP (1) JP2016178234A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068019A (ja) * 2017-10-05 2019-04-25 株式会社東芝 半導体受光素子およびその製造方法
JP7159750B2 (ja) * 2018-09-26 2022-10-25 住友電気工業株式会社 光半導体素子およびその製造方法
JP2020155715A (ja) * 2019-03-22 2020-09-24 住友電気工業株式会社 光半導体素子およびその製造方法

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419533A (en) * 1982-03-03 1983-12-06 Energy Conversion Devices, Inc. Photovoltaic device having incident radiation directing means for total internal reflection
US6204088B1 (en) * 1984-08-02 2001-03-20 Lockheed Martin Corp. Glue-free backside illuminated photodiode apparatus and fabrication process
US4695861A (en) * 1985-10-21 1987-09-22 Honeywell Inc. Backside mosaic photoconductive infrared detector array
US5059787A (en) * 1990-03-22 1991-10-22 Northrop Corporation High speed broadband silicon photodetector
US5337183A (en) * 1991-02-01 1994-08-09 Yeda Research And Development Co. Ltd. Distributed resonant cavity light beam modulator
US5157537A (en) * 1991-02-01 1992-10-20 Yeda Research And Development Co., Ltd. Distributed resonant cavity light beam modulator
US5598300A (en) * 1995-06-05 1997-01-28 Board Of Regents, The University Of Texas System Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects
FR2741483B1 (fr) * 1995-11-21 1998-01-02 Thomson Csf Dispositif optoelectronique a puits quantiques
IL118209A0 (en) * 1996-05-09 1998-02-08 Yeda Res & Dev Active electro-optical wavelength-selective mirrors and active electro-optic wavelength-selective filters
US6642537B1 (en) * 1996-08-27 2003-11-04 California Institute Of Technology Dual band QWIP focal plane array
FR2757684B1 (fr) * 1996-12-20 1999-03-26 Thomson Csf Detecteur infrarouge a structure quantique, non refroidie
US5965890A (en) * 1997-01-02 1999-10-12 Raytheon Company Solid state infrared chopper
US6744552B2 (en) * 1998-04-02 2004-06-01 Michael Scalora Photonic signal frequency up and down-conversion using a photonic band gap structure
US6031951A (en) * 1998-04-24 2000-02-29 Rose Research, L.L.C. Transmission-mode optical coupling mechanism and method of manufacturing the same
CA2268997C (en) * 1998-05-05 2005-03-22 National Research Council Of Canada Quantum dot infrared photodetectors (qdip) and methods of making the same
US6720589B1 (en) * 1998-09-16 2004-04-13 Kabushiki Kaisha Toshiba Semiconductor device
WO2000031806A1 (en) * 1998-11-20 2000-06-02 California Institute Of Technology Wavelength-insensitive radiation coupling for multi-quantum well sensor based on intersubband absorption
WO2001001494A1 (en) * 1999-06-25 2001-01-04 California Institute Of Technology Multi-directional radiation coupling in quantum-well infrared photodetectors
US7167615B1 (en) * 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US8111401B2 (en) * 1999-11-05 2012-02-07 Robert Magnusson Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats
US7238960B2 (en) * 1999-12-24 2007-07-03 Bae Systems Information And Electronic Systems Integration Inc. QWIP with enhanced optical coupling
US6410917B1 (en) * 2000-01-18 2002-06-25 The United States Of America As Represented By The Secretary Of The Army Polarization-sensitive corrugated quantum well infrared photodetector array
KR100716943B1 (ko) * 2000-02-24 2007-05-10 삼성전자주식회사 광검출기 디바이스 및 그 제조방법
GB0012167D0 (en) 2000-05-20 2000-07-12 Secr Defence Brit Improvements in photo detectors
US7300803B2 (en) * 2000-10-30 2007-11-27 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US7575939B2 (en) * 2000-10-30 2009-08-18 Sru Biosystems, Inc. Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements
US7615339B2 (en) * 2000-10-30 2009-11-10 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US7264973B2 (en) * 2000-10-30 2007-09-04 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant optical biosensor
TWI227799B (en) * 2000-12-29 2005-02-11 Honeywell Int Inc Resonant reflector for increased wavelength and polarization control
US6667528B2 (en) * 2002-01-03 2003-12-23 International Business Machines Corporation Semiconductor-on-insulator lateral p-i-n photodetector with a reflecting mirror and backside contact and method for forming the same
JP2003234494A (ja) 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd 半導体受光素子
US7831152B2 (en) * 2002-06-04 2010-11-09 Finisar Corporation Optical transceiver
JP4443097B2 (ja) * 2002-06-20 2010-03-31 ソニー株式会社 GaN系半導体素子の作製方法
US7927822B2 (en) * 2002-09-09 2011-04-19 Sru Biosystems, Inc. Methods for screening cells and antibodies
JP2004319765A (ja) * 2003-04-16 2004-11-11 Sumitomo Electric Ind Ltd 化合物半導体ウエハおよびその製造方法
US7620330B2 (en) * 2003-06-05 2009-11-17 Tom Faska Optical receiver device and method
US6781160B1 (en) * 2003-06-24 2004-08-24 United Epitaxy Company, Ltd. Semiconductor light emitting device and method for manufacturing the same
US7595927B2 (en) * 2003-11-01 2009-09-29 Olympus Corporation Spatial light modulator with sub-wavelength structure
JP2005159002A (ja) 2003-11-26 2005-06-16 Seiko Epson Corp 受光素子、光モジュール、及び光伝送装置
JP5005164B2 (ja) * 2004-03-03 2012-08-22 株式会社ジャパンディスプレイイースト 発光素子,発光型表示装置及び照明装置
US7768023B2 (en) * 2005-10-14 2010-08-03 The Regents Of The University Of California Photonic structures for efficient light extraction and conversion in multi-color light emitting devices
US7282777B1 (en) * 2004-09-27 2007-10-16 California Institute Of Technology Interband cascade detectors
US8441030B2 (en) * 2004-09-30 2013-05-14 International Rectifier Corporation III-nitride multi-channel heterojunction interdigitated rectifier
US7329871B2 (en) * 2005-02-04 2008-02-12 Stc.Unm Plasmonic enhanced infrared detector element
US7432649B2 (en) * 2005-02-22 2008-10-07 Corning, Incorporated Coupled waveguides for light extraction
JP4515949B2 (ja) * 2005-03-31 2010-08-04 株式会社東芝 面型光半導体素子
US7706220B2 (en) * 2005-07-25 2010-04-27 Hitachi Media Electronics Co., Ltd. Photodetector, diffraction grating, optical pickup and optical disc apparatus
US20070153358A1 (en) * 2005-12-22 2007-07-05 Solbeam, Inc. Dispersive electro-optic prism
CN101395728B (zh) * 2006-03-10 2011-04-13 松下电工株式会社 发光元件及其制造方法
KR100736623B1 (ko) * 2006-05-08 2007-07-09 엘지전자 주식회사 수직형 발광 소자 및 그 제조방법
WO2008028181A2 (en) * 2006-09-01 2008-03-06 Georgia State University Research Foundation Inc. High operation temperature split-off band infrared detectors
US7868542B2 (en) * 2007-02-09 2011-01-11 Canon Kabushiki Kaisha Light-emitting apparatus having periodic structure and sandwiched optical waveguide
US8111440B2 (en) * 2007-04-26 2012-02-07 Hewlett-Packard Development Company, L.P. Structure and method for modulating light
JP5294584B2 (ja) * 2007-07-27 2013-09-18 キヤノン株式会社 光学素子及び光学機器
US8071945B2 (en) * 2007-08-01 2011-12-06 Stc.Unm Infrared retina
KR100900288B1 (ko) * 2007-10-29 2009-05-29 엘지전자 주식회사 발광 소자
TWI375338B (en) * 2008-11-27 2012-10-21 Epistar Corp Opto-electronic device
WO2010091042A1 (en) * 2009-02-03 2010-08-12 Georgia State University Research Foundation, Inc. High operating temperature split-off band infrared detector with double and/or graded barrier
JP2010251489A (ja) * 2009-04-15 2010-11-04 Sony Corp 固体撮像装置および電子機器
US10636929B2 (en) * 2009-04-30 2020-04-28 Massachusetts Institute Of Technology Cross-talk suppression in Geiger-mode avalanche photodiodes
US8293628B2 (en) * 2009-05-28 2012-10-23 Technion Research & Development Foundation Ltd. Strain-controlled atomic layer epitaxy, quantum wells and superlattices prepared thereby and uses thereof
US9679091B2 (en) * 2009-08-18 2017-06-13 The United States Of America As Represented By The Secretary Of The Army Computer designed resonant photodetectors and method of making
WO2011050165A2 (en) * 2009-10-21 2011-04-28 Stc.Unm Plasmonic detectors
KR101134731B1 (ko) * 2009-10-22 2012-04-13 엘지이노텍 주식회사 발광소자 및 그 제조방법
US8610079B2 (en) * 2009-12-28 2013-12-17 General Electric Company Robust radiation detector and method of forming the same
JP2011142272A (ja) 2010-01-08 2011-07-21 Canon Inc 積層構造による受光素子、該受光素子により構成された撮像素子
US8921794B2 (en) * 2010-01-22 2014-12-30 Vrije Universiteit Brussel Evanescent wave absorption based devices
KR100969100B1 (ko) * 2010-02-12 2010-07-09 엘지이노텍 주식회사 발광소자, 발광소자의 제조방법 및 발광소자 패키지
WO2011119618A2 (en) * 2010-03-24 2011-09-29 Sionyx, Inc. Devices having enhanced electromagnetic radiation detection and associated methods
JP5534927B2 (ja) * 2010-05-06 2014-07-02 株式会社東芝 固体撮像装置
US9136406B2 (en) * 2010-07-07 2015-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Solar cell assembly with diffraction gratings
US20130032825A1 (en) * 2010-08-31 2013-02-07 John Gilmary Wasserbauer Resonant Optical Cavity Semiconductor Light Emitting Device
FR2969388B1 (fr) * 2010-12-17 2013-08-23 Commissariat Energie Atomique Dispositif de photodetection.
US8338200B2 (en) * 2011-02-02 2012-12-25 L-3 Communications Cincinnati Electronics Corporation Frontside-illuminated inverted quantum well infrared photodetector devices and methods of fabricating the same
JP2012186195A (ja) * 2011-03-03 2012-09-27 Toshiba Corp 半導体発光素子及びその製造方法
JP5653270B2 (ja) 2011-03-28 2015-01-14 株式会社東芝 受光素子、その製造方法、および光送受信ユニット
WO2012138414A1 (en) * 2011-04-06 2012-10-11 Versatilis Llc Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same
TW201306323A (zh) * 2011-07-31 2013-02-01 Walsin Lihwa Corp 發光二極體裝置
JP2013038091A (ja) * 2011-08-03 2013-02-21 Toshiba Corp 固体撮像装置及びその製造方法
JP5765178B2 (ja) 2011-10-05 2015-08-19 富士通株式会社 光集積デバイスとその製造方法、及び光モジュール
KR101354516B1 (ko) * 2012-03-07 2014-01-23 가부시키가이샤 알박 장치의 제조 방법
JP5940656B2 (ja) * 2012-05-16 2016-06-29 浜松ホトニクス株式会社 光検出器
JP6035921B2 (ja) 2012-07-10 2016-11-30 富士通株式会社 光検出器およびその製造方法
JP5758359B2 (ja) 2012-08-09 2015-08-05 株式会社東芝 光配線デバイスおよびその製造方法
US9537027B2 (en) * 2013-03-28 2017-01-03 University Of Massachusetts Backside configured surface plasmonic structure for infrared photodetector and imaging focal plane array enhancement
JP6019245B2 (ja) * 2013-10-03 2016-11-02 シャープ株式会社 光電変換装置
JP6100673B2 (ja) * 2013-11-01 2017-03-22 浜松ホトニクス株式会社 量子カスケード検出器
US9337229B2 (en) * 2013-12-26 2016-05-10 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
US9929291B2 (en) * 2014-02-06 2018-03-27 Raytheon Company Photo-detector having plasmonic resonance and photon crystal thermal noise suppression
JP6224495B2 (ja) * 2014-03-19 2017-11-01 株式会社東芝 半導体レーザ装置
JP5914605B2 (ja) * 2014-09-19 2016-05-11 株式会社東芝 半導体受光素子

Also Published As

Publication number Publication date
US20160276517A1 (en) 2016-09-22
US9755097B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP4907842B2 (ja) 平面全方位リフレクタを有する発光ダイオード
TWI423543B (zh) Photonic crystal laser and photonic crystal laser manufacturing method
US7680162B2 (en) Long wavelength vertical cavity surface emitting laser device and method of fabricating the same
US9252562B2 (en) Surface emitting semiconductor laser, surface emitting semiconductor laser array, surface emitting semiconductor laser device, optical transmission device, information processing apparatus, and method of producing surface emitting semiconductor laser
JP4650631B2 (ja) 半導体発光装置
US10958042B2 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP2008258270A (ja) 半導体発光装置
JP2018029098A (ja) 半導体発光デバイスおよび多層反射膜
JP2011029339A (ja) 半導体素子およびその製造方法
JP2016178234A (ja) 半導体受光デバイス
JP6581022B2 (ja) 半導体発光デバイスおよび光半導体デバイス
JP2010177649A (ja) 半導体発光装置
US9397479B2 (en) Silicon DBR structure-integrated light element, and preparation method
JP2008205368A (ja) 光素子
JP4470819B2 (ja) 光素子
JP2010272558A (ja) 受発光装置
US7704758B2 (en) Optical device and its manufacturing method, and optical device wafer
JP4674642B2 (ja) 半導体発光装置
US9842736B2 (en) Semiconductor photo-receiving device
JP2010212347A (ja) 受発光装置
JP2019068019A (ja) 半導体受光素子およびその製造方法
JP7490719B2 (ja) 光子源及び光子源を作製する方法
JP2008042165A (ja) 面発光型半導体レーザおよびその製造方法
KR100627703B1 (ko) 하이브리드 금속접합 표면방출 레이저 및 그 제작 방법
KR100987040B1 (ko) 반도체 레이저 소자 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20180514