JP2016178122A - 半導体基板の評価方法及び半導体基板の製造方法 - Google Patents

半導体基板の評価方法及び半導体基板の製造方法 Download PDF

Info

Publication number
JP2016178122A
JP2016178122A JP2015055160A JP2015055160A JP2016178122A JP 2016178122 A JP2016178122 A JP 2016178122A JP 2015055160 A JP2015055160 A JP 2015055160A JP 2015055160 A JP2015055160 A JP 2015055160A JP 2016178122 A JP2016178122 A JP 2016178122A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxide film
evaluation
evaluating
evaluated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015055160A
Other languages
English (en)
Other versions
JP6696729B2 (ja
Inventor
和隆 江里口
Kazutaka Eriguchi
和隆 江里口
剛志 久保田
Tsuyoshi Kubota
剛志 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015055160A priority Critical patent/JP6696729B2/ja
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to DE112015006323.4T priority patent/DE112015006323B4/de
Priority to CN201580077185.9A priority patent/CN107251210A/zh
Priority to KR1020177029722A priority patent/KR102147772B1/ko
Priority to US15/557,221 priority patent/US10641708B2/en
Priority to PCT/JP2015/085234 priority patent/WO2016147510A1/ja
Priority to TW104142425A priority patent/TWI611489B/zh
Publication of JP2016178122A publication Critical patent/JP2016178122A/ja
Application granted granted Critical
Publication of JP6696729B2 publication Critical patent/JP6696729B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/02Corona rings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】高感度且つ高精度での評価が可能なフォトルミネッセンス測定による半導体基板の評価方法を提供する。【解決手段】励起光が照射される評価対象半導体基板Wの表面に、酸化膜形成処理を施すこと及び形成された酸化膜の表面をコロナ放電により帯電させることを含む前処理を施した後に励起光を照射し、励起光が照射された表面から得られる発光を検出するフォトルミネッセンス測定により、評価対象半導体基板Wの不純物汚染や欠陥の存在を評価する。【選択図】図1

Description

本発明は、半導体基板の評価方法及び半導体基板の製造方法に関する。
半導体基板の評価方法として、フォトルミネッセンス(Photoluminescence;以下、「PL」とも記載する。)測定を利用する方法(以下、「PL法」と記載する。)が、例えば特許文献1に提案されている。
特開2011−54691号公報
PL法によれば、半導体基板の表面に励起光を照射し、この励起光により励起された電子正孔対(キャリア)が再結合する際に生じる発光を検出することにより、半導体基板の品質に関する情報、例えば不純物汚染や欠陥の存在等の各種結晶欠陥に関する情報を得ることができる。
上記PL法に関し、特許文献1には、シリコンウェーハにおけるPL測定の前処理として、フッ酸洗浄及びその後の純水リンス(以下、「HF処理」と記載する。)を行うことが提案されている。
特許文献1に記載されているHF処理は、シリコンウェーハ表面を水素終端状態とすることにより(特許文献1の段落0008参照)、PL測定による評価の感度を高めるための1つの手段である。しかるに近年、半導体基板には、デバイスの高性能化等に伴い、より一層高い品質を有することが要求されている。かかる高品質化の要求に応えるためには、半導体基板の品質評価の感度を更に高めることが求められる。そしてそのためには、PL測定により得られる発光強度(PL強度)を高めることが望ましい。PL強度を高めることにより、不純物汚染や欠陥の存在が低レベルであっても検出することが可能となる、即ち高感度化が可能となるからである。
また、半導体基板の品質評価の信頼性を向上するためには、評価結果の経時的な変化は少ないこと(評価結果の時間の経過に伴うばらつきが少なく評価の精度が高いこと)が望ましい。しかるに、特許文献1に記載されているHF処理では、水素終端状態としたシリコンウェーハ表面が周辺雰囲気からの影響で経時変化することが予想されるため、HF処理からの経過時間によって測定結果にばらつきが生じてしまうと考えられる。
そこで本発明の目的は、高感度且つ高精度での評価が可能な、PL測定による半導体基板の評価方法を提供することにある。
本発明者らは上記目的を達成するために鋭意検討を重ねた結果、PL測定の前処理として、酸化膜形成及び形成した酸化膜へのコロナ放電処理を行うことにより、特許文献1に記載されているHF処理による前処理を行った場合と比べて、PL強度が高まり、且つ測定結果の時間の経過に伴うばらつきが低減されることを新たに見出し、本発明を完成させた。
即ち、上記目的は、下記手段によって達成された。
[1]半導体基板の品質をフォトルミネッセンス測定より評価する半導体基板の評価方法であって、
前記フォトルミネッセンス測定による評価は、評価対象半導体基板の表面に前処理を施した後に励起光を照射し、該励起光が照射された表面から得られる発光を検出することを含み、且つ、
前記前処理は、前記励起光が照射される評価対象半導体基板の表面に酸化膜形成処理を施すこと及び形成された酸化膜の表面をコロナ放電により帯電させることを含む、前記半導体基板の評価方法。
[2]前記半導体基板は、p型半導体基板である[1]に記載の半導体基板の評価方法。
[3]前記半導体基板は、n型半導体基板である[1]に記載の半導体基板の評価方法。
[4]前記コロナ放電により、前記酸化膜の表面をプラスに帯電させる[1]〜[3]のいずれかに記載の半導体基板の評価方法。
[5]前記評価される品質は、半導体基板の金属汚染である[1]〜[4]のいずれかに記載の半導体基板の評価方法。
[6]前記酸化膜形成処理を、乾式酸化により行う[1]〜[5]のいずれかに記載の半導体基板の評価方法。
[7]前記酸化膜形成処理を、熱酸化により行う[6]に記載の半導体基板の評価方法。
[8]前記半導体基板は、シリコン基板である[1]〜[7]のいずれかに記載の半導体基板の評価方法。
[9]複数の半導体基板を含む半導体基板のロットを準備すること、
前記ロットから少なくとも1つの半導体基板を抽出すること、
前記抽出された半導体基板を評価すること、及び、
前記評価により良品と判定された半導体基板と同一ロットに含まれていた少なくとも1つの半導体基板を製品基板として出荷すること、
を含み、且つ
前記抽出された半導体基板の評価を、[1]〜[8]のいずれかに記載の方法によって行う、半導体基板の製造方法。
本発明によれば、半導体基板の金属汚染等の品質を、PL測定による評価によって高感度且つ高精度に評価することができる。更にこれにより、高品質な半導体基板を安定供給することも可能となる。
強励起顕微フォトルミネッセンス法に基づく測定装置の概略図である。 実施例1及び比較例1で得られた、PL強度と金属汚染濃度との相関を示すグラフである。
[半導体基板の評価方法]
本発明の一態様は、半導体基板の品質をフォトルミネッセンス測定により評価する半導体基板の評価方法に関する。本発明の半導体基板の評価方法において、前記フォトルミネッセンス測定による評価は、評価対象半導体基板の表面に前処理を施した後に励起光を照射し、該励起光が照射された表面から得られる発光を検出することを含み、且つ、前記前処理は、前記励起光が照射される評価対象半導体基板の表面に酸化膜形成処理を施すこと及び形成された酸化膜の表面をコロナ放電により帯電させることを含む。
以下、本発明の半導体基板の評価方法(以下、単に「評価方法」とも記載する。)について、更に詳細に説明する。
<評価対象半導体基板>
評価対象半導体基板は、例えばシリコン基板(シリコンウェーハ)である。ただし、評価対象基板はシリコン基板に限定されるものではなく、例えば化合物半導体基板にも、本発明の評価方法は適用可能である。
半導体基板の導電型は、p型であってもn型であってもよい。評価対象半導体基板がいずれの導電型の半導体基板であっても、本発明の評価方法によれば、高感度且つ高精度に、その品質を評価することができる。半導体基板の導電型を問わず適用可能であることは、本発明の評価方法の利点の1つである。また、後述するようにコロナ放電による帯電は、プラスであってもよくマイナスであってもよい。本発明の評価方法では、評価対象半導体基板の導電型によってコロナ放電条件(プラスの帯電をもたらすかマイナスの帯電をもたらすか)を変えることを要さないため、コロナ処理装置の設定を測定の度に変更せずとも評価を行うことができる。また、p型とn型の半導体基板が混在しているサンプル群であっても一括して前処理を行うことができる。以上の点も、本発明の評価方法の利点である。なお評価対象半導体基板のサイズは、例えば直径200mm、300mm、450mmであることができるが、これより小さくても大きくてもよく、特に限定されるものではない。また、その基板抵抗値も特に限定されるものではない。
<PL測定前の前処理>
詳細を後述するように、PL測定による評価では、評価対象半導体基板のいずれか一方の表面(以下、「被照射表面」ともいう。)に励起光を照射し、この励起光が照射された表面から得られる発光を検出する。本発明の評価方法では、かかる励起光照射前に、前処理として、被照射表面に酸化膜形成処理を施し、その後、形成された酸化膜の表面をコロナ放電により帯電させる。これにより表面再結合を抑制できることがPL強度を高めることに寄与し、且つ上記前処理後の表面は経時変化が少ないことが評価結果の時間の経過に伴うばらつきを低減することに寄与すると、本発明者らは推察している。
以下、上記の酸化膜形成及びコロナ放電について更に詳細に説明する。
(酸化膜形成)
酸化膜形成では、評価対象半導体基板の少なくとも被照射表面に酸化膜を形成すればよく、被照射表面以外の部分に酸化膜が形成されてもよい。酸化膜形成は、乾式酸化(ドライ酸化)、湿式酸化(ウェット酸化)のいずれによって行ってもよい。測定精度の更なる向上の観点からは、形成される酸化膜の均質性や膜厚の面内均一性は高いことが好ましい。この点からは、湿式酸化に比べて乾式酸化が有利である。
乾式酸化は、熱酸化、プラズマ処理等の処理液に依らずに酸化膜の形成が可能な各種方法によって行うことができ、熱酸化が好ましい。熱酸化は、加熱された酸化性雰囲気中に半導体基板を配置することにより行うことができる。ここで酸化性雰囲気とは、酸素を少なくとも含む雰囲気であり、酸素を例えば10体積%〜100体積%含む雰囲気であることができる。酸化性雰囲気の雰囲気温度(加熱温度)は例えば700〜1300℃とすることができ、加熱時間は例えば1〜1000分間とすることができるが、酸化膜を形成することができればよく、上記範囲の加熱温度及び加熱時間に限定されるものではない。
上記酸化膜形成処理によって形成される酸化膜の厚さは、例えば2nm〜1μmの範囲とすることができるが、特に限定されるものではない。なお酸化膜形成前の被照射表面には自然酸化膜が存在する場合がある。そのような自然酸化膜を除去した後に上記酸化膜形成処理を施してもよく、除去せずに酸化膜形成処理を施してもよい。自然酸化膜の除去は、例えば特許文献1に記載されているようなHF処理によって行うことができる。ただしHF処理は湿式処理であるため、面内で処理のばらつきが発生しやすい傾向がある。この点を考慮すると、自然酸化膜を除去せずに上記酸化膜形成処理を施すことが、より好ましい。
(コロナ放電)
本発明の評価方法では、上記酸化膜形成処理により形成された酸化膜の表面をコロナ放電により帯電させる。コロナ放電は、市販のコロナ処理装置を用いる等の従来公知のコロナ放電処理法によって行うことができる。コロナ放電により酸化膜表面を帯電させることにより表面再結合が抑制されることが、PL強度を高めることに寄与すると本発明者らは推察している。
上記酸化膜表面は、コロナ放電によりプラスに帯電してもよく、マイナスに帯電してもよい。コロナ放電によりプラスイオンを発生させれば酸化膜表面をプラスに帯電させることができ、マイナスイオンを発生させれば酸化膜表面をマイナスに帯電させることができる。PL強度をより高める観点及び測定結果の時間の経過に伴うばらつきをより低減する観点からは、上記酸化膜表面をプラスに帯電させることが好ましい。
以下は本発明者らによる推察であって本発明を何ら限定するものではないが、本発明者らは、コロナ放電により酸化膜表面を帯電させることにより、半導体基板表面のエネルギーバンドを曲げることができることが、表面再結合を抑制しPL強度を高めること及び測定結果の時間の経過に伴うばらつきをより低減することに寄与していると考えている。詳しくは、プラスに帯電させることにより表面のバンドは負方向に曲がり、表面のエネルギー準位が電子によって埋められることが、再結合を抑制するように作用すると本発明者らは考えている。また、マイナスに帯電させることにより表面のバンドは正方向に曲がり、電子が表面に近づくことを阻害することが、再結合を抑制するように作用すると本発明者らは考えている。以上の表面バンドモデルによれば、表面のエネルギー準位を電子によって埋めることにより表面再結合を抑制する方が(プラスに帯電させる方が)、表面のバンドを曲げることで電子が表面に近づくことを阻害するよりも(マイナスに帯電させるよりも)、表面再結合をより効果的に抑制することができると考えられる。ただし上記の通り、以上は本発明者らによる推察であり、また本発明における酸化膜表面の帯電は、上記の通りプラスであってもマイナスであってもよい。
<PL測定>
本発明の評価方法では、以上の酸化膜形成処理及びコロナ放電を行った後に、PL測定が行われる。PL測定は、公知の方法で行うことができ、特に限定されるものではない。操作の簡便性の観点からは、温度制御が不要な室温フォトルミネッセンス測定(室温PL測定)により行うことが好ましい。シリコン基板を例にとると、室温PL法では、試料基板表面から入射させた、シリコンのバンドギャップよりエネルギーの大きな励起光により表面近傍で発生させた電子正孔対(すなわちキャリア)が、基板内部に拡散しながら発光して消滅していく。この発光は、バンド端発光と呼ばれ、室温(例えば20〜30℃)での波長が約1.15μmの発光強度を示す。通常、フォトルミネッセンス測定では、励起光として可視光が使用されるため、PL強度としては、波長950nm以上の光強度を測定すれば励起光から分離することができるため高感度な測定が可能となる。この点からは、PL強度としてバンド端発光強度を測定することが好ましい。ここで、不純物や欠陥の存在や存在量によって、PL強度の高低の違いが生じるため、例えば評価対象半導体基板の被照射表面の一部で測定されるPL強度や面内各部で測定されるPL強度の平均値等により、不純物汚染の有無や程度、欠陥の存在の有無や存在量を、評価することができる。また、面内各部でのPL強度の高低の違いによって、不純物や欠陥の面内分布を評価することもできる。
室温PL測定によるPL強度の測定に使用可能な装置の一例としては、強励起顕微フォトルミネッセンス法に基づいた測定装置を挙げることができる。強励起顕微フォトルミネッセンス法とは、可視光レーザーによりシリコン中のキャリアを励起させ、さらに励起されたキャリアが直接、バンドギャップ間で再結合する際に発生する発光(バンド端発光)強度を検出するものである。図1は、強励起顕微フォトルミネッセンス法に基づく測定装置の概略図であり、同図において、10は測定装置、1はレーザー光源、2はハーフミラー、3はフォトルミネッセンス検出器、4はオートフォーカス用検出器、5はバンドパスフィルター、6は入力計、7は出力計、8は表面散乱光検出器、Wは測定対象試料(半導体基板)である。測定対象試料Wは、図示しないX・Yステージ上に載置されており、X・Yステージが作動することで、励起レーザー光が基板面のX方向、Y方向にスキャニングされる。これにより評価対象半導体基板のPL強度情報を取得することができる。PL強度情報は、評価対象半導体基板の被照射表面の全面において取得してもよく、一部において取得してもよい。また、PL強度情報としてPL面内分布情報を取得する場合、取得される面内分布情報は、PL強度のラインプロファイルであっても、マッピングプロファイルであってもよい。面内全域にわたり品質評価を行うためには、マッピングプロファイルを取得することが好ましい。マッピングプロファイルでは、PL強度の高〜低を、例えば黒〜白の輝度(明暗の度合い)に割り当てることでマッピング画像の明暗によりPL強度の高低を評価することができる。
<評価対象の品質>
本発明の評価方法において評価対象となる品質は、半導体基板に含まれることでPL強度の変化をもたらす各種結晶欠陥の有無や程度、存在量であることができる。例えば、金属、ドーパント等の不純物による汚染の有無や程度;点欠陥、線欠陥、面欠陥等の構造欠陥の有無や存在量;酸素析出物、微小空洞等の微小欠陥の有無や存在量;等の各種結晶欠陥の有無や存在量を、評価対象とすることができる。これらの結晶欠陥は、評価対象半導体基板の表面、表層部、又はバルクに存在し得る。ここで表層部とは、半導体基板の表面から深さ1μm程度の領域をいい、バルクとは半導体基板の表面から深さ1μm超より更に深い領域又は半導体基板全体をいうものとする。本発明の評価方法によれば、表面、表層部、又はバルクの各種結晶欠陥の有無や程度、存在量を評価することができる。
[半導体基板の製造方法]
本発明の更なる態様は、
複数の半導体基板を含む半導体基板のロットを準備すること、
前記ロットから少なくとも1つの半導体基板を抽出すること、
前記抽出された半導体基板を評価すること、及び、
前記評価により良品と判定された半導体基板と同一ロットに含まれていた少なくとも1つの半導体基板を製品基板として出荷すること、
を含み、且つ
前記抽出された半導体基板の評価を、本発明の半導体基板の評価方法によって行う、半導体基板の製造方法、
に関する。
上述の本発明の半導体基板の評価方法によれば、半導体基板の品質を高感度且つ高精度に評価することができる。よって、かかる評価方法により品質評価した結果、例えば不純物汚染の有無や程度、又は欠陥の有無や存在量が、高品質なデバイスを製造するために使用可能な良品として許容されるレベルであると判定(良品と判定)された半導体基板と同一ロット内の半導体基板を製品基板として出荷することにより、高品質なデバイスを作製可能な製品基板を、高い信頼性をもって提供することができる。なお、良品と判定する基準は、半導体基板の用途等に応じて基板に求められる物性を考慮して設定することができる。また1ロットに含まれる基板数及び抽出する基板数は適宜設定すればよい。
以下、本発明を実施例により更に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。
以下のPL測定では、図1に示す装置として、Nanometrics社製のPL測定装置SiPHERを用い、測定レーザーとして波長532nmの光源を利用し、500μmピッチでバンド端フォトルミネッセンス発光強度マップ測定を行った。
[前処理の違いによるPL強度及び経時的な変化の確認]
(1)評価対象半導体基板の準備
直径200mmのp型、n型のシリコンウェーハ(抵抗:10Ω・cm)を、各導電型についてそれぞれ8枚用意した。
(2)PL測定用試料の準備
以下、p型シリコンウェーハ8枚を、試料p−1、p−2、p−3、p−4、p−5、p−6、p−7、p−8と呼ぶ。n型シリコンウェーハ8枚も同様に、試料n−1〜n−8とする。
試料p−1、n−1は、前処理なしでPL測定を行った。他の試料は、それぞれ下記表1に示す前処理を施した後に、PL測定を行った。
表1に示す「酸化膜形成」は、熱酸化炉内で熱酸化処理である(酸素100%雰囲気、炉内雰囲気温度1100℃、処理時間10分間、形成された酸化膜の厚さは約40nm)。
表1に示す「コロナ(+)」は、被処理表面をプラスに帯電させるコロナ放電処理(プラスのコロナ放電処理)である。
表1に示す「コロナ(−)」は、被処理表面をマイナスに帯電させるコロナ放電処理(マイナスのコロナ放電処理)である。
表1に示す「HF」とは、試料を5質量%フッ化水素酸水溶液に10分間浸漬した後に10分間純粋でリンスする処理(HF処理)である。
また、表1中、「→」とは、→の左側に記載の処理の後、右側に記載の処理を施したことを意味する。
(3)PL測定
上記各試料の表面(前処理を施した試料については前処理が施された表面)において上記マップ測定を5回繰り返し、各回の面内平均値を当該回のPL強度とした。こうして求められた各回のPL強度、及び5回のPL強度の平均値、変動係数CV(Coefficient of variation;(標準偏差/平均値)×100)を求めた。結果を表1に示す。
表1に示す結果から、p型シリコンウェーハ、n型シリコンウェーハとも、PL測定の前処理として酸化膜形成及びコロナ放電処理を行うことにより、PL強度が高まること、及び繰り返し測定における測定結果の時間の経過に伴うばらつき(経時的な変化)が低減されること(変動係数CVが低下すること)が確認された。
また、表1に示す結果から、p型シリコンウェーハ、n型シリコンウェーハとも、コロナ放電により酸化膜表面をプラスに帯電させた場合、マイナスに帯電させた場合と比べてPL強度が高まり、且つ測定結果の時間の経過に伴うばらつき(経時的な変化)が低減されることも確認された。
[実施例1、比較例1(金属汚染評価への適用)]
表面を既知濃度のタングステンWで汚染した直径200mmのn型シリコンウェーハを、各汚染水準についてそれぞれ2枚準備した。
各汚染水準のシリコンウェーハについて、PL測定の前処理として、1枚のシリコンウェーハには上述の「酸化膜形成→コロナ(+)」を施し、他の1枚には上述のHF処理を施した後、上述の方法によりPL強度を求めた。
既知の金属汚染濃度(タングステン濃度)を横軸に取り、縦軸にPL強度を取ったグラフが、図2に示すグラフである。図2に示すグラフを最小二乗法によりフィッティングしたところ、図2に示す直線が得られた。相関係数の二乗Rが1に近いほど、タングステン量と求められたPL強度との間に強い相関があることを意味する。
図2に示すように、PL測定の前処理として酸化膜形成及びコロナ放電処理を行った結果、HF処理を行った場合と比べて、いずれの汚染水準でもPL強度は高く、且つ相関係数Rは1に近かった。
以上の結果から、本発明の評価方法により金属汚染の高感度測定が可能であることが確認できる。また、表1に示すように、本発明の評価方法によれば、測定結果の時間の経過に伴うばらつき(経時的な変化)が少なく、高精度での評価も可能である。
本発明は、半導体基板の製造分野において有用である。

Claims (9)

  1. 半導体基板の品質をフォトルミネッセンス測定により評価する半導体基板の評価方法であって、
    前記フォトルミネッセンス測定による評価は、評価対象半導体基板の表面に前処理を施した後に励起光を照射し、該励起光が照射された表面から得られる発光を検出することを含み、且つ、
    前記前処理は、前記励起光が照射される評価対象半導体基板の表面に酸化膜形成処理を施すこと及び形成された酸化膜の表面をコロナ放電により帯電させることを含む、前記半導体基板の評価方法。
  2. 前記半導体基板は、p型半導体基板である請求項1に記載の半導体基板の評価方法。
  3. 前記半導体基板は、n型半導体基板である請求項1に記載の半導体基板の評価方法。
  4. 前記コロナ放電により、前記酸化膜の表面をプラスに帯電させる請求項1〜3のいずれか1項に記載の半導体基板の評価方法。
  5. 前記評価される品質は、半導体基板の金属汚染である請求項1〜4のいずれか1項に記載の半導体基板の評価方法。
  6. 前記酸化膜形成処理を、乾式酸化により行う請求項1〜5のいずれか1項に記載の半導体基板の評価方法。
  7. 前記酸化膜形成処理を、熱酸化により行う請求項6に記載の半導体基板の評価方法。
  8. 前記半導体基板は、シリコン基板である請求項1〜7のいずれか1項に記載の半導体基板の評価方法。
  9. 複数の半導体基板を含む半導体基板のロットを準備すること、
    前記ロットから少なくとも1つの半導体基板を抽出すること、
    前記抽出された半導体基板を評価すること、及び、
    前記評価により良品と判定された半導体基板と同一ロットに含まれていた少なくとも1つの半導体基板を製品基板として出荷すること、
    を含み、且つ
    前記抽出された半導体基板の評価を、請求項1〜8のいずれか1項に記載の方法によって行う、半導体基板の製造方法。
JP2015055160A 2015-03-18 2015-03-18 半導体基板の評価方法及び半導体基板の製造方法 Active JP6696729B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015055160A JP6696729B2 (ja) 2015-03-18 2015-03-18 半導体基板の評価方法及び半導体基板の製造方法
CN201580077185.9A CN107251210A (zh) 2015-03-18 2015-12-16 半导体基板的评价方法及半导体基板的制造方法
KR1020177029722A KR102147772B1 (ko) 2015-03-18 2015-12-16 반도체 기판의 평가 방법 및 반도체 기판의 제조 방법
US15/557,221 US10641708B2 (en) 2015-03-18 2015-12-16 Method of evaluating semiconductor substrate and method of manufacturing semiconductor substrate
DE112015006323.4T DE112015006323B4 (de) 2015-03-18 2015-12-16 Verfahren zur Bewertung eines Halbleitersubstrats und Verfahren zur Herstellung eines Halbleitersubstrats
PCT/JP2015/085234 WO2016147510A1 (ja) 2015-03-18 2015-12-16 半導体基板の評価方法及び半導体基板の製造方法
TW104142425A TWI611489B (zh) 2015-03-18 2015-12-17 半導體基板的評估方法及半導體基板的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055160A JP6696729B2 (ja) 2015-03-18 2015-03-18 半導体基板の評価方法及び半導体基板の製造方法

Publications (2)

Publication Number Publication Date
JP2016178122A true JP2016178122A (ja) 2016-10-06
JP6696729B2 JP6696729B2 (ja) 2020-05-20

Family

ID=56919773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055160A Active JP6696729B2 (ja) 2015-03-18 2015-03-18 半導体基板の評価方法及び半導体基板の製造方法

Country Status (7)

Country Link
US (1) US10641708B2 (ja)
JP (1) JP6696729B2 (ja)
KR (1) KR102147772B1 (ja)
CN (1) CN107251210A (ja)
DE (1) DE112015006323B4 (ja)
TW (1) TWI611489B (ja)
WO (1) WO2016147510A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820680B1 (ko) * 2016-12-05 2018-01-22 에스케이실트론 주식회사 반도체 기판 제조 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531729B2 (ja) 2016-07-19 2019-06-19 株式会社Sumco シリコン試料の炭素濃度評価方法、シリコンウェーハ製造工程の評価方法、シリコンウェーハの製造方法およびシリコン単結晶インゴットの製造方法
TWI727141B (zh) 2017-02-10 2021-05-11 環球晶圓股份有限公司 用於評估半導體結構的方法
FR3073944B1 (fr) * 2017-11-21 2019-12-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Methode de mesure par photoluminescence d'un echantillon

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240450A (ja) * 1994-02-28 1995-09-12 Nec Yamagata Ltd 担体寿命測定方法
JPH10502490A (ja) * 1994-04-09 1998-03-03 マックス − プランク − ゲゼルシャフト・ツール・フェルデルンク・デア・ビッセンシャフテン・エー・ファー 不動態化された表面を有する半導体素子およびその製造方法
JPH10270516A (ja) * 1997-03-26 1998-10-09 Sumitomo Metal Ind Ltd 半導体ウエハの評価方法及びその装置
JP2011054691A (ja) * 2009-08-31 2011-03-17 Sumco Corp 半導体ウェーハの表面または表層評価方法
JP2011082312A (ja) * 2009-10-06 2011-04-21 Kobe Steel Ltd 半導体キャリア寿命測定装置および該方法
JP2014143325A (ja) * 2013-01-24 2014-08-07 Sumco Corp 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952063A (en) 1985-03-01 1990-08-28 Therma-Wave, Inc. Method and apparatus for evaluating surface and subsurface features in a semiconductor
TW273042B (ja) 1992-10-19 1996-03-21 Mex Kk
IL155021A0 (en) 2000-10-06 2003-10-31 Aoti Operating Co Inc Method to detect surface metal contamination
US6791099B2 (en) 2001-02-14 2004-09-14 Applied Materials, Inc. Laser scanning wafer inspection using nonlinear optical phenomena
CN100481360C (zh) * 2003-02-03 2009-04-22 三菱住友硅晶株式会社 检查方法、解析片的制作方法、解析方法以及解析装置
JP2006339605A (ja) * 2005-06-06 2006-12-14 Sumitomo Electric Ind Ltd 化合物半導体部材のダメージ評価方法、化合物半導体部材の製造方法、窒化ガリウム系化合物半導体部材及び窒化ガリウム系化合物半導体膜
JP4940737B2 (ja) 2006-04-11 2012-05-30 株式会社Sumco 少数キャリア拡散長測定方法およびシリコンウェーハの製造方法
JP5682858B2 (ja) 2011-05-20 2015-03-11 株式会社Sumco シリコンウェーハの評価方法および製造方法
EP2804905A4 (en) * 2012-02-24 2015-08-19 Daikin Ind Ltd FLUOR RUBBER COMPOSITION
KR102068741B1 (ko) 2013-06-04 2020-01-22 삼성디스플레이 주식회사 다결정 규소막의 검사 방법
JP6214975B2 (ja) 2013-09-10 2017-10-18 日本特殊陶業株式会社 負荷駆動装置及びセンサ制御装置
JP6344168B2 (ja) 2014-09-11 2018-06-20 株式会社Sumco ボロンドープp型シリコンウェーハの金属汚染評価方法および評価装置、ならびにボロンドープp型シリコンウェーハの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240450A (ja) * 1994-02-28 1995-09-12 Nec Yamagata Ltd 担体寿命測定方法
JPH10502490A (ja) * 1994-04-09 1998-03-03 マックス − プランク − ゲゼルシャフト・ツール・フェルデルンク・デア・ビッセンシャフテン・エー・ファー 不動態化された表面を有する半導体素子およびその製造方法
JPH10270516A (ja) * 1997-03-26 1998-10-09 Sumitomo Metal Ind Ltd 半導体ウエハの評価方法及びその装置
JP2011054691A (ja) * 2009-08-31 2011-03-17 Sumco Corp 半導体ウェーハの表面または表層評価方法
JP2011082312A (ja) * 2009-10-06 2011-04-21 Kobe Steel Ltd 半導体キャリア寿命測定装置および該方法
JP2014143325A (ja) * 2013-01-24 2014-08-07 Sumco Corp 半導体ウェーハの金属汚染評価方法および半導体ウェーハの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820680B1 (ko) * 2016-12-05 2018-01-22 에스케이실트론 주식회사 반도체 기판 제조 방법
WO2018105935A1 (ko) * 2016-12-05 2018-06-14 에스케이실트론 주식회사 반도체 기판 제조 방법
CN110036463A (zh) * 2016-12-05 2019-07-19 爱思开矽得荣株式会社 半导体基材的制造方法
US10755989B2 (en) 2016-12-05 2020-08-25 Sk Siltron Co., Ltd. Semiconductor substrate manufacturing method
CN110036463B (zh) * 2016-12-05 2022-10-11 爱思开矽得荣株式会社 半导体基材的制造方法

Also Published As

Publication number Publication date
KR20170122279A (ko) 2017-11-03
JP6696729B2 (ja) 2020-05-20
KR102147772B1 (ko) 2020-08-25
US20180038797A1 (en) 2018-02-08
TWI611489B (zh) 2018-01-11
US10641708B2 (en) 2020-05-05
DE112015006323T5 (de) 2017-11-30
CN107251210A (zh) 2017-10-13
DE112015006323B4 (de) 2024-05-02
TW201705326A (zh) 2017-02-01
WO2016147510A1 (ja) 2016-09-22

Similar Documents

Publication Publication Date Title
JP5682858B2 (ja) シリコンウェーハの評価方法および製造方法
WO2016147510A1 (ja) 半導体基板の評価方法及び半導体基板の製造方法
US7727783B2 (en) Method of measuring minority carrier diffusion length and method of manufacturing silicon wafer
JP5659632B2 (ja) ボロンドープp型シリコンウェーハの鉄濃度分析方法および分析装置、シリコンウェーハ、ならびにシリコンウェーハの製造方法
JP5087855B2 (ja) 熱処理評価用ウェーハ、熱処理評価方法、および半導体ウェーハの製造方法
JP2015156420A (ja) シリコン単結晶中の炭素濃度評価方法及び半導体デバイスの製造方法
JP2015111615A (ja) シリコン単結晶中の炭素濃度評価方法、及び、半導体デバイスの製造方法
JP5407212B2 (ja) 熱処理炉評価方法および半導体ウェーハの製造方法
JP5720560B2 (ja) 半導体基板の評価方法
TWI559424B (zh) 半導體晶圓的金屬汙染即時監控方法
JP2017181092A (ja) 清浄度評価方法、洗浄条件決定方法、およびシリコンウェーハの製造方法
JP5949303B2 (ja) エピタキシャル成長炉の評価方法およびエピタキシャルウェーハの製造方法
JP2017224695A (ja) シリコンエピタキシャルウェーハのエピタキシャル層の評価方法及びシリコンエピタキシャルウェーハの製造方法
JP5577842B2 (ja) ボロンドープp型シリコンウェーハの鉄濃度測定方法および測定装置、シリコンウェーハ、ならびにシリコンウェーハの製造方法
JP6458612B2 (ja) 半導体ウェーハの製造方法および半導体ウェーハの評価方法
JP6852703B2 (ja) 炭素濃度評価方法
JP2007266258A (ja) シリコンウェーハのbmd密度評価方法
JP2019050283A (ja) シリコン単結晶基板中の炭素濃度評価方法、及び半導体デバイスの製造方法
JP2013093434A (ja) 半導体基板の解析方法
KR20110000150A (ko) 기판의 전기적 특성 평가 방법
JP2017017237A (ja) 再結合ライフタイム測定の前処理方法
JP2010192553A (ja) シリコン基板中のCu及びNi含有量の評価方法
JP2014139960A (ja) シリコン基板のライフタイム測定の前処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6696729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250