JP2016121170A - スクレロスチンに対する抗体の使用のための組成物および方法 - Google Patents

スクレロスチンに対する抗体の使用のための組成物および方法 Download PDF

Info

Publication number
JP2016121170A
JP2016121170A JP2016014340A JP2016014340A JP2016121170A JP 2016121170 A JP2016121170 A JP 2016121170A JP 2016014340 A JP2016014340 A JP 2016014340A JP 2016014340 A JP2016014340 A JP 2016014340A JP 2016121170 A JP2016121170 A JP 2016121170A
Authority
JP
Japan
Prior art keywords
antibody
sclerostin
amino acid
seq
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016014340A
Other languages
English (en)
Other versions
JP6401196B2 (ja
Inventor
ミヒャエラ・クナイセル
Michaela Kneissel
クリスティーヌ・アリュー
Christine Halleux
ショウ
Shou-Ih Hu
ショウ−イー・フ
Diefenbach-Streiber Beate
ベアテ・ディーフェンバッハ−シュトライバー
Josef Prassler
ヨーゼフ・プラスラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mereo Biopharma 3 Ltd
Original Assignee
Mereo Biopharma 3 Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40219404&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016121170(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mereo Biopharma 3 Ltd filed Critical Mereo Biopharma 3 Ltd
Publication of JP2016121170A publication Critical patent/JP2016121170A/ja
Application granted granted Critical
Publication of JP6401196B2 publication Critical patent/JP6401196B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • A61K31/663Compounds having two or more phosphorus acid groups or esters thereof, e.g. clodronic acid, pamidronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/10Musculoskeletal or connective tissue disorders
    • G01N2800/108Osteoporosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)

Abstract

【課題】哺乳類において骨形成、骨塩密度、骨塩量、骨量、骨質および骨強度を増加させ
得る、抗体または機能性タンパク質を提供すること。
【解決手段】スクレロスチンポリペプチドに特異的に結合する抗体または該抗体の抗原結
合部分を含む機能性タンパク質を提供する。
【選択図】なし

Description

技術分野
本発明は、スクレロスチンに対する抗体ならびにスクレロスチンにより仲介される病的
障害または骨異常に関連する疾患、例えば、骨粗鬆症の処置における該抗体の使用のため
の組成物および方法に関する。
発明の背景
SOST遺伝子は、213個のアミノ酸からなる分泌型糖タンパク質であるスクレロスチンタ
ンパク質をコードする。スクレロスチンは、システインノット含有因子のスーパーファミ
リーのメンバーである。スクレロスチンは、DAN/Cerberusタンパク質ファミリーに関連し
、BMPとその受容体との結合を阻害し、その結果、BMPシグナル伝達カスケードを阻害する
ことにより、直接BMPシグナル伝達を阻害する(Avsian-Kretchmer, Mol Endocrinol 2004,
18(1):1-12)。
スクレロスチンmRNA発現は、ヒト成体においては主に骨および腎臓で検出される。スク
レロスチンタンパク質は、主に骨で検出され得る。骨の中でも、その発現は、成熟および
終末分化骨形成細胞である骨細胞に限定されている。
スクレロスチンは、ヒトおよびマウスにおける骨形成の有力なネガティブレギュレータ
ーである。SOST発現の欠如は、硬結性骨化症を生じる(Balemans et al. Hum Mol Genet.,
2001, 10(5):537-43; Brunkow et al. Am J Hum Genet, 2001, 68(3):577-89)。患者は
、生涯にわたって骨の過成長を患い、その結果、増加した骨塩密度および強度を生じる。
患者らは、他の内分泌学的異常を示しておらず、彼らが生涯を通じて受けるすべての合併
症は、骨の異常な蓄積に関連するものである。この劣性疾患についてのヘテロ接合保因者
はまた、増加した骨量を示す(Gardner et al. J Clin Endocrinol Metab, 2005, 90(12):
6392-5)。この表現型は、SOST欠損マウスで再び生じ得て、その過剰発現は、骨減少症を
生じる。さらに、硬結性骨化症の表現型コピーであるファン・ブッヘム症候群[MIM 23910
0]は、長い範囲の骨エンハンサーのゲノム欠失によるSOSTの誤制御により引き起こされる
(Balemans et al. J Med Gene, 2002, 39(2):91-7; Loots et al.; Genome Res, 2005, 1
5(7):928-35)。最後に、SOSTは、骨形成の間に副甲状腺ホルモン(臨床上有効な骨形成原
理)により下方調節され、これは、PTHの同化作用の一部がSOSTにより仲介され得ることを
示す(Keller and Kneissel Bone, 2005, 37(2):148-58)。
スクレロスチンは、BMP(骨形成タンパク質)と結合し、インビトロでBMPアンタゴニスト
として作用し得る(Winkler et al. EMBO J., 2003, 22(23):6267-76)。スクレロスチンは
また、LRP5/LRP6に直接結合するか(Li et al. J Biol Chem., 2005, 20;280(20); Semeno
v, J Biol Chem. 2006 Oct 19; van Bezooijen et al. J Bone Miner Res, 2006, Oct 10
)、または間接的に結合することにより(Winkler et al. J Biol Chem., 2005, 28;280(4)
:2498-502)、古典的Wntシグナル伝達のネガティブレギュレーターとして作用する。
スクレロスチン発現の欠損は、高い骨形成を生じるが、骨吸収は、影響を受けない(Scl
erosteosis, Van Buchem disease) (Balemans et al. 2001; Brunkow et al. Am J Hum G
enet, 2001, 68(3):577-89, Balemans et al. 2006; Loots et al.; Genome Res, 2005,
15(7):928-35)。
骨障害についての現在利用可能な処置のほとんどは、成体の骨密度を増加させることが
できず、現在利用可能な処置のほとんどは、主に、新規骨形成を刺激するというよりはむ
しろ、さらなる骨吸収を阻害することにより作用する。
骨減少を処置するために使用される医薬の1つの例は、エストロゲンである。しかしな
がら、エストロゲンが長期にわたる任意の有効性を発揮するか否かについては明らかでは
ない。さらに、エストロゲンは、さまざまな型の腫瘍、例えば、乳癌および子宮内膜癌に
罹患するリスクを増加させ得る。骨粗鬆症に対する現在の他の治療法は、ビスホスホネー
ト(例えば、Fosamax(商標)、Actonel(商標)、Bonviva(商標)、Zometa(商標)、オルパドロ
ネート、ネリドロネート、スケリド、ボネフォス)、副甲状腺ホルモン、カルシリティッ
クス(calcilytics)、カルシミメティックス(calcimimetics)(例えば、シナカルセット)、
スタチン、アナボリックステロイド、ランタンおよびストロンチウム塩、ならびにフッ化
ナトリウムを含む。しかしながら、そのような治療法は、しばしば、望まない副作用を生
じ得る。
発明の要約
本明細書に記載された本発明の1つの態様は、スクレロスチンポリペプチド(配列番号15
5)を標的とする抗体または該抗体の抗原結合部分を含む機能性タンパク質であって、哺乳
類でスクレロスチンポリペプチドに特異的に結合し、骨形成、骨塩密度、骨塩量、骨量、
骨質および骨強度を増加させ得る、抗体または機能性タンパク質を提供する。
1つの態様において、本発明の抗体は、インビトロで、骨石灰化のスクレロスチン阻害
を阻止する能力を有する。関連する態様において、本発明の抗体は、wnt-1仲介シグナル
伝達経路のスクレロスチン阻害を阻止する能力を有する。他の関連する態様において、本
発明の抗体は、スクレロスチンとLRP6の結合を妨げて、BMPにより誘導されるSmad1リン酸
化について、高用量でスクレロスチンが有する阻害効果を妨害し得る。他の態様において
、本発明の抗体は、配列番号155に包含されるアミノ酸112から126(すなわち、該領域は、
配列番号155のアミノ酸112から126からなる)および/またはアミノ酸160から174(すなわち
、該領域は、配列番号155のアミノ酸160から174からなる)のスクレロスチン領域に結合し
、より特には、ARLLPNAIGRGKWWR(配列番号156)およびRLVASCKCKRLTRFH(配列番号157)を含
む領域に結合する。
スクレロスチンは、HEK293で、STF(古典的wntシグナル伝達について読み出されるレポ
ーターである、Supertopflash)のwnt1仲介活性化を阻害する。ある態様において、本発明
の抗体は、非常に再現性のある方法で、wntシグナル伝達レポーター読み出しを回復する
非骨芽細胞でのWntシグナル伝達レポーターアッセイにおける本発明の抗体の観察され
た阻害効果は、インビボで、スクレロスチン阻害による骨形成応答の誘導に変換されるこ
とを示している。確かに、老齢齧歯類でのインビボ実験は、本発明の抗体が強い骨同化作
用を促進することを示す。骨量増加は、副甲状腺ホルモンの極端に高い同化用量での毎日
の間欠的な処置(それは、ポジティブコントロールとして使用された)の効果レベルに達し
た。
したがって、他の好ましい態様では、本発明の抗体は、低いpM範囲でスクレロスチンに
対する親和性を有し、約10nMのIC50でwntシグナル伝達におけるスクレロスチンの影響を
阻害する。
より好ましくは、他の好ましい態様において、本発明の抗体は、アミノ酸112と126との
間に含まれるスクレロスチンの領域(すなわち、該領域は、配列番号155のアミノ酸112か
ら126からなる)およびアミノ酸160と174との間に含まれるスクレロスチンの領域(すなわ
ち、該領域は、配列番号155のアミノ酸160から174からなる)を含むスクレロスチン領域、
より特別には、少なくとも下記のペプチドARLLPNAIGRGKWWR(配列番号156)およびRLVASCKC
KRLTRFH(配列番号157)の各々に重複する領域に結合し、低いpM範囲でスクレロスチンに対
する親和性を有し、約10nMのIC50でwntシグナル伝達におけるスクレロスチンの影響を阻
害する。そのような抗体は、副甲状腺ホルモンの極端に高い同化用量での毎日の皮下処置
(ポジティブコントロール)の効果レベルで、マウス動物モデルの体軸および体肢骨格にお
ける骨量を増加させる能力を有し、したがって、骨異常、例えば、骨粗鬆症に関連する疾
患の処置において有用である。
さらなる態様は、骨粗鬆症を処置するために、他の治療剤、例えば、ビスホスホネート
、副甲状腺ホルモン、副甲状腺ホルモン放出剤(カルシリティックス)、LRP4中和抗体およ
びDKK-1中和抗体と組み合わせた本発明の抗体を含む組成物を含む。
wnt-1アッセイでのMOR05813_IgG2λの効果。 MC3T3-1b細胞でのBMP-2誘導石灰化におけるMOR05813_IgG2λ。 LRP6-SOST ELISAでのMOR05813_IgG2λの効果。 ホスホ-Smad1アッセイでのMOR05813_IgG2λの効果。 A - Hek293細胞でのwnt-1アッセイにおけるSOST阻害作用についてのLRP4ノックダウン(siRNA)の効果(黒色の数値: SOSTの非存在下、STFとの比較、ボールド体の黒色の数値: SOSTの存在/非存在下、STF活性の比率)。 B - Hek293細胞でのwnt-1アッセイにおけるSOST IC50およびDkk1 IC50についてのLRP4過剰発現の効果の特異性; C - C28a2細胞でのwnt-1アッセイにおけるSOSTおよびDkk1阻害作用についてのLRP4過剰発現の効果の特異性; D - Hek293細胞でのwnt-1アッセイにおけるSOSTおよびDkk1阻害作用についてのLRP4ノックダウン(siRNA)の効果の特異性; E - LRP4によるMOR05813の活性の調節。 マウス試験、インビボpQCT-MOR05813での2.5週間の処理は、近接脛骨骨幹端での全骨塩量を増加させる。 マウス試験、インビボpQCT-MOR05813での2.5週間の処理は、近接脛骨骨幹端での全骨塩密度を増加させる。 マウス試験、インビボpQCT-MOR05813での2.5週間の処理は、近接脛骨骨幹端での皮質厚を増加させる。 マウス試験、インビボuQCT-MOR05813での2.5週間の処理は、近接脛骨骨幹端での海綿状骨量を増加させる。 マウス試験、インビボuQCT-MOR05813での2.5週間の処理は、近接脛骨骨幹端での骨梁幅を増加させる。 マウス試験、インビボpQCT-MOR05813での5週間の処理は、近接脛骨骨幹端でのさらなる全骨塩密度を増加させる。 マウス試験、エクスビボDEXA-MOR05813での5週間の処理は、脛骨でのさらなる骨塩密度を増加させる。 マウス試験、エクスビボDEXA-MOR05813での5週間の処理は、大腿骨でのさらなる骨塩密度を増加させる。 マウス試験、エクスビボDEXA-MOR05813での5週間の処理は、脊椎でのさらなる骨塩密度を増加させる。 マウス試験、エクスビボ組織形態計測-MOR05813での2.5週間の処理は、体肢骨格(大腿骨遠位骨幹端)での骨形成速度を増加させる。 マウス試験、エクスビボ組織形態計測-MOR05813での2.5週間の処理は、体肢骨格(大腿骨遠位骨幹端)での骨石灰化速度を増加させる。 マウス試験、エクスビボ組織形態計測-MOR05813での2.5週間の処理は、体肢骨格(大腿骨遠位骨幹端)での石灰化面を増加させる。 マウス試験、エクスビボ組織形態計測-MOR05813での2.5週間の処理は、体軸骨格(腰椎)での骨形成速度を増加させる。 マウス試験、エクスビボ組織形態計測-MOR05813での2.5週間の処理は、破骨細胞面で測定されたとおり、体肢骨格(大腿骨遠位骨幹端)での骨吸収に影響を与えない。 LRP6のSOST結合におけるMOR05813_IgG2λの効果を示すELISA。0.9nMSOSTが各ケースで使用された。 MOR05813およびゾレドロン酸での共処理後のマウス試験、インビボpQCT。(A) 全骨塩密度、(B) 全骨塩量、(C) 皮質厚、および(D) 海綿状骨塩密度。 マウス試験、インビボ pQCT: アレンドロン酸(alen)でのプレ処理後のMOR05813での処理。(A) 全骨塩密度、(B) 全骨塩量、(C) 皮質厚、および(D) 海綿状骨塩密度。 MOR05813および(i) 抗DKK1、または(ii) PTHでの同化共処理後のマウス試験、インビボ pQCT。(A) 全骨塩密度、(B) 全骨塩量、(C) 皮質厚、および(D) 海綿状骨塩密度。
詳細な説明
本発明は、スクレロスチンと特異的に結合し、スクレロスチンの機能特性を阻害する単
離抗体、特に、ヒト抗体に関する。ある態様において、本発明の抗体は、特定の重鎖およ
び軽鎖配列に由来し、および/または特定のアミノ酸配列を含むCDR領域のような特定の構
造特徴を含む。本発明は、単離抗体、該抗体を製造する方法、該抗体を含む免疫抱合体お
よび多価もしくは多特異的分子、ならびに本発明の抗体、免疫抱合体もしくは二重特異性
分子を含む医薬組成物を提供する。本発明はまた、スクレロスチン発現の存在と関連する
障害もしくは状態を阻害すること、例えば、スクレロスチンにより仲介されるか、もしく
は増加したレベルのスクレロスチンと関連する病的障害、例えば、骨関連疾患、例えば、
骨粗鬆症の処置において、該抗体を使用する方法に関する。
本発明がより容易に理解され得るようにするため、特定の用語について最初に定義する
。追加の定義は、詳細な説明において行う。
“含む”なる用語は、“含む”および“からなる”を包含し、例えば、Xを“含む”組
成物は、専らXからなる場合もあるし、追加の何かを含む場合もある(例えば、X + Y)。
数値xについての“約”なる用語は、例えば、x±10%を意味する。
“実質的に”なる句は、“完全に”を除外するものではなく、例えば、Yが“実質的に
”存在しない組成物には、Yが完全に存在しない場合もある。“実質的に”なる句は、必
要に応じて、本発明の定義から除外され得る。
“免疫応答”なる用語は、例えば、リンパ球、抗原提示細胞、食細胞、顆粒球、および
上記細胞または肝臓により産生される可溶性巨大分子(抗体、サイトカイン、および補体
を含む)の作用を意味し、侵入病原体、病原体に感染した細胞もしくは組織、癌細胞、ま
たは自己免疫もしくは病的炎症の場合には、正常なヒト細胞もしくは組織の選択的な損傷
、破壊、またはヒト身体からの除去を生じる。
“スクレロスチン”なる用語は、配列番号155で定義されたヒトスクレロスチンを意味
する。組み換えヒトスクレロスチンは、R&D Systems (Minneapolis, MN, USA; 2006 cat#
1406-ST-025)から入手可能である。さらに、組み換えマウススクレロスチンは、R&D Sys
tems; (Minneapolis, MN, USA; 2006 cat# 1589-ST-025)から市販で入手可能である。米
国特許第6,395,511号および第6,803,453号、ならびに米国特許出願公開20040009535およ
び20050106683は、一般的な抗スクレロスチン抗体に言及している。
本明細書で示される“抗体”なる用語は、全抗体および任意の抗原結合断片(すなわち
、“抗原結合部分”)またはその一本鎖を含む。天然に生じる“抗体”は、ジスルフィド
結合により相互に連結された少なくとも2個の重(H)鎖および2個の軽(L)鎖を含む糖タンパ
ク質である。各重鎖は、重鎖可変領域(本明細書では、VHと省略する)および重鎖定常領域
からなる。重鎖定常領域は、3個のドメイン(CH1、CH2およびCH3)からなる。各軽鎖は、軽
鎖可変領域(本明細書では、VLと省略する)および軽鎖定常領域からなる。軽鎖定常領域は
、1個のドメイン(CL)からなる。VHおよびVL領域はさらに、フレームワーク領域(FR)と呼
ばれるより保存された領域に散在する、相補性決定領域(CDR)と呼ばれる超可変領域に細
分化され得る。各VHおよびVLは、アミノ末端からカルボキシ末端まで下記の順に並んだ3
個のCDRおよび4個のFRからなる: FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。重鎖および軽
鎖の可変領域は、抗原と相互作用する結合ドメインを含む。抗体の定常領域は、免疫系の
さまざまな細胞(例えば、エフェクター細胞)および古典的補体系の第1補体(C1q)を含む、
宿主組織または因子への免疫グロブリンの結合を仲介し得る。
本明細書で使用される抗体の“抗原結合部分”(または、単に“抗原部分”)なる用語は
、全長抗体または抗原(例えば、スクレロスチン)に特異的に結合する能力を保持する1種
もしくはそれ以上の抗体の断片を意味する。抗体の抗原結合機能は、全長抗体の断片によ
り行われ得ることが示されている。抗体の“抗原結合部分”なる用語の範囲内に包含され
る結合断片の例は、VL、VH、CLおよびCH1ドメインからなる一価断片である、Fab断片; ヒ
ンジ領域でジスルフィド架橋により結合した2個のFab断片を含む二価断片である、F(ab)2
断片; VHおよびCH1ドメインからなる、Fd断片; 抗体の単一アームのVLおよびVHドメイン
からなる、Fv断片; VHドメインからなる、dAb断片(Ward et al., 1989 Nature 341:544-5
46); ならびに単離した相補性決定領域(CDR)を含む。
さらに、Fv断片の2個のドメイン(VLおよびVH)は、別々の遺伝子によりコードされてい
るが、組み換え法を用いて、一本鎖タンパク質として作製されることを可能にする合成リ
ンカーによりそれらを結合させることができ、そこで、VLおよびVH領域は対をなし、一価
分子を形成する(一本鎖Fv(scFv)として既知である; 例えば、Bird et al., 1988 Science
242:423-426; およびHuston et al., 1988 Proc. Natl. Acad. Sci. 85:5879-5883を参
照のこと)。そのような一本鎖抗体はまた、抗体の“抗原結合領域”なる用語の範囲内に
包含されることを意図する。これらの抗体断片は、当業者に既知の慣用的な技術を用いて
取得され、断片は、インタクト抗体の場合と同じ方法で、利用のためにスクリーニングさ
れる。
本明細書で使用される“単離抗体”なる用語は、異なる抗原性特異性を有する他の抗体
が実質的に存在しない(例えば、スクレロスチンに特異的に結合する単離抗体は、スクレ
ロスチン以外の抗原に特異的に結合する抗体が実質的に存在しない)抗体を意味する。し
かしながら、スクレロスチンに特異的に結合する単離抗体は、他の抗原、例えば、他の種
由来のスクレロスチン分子に対する交差反応を有し得る。さらに、単離抗体は、細胞物質
および/または化学物質が実質的に存在しないものであり得る。
本明細書で使用される“モノクローナル抗体”または“モノクローナル抗体組成物”な
る用語は、抗体分子の単一分子組成物の調製物を意味する。モノクローナル抗体組成物は
、特定のエピトープについての単一結合特異性および親和性を示す。
本明細書で使用される“ヒト抗体”なる用語は、フレームワークおよびCDR領域がヒト
起源の配列に由来する可変領域を有する抗体を含むことを意図する。さらに、抗体が定常
領域を含むとき、定常領域はまた、該ヒト配列、例えば、ヒト生殖細胞系列配列、または
ヒト生殖細胞系列配列の突然変異型もしくはKnappik, et al.(2000. J Mol Biol 296, 57
-86)に記載されたヒトフレームワーク配列解析に由来するコンセンサスフレームワーク配
列を含む抗体に由来する。
本発明のヒト抗体は、ヒト配列によりコードされていないアミノ酸残基(例えば、イン
ビトロでのランダムもしくは部位特異的突然変異誘発、またはインビボでの体細胞突然変
異により導入された突然変異)を含み得る。しかしながら、本明細書で使用される“ヒト
抗体”なる用語は、他の哺乳類種、例えば、マウスの生殖細胞系列に由来するCDR配列が
ヒトフレームワーク配列に移植された抗体を含むことを意図していない。
“ヒトモノクローナル抗体”なる用語は、フレームワークおよびCDR領域がヒト配列に
由来する可変領域を有する、単一結合特異性を示す抗体を意味する。1つの態様において
、ヒトモノクローナル抗体は、トランスジェニック非ヒト動物、例えば、不死化細胞と融
合したヒト重鎖トランスジーンおよび軽鎖トランスジーンを含むゲノムを有するトランス
ジェニックマウスから得られたB細胞を含むハイブリドーマにより産生される。
本明細書で使用される“組み換えヒト抗体”なる用語は、組み換え的手段により調製さ
れ、発現され、作製され、または単離されたすべてのヒト抗体を含み、例えば、ヒト免疫
グロブリン遺伝子についてトランスジェニックであるか、もしくはトランスクロモソーム
である動物(例えば、マウス)、またはそこから調製したハイブリドーマから単離された抗
体、ヒト抗体を発現するように形質転換させた宿主細胞、例えば、形質転換体から単離さ
れた抗体、リコンビナントコンビナトリアルヒト抗体ライブラリーから単離された抗体、
および他のDNA配列に対する配列であるヒト免疫グロブリン遺伝子の全部または一部のス
プライシングを含む、任意の他の手段により調製され、発現され、作製され、または単離
された抗体を含む。そのような組み換えヒト抗体は、フレームワークおよびCDR領域がヒ
ト生殖細胞系列免疫グロブリン配列に由来する可変領域を有する。しかしながら、ある態
様において、そのような組み換えヒト抗体は、インビトロ突然変異誘発を受け得て(また
は、ヒトIg配列についてトランスジェニックである動物を使用するとき、インビボ体細胞
突然変異誘発を受け得る)、その結果、組み換え抗体のVHおよびVL領域のアミノ酸配列は
、ヒト生殖細胞系列VHおよびVL配列に由来し関連するが、天然には、インビボで、ヒト抗
体生殖細胞系列レパートリーの中に存在し得ない配列である。
本明細書で使用される“アイソタイプ”は、重鎖定常領域遺伝子により提供される抗体
クラス(例えば、IgM、IgE、IgG、例えば、IgG1もしくはIgG2)を意味する。
“抗原を認識する抗体”および“抗原に特異的な抗体”なる句は、本明細書において“
抗原に特異的に結合する抗体”なる用語と交換可能に使用される。
本明細書で使用される“スクレロスチンポリペプチドに特異的に結合する”抗体は、ス
クレロスチンポリペプチドに、1 x 10-8 Mもしくはそれ未満、1 x 10-9 Mもしくはそれ未
満、または1 x 10-10 Mもしくはそれ未満のKDで結合する抗体を意味することが意図され
る。“スクレロスチン以外の抗原と交差反応する”抗体は、該抗原に、0.5 x 10-8 Mもし
くはそれ未満、5 x 10-9 Mもしくはそれ未満、または2 x 10-9 Mもしくはそれ未満のKD
結合する抗体を意味することが意図される。“特定の抗原と交差反応しない”抗体は、該
抗原に、1.5 x 10-8 Mもしくはそれより大きいKD、または5 x 10-8 Mから10 x 10-8 MのK
D、または1 x 10-7 Mもしくはそれより大きいKDで結合する抗体を意味することが意図さ
れる。特定の態様において、抗原と交差反応しない抗体は、標準的な結合アッセイで、こ
れらのタンパク質に対して本質的に検出不能の結合を示す。
本明細書で使用される“細胞に基づくwntシグナル伝達アッセイにおいて、スクレロス
チンの阻害効果を妨害する”抗体は、細胞に基づくsuper top flash (STF)アッセイで、
スクレロスチンの存在下、wntにより誘導されるシグナル伝達を、1mM未満、100 nM未満、
20 nM未満、10nMもしくはそれ未満のIC50で回復する抗体を意味することが意図される。
該STFアッセイは、下記の実施例において詳述されている。
本明細書で使用される“細胞に基づく石灰化において、スクレロスチンの阻害効果を妨
害する”抗体は、細胞に基づくアッセイで、スクレロスチンの存在下、BMP2により誘導さ
れる石灰化を、1mM未満、500nM未満、100nM未満、10nM未満、1nM未満もしくはそれ未満の
IC50で回復する抗体を意味することが意図される。該アッセイは、下記の実施例において
詳述されている。
本明細書で使用される“Smad1リン酸化アッセイにおいて、スクレロスチンの阻害効果
を妨害する”抗体は、細胞に基づくアッセイで、スクレロスチンの存在下、BMP6により誘
導されるSmad1リン酸化を、1mM未満、500nM未満、100nM未満、10nM未満、1nM未満もしく
はそれ未満のIC50で回復する抗体を意味することが意図される。該アッセイは、下記の実
施例において詳述されている。
本明細書で使用される“スクレロスチンのLRP-6への結合を阻害する”抗体は、スクレ
ロスチンのLRP-6への結合を、1mM未満、500nM未満、100nM未満、10nM未満、5nM未満、3nM
未満、1nM未満もしくはそれ未満のIC50で阻害する抗体を意味する。該アッセイは、下記
の実施例において詳述されている。
本明細書で使用される“骨形成および骨量および骨密度を増加させる”抗体は、実施例
10に示されたとおり、PTHの高い同化用量での毎日の間欠的な処置のレベルに、骨形成お
よび骨量および骨密度を到達させることが可能な抗体を意味する。
本明細書で使用される“Kassoc”または“Ka”なる用語は、特定の抗体抗原相互作用の
結合速度を意味することが意図され、一方で、本明細書で使用される“Kdis”または“KD
”なる用語は、特定の抗体抗原相互作用の解離速度を意味することが意図される。本明細
書で使用される“KD”なる用語は、解離定数を意味することが意図され、それは、KdとKa
の割合(すなわち、Kd/Ka)から取得され得て、モル濃度(M)として示される。抗体について
のKD値は、当分野において十分に確立された方法を用いて決定され得る。抗体のKDを決定
する方法は、表面プラズモン共鳴を用いるか、またはバイオセンサー系、例えば、Biacor
e(登録商標)系を用いることによる。
本明細書で使用される“親和性”なる用語は、単一の抗原性部位での抗体と抗原間の相
互作用の強度を意味する。各抗原性部位内で、抗体“アーム”の可変領域は、抗原と弱い
非共有結合を介して、多くの部位で相互作用し; 相互作用が増すほど、親和性は強くなる
本明細書で使用される“アビディティ”なる用語は、抗体−抗原複合体の全体的な安定
性または強度の情報を与える指標を意味する。これは抗体−エピトープの親和性、抗原お
よび抗体各々の価数、およびこれらの相互作用部分の構造的配置または三次元構成の3つ
の主要な因子によって制御される。結局のところ、これらの因子は抗体の特異性、すなわ
ち、特定の抗体が正確な抗原エピトープと結合する確率、ならびにその結合の安定性およ
び持続性を定義する。
よりアビディティの高いプローブを得るために、二量体コンジュゲート(FACSマーカー
と結合した2分子の抗体タンパク質またはポリペプチド)を構築することができ、このよ
うにして親和性の低い相互作用(例えば、生殖細胞系列抗体とのもの)がFACSにより、よ
り容易に検出できるようになる。抗原結合のアビディティを増強する別の手段としては、
抗スクレロスチン抗体の、本明細書に記載の構築物のいずれかの二量体または多量体を作
製することを含む。このような多量体は、例えば、天然C−N末端結合を模倣することによ
り、またはそれらの定常領域によりともに保持される抗体二量体を模倣することにより、
個々のモジュール間の共有結合を介して形成可能である。Fc/Fcインターフェースに対し
て操作される結合は共有結合であっても非共有結合であってもよい。さらに、Fc以外の二
量体形成相手または多量体形成相手を、スクレロスチンハイブリッドの構築に用いて、こ
のようなより高次の構造物を作製することができる。例えば、Borean (WO2004039841)に
記載された三量体化ドメインもしくは国際公開WO98/18943に記載された五量体化ドメイン
のような多量体化ドメインを使用することができる。
本明細書で使用される“交差反応”なる用語は、他の抗原上のエピトープに結合する抗
体もしくは抗体の集団を意味する。これは、抗体の低いアビディティもしくは特異性によ
り、または同一のもしくは極めて類似するエピトープを有する複数の異なる抗原により引
き起こされ得る。交差反応は、抗原の関連する群への一般的な結合を欲する場合に、また
は抗原エピトープ配列が進化において高度に保存されていないときに交差種標識を試みよ
うとする場合に、望ましいものである。
本明細書で使用されるIgG抗体についての“高親和性”なる用語は、標的抗原に関して
、10-8 Mもしくはそれ未満、10-9 Mもしくはそれ未満、または10-10 Mもしくはそれ未満
のKDを有する抗体を意味する。しかしながら、“高親和性”結合は、他の抗体アイソタイ
プについて変化し得る。例えば、IgMアイソタイプについての“高親和性”結合は、10-7
Mもしくはそれ未満、または10-8 Mもしくはそれ未満のKDを有する抗体を意味する。
本明細書で使用される“対象”なる用語は、任意のヒトもしくは非ヒト動物を含む。“
非ヒト動物”なる用語は、すべての脊椎動物、例えば、哺乳類および非哺乳類、例えば、
非ヒト霊長類、ヒツジ、イヌ、ネコ、ウマ、ウシ、ニワトリ、両生類、爬虫類などを含む
本明細書で使用される“最適化される”なる用語は、ヌクレオチド配列が、産生細胞も
しくは生物、一般には、真核細胞、例えば、PichiaもしくはTrichodermaの細胞、チャイ
ニーズハムスター卵巣細胞(CHO)またはヒト細胞で好まれるコドンを用いて、アミノ酸配
列をコードするように改変されることを意味する。最適化スクレオチド配列は、出発ヌク
レオチド配列によりもともとコードされるアミノ酸配列(それはまた“親”配列として既
知である)を完全に保持するか、もしくはできるだけ保持するように改変される。本明細
書で示される最適化配列は、哺乳類細胞で好まれるコドンを有するように改変されている
が、他の真核細胞でのこれらの配列の最適化発現はまた、本明細書で想定される。最適化
されたヌクレオチド配列によりコードされるアミノ酸配列はまた、最適化されているもの
と定義する。
本発明のさまざまな局面はさらに、下記のサブセクションに詳述されている。
さまざまな種のスクレロスチンに対する抗体の結合能力を評価するための標準的なアッ
セイは、当分野で既知であり、例えば、ELISA、ウエスタンブロッティングおよびRIAを含
む。適当なアッセイは、実施例に詳述されている。抗体の結合動態(例えば、結合親和性)
は、当分野で既知の標準的なアッセイ、例えば、Biacore解析により評価され得る。スク
レロスチンの機能特性に関する抗体の効果(例えば、受容体結合、骨溶解の予防もしくは
軽減)を評価するためのアッセイは、実施例においてさらに詳述されている。
したがって、当技術分野で既知であり、本明細書に記載される方法論にしたがって測定
されるようなこれらのスクレロスチンの機能特性(例えば、生化学的活性、免疫活性、細
胞活性、生理活性もしくは他の生物活性など)の1つ以上を“阻害する”抗体は、抗体の
非存在下で(または、無関係の特異性を有するコントロール抗体が存在するときに)見られ
るものと比較して、特定の活性における統計学的に有意な減少と関連するものと理解され
る。スクレロスチン活性を阻害する抗体は、このような統計学的に有意な、測定パラメー
ターの少なくとも10%、少なくとも50%、80%または90%の減少を果たし、特定の態様におい
て、本発明の抗体は、スクレロスチンの機能活性を95%、98%または99%を超えて阻害し得
る。
“交差妨害する”、“交差妨害した”および“交差妨害”なる用語は、本明細書におい
て交換可能に使用され、それらは、標準的な競合結合アッセイにおいて他の抗体もしくは
結合剤のスクレロスチンへの結合を妨害する抗体または他の結合剤の能力を意味する。
抗体または他の結合剤が、他の抗体もしくは結合分子のスクレロスチンへの結合を妨害
できる(それ故に、本発明による交差妨害と呼ばれ得る)能力もしくは程度は、標準的な競
合結合アッセイを用いて決定され得る。1つの適当なアッセイは、Biacore技術(例えば、B
IAcore 3000装置(Biacore, Uppsala, Sweden)を用いることによる)の使用を含み、それは
、表面プラズモン共鳴技術を用いて、相互作用の程度を測定し得る。交差妨害を測定する
ための他のアッセイは、ELISAに基づく方法を用いる。
両方法に関するさらなる詳細は、実施例に記載されている。
本発明によると、本発明による交差妨害抗体もしくは他の結合剤は、記載されたBIAcor
e交差妨害アッセイでスクレロスチンに結合し、その結果、抗体もしくは結合剤の組み合
わせ(混合)の記録された結合は、組み合わせでの2種の抗体もしくは結合剤の最大の理論
的結合の80%から0.1%(例えば、80%から4%)、特に、最大の理論的結合の75%から0.1%(例え
ば、75%から4%)、より特には、70%から0.1%(例えば、70%から4%)、より特別には、(上記
した)最大の理論的結合の65%から0.1%(例えば、65%から4%)である。
溶液相抗スクレロスチン抗体が、溶液相抗スクレロスチン抗体の非存在下で得られたス
クレロスチン検出シグナル(すなわち、ポジティブコントロールウェル)と比較して、スク
レロスチン検出シグナル(すわわち、被覆抗体に結合したスクレロスチンの量)の60%から1
00%、特に、70%から100%、より特別には、80%から100%の減少を生じることが可能である
とき、抗体は、実施例に記載されたELISAアッセイで交差妨害として定義される。
モノクローナル抗体
本発明の抗体は、実施例に記載されたとおり単離されたヒトモノクローナル抗体を含む
。本発明の単離抗体のVHアミノ酸配列は、配列番号69-77に示されている。本発明の単離
抗体のVLアミノ酸配列は、各々、配列番号80-88に示されている。本発明の抗体の対応す
る好ましい全長重鎖アミノ酸配列は、配列番号113-121に示されている。本発明の抗体の
対応する好ましい全長軽鎖アミノ酸配列は、各々、配列番号124-132に示されている。本
発明の他の抗体は、突然変異しているが、上記の配列で示されたCDR領域と、CDR領域で少
なくとも60%、70%、80%、90%または95%もしくはそれ以上の同一性を有するアミノ酸を含
む。ある態様において、本発明は、1個以下、2個以下、3個以下、4個以下もしくは5個以
下のアミノ酸が、上記の配列で示されたCDR領域と比較してCDR領域で突然変異している突
然変異アミノ酸配列を含む。
さらに、可変重鎖親ヌクレオチド配列は、配列番号89-90に示されている。可変軽鎖親
ヌクレオチド配列は、配列番号100-101に示されている。哺乳類細胞での発現のために最
適化された全長軽鎖ヌクレオチド配列は、配列番号146-154に示されている。哺乳類細胞
での発現のために最適化された全長重鎖ヌクレオチド配列は、配列番号135-143に示され
ている。最適化軽鎖ヌクレオチド配列によりコードされる全長軽鎖アミノ酸配列は、配列
番号124-132に示されている。最適化重鎖ヌクレオチド配列によりコードされる全長重鎖
アミノ酸配列は、配列番号113-121に示されている。本発明の他の抗体は、突然変異して
いるが、上記の配列と、少なくとも60%、70%、80%、90%または95%もしくはそれ以上の同
一性を有するアミノ酸または核酸を含む。ある態様において、本発明は、1個以下、2個以
下、3個以下、4個以下もしくは5個以下のアミノ酸が、上記の配列で示された可変領域と
比較して可変領域で突然変異しているが、同様の治療活性を実質的に保持している突然変
異アミノ酸配列を含む。
これらの抗体の各々がスクレロスチンに結合し得るので、VH、VL、全長軽鎖および全長
重鎖配列(ヌクレオチド配列およびアミノ酸配列)を“混合および適合”させて、本発明の
他の抗スクレロスチン結合分子を作製することができる。そのような“混合および適合”
させた抗体のスクレロスチンへの結合は、上記されたおよび実施例に記載された結合アッ
セイ(例えば、ELISA)を用いて試験され得る。これらの鎖を混合および適合させるとき、
特定のVH/VL対からのVH配列は、構造的に類似したVH配列で置換され得る。同様に、特定
の全長重鎖/全長軽鎖対からの全長重鎖配列は、構造的に類似した全長重鎖配列で置換さ
れ得る。同様に、特定のVH/VL対からのVL配列は、構造的に類似したVL配列で置換され得
る。同様に、特定の全長重鎖/全長軽鎖対からの全長軽鎖配列は、構造的に類似した全長
軽鎖配列で置換され得る。したがって、1つの局面において、本発明は、配列番号69-77か
らなる群から選択されるアミノ酸配列を含む重鎖可変領域; および配列番号80-88からな
る群から選択されるアミノ酸配列を含む軽鎖可変領域を有する単離モノクローナル抗体も
しくはその抗原結合領域を提供する(ここで、該抗体は、スクレロスチンに特異的に結合
する)。
他の局面において、本発明は下記を提供する:
(i) 哺乳類細胞での発現のために最適化された配列番号113-121からなる群から選択され
るアミノ酸配列を含む全長重鎖;
および哺乳類細胞での発現のために最適化された配列番号124-132からなる群から選択さ
れるアミノ酸配列を含む全長軽鎖を有する単離モノクローナル抗体; または
(ii) その抗原結合部分を含む、機能性タンパク質。
他の局面において、本発明は下記を提供する:
(i) 哺乳類細胞での発現のために最適化された配列番号135-143からなる群から選択され
るヌクレオチド配列を含む全長重鎖;
および哺乳類細胞での発現のために最適化された配列番号146-154からなる群から選択さ
れるヌクレオチド配列を含む全長軽鎖を有する単離モノクローナル抗体; または
(ii) その抗原結合部分を含む、機能性タンパク質。
また他の局面において、本発明は、抗体の重鎖および軽鎖のCDR1、CDR2およびCDR3を含
む抗体、またはその組み合わせを提供する。抗体のVH CDR1のアミノ酸配列は、配列番号1
-11に示されている。抗体のVH CDR2のアミノ酸配列は、配列番号12-22に示されている。
抗体のVH CDR3のアミノ酸配列は、配列番号23-33に示されている。抗体のVL CDR1のアミ
ノ酸配列は、配列番号34-44に示されている。抗体のVL CDR2のアミノ酸配列は、配列番号
45-55に示されている。抗体のVL CDR3のアミノ酸配列は、配列番号56-66に示されている
。CDR領域は、Kabat系(Kabat, E. A., et al., 1991 Sequences of Proteins of Immunol
ogical Interest, Fifth Edition, U.S. Department of Health and Human Services, NI
H Publication No. 91-3242)を用いて示されている。
これらの抗体の各々がスクレロスチンに結合し得て、抗原結合特異性が、主に、CDR1、
CDR2およびCDR3領域により提供されるとき、VH CDR1、CDR2およびCDR3配列、ならびにVL
CDR1、CDR2およびCDR3配列を“混合および適合”させることができる(すなわち、異なる
抗体由来のCDRを混合および適合させ得る)が、各抗体は、本発明の他の抗スクレロスチン
結合分子を作製するために、VH CDR1、CDR2およびCDR3、ならびにVL CDR1、CDR2およびCD
R3を含まなければならない。そのような“混合および適合”させた抗体のスクレロスチン
への結合は、上記されたおよび実施例に記載された結合アッセイ(例えば、ELISA)を用い
て試験され得る。VH CDR配列を混合および適合させるとき、特定のVH配列からのCDR1、CD
R2および/または CDR3配列は、構造的に類似したCDR配列で置換され得る。同様に、VL CD
R配列を混合および適合させるとき、特定のVL配列からのCDR1、CDR2および/または CDR3
配列は、構造的に類似したCDR配列で置換され得る。同様に、特定の全長重鎖/全長軽鎖対
からの全長重鎖配列は、構造的に類似した全長重鎖配列で置換され得る。同様に、特定の
VH/VL対からのVL配列は、構造的に類似したVL配列で置換され得る。同様に、特定の全長
重鎖/全長軽鎖対からの全長軽鎖配列は、構造的に類似した全長軽鎖配列で置換され得る
。したがって、1つの局面において、本発明は、配列番号69-77からなる群から選択される
アミノ酸配列を含む重鎖可変領域; および配列番号80-88からなる群から選択されるアミ
ノ酸配列を含む軽鎖可変領域を有する単離モノクローナル抗体もしくはその抗原結合領域
を提供する(ここで、該抗体は、スクレロスチンに特異的に結合する)。新規VHおよびVL
列が、1種もしくはそれ以上のVHおよび/またはVL CDR領域配列を、本発明のモノクローナ
ル抗体について本明細書で示されたCDR配列からの構造的に類似した配列で置換すること
により作製され得ることは、当業者にとって容易に明らかである。
単離モノクローナル抗体、またはその抗原結合領域は、配列番号1-11からなる群から選
択されるアミノ酸配列を含む重鎖可変領域CDR1; 配列番号12-22からなる群から選択され
るアミノ酸配列を含む重鎖可変領域CDR2; 配列番号23-33からなる群から選択されるアミ
ノ酸配列を含む重鎖可変領域CDR3; 配列番号34-44からなる群から選択されるアミノ酸配
列を含む軽鎖可変領域CDR1; 配列番号45-55からなる群から選択されるアミノ酸配列を含
む軽鎖可変領域CDR2; および配列番号56-66からなる群から選択されるアミノ酸配列を含
む軽鎖可変領域CDR3を有するものであり、ここで、該抗体は、スクレロスチンに特異的に
結合する。
ある態様において、抗体は、配列番号3の重鎖可変領域CDR1; 配列番号14の重鎖可変領
域CDR2; 配列番号25の重鎖可変領域CDR3; 配列番号36の軽鎖可変領域CDR1; 配列番号47の
軽鎖可変領域CDR2; および配列番号58の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号4の重鎖可変領域CDR1; 配列番号15の重鎖可変領
域CDR2; 配列番号26の重鎖可変領域CDR3; 配列番号37の軽鎖可変領域CDR1; 配列番号48の
軽鎖可変領域CDR2; および配列番号59の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号5の重鎖可変領域CDR1; 配列番号16の重鎖可変領
域CDR2; 配列番号27の重鎖可変領域CDR3; 配列番号38の軽鎖可変領域CDR1; 配列番号49の
軽鎖可変領域CDR2; および配列番号60の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号6の重鎖可変領域CDR1; 配列番号17の重鎖可変領
域CDR2; 配列番号28の重鎖可変領域CDR3; 配列番号39の軽鎖可変領域CDR1; 配列番号50の
軽鎖可変領域CDR2; および配列番号61の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号7の重鎖可変領域CDR1; 配列番号18の重鎖可変領
域CDR2; 配列番号29の重鎖可変領域CDR3; 配列番号40の軽鎖可変領域CDR1; 配列番号51の
軽鎖可変領域CDR2; および配列番号62の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号8の重鎖可変領域CDR1; 配列番号19の重鎖可変領
域CDR2; 配列番号30の重鎖可変領域CDR3; 配列番号41の軽鎖可変領域CDR1; 配列番号52の
軽鎖可変領域CDR2; および配列番号63の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号9の重鎖可変領域CDR1; 配列番号20の重鎖可変領
域CDR2; 配列番号31の重鎖可変領域CDR3; 配列番号42の軽鎖可変領域CDR1; 配列番号53の
軽鎖可変領域CDR2; および配列番号64の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号10の重鎖可変領域CDR1; 配列番号21の重鎖可変領
域CDR2; 配列番号32の重鎖可変領域CDR3; 配列番号43の軽鎖可変領域CDR1; 配列番号54の
軽鎖可変領域CDR2; および配列番号65の軽鎖可変領域CDR3を含む。
ある態様において、抗体は、配列番号11の重鎖可変領域CDR1; 配列番号22の重鎖可変領
域CDR2; 配列番号33の重鎖可変領域CDR3; 配列番号44の軽鎖可変領域CDR1; 配列番号55の
軽鎖可変領域CDR2; および配列番号66の軽鎖可変領域CDR3を含む。
本明細書で使用されるヒト抗体は、抗体の可変領域もしくは全長鎖が、ヒト生殖細胞系
列免疫グロブリン遺伝子を使用する系から得られるとき、特定の生殖細胞系列配列“の産
物”またはそれ“に由来する”重鎖もしくは軽鎖可変領域または全長重鎖もしくは軽鎖を
含む。そのような系は、ヒト免疫グロブリン遺伝子を有するトランスジェニックマウスを
関心のある抗原で免疫化するか、またはファージ上に提示されたヒト免疫グロブリン遺伝
子ライブラリーを関心のある抗原でスクリーニングすることを含む。ヒト生殖細胞系列免
疫グロブリン配列“の産物”またはそれ“に由来する”ヒト抗体は、ヒト抗体のアミノ酸
配列をヒト生殖細胞系列免疫グロブリンのアミノ酸配列と比較して、ヒト抗体の配列と最
も近い配列(すなわち、最大%同一性)であるヒト生殖細胞系列免疫グロブリン配列を選択
することにより、それ自体同定され得る。特定のヒト生殖細胞系列免疫グロブリン配列“
の産物”またはそれ“に由来する”ヒト抗体は、生殖細胞系列配列と比較して、例えば、
自然発生的な体細胞突然変異もしくは意図的な部位特異的突然変異により生じるアミノ酸
差異を含み得る。しかしながら、選択されたヒト抗体は、一般に、他の種の生殖細胞系列
免疫グロブリンアミノ酸配列(例えば、マウス生殖細胞系列配列)と比較して、ヒト生殖細
胞系列免疫グロブリン遺伝子によりコードされるアミノ酸配列と、アミノ酸配列が少なく
とも90%同一であり、ヒトであるヒト抗体を同定するアミノ酸残基を含む。特定の場合に
おいて、ヒト抗体は、ヒト生殖細胞系列免疫グロブリン遺伝子によりコードされるアミノ
酸配列と、アミノ酸配列が少なくとも60%、70%、80%、90%もしくは95%、またはさらに、
少なくとも96%、97%、98%もしくは99%同一である。典型的には、特定のヒト生殖細胞系列
配列に由来するヒト抗体は、ヒト生殖細胞系列免疫グロブリン遺伝子によりコードされる
アミノ酸配列と10個以下のアミノ酸差異を示す。特定の場合において、ヒト抗体は、生殖
細胞系列免疫グロブリン遺伝子によりコードされるアミノ酸配列と5個以下、またはさら
に、4個以下、3個以下、2個以下もしくは1個以下のアミノ酸差異を示す。
ある態様において、生殖細胞系列免疫グロブリンアミノ酸配列は、各々、配列番号67-6
8からなる可変重鎖配列、および、各々、配列番号78-79からなる可変軽鎖配列を含むもの
から選択される。
同種抗体
また他の態様において、本発明の抗体は、本明細書に記載された抗体のアミノ酸および
ヌクレオチド配列に相同な全長重鎖および軽鎖アミノ酸配列; 全長重鎖および軽鎖ヌクレ
オチド配列、可変領域重鎖および軽鎖ヌクレオチド配列、または可変領域重鎖および軽鎖
アミノ酸配列を有し、ここで、該抗体は、本発明の抗スクレロスチン抗体の望まれる機能
特性を保持する。
例えば、本発明は、重鎖可変領域および軽鎖可変領域を含む単離モノクローナル抗体(
またはその抗原結合部分を含む機能性タンパク質)を提供し、ここで、該重鎖可変領域は
、配列番号67-77からなる群から選択されるアミノ酸配列と少なくとも80%同一であるアミ
ノ酸配列を含み、該軽鎖可変領域は、配列番号78-88からなる群から選択されるアミノ酸
配列と少なくとも80%同一であるアミノ酸配列を含み、該抗体は、スクレロスチンに特異
的に結合し、少なくとも1個の下記の機能特性を示す: 該抗体は、細胞に基づくWntシグナ
ル伝達アッセイにおいて、スクレロスチンの阻害効果を妨害するか、細胞に基づく石灰化
アッセイにおいて、スクレロスチンの阻害効果を妨害するか、またはSmad1リン酸化アッ
セイにおいて、スクレロスチンの阻害効果を妨害するか、またはスクレロスチンのLRP-6
への結合を阻害するか、または骨形成および骨量および骨密度を増加させる。
さらなる例において、本発明は、全長重鎖および全長軽鎖を含む単離モノクローナル抗
体(またはその抗原結合部分を含む機能性タンパク質)を提供し、ここで、該全長重鎖は、
配列番号111-121からなる群から選択されるアミノ酸配列と少なくとも80%同一であるアミ
ノ酸配列を含み、該全長軽鎖は、配列番号122-132からなる群から選択されるアミノ酸配
列と少なくとも80%同一であるアミノ酸配列を含み、該抗体は、スクレロスチンに特異的
に結合し、少なくとも1個の下記の機能特性を示す: 該抗体は、細胞に基づくWntシグナル
伝達アッセイにおいて、スクレロスチンの阻害効果を妨害するか、細胞に基づく石灰化ア
ッセイにおいて、スクレロスチンの阻害効果を妨害するか、またはSmad1リン酸化アッセ
イにおいて、スクレロスチンの阻害効果を妨害するか、またはスクレロスチンのLRP-6へ
の結合を阻害するか、または骨形成および骨量および骨密度を増加させる。
他の例において、本発明は、全長重鎖および全長軽鎖を含む単離モノクローナル抗体(
またはその抗原結合部分を含む機能性タンパク質)を提供し、ここで、該全長重鎖は、配
列番号133-143からなる群から選択されるヌクレオチド配列と少なくとも80%同一であるヌ
クレオチド配列を含み、該全長軽鎖は、配列番号144-154からなる群から選択されるヌク
レオチド配列と少なくとも80%同一であるヌクレオチド配列を含み、該抗体は、スクレロ
スチンに特異的に結合し、少なくとも1個の下記の機能特性を示す: 該抗体は、細胞に基
づくWntシグナル伝達アッセイにおいて、スクレロスチンの阻害効果を妨害するか、細胞
に基づく石灰化アッセイにおいて、スクレロスチンの阻害効果を妨害するか、またはSmad
1リン酸化アッセイにおいて、スクレロスチンの阻害効果を妨害するか、またはスクレロ
スチンのLRP-6への結合を阻害するか、または骨形成および骨量および骨密度を増加させ
る。
さまざまな態様において、抗体は、1種もしくはそれ以上、2種もしくはそれ以上、また
は3種もしくはそれ以上の上記機能特性を示し得る。抗体は、例えば、ヒト抗体、ヒト化
抗体、もしくはキメラ抗体であり得る。
他の態様において、VHおよび/またはVLアミノ酸配列は、上記の配列と、50%、60%、70%
、80%、90%、95%、96%、97%、98%もしくは99%同一であり得る。他の態様において、VH
よび/またはVLアミノ酸配列は、1個以下、2個以下、3個以下、4個以下または5個以下のア
ミノ酸位でのアミノ酸置換を除いては同一であり得る。配列番号67-77および配列番号78-
88各々のVHおよびVL領域と高い(すなわち、80%またはそれ以上の)同一性を有するVHおよ
びVL領域を含む抗体は、配列番号89-99および配列番号100-110各々をコードする核酸分子
の突然変異誘発(例えば、部位特異的もしくはPCR仲介突然変異誘発)、その後、本明細書
に記載された機能性アッセイを用いて、コードされる改変抗体の保持機能(すなわち、上
記の機能)について試験することにより得ることができる。
他の態様において、全長重鎖および/または全長軽鎖アミノ酸配列は、上記の配列と、5
0%、60%、70%、80%、90%、95%、96%、97%、98%もしくは99%同一であり得る。配列番号111
-121のいずれかの全長重鎖および配列番号122-132のいずれかの全長軽鎖と高い(すなわち
、80%またはそれ以上の)同一性を有する全長重鎖および全長軽鎖を含む抗体は、配列番号
133-143および配列番号144-154各々をコードする核酸分子の突然変異誘発(例えば、部位
特異的もしくはPCR仲介突然変異誘発)、その後、本明細書に記載された機能性アッセイを
用いて、コードされる改変抗体の保持機能(すなわち、上記の機能)について試験すること
により得ることができる。
他の態様において、全長重鎖および/または全長軽鎖ヌクレオチド酸配列は、上記の配
列と、60%、70%、80%、90%、95%、96%、97%、98%もしくは99%同一であり得る。
他の態様において、重鎖および/または軽鎖可変領域のヌクレオチド配列は、上記の配
列と、60%、70%、80%、90%、95%、96%、97%、98%もしくは99%同一であり得る。
本明細書で使用される2つの配列間の%同一性は、該配列により共有される同一の位置の
数の関数であり(すなわち、%同一性 = 同一位置の数/位置の全数 x 100)、ギャップの数
、および各ギャップの長さ(それは、2つの配列の最適アライメントのために導入される必
要がある)が考慮される。2つの配列間の配列の比較および%同一性の決定は、下記の非限
定的な実施例で記載されたとおり、数学的アルゴリズムを用いて達成され得る。
2つのアミノ酸配列間の%同一性は、ALIGNプログラム(version 2.0)に組み込まれたE. M
eyers and W. Millerのアルゴリズム(Comput. Appl. Biosci., 4:11-17, 1988)を用いて
、すなわち、PAM120残基重量表、12のギャップ長ペナルティおよび4のギャップペナルテ
ィを用いて決定され得る。さらに、2つのアミノ酸配列間の%同一性は、GCGソフトウェア
パッケージのGAPプログラム(available at http://www.gcg.com)に組み込まれたNeedlema
n and Wunsch (J. Mol, Biol. 48:444-453, 1970)アルゴリズムを用いて、すなわち、Blo
ssom 62マトリックスまたはPAM250マトリックス、および16、14、12、10、8、6、または4
のギャップ重量ならびに1、2、3、4、5、または6の長さ重量を用いて決定され得る。
さらには、本発明のタンパク質配列は、例えば、同一性関連配列に対する公開データベ
ースに対する検索を行うために、“クエリー配列”として使用され得る。そのような検索
は、Altschul, et al., 1990 J.Mol. Biol. 215:403-10のXBLASTプログラム(version 2.0
)を用いて行われ得る。BLASTタンパク質検索は、本発明の抗体分子に相同なアミノ酸配列
を取得するために、XBLASTプログラム、スコア=50、語長=3を用いて行われ得る。比較目
的のためのギャップアラインメントを取得するために、Altschul et al., 1997 Nucleic
Acids Res. 25(17):3389-3402に記載されたとおり、Gapped BLASTを利用し得る。BLASTお
よびGapped BLASTプログラムを利用するとき、各プログラム(例えば、XBLASTおよびNBLAS
T)のデフォルトパラメーターが使用され得る。http:Ilwww.ncbi.nhn.nih.gov.を参照のこ
と。
保存的修飾を有する抗体
ある態様において、本発明の抗体は、CDR1、CDR2およびCDR3配列を含む重鎖可変領域、
ならびにCDR1、CDR2およびCDR3配列を含む軽鎖可変領域を有し、ここで、1種もしくはそ
れ以上のこれらのCDR配列が、本明細書に記載された抗体に基づく特定のアミノ酸配列ま
たはその保存的修飾を有し、該抗体は、本発明の抗スクレロスチン抗体の望まれる機能特
性を保持する。したがって、本発明は、CDR1、CDR2およびCDR3配列を含む重鎖可変領域、
ならびにCDR1、CDR2およびCDR3配列を含む軽鎖可変領域からなる単離モノクローナル抗体
、またはその抗原結合部分を含む機能性タンパク質を提供し、ここで、該重鎖可変領域CD
R1アミノ酸配列は、配列番号1-11およびその保存的修飾からなる群から選択され、該重鎖
可変領域CDR2アミノ酸配列は、配列番号12-22およびその保存的修飾からなる群から選択
され、該重鎖可変領域CDR3アミノ酸配列は、配列番号23-33およびその保存的修飾からな
る群から選択され、該軽鎖可変領域CDR1アミノ酸配列は、配列番号34-44およびその保存
的修飾からなる群から選択され、該軽鎖可変領域CDR2アミノ酸配列は、配列番号45-55お
よびその保存的修飾からなる群から選択され、該軽鎖可変領域CDR3アミノ酸配列は、配列
番号56-66およびその保存的修飾からなる群から選択され、該抗体は、スクレロスチンに
特異的に結合し、少なくとも1個の下記の機能特性を示す: 該抗体は、細胞に基づくWntシ
グナル伝達アッセイにおいて、スクレロスチンの阻害効果を妨害するか、細胞に基づく石
灰化アッセイにおいて、スクレロスチンの阻害効果を妨害するか、またはSmad1リン酸化
アッセイにおいて、スクレロスチンの阻害効果を妨害するか、またはスクレロスチンのLR
P-6への結合を阻害するか、または骨形成および骨量および骨密度を増加させる。
さまざまな態様において、抗体は、1種もしくはそれ以上、2種もしくはそれ以上、また
は3種もしくはそれ以上の上記機能特性を示し得る。抗体は、例えば、ヒト抗体、ヒト化
抗体、もしくはキメラ抗体であり得る。
他の態様において、哺乳類細胞での発現のために最適化された本発明の抗体は、全長重
鎖配列および全長軽鎖配列を有し、ここで、1種もしくはそれ以上のこれらの配列が、本
明細書に記載された抗体に基づく特定のアミノ酸配列またはその保存的修飾を有し、該抗
体は、本発明の抗スクレロスチン抗体の望まれる機能特性を保持する。したがって、本発
明は、全長重鎖配列および全長軽鎖配列からなる、哺乳類細胞での発現のために最適化さ
れた単離モノクローナル抗体を提供し、ここで、該全長重鎖は、配列番号111-121からな
る群から選択されるアミノ酸配列を有し、該全長軽鎖は、配列番号122-132からなる群か
ら選択されるアミノ酸配列を有し、該抗体は、スクレロスチンに特異的に結合し、少なく
とも1個の下記の機能特性を示す: 該抗体は、細胞に基づくWntシグナル伝達アッセイにお
いて、スクレロスチンの阻害効果を妨害するか、細胞に基づく石灰化アッセイにおいて、
スクレロスチンの阻害効果を妨害するか、またはSmad1リン酸化アッセイにおいて、スク
レロスチンの阻害効果を妨害するか、またはスクレロスチンのLRP-6への結合を阻害する
か、または骨形成および骨量および骨密度を増加させる。
さまざまな態様において、抗体は、1種もしくはそれ以上、2種もしくはそれ以上、また
は3種もしくはそれ以上の上記機能特性を示し得る。抗体は、例えば、ヒト抗体、ヒト化
抗体、もしくはキメラ抗体であり得る。
本明細書で使用される“保存的配列修飾”なる用語は、該アミノ酸配列を含む抗体の結
合特性に実質的に影響を与えないか、またはそれを実質的に改変しないアミノ酸修飾を意
味することが意図される。そのような保存的修飾は、アミノ酸置換、付加および欠失を含
む。修飾は、当分野で既知の標準的な技術、例えば、部位特異的突然変異誘発およびPCR
仲介突然変異誘発により、本発明の抗体に導入され得る。
保存的アミノ酸置換は、該アミノ酸残基が類似の側鎖を有するアミノ酸残基で置換され
るものである。類似の側鎖を有するアミノ酸残基のファミリーは、当分野で定義されてい
る。これらのファミリーは、塩基性側鎖(例えば、リジン、アルギニン、ヒスチジン)、酸
性側鎖(例えば、アスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えば、グリシン、
アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン、トリプトファ
ン)、非極性側鎖(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェ
ニルアラニン、メチオニン)、β鎖側鎖(例えば、スレオニン、バリン、イソロイシン)お
よび芳香族側鎖(例えば、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)を
有するアミノ酸を含む。したがって、本発明の抗体のCDR領域内の1種もしくはそれ以上の
アミノ酸残基は、同じ側鎖ファミリーからの他のアミノ酸残基で置換され得て、改変され
た抗体は、本明細書に記載された機能アッセイを用いて、保持機能について試験され得る
本発明の抗スクレロスチン抗体として同じエピトープに結合する抗体
他の態様において、本発明は、本明細書に記載された本発明のさまざまな特異的抗スク
レロスチン抗体と同じエピトープに結合する抗体を提供する。
(i) 細胞に基づくWntシグナル伝達アッセイにおいて、スクレロスチンの阻害効果を妨害
すること;
(ii) 細胞に基づく石灰化アッセイにおいて、阻害効果を妨害すること;
(iii) スクレロスチンのLRP-6への結合を阻害すること; および
(iv) 骨形成および骨量および骨密度を増加させること
を可能にする実施例に記載された抗体のすべてが、スクレロスチンの同じエピトープに高
親和性をもって結合する(ここで、該エピトープは、配列番号156および配列番号157から
のアミノ酸を含む立体構造エピトープである)ことが見出されたのは、実際に驚くべきこ
とである。任意の特定のモデルにより拘束されることなく、アミノ酸配列配列番号156お
よび配列番号157は、本発明の抗体により認識されるスクレロスチンポリペプチドの1つの
立体構造エピトープ領域を示すことが本明細書で示されている。
したがって、さらなる抗体は、標準的なスクレロスチン結合アッセイにおいて、本発明
の他の抗体と交差競合する(例えば、統計学的に有意な方法で、競合的に結合を阻害する)
それらの能力に基づいて同定され得る。本発明の抗体のヒトスクレロスチンへの結合を阻
害する試験抗体の能力は、ヒトスクレロスチンへの結合について、試験抗体が該抗体と競
合し得ることを証明し; 例示的な理論によると、そのような抗体は、ヒトスクレロスチン
上のそれが競合する抗体と同一もしくは関連する(例えば、構造的に類似するか、もしく
は空間的に近接する)エピトープに結合し得る。ある態様において、本発明の抗体と同じ
ヒトスクレロスチン上のエピトープに結合する抗体は、ヒトモノクローナル抗体である。
そのようなヒトモノクローナル抗体は、実施例に記載されたとおり、作製され、単離され
得る。
改変および修飾抗体
本発明の抗体はさらに、修飾抗体を作製するために、本明細書で示される1種もしくは
それ以上のVHおよび/またはVL配列を有する抗体を出発物質として用いて作製され得て、
ここで、該修飾抗体は、出発抗体からの改変された特性を有し得る。抗体は、1種もしく
はそれ以上の可変領域(すなわち、VHおよび/またはVL)内、例えば、1種もしくはそれ以上
のCDR領域内、および/または1種もしくはそれ以上のフレームワーク領域内の1種もしくは
それ以上の残基を修飾することにより改変され得る。さらに、抗体は、例えば、本発明の
エフェクター機能を改変するために、定常領域内の残基を修飾することにより改変され得
る。
実施され得る可変領域改変の1つの型は、CDR移植である。抗体は、主に、6個の重鎖お
よび軽鎖相補性決定領域(CDR)に位置するアミノ酸残基を介して標的抗原と相互作用する
。このため、CDR内のアミノ酸配列は、CDRの外側の配列よりも個々の抗体間でより多様性
がある。CDR配列は、抗体-抗原反応に最も関与しているので、異なる特性を有する異なる
抗体由来のフレームワーク配列に移植された、特定の天然に生じる抗体由来のCDR配列を
含む発現ベクターを構築することにより、特定の天然に生じる抗体の特性を模倣した組み
換え抗体を発現させることが可能である(例えば、Riechmann, L. et al., 1998 Nature 3
32:323-327; Jones, P. et al., 1986 Nature 321:522-525; Queen, C. et al., 1989 Pr
oc. Natl. Acad. See. U.S.A. 86:10029-10033; U.S. Patent No. 5,225,539 to Winter,
and U.S. Patent Nos. 5,530,101; 5,585,089; 5,693,762 and 6,180,370 to Queen et
al.を参照のこと)。
したがって、本発明の他の態様は、重鎖可変領域および軽鎖可変領域を含む単離モノク
ローナル抗体、またはその抗原結合部分を含む機能性タンパク質に関連し、ここで、該重
鎖可変領域は、各々、配列番号1-11からなる群から選択されるアミノ酸配列を有するCDR1
配列; 配列番号12-22からなる群から選択されるアミノ酸配列を有するCDR2配列; 配列番
号23-33からなる群から選択されるアミノ酸配列を有するCDR3配列を有し; 該軽鎖可変領
域は、各々、配列番号34-44からなる群から選択されるアミノ酸配列を有するCDR1配列;
配列番号45-55からなる群から選択されるアミノ酸配列を有するCDR2配列; 配列番号56-66
からなる群から選択されるアミノ酸配列を有するCDR3配列を有する。したがって、そのよ
うな抗体は、モノクローナル抗体のVHおよびVL CDR配列を含むが、これらの抗体とは異な
るフレームワーク配列を含み得る。
該フレームワーク配列は、一般のDNAデータベースもしくは公開された参照から得られ
、生殖細胞系列抗体遺伝子配列を含む。例えば、ヒト重鎖および軽鎖可変領域遺伝子につ
いての生殖細胞系列DNA配列は、“VBase”ヒト生殖細胞系列配列データベース(インター
ネット上で、www.mrc-cpe.cam.ac.uk/vbaseで利用可能である)、およびKabat, E. A., et
al., 1991 Sequences of Proteins of Immunological Interest, Fifth Edition, U.S.
Department of Health and Human Services, NIH Publication No. 91-3242; Tomlinson,
I. M., et al., 1992; J. fol. Biol. 227:776-798; and Cox, J. P. L. et al., 1994
Eur. J Immunol. 24:827-836に見出され得る(その各々の内容は、引用により本明細書の
一部とする)。
本発明の抗体における使用のためのフレームワーク配列の1つの例は、本発明の選択さ
れた抗体により使用されるフレームワーク配列と類似した構造を有するもの、例えば、コ
ンセンサス配列および/または本発明のモノクローナル抗体により使用されるフレームワ
ーク配列である。VH CDR1、2および3配列、ならびにVL CDR1、2および3配列は、該フレー
ムワーク配列が由来する生殖細胞系列免疫グロブリン遺伝子に見出されたものと同一の配
列を有するフレームワーク領域に移植され得るか、またはCDR配列は、生殖細胞系列配列
と比較して、1種もしくはそれ以上の突然変異を含むフレームワーク領域に移植され得る
。例えば、ある例において、フレームワーク領域内の残基が、抗体の抗原結合能を維持す
るか、もしくは促進するように突然変異させることが有益であることが見出されている(
例えば、米国特許第5,530,101号; 第5,585,089号; 第5,693,762号および第6,180,370号(Q
ueen et al)を参照のこと)。
可変領域修飾の他の型は、VHおよび/またはVL CDR1、CDR2および/またはCDR3領域内の
アミノ酸残基を突然変異させ、その結果、関心のある抗体の1種もしくはそれ以上の結合
特性(例えば、親和性)を改善することである(“親和性成熟”として既知である)。部位特
異的突然変異誘発またはPCR仲介突然変異誘発は、突然変異を導入するために行われ得て
、抗体結合についての効果、または関心のある他の機能特性は、本明細書および実施例に
記載されたとおり、インビトロもしくはインビボアッセイで評価され得る。保存的修飾(
上記の)を導入することが可能である。突然変異は、アミノ酸置換、付加もしくは欠失で
あり得る。さらに、一般には、CDR領域内の1個以下、2個以下、3個以下、4個以下もしく
は5個以下の残基が改変される。
したがって、他の態様は、本発明は、重鎖可変領域および軽鎖可変領域を含む単離抗ス
クレロスチンモノクローナル抗体、またはその抗原結合部分を含む機能性タンパク質を提
供し、ここで、該重鎖可変領域は、配列番号1-11からなる群から選択されるアミノ酸配列
、または配列番号1-11と比較して、1個、2個、3個、4個もしくは5個のアミノ酸置換、欠
失もしくは付加を有するアミノ酸配列からなるVH CDR1領域; 配列番号12-22からなる群か
ら選択されるアミノ酸配列、または配列番号12-22と比較して、1個、2個、3個、4個もし
くは5個のアミノ酸置換、欠失もしくは付加を有するアミノ酸配列からなるVH CDR2領域;
および配列番号23-33からなる群から選択されるアミノ酸配列、または配列番号23-33と比
較して、1個、2個、3個、4個もしくは5個のアミノ酸置換、欠失もしくは付加を有するア
ミノ酸配列からなるVH CDR3領域を有し; 該軽鎖可変領域は、配列番号34-44からなる群か
ら選択されるアミノ酸配列、または配列番号34-44と比較して、1個、2個、3個、4個もし
くは5個のアミノ酸置換、欠失もしくは付加を有するアミノ酸配列からなるVL CDR1領域;
配列番号45-55からなる群から選択されるアミノ酸配列、または配列番号45-55と比較して
、1個、2個、3個、4個もしくは5個のアミノ酸置換、欠失もしくは付加を有するアミノ酸
配列からなるVL CDR2領域; および配列番号56-66からなる群から選択されるアミノ酸配列
、または配列番号56-66と比較して、1個、2個、3個、4個もしくは5個のアミノ酸置換、欠
失もしくは付加を有するアミノ酸配列からなるVL CDR3領域を有する。
抗原結合ドメインの他のフレームワークもしくはスカホールドへの移植
生じたポリペプチドが、スクレロスチンに特異的に結合する少なくとも1個の結合領域
を含む限りにおいて、さまざまな抗体/免疫グロブリンフレームワークもしくはスカホー
ルが使用され得る。そのようなフレームワークもしくはスカホールドは、ヒト免疫グロブ
リンの5個の主要なイディオタイプ、またはその断片(例えば、本明細書の他の場所で開示
されたもの)を含み、他の動物種の免疫グロブリンを含み、好ましくは、ヒト化されたも
のを有する。単一重鎖抗体、例えば、ラクダにおいて同定されたものは、この点で特に関
心がある。新規フレームワーク、スカホールドおよび断片は、当業者により発見され、開
発され続けている。
1つの局面において、本発明は、本発明のCDRが移植され得る非免疫グロブリンスカホー
ルドを用いて、非免疫グロブリンに基づく抗体を作製することに関する。既知のもしくは
未知の非免疫グロブリンフレームワークおよびスカホールドは、それらが配列番号155の
標的タンパク質に特異的な結合領域を含む限りにおいて、使用され得る。そのような化合
物は、本明細書では“標的特異的結合領域を含むポリペプチド”として示される。非免疫
グロブリンフレームワークの例はさらに、下記のセクションに記載されている(ラクダ抗
体および非抗体スカホールド)。
ラクダ抗体
新種メンバー(new world members)、例えば、ラマ種(Lama paccos, Lama glamaおよびL
ama vicugna)を含む、ラクダおよびヒトコブラクダ(Camelus bactrianusおよびCamelus d
romaderius)ファミリーのメンバーから得られた抗体タンパク質は、サイズ、構造的複雑
性およびヒト対象についての抗原性に関して特徴づけられている。実際に見出された哺乳
類のこのファミリー由来の特定のIgG抗体は、軽鎖を欠いており、その結果、他の動物由
来の抗体について2個の重鎖および2個の軽鎖を有する一般的な4個の鎖からなる四次構造
とは構造的に異なっている。PCT/EP93/02214(1994年3月3日に公開されたWO 94/04678)を
参照のこと。
VHHとして同定された小分子単一可変ドメインであるラクダ抗体の領域は、遺伝学的改
変により取得され得て、標的についての高親和性を有する小分子タンパク質を産生し、そ
の結果、“ラクダ抗体”として既知の低分子量抗体由来タンパク質を生じる。1998年6月2
日に発行された米国特許第5,759,808号; Stijlemans, B. et al., 2004 J Biol Chem 279
: 1256-1261; Dumoulin, M. et al., 2003 Nature 424: 783-788; Pleschberger, M. et
al. 2003 Bioconjugate Chem 14: 440-448; Cortez-Retamozo, V.et al. 2002 Int J Can
cer 89: 456-62; およびLauwereys, M. et al. 1998 EMBO J 17: 3512-3520を参照のこと
。ラクダ抗体および抗体断片の改変ライブラリーは、例えば、Ablynx, Ghent, Belgiumか
ら市販で入手可能である。非ヒト起源の他の抗体と同様に、ラクダ抗体のアミノ酸配列は
、組み換え的に改変され得て、ヒト配列とより類似した配列を得ることができる(すなわ
ち、ナノボディは、“ヒト化”され得る)。したがって、天然でヒトに対するラクダ抗体
の低い抗原性を、さらに減少されることができる。
ラクダナノボディは、ヒトIgG分子の約10分の1の分子量を有し、該タンパク質は、わず
か数ナノメーターの物理的直径を有する。小サイズの1つの結果は、ラクダナノボディの
、より大きな抗体タンパク質には機能的に認識されることがない抗原性部位に結合する能
力である(すなわち、ラクダナノボディは、古典的な免疫グロブリン技術を用いて、他の
微小な抗原を検出する試薬として、および有力な治療剤として有用である)。したがって
、小サイズの他の結果は、ラクダナノボディが、標的タンパク質の溝もしくは狭い裂け目
(narrow cleft)における特定の部位に結合する結果として阻害し得て、古典的な抗体の機
能よりも古典的な低分子薬剤の機能により類似した能力をもって機能しうることである。
さらに、低分子量およびコンパクトなサイズの結果、ラクダナノボディは、極めて熱安
定性があり、pHおよびタンパク質性消化に対して極めて安定であり、弱い抗原性を有する
。他の結果は、ラクダナノボディが、循環系から、組織、および血液脳関門にさえ容易に
移動し、神経組織に影響を与える障害を処置することができることである。ナノボディは
さらに、血液脳関門を介した薬剤輸送を促進することができる。2004年8月19日に公開さ
れた米国特許出願20040161738を参照のこと。ヒトに対する低い抗原性と組み合わせたこ
れらの特徴は、大きな治療ポテンシャルを示す。さらに、これらの分子は、原核細胞、例
えば、E. coliで十分に発現させることができ、バクテリオファージを用いて融合タンパ
ク質として発現させ得て、機能的である。
したがって、本発明の特徴は、スクレロスチンに対する高親和性を有するラクダ抗体も
しくはナノボディである。本明細書の特定の態様において、ラクダ抗体もしくはナノボデ
ィは、ラクダ動物で天然で産生され、すなわち、他の抗体について本明細書に記載された
技術を用いたスクレロスチンもしくはそのペプチド断片での免疫化後に、ラクダにより産
生される。または、抗スクレロスチンラクダナノボディは、改変され、すなわち、例えば
、本明細書の実施例に記載されたとおり、標的としてスクレロスチンを用いたパニング手
順により、適当に突然変異を導入されたラクダナノボディタンパク質を提示するファージ
ライブラリーからの選択により産生される。改変ナノボディはさらに、レシピエント対象
で45分から2週間の半減期を有するような遺伝学的改変により作製され得る。特定の態様
において、ラクダ抗体もしくはナノボディは、例えば、PCT/EP93/02214 (WO94/04678)に
記載されたとおり、本発明のヒト抗体の重鎖もしくは軽鎖のCDR配列をナノボディもしく
は単一ドメイン抗体フレームワーク配列に移植することにより得られる。
非抗体スカホールド
既知の非免疫グロブリンフレームワークもしくはスカホールドは、Adnectins (フィブ
ロネクチン) (Compound Therapeutics, Inc., Waltham, MA)、アンキリン(Molecular Par
tners AG, Zurich, Switzerland)、ドメイン抗体(Domantis, Ltd (Cambridge, MA)および
Ablynx nv (Zwijnaarde, Belgium))、リポカリン(Anticalin) (Pieris Proteolab AG, Fr
eising,Germany)、小型モジュラー免疫薬剤(Trubion Pharmaceuticals Inc., Seattle, W
A)、マキシボディ(Avidia, Inc. (Mountain View, CA))、Protein A (Affibody AG, Swed
en)ならびにアフィリン(γ-クリスタリンまたはユビキチン) (Scil Proteins GmbH, Hall
e, Germany)、タンパク質エピトープ模倣剤(Polyphor Ltd, Allschwil, Switzerland)を
含むが、これらに限定されない。
(i) Adnectins-Compound Therapeutics
アドネクチンスカホールドは、III型フィブロネクチンドメイン(例えば、III型フィブ
ロネクチンの10番目のモジュール(10 Fn3ドメイン))に基づく。III型フィブロネクチンド
メインは、2つのβシート間に分布し、それ自身互いを包み込んでタンパク質のコアを形
成する7個もしくは8個のβ鎖を有し、さらに互いにβ鎖を連結し、溶媒に曝されるループ
(CDRに類似した)を含む。βシートサンドウィッチの各末端に、少なくとも3つのループが
存在し、ここで、該末端は、β鎖の方向に垂直なタンパク質の境界である(米国特許第6,8
18,418号)。
全体のフォールドは、最小機能抗体断片である重鎖の可変領域のそれに密接に関連して
いるが、これらのフィブロネクチンに基づくスカホールドは、免疫グロブリンではなく、
ラクダおよびラマIgGの全抗原認識単位を含む。この構造のために、非免疫グロブリン抗
体は、事実上同様の抗原結合特性および抗体のそれらに対する親和性を模倣する。これら
のスカホールドは、インビトロでのループ無作為化およびシャッフリング戦略において使
用され得て、それは、インビボでの抗体の親和性成熟の過程と同様である。これらのフィ
ブロネクチンに基づく分子は、スカホールドとして使用され得て、ここで、該分子のルー
プ領域は、標準的なクローニング技術を用いて、本発明のCDRで置換され得る。
(ii) アンキリン-Molecular Partners
該技術は、可変領域を保持するためのスカホールドとして、アンキリン由来リピートモ
ジュールを有するタンパク質を用いることに基づき、異なる標的への結合のために使用さ
れ得る。アンキリンリピートモジュールは、2つの逆平行鎖αヘリックスおよびβターン
からなる33個のアミノ酸ポリペプチドである。可変領域の結合は、主に、リボソームディ
スプレイを用いて最適化される。
(iii) マキシボディ/Avimers-Avidia
Avimersは、天然のAドメイン含有タンパク質、例えば、LRP-1に由来する。これらのド
メインは、もともと、タンパク質-タンパク質相互作用のために使用され、ヒトにおいて
は、250を超えるタンパク質が、構造的にAドメインに基づく。Avimersは、アミノ酸リン
カーにより結合した多くの異なる“Aドメイン”モノマー(2-10)からなる。Avimersは、例
えば、20040175756; 20050053973; 20050048512; および20060008844に記載された方法論
を用いて、標的抗原に結合し得るように作製され得る。
(vi) Protein A-Affibody
Affibody(登録商標)親和性リガンドは、Protein AのIgG結合ドメインのうちの1つのス
カホールドに基づいて、3個のヘリックスバンドルからなる小さくて単純なタンパク質で
ある。Protein Aは、細菌Staphylococcus aureus由来の表面タンパク質である。このスカ
ホールドドメインは、58個のアミノ酸からなり、そのうちの13個は、多くのリガンド変異
型を有するAffibody(登録商標)ライブラリーを作製するために無作為化される(例えば、
米国特許第5,831,012号を参照のこと)。Affibody(登録商標)分子は、抗体を模倣し、それ
らは、150 kDaの分子量である抗体と比較して、6 kDaの分子量を有する。その小サイズに
も関わらず、Affibody(登録商標)分子の結合部位は、抗体のそれに類似している。
(v) Anticalins-Pieris
Anticalins(登録商標)は、Pieris ProteoLab AG社により開発された製品である。それ
らは、通常、化学的に感受性があるか、もしくは不可溶性の化合物の生理学的輸送もしく
は貯蔵に関与する、小さくて強固なタンパク質の広範な集団であるリポカリンに由来する
。いくつかの天然のリポカリンは、ヒトの組織もしくは体液中に生じる。
タンパク質構造は、堅固なフレームワーク上に超可変ループを有し、免疫グロブリンに
類似している。しかしながら、抗体もしくはそれらの組み換え断片とは対照的に、リポカ
リンは、160個から180個のアミノ酸残基を有する単一ポリペプチド鎖からなり、それは、
単一免疫グロブリンドメインよりもわずかに大きい。
結合ポケットを構成する4つのループは、顕著な構造的可塑性を示し、さまざまな側鎖
に耐容である。したがって、結合部位は、高親和性および特異性をもって、異なる形態を
有する既定の標的分子を認識するために、独自のプロセスで再形成され得る。
リポカリンファミリーの1つのタンパク質であるPieris brassicaeのビリン結合タンパ
ク質(BBP)は、4つのループに突然変異を導入することにより、アンチカリンを開発するた
めに使用されている。“アンチカリン”について記載された特許出願の1つの例は、PCT W
O199916873である。
(vi) アフィリン-Scil Proteins
アフィリン(商標)分子は、タンパク質および小分子に対する特異的な親和性について設
計された非免疫グロブリンタンパク質である。新規アフィリン(商標)分子は、異なるヒト
由来スカホールドタンパク質に基づく2つのライブラリーから迅速に選択され得る。
アフィリン(商標)分子は、免疫グロブリンタンパク質に対する構造的相同性を全く示さ
ない。Scil Proteinsは、2個のアフィリン(商標)スカホールドを使用し、そのうちの1つ
は、γクリスタリン、ヒト構造的接眼レンズであり、他方は、“ユビキチン”スーパーフ
ァミリータンパク質である。両方のヒトスカホールドは、非常に小さく、高温安定性を示
し、pH変化および変性剤にほぼ耐性である。この高い安定性は、主に、タンパク質の拡張
されたβシート構造によるものである。γクリスタリン由来タンパク質の例は、WO200104
144に記載されており、“ユビキチン様”タンパク質の例は、WO2004106368に記載されて
いる。
(vii) Protein Epitope Mimetics (PEM)
PEMは、タンパク質のβヘアピン二次構造を模倣する中程度のサイズ、環状、ペプチド
様分子(MW 1-2kDa)であり、主な二次構造は、タンパク質-タンパク質相互作用に関与する
。より一般には、開示された抗体のエピトープの3D構造を模倣するすべてのポリペプチド
は、本発明の一部である。好ましい態様は、少なくとも下記のポリペプチドE1-L-E2を含
む30-100個のアミノ酸のポリペプチドであり、ここで、E1は、配列番号156であり、E2は
、配列番号157であり、Lは、E1およびE2が本発明の抗体により認識される領域の3D構造を
再構築するのを可能にするポリペプチドリンカーである。好ましい態様によると、Lは、
グリシンもしくはセリンアミノ酸から選択される10-20個のアミノ酸からなるリンカーで
ある。好ましくは、リンカーLは、ペプチドGGGSGGGGSGGGG(配列番号X/配列番号158)また
はGGGGSGGGGSGGGGSGGGG(配列番号Y/配列番号159)を含み、より好ましくは、リンカーLは
、本質的に、配列番号Xまたは配列番号Yからなる。
これらのポリペプチドは、本発明の抗体に対する高親和性を保持し得る。これらのポリ
ペプチドはまた、スクレロスチンに対する抗体を作製するための免疫原として有利に使用
され得る。
これらのポリペプチドはまた、スクレロスチンのアンタゴニストもしくはアゴニストと
して使用され得て、したがって、本発明の抗体について記載されたものと同様の適用を有
する。
E1および/またはE2配列において、1個もしくはそれ以上のアミノ酸置換または欠失、好
ましくは、1個以下、2個以下もしくは3個以下のアミノ酸置換または欠失を有するポリペ
プチドはまた、本発明の一部である。これらのポリペプチドはさらに、半減期を増加させ
るか、もしくは可溶性を改善するために改変され得る。特に、これらのポリペプチドと血
清タンパク質、例えば、IgGのFc断片もしくはヒト血清アルブミンの融合構築体は、本発
明の抗体断片分子について下記の段落で記載されたFc改変と同様に、半減期を増加させる
ために作製され得る。
フレームワークまたはFc改変
本発明の改変抗体は、例えば、抗体の特性を改善するために、修飾がVHおよび/またはV
L内のフレームワーク残基でなされているものを含む。一般には、そのようなフレームワ
ーク修飾は、抗体の免疫原性を減少させるようになされる。例えば、1つの方法は、1種も
しくはそれ以上のフレームワーク残基を対応する生殖細胞系列配列に“復帰突然変異させ
る”ことである。より特には、体細胞突然変異を受けた抗体は、該抗体が由来する生殖細
胞系列配列とは異なるフレームワーク残基を含み得る。そのような残基は、抗体フレーム
ワーク配列を該抗体が由来する生殖細胞系列配列と比較することにより同定され得る。フ
レームワーク領域配列を生殖細胞系列構成に戻すために、例えば、部位特異的突然変異誘
発もしくはPCR仲介突然変異誘発により、体細胞突然変異を生殖細胞系列配列に“復帰突
然変異させる”ことが可能である。そのような“復帰突然変異”抗体はまた、本発明に包
含されることが意図される。
他の型のフレームワーク修飾は、T細胞エピトープを除去するために、フレームワーク
領域内の、またはさらに、1種もしくはそれ以上のCDR領域内の1種もしくはそれ以上の残
基を突然変異させることを含み、それにより、抗体の潜在的な免疫原性を減少させる。こ
の方法はまた、“脱免疫化”と呼ばれ、さらに、米国特許出願公開番号20030153043(Carr
et al.による)に詳述されている。
フレームワークもしくはCDR領域内でなされる修飾に加えて、またはそれとは別に、本
発明の抗体は、一般に、該抗体の1種もしくはそれ以上の機能的特性、例えば、血清半減
期、補体結合、Fc受容体結合、および/または抗原依存性細胞毒性を改変するために、Fc
領域内の修飾を含むように改変され得る。さらに、本発明の抗体は、化学的に修飾される
(例えば、1種もしくはそれ以上の化学的部分を抗体に結合させることができる)か、また
はそのグリコシル化を改変するため、再び、該抗体の1種もしくはそれ以上の機能的特性
を改変するために、修飾され得る。これらの態様の各々は、下記で詳述されている。Fc領
域における残基の番号は、KabatのEU指標のものである。
1つの態様において、CH1のヒンジ領域は、ヒンジ領域におけるシステイン残基の数が改
変されるように、例えば、増加もしくは減少するように修飾される。この方法はさらに、
米国特許第5,677,425号(Bodmer et al.による)に記載されている。CH1のヒンジ領域にお
けるシステイン残基の数は、例えば、軽鎖もしくは重鎖の集合を促進するか、または抗体
の安定性を増加もしくは減少させるように改変される。
他の態様において、抗体のFcヒンジ領域を、抗体の生物学的半減期を減少させるように
突然変異させる。より特別には、抗体が天然のFc-ヒンジドメインStaphylococcylタンパ
ク質A(SpA)結合と比較して減少したSpA結合を有するように、1種もしくはそれ以上のアミ
ノ酸突然変異が、Fc-ヒンジ断片のCH2-CH3ドメインインターフェース領域に導入される。
この方法はさらに、米国特許第6,165,745号(Ward et al.による)に詳述されている。
他の態様において、抗体は、その生物学的半減期を増加させるように修飾される。例え
ば、1種もしくはそれ以上の下記の突然変異が導入され得る: T252L、T254S、T256F(米国
特許第6,277,375号(Wardによる))。あるいは、生物学的半減期を増加させるために、抗体
は、米国特許第5,869,046号および第6,121,022号(Presta et al.による)に記載されたと
おり、IgGのFc領域のCH2ドメインの2つのループから取得されたサルベージ受容体結合エ
ピトープを含むように、CH1もしくはCL領域内で改変され得る。
また他の態様において、Fc領域は、抗体のエフェクター機能を改変するために、少なく
とも1個のアミノ酸残基を異なるアミノ酸残基で置換することにより改変される。例えば
、1種もしくはそれ以上のアミノ酸は、異なるアミノ酸残基で置換され得て、その結果、
抗体は、親抗体の抗原結合能力を保持しつつ、エフェクターリガンドに対する改変された
親和性を有する。それに対する親和性が改変されるエフェクターリガンドは、例えば、Fc
受容体または補体のC1構成要素であり得る。この方法はさらに、米国特許第5,624,821号
および第5,648,260号(Winter et al.による)に記載されている。
他の態様において、アミノ酸残基から選択される1種もしくはそれ以上のアミノ酸は、
異なるアミノ酸残基で置換され得て、その結果、抗体は、改変されたC1q結合および/また
は減少もしくは消失した補体依存性細胞障害活性(CDC)を有する。この方法はさらに、米
国特許第6,194,551号(Idusogie et al.による)に記載されている。
他の態様において、1種もしくはそれ以上のアミノ酸残基は改変され、それにより、補
体に結合する抗体の能力を変える。この方法はさらに、PCT国際公開WO 94/29351(Bodmer
et al.による)に記載されている。
また他の態様において、Fc領域は、1種もしくはそれ以上のアミノ酸を修飾することに
より、抗体依存性細胞障害活性(ADCC)を仲介する抗体の能力を増大させるか、および/ま
たはFcγ受容体についての抗体の親和性を増加させるために修飾される。この方法はさら
に、PCT国際公開WO 00/42072(Prestaによる)に記載されている。さらに、FcγRl、FcγRI
I、FcγRIIIおよびFcRnについてのヒトIgG1上の結合部位は、マッピングされており、改
善された結合を有する変異型が記載されている(Shields, R.L. et al., 2001 J. Biol. C
hen. 276:6591-6604を参照のこと)。
また他の態様において、抗体は、グリコシル化により修飾される。例えば、非グリコシ
ル化抗体が作製され得る(すなわち、抗体は、グリコシル化を欠損している)。グリコシル
化は、例えば、“抗原”に対する抗体の親和性を増加させるために改変され得る。そのよ
うな糖質修飾は、例えば、抗体配列内の1種もしくはそれ以上のグリコシル化部位を改変
することにより達成され得る。例えば、1種もしくはそれ以上のアミノ酸置換は、1種もし
くはそれ以上の可変領域フレームワークグリコシル化部位の除去を生じるようになされ得
て、その結果、該部位におけるグリコシル化が除去される。そのような非グリコシル化は
、抗原に対する抗体の親和性を増加させ得る。そのような方法はさらに、米国特許第5,71
4,350号および第6,350,861号(Co et al.による)に詳述されている。
さらにまた、グリコシル化の改変型を有する抗体、例えば、減少した量のフコシル残基
を有する低フコシル化抗体もしくは増加した分岐GlcNac構造を有する抗体が作製され得る
。そのような改変グリコシル化様式は、抗体のADCC活性を増加させることが証明されてい
る。そのような糖質修飾は、例えば、改変グリコシル化機構を有する宿主細胞内で抗体を
発現させることにより達成され得る。改変グリコシル化機構を有する細胞は、当分野で開
示されており、本発明の組み換え抗体を発現させ、それにより、改変されたグリコシル化
を有する抗体を産生する宿主細胞として使用され得る。例えば、EP 1,176,195(Hang et a
l.による)は、フコシルトランスフェラーゼをコードする機能的に破壊されたFUT8遺伝子
を有する細胞株を開示しており、その結果、該細胞株で発現した抗体は、低フコシル化を
示す。PCT国際公開WO 03/035835(Prestaによる)は、フコースをAsn(297)結合糖質に結合
させる減少した能力を有する変異型CHO細胞株であるLecl3細胞を開示しており、それはま
た、該宿主細胞で発現した抗体の低フコシル化を生じる(また、Shields, R.L. et al., 2
002 J. Biol. Chem. 277:26733-26740を参照のこと)。PCT国際公開WO 99/54342(Umana et
al.による)は、糖タンパク質修飾グリコシルトランスフェラーゼ(例えば、β(1,4)-Nア
セチルグルコサミニルトランスフェラーゼIII (GnTIII))を発現するように改変された細
胞株を開示しており、その結果、改変細胞株で発現した抗体は、増加した分岐GlcNac構造
を示し、抗体の増加したADCC活性を生じる(また、Umana et al., 1999 Nat. Biotech. 17
:176-180を参照のこと)。
本発明で意図される本明細書の抗体の他の修飾は、ペグ化である。抗体は、例えば、抗
体の生物学的(例えば、血清)半減期を増加させるようにペグ化され得る。抗体をペグ化す
るために、抗体またはその断片を、1個もしくはそれ以上のPEG基が抗体またはその断片に
結合する条件下、ポリエチレングリコール(PEG)、例えば、反応性エステルもしくはPEGの
アルデヒド誘導体と反応させる。ペグ化は、反応性PEG分子(または類似の反応性水溶性ポ
リマー)とのアセチル化反応もしくはアルキル化反応により行われ得る。本明細書で使用
される“ポリエチレングリコール”なる用語は、他のタンパク質を誘導体化するために使
用されるPEGの形態のすべて、例えば、モノ(C1-C10)アルコキシ-もしくはアリールオキシ
-ポリエチレングリコールもしくはポリエチレングリコール-マレイミドを包含することが
意図される。特定の態様において、ペグ化される抗体は、非グリコシル化抗体である。タ
ンパク質をペグ化する方法は、当分野で既知であり、本発明の抗体に適用され得る。例え
ば、EP 0 154 316 (Nishimura et al.)およびEP 0 401 384 (Ishikawa et al.)を参照の
こと。
本発明により意図される抗体の他の修飾は、本発明の抗体の少なくとも抗原結合領域と
血清タンパク質、例えば、ヒト血清アルブミンもしくはその断片との抱合体またはタンパ
ク質融合体であり、それは、生じた分子の半減期を増加させる。そのような方法は、例え
ば、EP0322094 (Ballance et al.)に記載されている。
他の可能性は、本発明の抗体の少なくとも抗原結合領域と血清タンパク質、例えば、ヒ
ト血清アルブミンに結合可能なタンパク質との融合体であり、それは、生じた分子の半減
期を増加させる。そのような方法は、例えば、EP 0 486 525 (Nygren et al.)に記載され
ている。
改変抗体を作製する方法
上記したとおり、本明細書で示されるVHおよびVL配列または全長重鎖および軽鎖を有す
る抗スクレロスチン抗体は、全長重鎖および/または軽鎖配列、VHおよび/またはL配列、
またはそこに結合した定常領域を修飾することにより、新規抗スクレロスチン抗体を作製
するために使用され得る。したがって、本発明の他の局面において、本発明の抗スクレロ
スチン抗体の構造的な特徴は、本発明の抗体の少なくとも1種の機能的特性を保持する(例
えば、ヒトスクレロスチンに結合し、また、1種もしくはそれ以上のスクレロスチンの機
能的特性を阻害する(例えば、受容体結合、骨溶解の予防もしくは軽減))、構造的に関連
する抗スクレロスチン抗体を作製するために使用される。
例えば、本発明の抗体の1種もしくはそれ以上のCDR領域またはその突然変異体を、上記
したとおり、既知のフレームワーク領域および/または他のCDRと組み換え的に結合させる
ことができ、さらに組み換え的に改変された本発明の抗スクレロスチン抗体を作製するこ
とができる。他の型の修飾は、上記のものを含む。改変法のための出発物質は、本明細書
で提供される1種もしくはそれ以上のVHおよび/またはVL配列、または1種もしくはそれ以
上のそのCDR領域である。改変抗体を作製するために、本明細書で提供される1種もしくは
それ以上のVHおよび/またはVL配列、または1種もしくはそれ以上のそのCDR領域を有する
抗体を実際に作製する(すなわち、タンパク質として発現させる)必要はない。むしろ、配
列に含まれる情報は、もとの配列に由来する“第2世代”配列を作製するために出発物質
として使用され、次いで、“第2世代”配列が調製され、タンパク質として発現される。
したがって、他の態様において、本発明は、配列番号1-11からなる群から選択されるCD
R1配列; 配列番号12-22からなる群から選択されるCDR2配列; および/または配列番号23-3
3からなる群から選択されるCDR3配列を有する重鎖可変領域抗体配列; ならびに配列番号3
4-44からなる群から選択されるCDR1配列; 配列番号45-55からなる群から選択されるCDR2
配列; および/または配列番号56-66からなる群から選択されるCDR3配列を有する軽鎖可変
領域抗体配列からなる抗スクレロスチン抗体を作製するための方法を提供し、ここで、重
鎖可変領域抗体配列および/または軽鎖可変領域抗体配列内の少なくとも1種のアミノ酸残
基を改変して、少なくとも1種の改変抗体配列を作製し、該改変抗体配列をタンパク質と
して発現させる。
したがって、他の態様において、本発明は、配列番号111-121からなる群から選択され
る配列を有する全長重鎖抗体配列; および配列番号122-132からなる群から選択される配
列を有する全長軽鎖抗体配列からなる、哺乳類細胞で発現させるために最適化された抗ス
クレロスチン抗体を作製するための方法を提供し、ここで、全長重鎖抗体配列および/ま
たは全長軽鎖抗体配列内の少なくとも1種のアミノ酸残基を改変して、少なくとも1種の改
変抗体配列を作製し、該改変抗体配列をタンパク質として発現させる。
改変抗体配列はまた、配列番号23-33からなる群から選択される固定化CDR3配列またはU
S20050255552に記載された最低限重要な結合決定因子ならびにCDR1およびCDR2配列におけ
る多様性を有する抗体ライブラリーをスクリーニングすることにより作製され得る。スク
リーニングは、抗体を抗体ライブラリーからスクリーニングするのに適当な任意のスクリ
ーニング技術、例えば、ファージディスプレイ技術に基づいて行われ得る。
標準的な分子生物学的技術は、改変抗体配列を作製し、発現させるために使用され得る
。改変抗体配列によりコードされる抗体は、本明細書の記載された抗スクレロスチン抗体
の1種、いくつか、もしくは全部の機能特性を保持する抗体であり、その機能特性は、ヒ
トスクレロスチンに特異的に結合することを含むがこれらに限定されず、該抗体は、少な
くとも1種の下記の機能特性を示す: 該抗体は、細胞に基づくWntシグナル伝達アッセイに
おいて、スクレロスチンの阻害効果を妨害するか、細胞に基づく石灰化アッセイにおいて
、スクレロスチンの阻害効果を妨害するか、またはSmad1リン酸化アッセイにおいて、ス
クレロスチンの阻害効果を妨害するか、またはスクレロスチンのLRP-6への結合を阻害す
るか、または骨形成および骨量および骨密度を増加させる。
改変抗体は、上記した1種もしくはそれ以上、2種もしくはそれ以上、または3種もしく
はそれ以上の機能的特性を示し得る。
改変抗体の機能的特性は、当分野で利用可能な、および/または本明細書に記載された
標準的なアッセイ、例えば、実施例に示されたもの(例えば、ELISA)を用いて評価され得
る。
本発明の抗体を改変する方法の特定の態様において、突然変異は、抗スクレロスチン抗
体をコードする配列の全部または一部に、無作為に、もしくは選択的に導入され得て、生
じた修飾化抗スクレロスチンは、上記した結合活性および/または他の機能的特性につい
てスクリーニングされ得る。突然変異誘発法は、当分野において記載されている。例えば
、PCT国際公開WO 02/092780(Shortによる)には、飽和突然変異誘発、合成ライゲーション
アセンブリー法、またはその組み合わせを用いて、抗体突然変異を作製し、スクリーニン
グする方法が記載されている。あるいは、PCT国際公開WO 03/074679 (Lazar et al.によ
る)には、コンピュータースクリーニング法を用いて抗体の生理化学的特性を最適化する
方法が記載されている。
本発明の抗体をコードする核酸分子
本発明の他の局面は、本発明の抗体をコードする核酸分子に関する。全長軽鎖親ヌクレ
オチド配列の例は、配列番号144-145に示されている。全長重鎖親ヌクレオチド配列の例
は、配列番号133-134に示されている。哺乳類細胞での発現のために最適化された全長軽
鎖ヌクレオチド配列の例は、配列番号146-154に示されている。哺乳類細胞での発現のた
めに最適化された全長重鎖ヌクレオチド配列の例は、配列番号135-143に示されている。
核酸は、全細胞に、もしくは細胞ライセートに存在し得るか、または部分的に精製され
るか、もしくは実質的に精製された形態での核酸であり得る。核酸は、当分野で既知のア
ルカリ/SDS処理、CsClバンディング、カラムクロマトグラフィー、アガロースゲル電気泳
動および他の技術を含む標準的な技術により、他の細胞構成要素または他の汚染物質、例
えば、他の細胞性核酸もしくはタンパク質から精製されるときに、“単離される”か、ま
たは“実質的に精製され”ている。F. Ausubel, et al., ed. 1987 Current Protocols i
n Molecular Biology, Greene Publishing and Wiley Interscience, New Yorkを参照の
こと。本発明の核酸は、例えば、DNAもしくはRNAであり得て、イントロン配列を含むか、
または含まないものであり得る。ある態様において、核酸は、cDNA分子である。核酸はま
た、ベクター、例えば、ファージディスプレイベクターで、または組み換えプラスミドベ
クターで存在し得る。
本発明の核酸は、標準的な分子生物学的技術を用いて取得され得る。ハイブリドーマ(
例えば、さらに下記するように、ヒト免疫グロブリン遺伝子を有するトランスジェニック
マウスから作製されたハイブリドーマ)により発現された抗体について、ハイブリドーマ
により産生された抗体の軽鎖および重鎖をコードするcDNAは、標準的なPCR増幅またはcDN
Aクローニング技術により取得され得る。免疫グロブリン遺伝子ライブラリーから取得さ
れる抗体(例えば、ファージディスプレイ技術を用いて)について、抗体をコードする核酸
は、ライブラリーのメンバーであるさまざまなファージクローンから回収され得る。
VHおよびVL断片をコードするDNA断片が取得されると、これらのDNA断片はさらに、標準
的な組み換えDNA技術により操作され得て、例えば、可変領域遺伝子を、全長抗体鎖遺伝
子、Fab断片遺伝子もしくはscFv遺伝子に変換し得る。これらの操作において、VHまたはV
LをコードするDNA断片を、他のDNA分子に、または他のタンパク質をコードする断片、例
えば、抗体定常領域またはフレキシブルリンカーに操作可能に結合させる。本明細書で使
用される“操作可能に結合”なる用語は、2つのDNA断片が、機能的な方法で、例えば、2
つのDNA断片によりコードされるアミノ酸配列がインフレームのままであるか、またはタ
ンパク質が望まれるプロモーターの制御下で発現するように結合することを意味すること
が意図される。
VHをコードするDNAを重鎖定常領域(CH1、CH2およびCH3)コードする他のDNA分子と操作
可能に結合させることにより、VH領域をコードする単離DNAを全長重鎖遺伝子に変換する
ことが可能である。ヒト重鎖定常領域遺伝子の配列は、当分野において既知であり(例え
ば、Kabat, E. A., et al., 1991 Sequences of Proteins of Immunological Interest,
Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No.
91-3242を参照のこと)、これらの領域を包含するDNA断片は、標準的なPCR増幅法により
取得され得る。重鎖定常領域は、IgG1、IgG2、IgG3、IgG4、IgA、IgE、IgMまたはIgD定常
領域であり得る。好ましくは、重鎖定常領域は、IgG2アイソタイプから選択される。Fab
断片重鎖遺伝子に関して、VHをコードするDNAを、重鎖CH1定常領域のみをコードする他の
DNA分子と操作可能に結合させることができる。
VLをコードするDNAを軽鎖定常領域、すなわち、CLをコードする他のDNA分子と操作可能
に結合させることにより、VL領域をコードする単離DNAを全長軽鎖遺伝子に(およびFab軽
鎖遺伝子に)変換することが可能である。ヒト軽鎖定常領域遺伝子の配列は、当分野にお
いて既知であり(例えば、Kabat, E. A., et al., 1991 Sequences of Proteins of Immun
ological Interest, Fifth Edition, U.S. Department of Health and Human Services,
NIH Publication No. 91-3242を参照のこと)、これらの領域を包含するDNA断片は、標準
的なPCR増幅法により取得され得る。軽鎖定常領域は、κまたはλ定常領域であり得る。
scFv遺伝子を作製するために、VHおよびVLコードDNA断片を、フレキシブルリンカーを
コードする、例えば、アミノ酸配列(Gly4 -Ser)3をコードする他の断片に操作可能に結合
させて、その結果、VHおよびVL配列を、フレキシブルリンカーにより結合されたVLおよび
VH領域と共に、連続した単一鎖タンパク質として発現させることができる(例えば、Bird
et al., 1988 Science 242:423-426; Huston et al., 1988 Proc. Natl. Acad. Sci. USA
85:5879-5883; McCafferty et al., 1990 Nature 348:552-554を参照のこと)。
本発明のモノクローナル抗体の作製
モノクローナル抗体(mAb)は、慣用的なモノクローナル抗体手法、例えば、Kohler and
Milstein, 1975 Nature 256: 495の標準的な体細胞ハイブリダイゼーション技術を含むさ
まざまな技術により作製され得る。モノクローナル抗体を作製するための多くの技術、例
えば、Bリンパ球のウイルス性もしくは発癌性形質転換が使用され得る。
ハイブリドーマを作製するための動物系は、マウス系である。マウスでのハイブリドー
マ作製は、十分に確立された手順である。免疫化プロトコールおよび融合のための免疫化
脾細胞の単離についての技術は、当分野で既知である。融合パートナー(例えば、マウス
骨髄腫細胞)および融合手順はまた、当分野で既知である。
本発明のキメラもしくはヒト化抗体は、上記で作製されたマウスモノクローナル抗体の
配列に基づいて作製され得る。重鎖および軽鎖免疫グロブリンをコードするDNAは、標準
的な分子生物学的技術を用いて、関心のあるマウスハイブリドーマから取得され得て、非
マウス(例えば、ヒト)免疫グロブリン配列を含むように改変され得る。例えば、キメラ抗
体を作製するために、当分野で既知の技術を用いて、マウス可変領域をヒト定常領域と結
合させることができる(例えば、米国特許第4,816,567号(Cabilly et al.による)を参照の
こと)。ヒト化抗体を作製するために、マウスCDR領域は、当分野で既知の技術を用いて、
ヒトフレームワークに挿入され得る。例えば、米国特許第5225539号(Winterによる)なら
びに米国特許第5530101号; 第5585089号; 第5693762号および第6180370号(Queen et al.
による)を参照のこと。
ある態様において、本発明の抗体は、ヒトモノクローナル抗体である。スクレロスチン
に対するそのようなヒトモノクローナル抗体は、マウス系よりもヒト免疫系の一部を有す
るトランスジェニックもしくはトランス染色体マウスを用いて作製され得る。これらのト
ランスジェニックもしくはトランス染色体マウスは、本明細書で、各々、HuMAbマウスお
よびKMマウスとして示されるマウスを含み、本明細書では、まとめて“ヒトIgマウス”と
して示される。
HuMAbマウス(登録商標(Medarex, Inc.)は、内在性μおよびκ鎖遺伝子座を不活性化す
る標的化突然変異と共に、再配置されていないヒト重鎖(μおよびγ)ならびにκ軽鎖免疫
グロブリン配列をコードするヒト免疫グロブリン遺伝子小座を含む(例えば、Lonberg, et
al., 1994 Nature 368(6474): 856-859を参照のこと)。したがって、該マウスは、マウ
スIgMもしくはκの減少した発現を示し、免疫化に応答して、導入されたヒト重鎖および
軽鎖トランスジーンは、クラススイッチおよび体細胞突然変異を受け、高親和性ヒトIgG
κモノクローナル抗体を産生する(上記のLonberg, N. et al., 1994; reviewed in Lonbe
rg, N., 1994 Handbook of Experimental Pharmacology 113:49-101; Lonberg, N. and H
uszar, D., 1995 Intern. Rev. Immunol.13: 65-93, ならびにHarding, F. and Lonberg,
N., 1995 Ann. N. Y. Acad. Sci. 764:536-546を参照のこと)。HuMAbマウスの製造およ
び使用、ならびに該マウスにより保持されるゲノム修飾は、さらに、Taylor, L. et al.,
1992 Nucleic Acids Research 20:6287-6295; Chen, J. et al., 1993 International I
mmunology 5: 647-656; Tuaillon et al., 1993 Proc. Natl. Acad. Sci. USA 94:3720-3
724; Choi et al., 1993 Nature Genetics 4:117-123; Chen, J. etal., 1993 EMBO J. 1
2: 821-830; Tuaillon et al., 1994 J. Immunol. 152:2912-2920; Taylor, L. et al.,
1994 International Immunology 579-591; およびFishwild, D. et al., 1996 Nature Bi
otechnology 14: 845-851に記載されており、そのすべての内容は、引用によりその全体
を本明細書の一部とする。さらに、米国特許第5,545,806号; 第5,569,825号; 第5,625,12
6号; 第5,633,425号; 第5,789,650号; 第5,877,397号; 第5,661,016号; 第5,814,318号;
第5,874,299号; および第5,770,429号(そのすべては、Lonberg and Kayによる); 米国特
許第5,545,807号(Surani et al.による); PCT国際公開WO 92/103918、WO 93/12227、WO 9
4/25585、WO 97/113852、WO 98/24884およびWO 99/45962(そのすべては、Lonberg and Ka
yによる); ならびにPCT国際公開WO 01/14424(Korman et al.による)を参照のこと。
他の態様において、本発明のヒト抗体は、トランスジーンおよびトランス染色体上にヒ
ト免疫グロブリン配列を有するマウス、例えば、ヒト重鎖トランスジーンおよびヒト軽鎖
トランス染色体を有するマウスを用いて作製され得る。本明細書で“KMマウス”として示
されるそのようなマウスは、PCT国際公開WO 02/43478(Ishida et al.による)に詳述され
ている。
またさらに、ヒト免疫グロブリン遺伝子を発現する代替的なトランスジェニック動物系
は、当分野で利用可能であり、本発明の抗スクレロスチン抗体を作製するために使用され
得る。例えば、Xenomouse (Abgenix, Inc.)と呼ばれる代替的なトランスジェニック動物
系が使用され得る。そのようなマウスは、例えば、米国特許第5,939,598号; 第6,075,181
号; 第6,114,598号; 第6, 150,584号および第6,162,963号(Kucherlapati et al.による)
に記載されている。
さらに、ヒト免疫グロブリン遺伝子を発現する代替的なトランス染色体動物系は、当分
野で利用可能であり、本発明の抗スクレロスチン抗体を作製するために使用され得る。例
えば、“TCマウス”と呼ばれるヒト重鎖トランス染色体およびヒト軽鎖トランス染色体を
有するマウスが使用され得て、そのようなマウスは、Tomizuka et al., 2000 Proc. Natl
. Acad. Sci. USA 97:722-727に記載されている。さらに、ヒト重鎖およびヒト軽鎖トラ
ンス染色体を有するウシは、当分野で開示されており(Kuroiwa et al., 2002 Nature Bio
technology 20:889-894)、本発明の抗スクレロスチン抗体を作製するために使用され得る
本発明のヒトモノクローナル抗体はまた、ヒト免疫グロブリン遺伝子のライブラリーを
スクリーニングするために、ファージディスプレイ法を用いて作製され得る。そのような
ヒト抗体を単離するためのファージディスプレイ法は、当分野で確立されており、下記の
実施例に記載されている。例えば、米国特許第5,223,409号; 第5,403,484号; および第5,
571,698号(Ladner et al.による); 米国特許第5,427,908号および第5,580,717号(Dower e
t al.による); 米国特許第5,969,108号および第6,172,197号(McCafferty et al.); なら
びに米国特許第5,885,793号; 第6,521,404号; 第6,544,731号; 第6,555,313号; 第6,582,
915号および第6,593,081号(Griffiths et al.による)を参照のこと。
本発明のヒトモノクローナル抗体はまた、SCIDマウスを用いて作製され得て、そこでは
、ヒト免疫細胞が再構成されており、その結果、免疫化によりヒト抗体応答が産生され得
る。そのようなマウスは、例えば、米国特許第5,476,996号および第5,698,767号(Wilsone
t al.による)に記載されている。
ハイブリドーマ産生ヒトモノクローナル抗体の作製
本発明のヒトモノクローナル抗体を産生するハイブリドーマを作製するために、免疫化
マウス由来の脾細胞および/またはリンパ節細胞が単離され得て、適当な不死化細胞株、
例えば、マウス骨髄腫細胞株と融合され得る。生じたハイブリドーマは、抗原特異的抗体
の産生のためにスクリーニングされ得る。例えば、免疫化マウス由来の脾臓リンパ細胞の
単一細胞懸濁物を、50% PEGを用いて、6分の1の数のP3X63-Ag8.653非分泌性マウス骨髄腫
細胞(ATCC, CRL 1580)と融合させることができる。細胞を、平底マイクロタイタープレー
トに、約2 x 145で播種し、その後、20% 胎児クローン血清(fetal Clone Serum)、18% “
653”条件培地、5% origen (IGEN)、4 mM L-グルタミン、1 mM ピルビン酸ナトリウム、5
mM HEPES、0.055 mM 2-メルカプトエタノール、50 ユニット/mlペニシリン、50 mg/ml ス
トレプトマイシン、50 mg/ml ゲンタマイシンおよび1X HAT (Sigma; HATは、融合の24時
間後に添加される)を含む選択培地で、2週間インキュベートする。約2週間後、HATをHTで
置換した培地で細胞を培養し得る。次いで、個々のウェルを、ヒトモノクローナルIgMお
よびIgG抗体について、ELISAによりスクリーニングし得る。広範なハイブリドーマ増殖が
生じると、通常、10-14日後に培地を観察することができる。抗体分泌ハイブリドーマを
再播種し、再びスクリーニングし、ヒトIgGについてなお陽性であるとき、モノクローナ
ル抗体は、少なくとも2回の限界希釈によりサブクローン化され得る。その後、安定なサ
ブクローンは、特徴づけのために、組織培養培地中に少量の抗体を産生するように、イン
ビトロで培養され得る。
ヒトモノクローナル抗体を精製するために、選択されたハイブリドーマを、2リットル
のスピナーフラスコで増殖させることができる。上清をろ過および濃縮し、その後、プロ
テインA-セファロース(Pharmacia, Piscataway, N.J.)を用いた親和性クロマトグラフィ
ーにかけることができる。溶出されたIgGをゲル電気泳動および高速液体クロマトグラフ
ィーで調べて、精製度を確認することができる。緩衝液をPBSで交換し、1.43の吸光係数
を用いて、濃度をOD280により決定し得る。モノクローナル抗体をアリコートし、-80℃で
貯蔵し得る。
形質転換体産生ヒトモノクローナル抗体の作製
本発明の抗体はまた、例えば、当分野で既知である組み換えDNA技術および遺伝子導入
法の組み合わせを用いて、宿主細胞形質転換体で産生され得る(例えば、Morrison, S. (1
985) Science 229:1202)。
例えば、抗体またはその抗体断片を発現させるために、部分もしくは全長軽鎖および重
鎖をコードするDNAが、標準的な分子生物学的技術(例えば、関心のある抗体を発現するハ
イブリドーマを用いたPCR増幅もしくはcDNAクローニング)により取得され得て、該DNAは
、発現ベクターに挿入され得て、その結果、該遺伝子は、転写および翻訳制御配列に操作
可能に結合される。本明細書における“操作可能に結合”なる用語は、ベクター内の転写
および翻訳制御配列が抗体遺伝子の転写および翻訳を制御することの意図される機能を果
たすように、抗体遺伝子がベクターに連結されていることを意味することが意図される。
発現ベクターおよび発現制御配列は、使用される発現宿主細胞と適合するように選択され
る。抗体軽鎖遺伝子および抗体重鎖遺伝子は、別々のベクターに挿入されるか、または、
より一般には、両遺伝子は、同じ発現ベクターに挿入され得る。抗体遺伝子は、標準的な
方法(例えば、抗体遺伝子断片およびベクター上の相補性制限酵素部位のライゲーション
、または制限酵素部位が存在しないときの平滑末端ライゲーション)により、発現ベクタ
ーに挿入される。本明細書に記載される抗体の軽鎖および重鎖可変領域は、それらを望ま
れるアイソタイプの重鎖定常領域および軽鎖定常領域をすでにコードする発現ベクターに
挿入し、その結果、VH断片が、ベクター内のCH断片に操作可能に結合され、VL断片が、ベ
クター内のCL断片に操作可能に結合されることにより、任意の抗体アイソタイプの全長抗
体遺伝子を作製するために使用され得る。さらに、組み換え発現ベクターは、宿主細胞か
らの抗体鎖の分泌を促進するシグナルペプチドをコードし得る。抗体鎖遺伝子は、シグナ
ルペプチドがインフレームで抗体鎖遺伝子のアミノ末端と結合するように、ベクターにク
ローン化され得る。シグナルペプチドは、免疫グロブリンシグナルペプチドまたは異種シ
グナルペプチド(すなわち、非免疫グロブリンタンパク質由来のシグナルペプチド)であり
得る。
抗体鎖遺伝子に加えて、本発明の組み換え発現ベクターは、宿主細胞内で抗体鎖遺伝子
の発現を制御する制御配列を有する。“制御配列”なる用語は、抗体鎖遺伝子の転写もし
くは翻訳を制御するプロモーター、エンハンサーおよび他の発現制御エレメント(例えば
、ポリアデニル化シグナル)を含むことが意図される。そのような制御配列は、例えば、G
oeddel (Gene Expression Technology. Methods in Enzymology 185, Academic Press, S
an Diego, CA 1990)に記載されている。制御配列の選択を含む発現ベクターの設計は、形
質転換される宿主細胞の選択、望まれるタンパク質の発現レベルなどのような因子に依存
し得ることは、当業者により認識されている。哺乳類宿主細胞発現のための制御配列は、
哺乳類細胞で高レベルのタンパク質発現を生じるウイルスエレメント、例えば、サイトメ
ガロウイルス(CMV)、シミアンウイルス40 (SV40)、アデノウイルス(例えば、アデノウイ
ルス主要後期プロモーター(AdMLP))およびポリオーマウイルスに由来するプロモーターお
よび/またはエンハンサーを含む。あるいは、非ウイルス制御配列、例えば、ユビキチン
プロモーターもしくはP-グロビンプロモーターが使用され得る。またさらに、制御エレメ
ントは、異なる起源の配列からなり、例えば、SRaプロモーター系は、SV40早期プロモー
ター由来の配列およびI型ヒトT細胞白血病ウイルスの長い末端反復配列を含む(Takebe, Y
. et al., 1988 Mol. Cell. Biol. 8:466-472)。
抗体鎖遺伝子および制御配列に加えて、本発明の組み換え発現ベクターは、さらなる配
列、例えば、宿主細胞内でのベクターの複製を制御する配列(例えば、複製開始点)および
選択可能マーカー遺伝子を有し得る。選択可能マーカー遺伝子は、ベクターが導入された
宿主細胞の選択を容易にする(例えば、米国特許第4,399,216号、第4,634,665号および第5
,179,017号(すべては、Axel et al.による)を参照のこと)。例えば、典型的な選択可能マ
ーカー遺伝子、例えば、G418、ハイグロマイシンもしくはメトトレキサートは、ベクター
が導入された宿主細胞において、薬剤に対する耐性を与える。選択可能マーカー遺伝子は
、ジヒドロ葉酸レダクターゼ(DHFR)遺伝子(メトトレキサート選択/増幅を用いたdhfr-宿
主細胞での使用のために)およびneo遺伝子(G418選択のために)を含む。
軽鎖および重鎖の発現のために、重鎖および軽鎖をコードする発現ベクターは、標準的
な技術により宿主細胞に導入される。“トランスフェクション”なる用語のさまざまな形
態は、原核もしくは真核宿主細胞への外因性DNAの導入のために通常使用されるさまざま
な技術、例えば、エレクトロポレーション、リン酸カルシウム沈殿、DEAE-デキストラン
トランスフェクションなどを含むことが意図される。原核もしくは真核宿主細胞で本発明
の抗体を発現させることは、理論上可能である。真核細胞、特に、哺乳類細胞は、適当に
折り畳まれた免疫学的に活性な抗体を集合させ、分泌させるのに、原核細胞よりもより可
能性があるので、真核細胞、特に、哺乳類宿主細胞での抗体の発現が議論される。抗体遺
伝子の原核細胞での発現は、高収量の活性な抗体の産生のためには有効でないことが報告
されている(Boss, M. A. and Wood, C. R., 1985 Immunology Today 6:12-13)。
本発明の組み換え抗体を発現させるための哺乳類宿主細胞は、チャイニーズハムスター
卵巣細胞(CHO細胞)(例えば、R.J. Kaufman and P.A. Sharp, 1982 Mol. Biol. 159:601-6
21に記載されたとおり、DH FR選択可能マーカーを用いて使用される、Urlaub and Chasin
, 1980 Proc. Natl. Acad. Sci. USA 77:4216-4220に記載されたdhfr- CHO細胞を含む)、
NSO骨髄腫細胞、COS細胞およびSP2細胞を含む。特に、NSO骨髄腫細胞を用いた使用につい
て、他の発現系は、WO 87/04462、WO 89/01036およびEP 338,841で示されたGS遺伝子発現
系である。抗体遺伝子をコードする組み換え発現ベクターが哺乳類宿主細胞に導入される
と、抗体は、宿主細胞内での抗体の発現または宿主細胞が増殖している培養培地への抗体
の分泌を可能にするのに十分な時間、該宿主細胞を培養することにより産生される。抗体
は、標準的なタンパク質精製法を用いて、培養培地から回収され得る。
二重特異性分子
他の局面において、本発明は、本発明の抗スクレロスチン抗体またはその断片を含む、
二重特異性もしくは多特異的分子に関する。本発明の抗体またはその抗原結合領域を誘導
体化させるか、または他の機能性分子、例えば、他のペプチドまたはタンパク質(例えば
、他の抗体もしくは受容体のためのリガンド)と結合させて、少なくとも2つの異なる結合
部位または標的分子に結合する二重特異性分子を作製することができる。本発明の抗体を
実際に誘導体化させるか、または2種以上の他の機能性分子と結合させて、3種以上の異な
る結合部位および/または標的分子に結合する多特異的分子を作製することができ; その
ような多特異的分子はまた、本明細書で使用される“二重特異性分子”なる用語に包含さ
れることが意図される。本発明の二重特異性分子を作製するために、本発明の抗体を、1
種もしくはそれ以上の他の結合分子、例えば、他の抗体、抗体断片、ペプチドもしくは結
合模倣剤と機能的に結合させることができ(例えば、化学的カップリング、遺伝学的融合
、非共有結合または別の方法で)、その結果、二重特異性分子が生じる。
したがって、本発明は、スクレロスチンに対する少なくとも1個の第1の結合特異性およ
び第2標的エピトープに対する第2の結合特異性を含む、二重特異性分子を含む。例えば、
第2標的エピトープは、第1標的エピトープとは異なるスクレロスチンの他のエピトープで
ある。他の例は、スクレロスチンに対する少なくとも1個の第1の結合特異性およびDkk-1
内のエピトープに対する第2の結合特異性を含む、二重特異性分子である。他の例は、ス
クレロスチンに対する少なくとも1個の第1の結合特異性およびLRP4内のエピトープに対す
る第2の結合特異性を含む、二重特異性分子である。
さらに、二重特異性分子が多特異的である発明について、該分子はさらに、第1および
第2標的エピトープに加えて、第3の結合特異性を含み得る。
1つの態様において、本発明の二重特異性分子は、結合特異性として、少なくとも1種の
抗体またはその抗体断片、例えば、Fab、Fab'、F(ab')2、Fv、もしくは一本鎖Fvを含む。
抗体はまた、軽鎖もしくは重鎖ダイマー、または任意のその最小断片、例えば、米国特許
第4,946,778号(Ladner et al.)に記載されたFvもしくは一本鎖構築体であり得て、その内
容は、引用により本明細書の一部とする。
本発明の二重特異性分子で使用され得る他の抗体は、マウス、キメラおよびヒト化モノ
クローナル抗体である。
本発明の二重特異性分子は、当分野で既知の方法を用いて、構成要素結合特異性基(con
stituent binding specificities)を結合させることにより作製され得る。例えば、二重
特異性分子の各結合特異性基は、別々に作製され、互いに結合され得る。結合特異性基が
タンパク質またはペプチドであるとき、さまざまな結合剤もしくは架橋剤が、共有結合の
ために使用され得る。架橋剤の例は、プロテインA、カルボジイミド、N-スクシンイミジ
ル-S-アセチル-チオアセテート(SATA)、5,5'-ジチオビス(2-ニトロ安息香酸)(DTNB)、o-
フェニレンジマレイミド(oPDM)、N-スクシンイミジル-3-(2-ピリジルジチオ)プロピオネ
ート(SPDP)、およびスルホスクシンイミジル4-(N-マレイミドメチル)シクロヘキサン-l-
カルボキシレート(スルホ-SMCC)を含む(例えば、Karpovsky et al., 1984 J. Exp. Med.
160:1686; Liu, MA et al., 1985 Proc. Natl. Acad. Sci. USA 82:8648を参照のこと)。
他の方法は、Paulus, 1985 Behring Ins. Mitt. No. 78,118-132; Brennan et al., 1985
Science 229:81-83、およびGlennie et al., 1987 J. Immunol. 139: 2367-2375に記載
されたものを含む。結合剤は、SATAおよびスルホ-SMCCであり、Pierce Chemical Co. (Ro
ckford, IL)から入手可能である。
結合特異性基が抗体であるとき、それらは、2つの重鎖のC末端ヒンジ領域のスルフヒド
リル結合により結合され得る。特定の態様において、ヒンジ領域は、結合前に、奇数、例
えば、1個のスルフヒドリル基を含むように修飾され得る。
あるいは、結合特異性基は、同じベクターにコードされ、同じ宿主細胞で発現し、集合
し得る。この方法は、特に、二重特異性分子が、mAb x mAb、mAb x Fab、Fab x F(ab')2
またはリガンド x Fab融合タンパク質であるときに有用である。本発明の二重特異性分子
は、1個の一本鎖抗体および結合決定基を含む一本鎖分子、または2つの結合決定基を含む
一本鎖二重特異性分子であり得る。二重特異性分子は、少なくとも2つの一本鎖分子を含
み得る。二重特異性分子を製造するための方法は、例えば、米国特許第5,260,203号; 米
国特許第5,455,030号; 米国特許第4,881,175号; 米国特許第5,132,405号; 米国特許第5,0
91,513号; 米国特許第5,476,786号; 米国特許第5,013,653号; 米国特許第5,258,498号;
および米国特許第5,482,858号に記載されている。
二重特異性分子のそれらの特定の標的への結合は、例えば、酵素結合免疫吸着法(ELISA
)、ラジオイムノアッセイ(REA)、FACS解析、バイオアッセイ(例えば、増殖阻害)、または
ウエスタンブロットアッセイにより確認され得る。これらのアッセイの各々は、一般に、
関心のある複合体に特異的な標識化試薬(例えば、抗体)を使用することにより、特定の関
心のあるタンパク質-抗体複合体の存在を検出する。
多価抗体
他の局面において、本発明は、スクレロスチンに結合する本発明の抗体の少なくとも2
個の同一または異なる抗原結合部分を含む、多価化合物を提供する。好ましくは、スクレ
ロスチンの三量体の性質を考慮すると、本発明の化合物は、少なくとも3個もしくは4個の
抗体の抗原結合部分を提供する。抗原結合部分は、タンパク質融合または共有もしくは非
共有結合により結合することが可能である。あるいは、結合方法は、バイスペシフィック
分子について記載されている。四価化合物は、例えば、本発明の抗体の架橋抗体を、本発
明の抗体の定常領域、例えば、Fcもしくはヒンジ領域に結合する抗体と架橋させることに
より取得され得る。
三量体化ドメインは、例えば、Borean patent EP 1 012 280B1に記載されている。五量
体化モジュールは、例えば、PCT/EP97/05897に記載されている。
医薬組成物
他の局面において、、本発明は、組成物、例えば、薬学的に許容される担体と共に製剤
される、モノクローナル抗体、もしくはその抗原結合部分(複数もある)の1種もしくはそ
の組み合わせを含む、医薬組成物を提供する。そのような組成物は、本発明の抗体もしく
は免疫抱合体もしくは二重特異性分子の1種もしくはその組み合わせ(例えば、2種もしく
はそれ以上の異なるもの)を含み得る。例えば、本発明の医薬組成物は、標的抗原上の異
なるエピトープに結合するか、もしくは相補的な活性を有する抗体の組み合わせを含み得
る。
本発明の医薬組成物はまた、組み合わせ治療で、例えば、他の薬剤との組合せで投与さ
れ得る。例えば、組み合わせ治療は、本発明の抗スクレロスチン抗体を少なくとも1種の
他の抗炎症もしくは抗骨粗鬆症剤と組み合わせることを含み得る。組み合わせ治療で使用
され得る治療剤の例は、本発明の抗体の使用に関して、下記の項で詳述されている。組成
物は、好ましくは、生理学的なpHで製剤される。
本明細書で使用される“薬学的に許容される担体”は、任意のおよびすべての生理学的
に適合する溶剤、分散媒、被覆、抗菌および抗真菌剤、等張および吸収遅延剤などを含む
。担体は、静脈内、筋肉内、皮下、非経腸、脊髄または表皮投与(例えば、注射または点
滴による)のために適当なものであるべきである。投与の経路に依存して、活性化合物、
すなわち、抗体、免疫抱合体または二重特異性分子は、酸の作用および化合物を不活性化
し得る他の天然状態から化合物を保護するために、物質で覆われ得る。
本発明の医薬化合物は、1個またはそれ以上の薬学的に許容される塩を含み得る。“薬
学的に許容される塩”は、親化合物の望まれる生物学的活性を保持し、すべての望まれな
い毒性効果を与えない塩のことを言う(例えば、Berge, S.M., et al., 1977 J. Pharm. S
ci. 66:1-19を参照のこと)。そのような塩の例は、酸付加塩および塩基付加塩を含む。酸
付加塩は、非毒性無機酸、例えば、塩酸、硝酸、リン酸、硫酸、臭化水素酸、ヨウ化水素
酸、亜リン酸などに由来するもの、および非毒性有機酸、例えば、脂肪族モノおよびジカ
ルボン酸、フェニル置換アルカン酸、ヒドロキシアルカン酸、芳香族酸、脂肪族および芳
香族スルホン酸などに由来するものを含む。塩基付加塩は、アルカリ土類金属、例えば、
ナトリウム、カリウム、マグネシウム、カルシウムなどに由来するもの、および非毒性有
機アミン、例えば、N,N'-ジベンジルエチレンジアミン、N-メチルグルカミン、クロロプ
ロカイン、コリン、ジエタノールアミン、エチレンジアミン、プロカインなどに由来する
ものを含む。
本発明の医薬組成物はまた、薬学的に許容される抗酸化剤を含み得る。薬学的に許容さ
れる抗酸化剤の例は、水溶性抗酸化剤、例えば、アスコルビン酸、塩酸システイン、重硫
酸ナトリウム、亜硫酸ナトリウムなど; 油溶性抗酸化剤、例えば、パルミチン酸アスコル
ビル、ブチル化ヒドロキシアニソール(BHA)、ブチル化ヒドロキシトルエン(BHT)、レシチ
ン、没食子酸プロピル、アルファ-トコフェロールなど; および金属キレート剤、例えば
、クエン酸、エチレンジアミン四酢酸(EDTA)、ソルビトール、酒石酸、リン酸などを含む
本発明の医薬組成物で使用され得る適当な水性および非水性担体の例は、水、エタノー
ル、ポリオール(例えば、グリセロール、プロピレングリコール、ポリエチレングリコー
ルなど)、およびその適当な混合物、植物油、例えば、オリーブ油、ならびに注射用有機
エステル、例えば、オレイン酸エチルを含む。適当な流動性は、例えば、レシチンのよう
な被覆材料の使用により、分散の場合における必要とされる粒子径の維持により、および
界面活性剤の使用により維持され得る。
これらの組成物はまた、保存剤、湿潤剤、乳化剤および分散剤のようなアジュバントを
含み得る。微生物の存在の防止は、上記の滅菌手順により、およびさまざまな抗菌剤およ
び抗真菌剤、例えば、パラベン、クロロブタノール、フェノールソルビン酸などの包含に
より保証され得る。それはまた、等張剤、例えば、糖、塩化ナトリウムなどを組成物中に
含むことを望み得る。さらに、注射用医薬型の持続的吸収は、吸収を遅らせる薬剤、例え
ば、モノステアリン酸アルミニウムおよびゼラチンの包含により生じ得る。
薬学的に許容される担体は、滅菌注射用溶液または分散液の即時調製のために、滅菌水
溶液または分散液および滅菌粉末を含む。薬学的に活性な物質のためのそのような培地お
よび薬剤の使用は、当分野で既知である。活性化合物に適合しない場合を除いて、すべて
の慣用的な培地または薬剤は、本発明の医薬組成物におけるその使用が意図される。また
、補助的な活性化合物を組成物中に組み込むことができる。
治療組成物は、一般に、製造および貯蔵の状態で、滅菌され、安定していなければなら
ない。組成物は、溶液、マイクロエマルジョン、リポソーム、または高い薬剤濃度に適し
た他の秩序ある構造として製剤化され得る。担体は、例えば、水、エタノール、ポリオー
ル(例えば、グリセロール、プロピレングリコール、および液体ポリエチレングリコール
など)、およびその適当な混合物を含む溶剤または分散媒であり得る。適当な流動性は、
例えば、レシチンのような被覆材料の使用により、分散の場合における必要とされる粒子
径の維持により、および界面活性剤の使用により維持され得る。多くの場合において、組
成物中に、等張剤、例えば、糖、ポリアルコール、例えば、マンニトール、ソルビトール
、または塩化ナトリウムを含み得る。注射用組成物の持続的吸収は、吸収を遅らせる組成
物、例えば、モノステアリン酸アルミニウムおよびゼラチンを含むことにより生じ得る。
滅菌注射用溶液は、適当な溶媒中に必要とされる量で、活性化合物を上記に列挙した成
分の1種もしくはその組み合わせと共に組み込むことにより製造され得て、所望により、
その後、滅菌精密ろ過が行われる。一般に、分散剤は、活性化合物を滅菌ビヒクルに組み
込むことにより製造され得て、それは、上記に列挙したものからの塩基性分散培地および
必要とされる他の成分を含む。滅菌注射用溶液の製造のための滅菌粉末の場合には、製造
の方法は、以前のその滅菌ろ過溶液からの有効成分の粉末+任意のさらに望まれる成分を
産生する、真空乾燥およびフリーズ・ドライ(凍結乾燥)である。
単一用量形を製造するために担体材料と組み合わせ得る有効成分の量は、処置される対
象、および特定の投与形態に依存して変わり得る。単一用量形を製造するために担体材料
と組み合わせ得る有効成分の量は、一般に、治療的効果を産生する組成物の量であり得る
。一般に、該量は、薬学的に許容される担体と組み合わせて、100%中、約0.01パーセント
から約99%の有効成分、約0.1パーセントから約70パーセントの有効成分、または約1パー
セントから約30パーセントの有効成分の範囲である。
投与レジメンは、望まれる最適な応答(例えば、治療応答)を提供するために調節される
。例えば、治療状況の緊急性により示されたとおり、単一ボーラスを投与し得るか、いく
つかの分割した用量を時間毎に投与し得るか、または用量を比例的に減少させるか、もし
くは増加させ得る。投与の容易さのために、単位用量形および均一の用量で非経口組成物
を製剤することは、とりわけ有利である。本明細書で使用される単位用量形は、処置され
る対象のための単一用量として適した、物理的に分離した単位のことを言い; 各単位は、
必要な医薬担体と共に、望まれる治療効果を生むように計算された、前決定された量の活
性化合物を含む。本発明の単位用量形の明細書は、活性化合物の独自の特徴および達成さ
れる特定の治療効果、ならびに、例えば、個体における過敏症の処置のための活性化合物
のような調合の分野での内在する制限により影響を受け、それに直接的に依存する。
抗体の投与に関して、用量は、宿主体重の約0.0001から100 mg/kg、より一般には、0.0
1から5 mg/kgの範囲である。例えば、用量は、0.3 mg/kg体重、1 mg/kg体重、3 mg/kg体
重、5 mg/kg体重もしくは10 mg/kg体重または1-10 mg/kgの範囲内であり得る。典型的な
処置レジメンは、週1回、2週間ごとに1回、3週間毎に1回、4週間毎に1回、月1回、3ヶ月
毎に1回または3から6ヶ月毎に1回の投与を必要とする。本発明の抗スクレロスチン抗体の
ための用量レジメンは、静脈投与により、1 mg/kg体重または3 mg/kg 体重を含み得て、
該抗体は、下記の用量スケジュールの1つを用いて与えられ: 例えば、4週間毎に6回の投
与、次いで、3ヶ月毎; 3週間毎; 3 mg/kg 体重の1回投与後、3週間毎に1 mg/kg 体重が続
く。
ある方法では、異なる結合特異性を有する2種もしくはそれ以上のモノクローナル抗体
は、同時に、または連続して投与され、その場合には、投与される各抗体の用量は、既定
の範囲内にある。抗体は、通常、複数の機会で投与される。単一投与間の間隔は、例えば
、週1回、月1回、3ヶ月毎または年1回であり得る。間隔はまた、患者の標的抗原に対する
抗体の血中レベルを測定することにより示されたとおり、不規則であり得る。ある方法に
おいて、用量は、約1-1000 μg/mlの血漿抗体濃度を達成するように調節され、またある
方法では、約25-300 μg/mlの血漿抗体濃度を達成するように調節される。
あるいは、抗体は、徐放性製剤として投与され得て、その場合には、より少ない頻度の
投与が必要とされる。用量および頻度は、患者での抗体の半減期に依存して変わる。一般
に、ヒト抗体は、最も長い半減期を示し、次いで、ヒト化抗体、キメラ抗体、および非ヒ
ト抗体と続く。投与の用量および頻度は、処置が、予防的であるか、または治療的である
かに依存して変わり得る。予防的適用では、相対的に低い用量が、長期間に渡って、比較
的低い頻度の間隔で投与される。ある患者は、死ぬまで処置を受け続ける。治療的適用で
は、時として、相対的に短い間隔での相対的に高用量が、疾患の進行が軽減するか、もし
くは終結するまで、または患者が部分的もしくは完全な疾患症状の改善を示すまで必要と
される。その後、患者は、予防的レジメンで投与され得る。
本発明の医薬組成物における有効成分の実際の用量レベルは、患者に対する毒性なしに
、特定の患者、組成物、および投与形態について望まれる治療応答を達成するのに効果的
である有効成分の量を得るために変わり得る。選択される用量レベルは、使用される本発
明の特定の組成物、またはそのエステル、塩もしくはアミドの活性、投与経路、投与時間
、使用される特定の化合物の排泄速度、処置の持続、使用される特定の組成物との組み合
わせで使用される他の薬剤、化合物および/または物質、処置される患者の年齢、性別、
体重、状態、一般の健康および以前の病歴、ならびに医療分野で既知の因子などを含む、
様々な薬物動態要因に依存する。
本発明の抗スクレロスチン抗体の“治療上有効量”は、疾患症状の重篤度の軽減、疾患
無症状期間の頻度および持続の増加、または疾患苦痛による機能障害または身体障害の予
防を生じ得る。
本発明の組成物は、当業者に既知の1種もしくはそれ以上のさまざまな方法を用いて、1
種もしくはそれ以上の投与経路で投与され得る。当業者に理解されているとおり、投与の
経路および/または形態は、望まれる結果に依存して変わり得る。本発明の抗体のための
投与経路は、静脈内、筋肉内、皮内、腹腔内、脊髄または他の非経腸の投与経路、例えば
、注射または点滴による投与を含む。本明細書で使用される“非経腸投与”なる句は、腸
内以外の投与および局所投与の形態、通常は、注射による投与を意味し、静脈、筋肉内、
動脈内、髄腔内、嚢内、眼窩内、心内、皮内、腹腔内、経気管、皮下、表皮下、関節内、
被膜下、くも膜下、髄腔内、硬膜外および胸骨内注射および点滴を含むが、これらに限定
されない。
あるいは、本発明の抗体は、経腸経路により、例えば、局所、表皮もしくは粘膜投与経
路、例えば、鼻腔内、経口、経膣的、直腸内、舌下もしくは局所に投与され得る。
活性化合物は、急速な出に対して化合物を保護する担体と共に製造され得て、例えば、
インプラント、経皮貼布、およびマイクロカプセル化送達系を含む放出制御製剤である。
生分解性、生体適合性ポリマー、例えば、エチレン酢酸ビニル、ポリ無水物、ポリグリコ
ール酸、コラーゲン、ポリオルソエステル、およびポリ乳酸が使用され得る。そのような
製剤の製造のための多くの方法は、特許により公開されているか、または一般に、当業者
に既知である。例えば、Sustained and Controlled Release Drug Delivery Systems, J.
R. Robinson, ed., Marcel Dekker, Inc., New York, 1978を参照のこと。
治療組成物は、当分野で既知の医療装置を用いて投与され得る。例えば、1つの態様に
おいて、本発明の治療組成物は、無針皮下注射装置、例えば、米国特許第5,399,163号;第
5,383,851号; 第5,312,335号; 第5,064,413号; 第4,941,880号; 第4,790,824号または第4
,596,556号で示された装置を用いて投与され得る。本発明で使用される既知のインプラン
トおよびモジュールの例は、制御された速度での投薬のための移植可能な微量注入ポンプ
を示す、米国特許第4,487,603号; 皮膚を介して薬剤を投与するための治療装置を示す、
米国特許第4,486,194号; 正確な注入速度で薬剤を送達するための薬剤注入ポンプを示す
、米国特許第4,447,233号; 連続した薬剤送達のための可変流量移植可能注入装置を示す
、米国特許第4,447,224号; 多室型コンパートメントを有する浸透圧薬剤送達系を示す、
米国特許第4,439,196号; および浸透圧薬剤送達系を示す、米国特許第4,475,196号を含む
。これらの特許は、引用により本明細書の一部とする。多くの他のそのようなインプラン
ト、送達系、およびモジュールは、当業者に既知である。
ある態様において、本発明のヒトモノクローナル抗体は、インビボでの適当な分布を確
保するために製剤化され得る。例えば、血液脳関門(BBB)は、高親和性化合物を排除する
。本発明の治療化合物が、BBB(所望により)を超えることを確保するために、それらを、
例えば、リポソームで製剤化し得る。リポソームを製造する方法については、米国特許第
4,522,811号; 第5,374,548号;および第5,399,331号を参照のこと。リポソームは、選択的
に特定の細胞または器官に送達される1種もしくはそれ以上の部分を含み得て、したがっ
て、標的化薬剤送達を促進し得る(例えば、V.V. Ranade, 1989 J. Cline Pharmacol. 29:
685を参照のこと)。典型的な標的化部分は、葉酸またはビオチン(例えば、米国特許第 5,
416,016 to Low et al.を参照のこと); マンノシド(Umezawa et al., 1988 Biochem. Bio
phys. Res. Commun. 153:1038); 抗体(P.G. Bloeman et al., 1995 FEBS Lett. 357:140;
M. Owais et al., 1995 Antimicrob. Agents Chernother. 39:180); 界面活性剤プロテ
インA受容体(Briscoe et al., 1995 Am. J. Physiol.1233:134); p120 (Schreier et al.
, 1994 J. Biol. Chem. 269:9090)を含み(また、K. Keinanen; M.L. Laukkanen, 1994 FE
BSLett. 346:123; J.J. Killion; I.J. Fidler, 1994 Imrnunomethods 4:273を参照のこ
と)。
本発明の使用および方法
本発明の抗体は、インビトロおよびインビボ診断的および治療的利用を有する。例えば
、これらの分子は、さまざまな障害を処置、予防もしくは診断するために、培養細胞に、
例えば、インビトロもしくはインビボで、または対象に、例えば、インビボで投与され得
る。本明細書で使用される“対象”なる用語は、ヒトおよび非ヒト動物を含むことが意図
される。非ヒト動物は、すべての脊椎動物、例えば、哺乳類および非哺乳類、例えば、非
ヒト霊長類、ヒツジ、イヌ、ネコ、ウシ、ウマ、ニワトリ、両生類および爬虫類を含む。
該方法は、特に、スクレロスチン関連障害および/または異常な骨塩密度障害、例えば
、骨粗鬆症を処置、予防または診断するために適当である。
本発明はまた、塩量および/または骨塩密度を増加させる方法を提供する。本発明の組
成物はまた、整形外科的手順、歯科的手順、インプラント手術、関節置換、骨移植、骨整
形手術および骨修復、例えば、骨折治癒、癒着不能治癒、遅延骨癒合および顔の形成手術
における結果を改善するために有用であり得る。1種もしくはそれ以上の組成物は、手順
、置換、移植、手術もしくは修復の前、その間および/またはその後に投与され得る。
本明細書で使用される“スクレロスチン関連障害”は、健常な対象と比較して、骨塩密
度(BMD)が異常におよび/または病的に低い障害を含む。低いBMDおよび/または骨の脆弱症
により特徴づけられる障害は、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形
成不全症(OI)、虚血壊死(骨壊死)、骨折および移植治癒(人工歯根および股関節インプラ
ント)、他の障害による骨減少(例えば、HIV感染、癌、もしくは関節炎に付随する骨減少)
を含むが、これらに限定されない。他の“スクレロスチン関連障害”は、関節リウマチ、
変形性関節炎、関節炎、ならびに溶骨性病巣の形成および/または存在を含むが、これら
に限定されない。
本明細書で使用される“スクレロスチン関連障害”は、異常なスクレロスチンレベルに
関連するか、またはそれにより特徴づけられる状態を含む。これらは、癌および骨粗鬆症
状態(例えば、骨粗鬆症もしくは骨減少症)を含み、そのうちのいくつかは、本明細書で示
されるスクレロスチン関連障害”と重複する。スクレロスチン関連癌は、骨髄腫(例えば
、溶骨性病巣を有する多発性骨髄腫)、乳癌、大腸癌、黒色腫、肝細胞癌、上皮癌、食道
癌、脳腫瘍、肺癌、前立腺癌、または膵臓癌、ならびにその任意の転移を含む。
“スクレロスチン関連障害”はまた、少なくとも腎臓および心血管でのスクレロスチン
発現による、腎臓および心血管状態を含み得る。該障害は、腎臓障害、例えば、糸球体疾
患(例えば、急性および慢性糸球体腎炎、急速進行性糸球体腎炎、ネフローゼ症候群、巣
状増殖性糸球体腎炎、全身性疾患に付随する糸球体病変、例えば、全身性エリテマトーデ
ス、グッドパスチャー症候群、多発性骨髄腫、糖尿病、多発性嚢胞腎、新生物、鎌状赤血
球病および慢性炎症性疾患)、尿細管疾患(例えば、急性尿細管壊死および急性腎不全、多
嚢性腎疾患、海綿腎、髄質嚢胞性疾患、腎性糖尿病および尿細管性アシドーシス)、尿細
管間質性疾患(例えば、腎盂腎炎、薬剤および毒素誘導性尿細管間質性腎炎、高カルシウ
ム血症性腎症および低カリウム性腎症)、急性および急速進行性腎不全、慢性腎不全、腎
結石症、痛風、血管疾患(例えば、高血圧および腎硬化症、微小血管症性溶血性貧血、ア
テローム塞栓性腎疾患、拡散性皮質壊死および腎梗塞)、または腫瘍(例えば、腎細胞癌お
よび腎芽細胞腫)を含むが、これらに限定されない。
該障害はまた、心血管障害、例えば、虚血性心疾患(例えば、狭心症、心筋梗塞、およ
び慢性虚血性心疾患)、高血圧性心疾患、肺性心、心臓弁膜症(例えば、リウマチ熱および
リウマチ性心疾患、心内膜炎、僧帽弁逸脱、および大動脈弁狭窄)、先天性心疾患(例えば
、弁および血管閉塞性病変、心房もしくは心室中隔欠損症および動脈管開存症)、または
心筋症(例えば、心筋炎、鬱血性心筋症および肥大型心筋症)を含むが、これらに限定され
ない。
スクレロスチンに対する抗体が他の薬剤と共に投与されるとき、2つの薬剤は、各々順
番に(すなわち、連続して)、もしくは同時に投与され得る。
本発明のさらなる態様に基づいて、本発明の抗体は、他の治療、例えば、骨吸収阻害剤
を用いた治療、例えば、骨粗鬆症治療、特に、カルシウム、カルシトニンもしくは類似体
またはその誘導体、例えば、サケ、ウナギもしくはヒトカルシトニン、カルシリティクス
(calcilytics)、カルシミメティクス(calcimimetics) (例えば、シナカルセト)、ステロ
イドホルモン、例えば、エストロゲン、部分エストロゲンアゴニストもしくはエストロゲ
ン-ゲスターゲン組み合わせ、SERM (選択的エストロゲン受容体モジュレーター)、例えば
、ラロキシフェン、ラソフォキシフェン、バゼドキシフェン、アルゾキシフェン、FC1271
、チボロン(Livial(登録商標))、SARM (選択的アンドロゲン受容体モジュレーター)、RAN
KL抗体(例えば、デノスマブ)、カテプシンK阻害剤、ビタミンDもしくはその類似体または
PTH、PTH断片もしくはPTH誘導体、例えば、PTH (1-84) (例えば、Preos(商標))、PTH (1-
34) (例えば、Forteo(商標)、PTH (1-36)、PTH (1-38)、PTH (1-31)NH2またはPTS 893を
用いる治療に対する補助剤もしくはアジュバントとして使用され得る。他の態様によると
、本発明の抗体は、ビスホスホネート(例えば、Fosamax(商標)(アレンドロン酸)、Actone
l(商標)(リセドロン酸ナトリウム)、Bonviva(商標)(イバンドロン酸)、Zometa(商標)(ゾ
レドロン酸)、Aclasta(商標)/Reclast(商標)(ゾレドロン酸)、オルパドロネート、ネリド
ロネート、スケリド、ボネフォス)、スタチン、タンパク同化ステロイド、ランタンおよ
びストロンチウム塩、ならびにフッ化ナトリウムを含む、他の現在の骨粗鬆症治療法と組
み合わせて使用され得る。
1つの特定の態様において、本発明の抗体は、LRP4調節剤、すなわち、LRP4の発現もし
くは活性を調節する薬剤、例えば、LRP4中和抗体と組み合わせて投与され得る。
他の特定の態様において、本発明の抗体は、DKK1調節剤、すなわち、Wntシグナル伝達
のDkk-1仲介拮抗作用を妨害するか、もしくは中和する薬剤、例えば、DKK1中和抗体と組
み合わせて投与され得る。
したがって、本発明はまた、スクレロスチンにより仲介されるか、もしくは増加したレ
ベルのスクレロスチンと関連する病的障害の処置用医薬の製造における、本発明の抗体も
しくは機能性タンパク質および(i)ゾレドロン酸、(ii)抗DKK1抗体、(iii)アレンドロン酸
、(iv)抗LRP4抗体、(v)hPTHおよび/または(vi)副甲状腺ホルモン放出剤(calcilytics)の
使用を提供する。
他の態様において、本発明は、スクレロスチンにより仲介されるか、もしくは増加した
レベルのスクレロスチンと関連する病的障害の処置用医薬の製造における本発明の抗体も
しくは機能性タンパク質の使用を提供し、ここで、該医薬は、(i)ゾレドロン酸、(ii)抗D
KK1抗体、(iii)アレンドロン酸、(iv)抗LRP4抗体、(v)hPTHおよび/または(vi)副甲状腺ホ
ルモン放出剤(calcilytics)と組み合わせて使用される。
他の態様において、本発明は、スクレロスチンにより仲介されるか、もしくは増加した
レベルのスクレロスチンと関連する病的障害の処置用医薬の製造における(i)ゾレドロン
酸、(ii)抗DKK1抗体、(iii)アレンドロン酸、(iv)抗LRP4抗体、(v)hPTHおよび/または(vi
)副甲状腺ホルモン放出剤(calcilytics)の使用を提供し、ここで、該医薬は、本発明の抗
体もしくは機能性タンパク質と組み合わせて使用される。
他の態様において、本発明は、スクレロスチンにより仲介されるか、もしくは増加した
レベルのスクレロスチンと関連する病的障害の処置用医薬の製造における本発明の抗体も
しくは機能性タンパク質の使用を提供し、ここで、該患者は、(i)ゾレドロン酸、(ii)抗D
KK1抗体、(iii)アレンドロン酸、(iv)抗LRP4抗体、(v)hPTHおよび/または(vi)副甲状腺ホ
ルモン放出剤(calcilytics)を前投与される。
他の態様において、本発明は、スクレロスチンにより仲介されるか、もしくは増加した
レベルのスクレロスチンと関連する病的障害の処置用医薬の製造における(i)ゾレドロン
酸、(ii)抗DKK1抗体、(iii)アレンドロン酸、(iv)抗LRP4抗体、(v)hPTHおよび/または(vi
)副甲状腺ホルモン放出剤(calcilytics)の使用を提供し、ここで、該患者は、本発明の抗
体もしくは機能性タンパク質を前投与される。
上記組み合わせの1つの態様において、hPTHは、hPTH(1-34)である。
1つの態様において、本発明の抗体は、スクレロスチンのレベル、もしくはスクレロス
チンを含む細胞のレベルを検出するために使用され得る。これは、例えば、抗体とスクレ
ロスチン間の複合体の形成を可能にする条件下で、サンプル(例えば、インビトロサンプ
ル)およびコントロールサンプルを抗スクレロスチン抗体と接触させることにより達成さ
れ得る。抗体とスクレロスチン間に形成される任意の複合体が、サンプルおよびコントロ
ールで検出され、比較される。例えば、当分野で既知の標準的な方法、例えば、ELISAお
よびフローサイトメトリーアッセイが、本発明の組成物を用いて行われ得る。
したがって、1つの局面において、本発明はさらに、サンプル中のスクレロスチン(例え
ば、ヒトスクレロスチン抗原)の存在を検出するか、もしくはスクレロスチンの量を測定
するための方法を提供し、該方法は、抗体もしくはその部分とスクレロスチン間の複合体
の形成を可能にする条件下で、サンプルおよびコントロールサンプルをスクレロスチンに
特異的に結合する本発明の抗体もしくはその抗原結合領域と接触させることを含む。次い
で、複合体の形成を検出し、ここで、該サンプルと該コントロールサンプル間の複合体形
成の差異は、該サンプル中のスクレロスチンの存在を示す。
また、本発明の組成物(例えば、抗体、ヒト抗体および二重特異性分子)ならびに使用の
ための指示書からなるキットは、本発明の範囲内である。キットはさらに、少なくとも1
種のさらなる試薬、または1種もしくはそれ以上のさらなる本発明の抗体(例えば、最初の
抗体とは異なる標的抗原上のエピトープに結合する相補的活性を有する抗体)を含み得る
。例えば、該キットは、本発明の抗体もしくは機能性タンパク質ならびに1種もしくはそ
れ以上の(i)ゾレドロン酸、(ii)抗DKK1抗体、(iii)アレンドロン酸、(iv)抗LRP4抗体、(v
)hPTHおよび(vi)副甲状腺ホルモン放出剤(calcilytics)を含み得る。キットは、一般に、
キットの内容物の意図される使用を示すラベルを含む。ラベルなる用語は、任意の文書、
またはキット上に、もしくはキットと共に提供される記録された構成要素、またはキット
に伴う別のものを含む。
本発明は、十分に開示されているが、さらに、下記の実施例および特許請求の範囲によ
り例示される(それは、あくまでも例示であり、さらなる限定を意味するものではない)。
当業者は、わずかな通常の実験を用いて、本明細書に記載された特定の手順との多数の同
等体を認識するか、もしくは確認することができる。そのような同等体は、本発明および
特許請求の範囲の範囲内である。本出願中に引用された特許公報および特許出願公開を含
むすべての参照の内容は、引用により本明細書の一部とする。
実施例:
機能アッセイ
アルカリホスファターゼアッセイ(ALP)
細胞
MC3T3 1b細胞は、OSE2-lucを発現するMC3T3-JP細胞のクローンである。このクローンは
、pcDNA3.1+中の8x-OSE2wt-mOG2lucを用いた、MC3T3-JP (MC3T3-E1マウス骨芽細胞, Japa
n clone, Jp; Dr. T. Kokkubo, Novartis, Japanからの贈与)の安定なトランスフェクシ
ョン後に取得された。
培養培地
MC3T3-1b細胞を、一般に、10% ウシ胎児血清(FCS; Amimed Cat#2-01F100-I)、2 mM L-
グルタミン(Gibco Cat#25030-024)、50 IU ペニシリン/50 μg/ml ストレプトマイシン(A
mimed Cat#4-01F00-H)および10mM Hepes (Gibco Cat#15630-056)ならびに0.75 mg/ml G41
8 (Gibco Cat#10131-027)を補充した最小必須培地α(MEMα; Invitrogen, Cat#22561-021
)(維持培養培地)で培養した。
ストック溶液
DMEM-LG中の10 mM アスコルビン酸(Wako Pure Chemical Cat#013-12061)、5 mM 酢酸中
の14 nM BMP-2 (R&D Cat#355-BM-010)および0.1% ウシ血清アルブミン(BSA, Sigma Cat#A
-8806); Tyrode溶液中の1 M β-グリセロリン酸(Sigma Cat#G9891); Tyrode溶液: 1L H2O
中の9.72g Tyrode塩(Sigma Cat#T2145)および1g NaHCO3、ALP基質バッファー: 25mM グリ
シンおよび0.5mM MgCL2、pH 10.5 ; ALP基質溶液: 3.75ml ALP基質バッファー中の5mg p-
ニトロフェニルリン酸(Sigma 104 substrate, Sigma Cat#50942-200TAB)、pH 10.5; ALP
基質溶液中の1 mM p-ニトロフェノール(Sigma Cat#104-1)。
アッセイ
ALPアッセイについて、MC3T3 1b細胞を、アッセイ培養培地(G418を含まない維持培養培
地に相当する)で増殖させた。MC3T3 1bを、誘導が72時間後に開始されるとき3x104 細胞/
mlで、誘導が96時間後に開始されるとき2x104 細胞/mlで、200 μlで播種した。プレート
を、37℃、5% CO2で、72時間もしくは96時間インキュベートし、その後、完全培地(10mM
b-グリセロリン酸(bGP)および50μM アスコルビン酸(AA)で培養培地を補充した)を用いて
誘導を開始した。試験される抗体を完全培地で希釈した。BMP-2 (0.7 nM)およびスクレロ
スチン(50 nM)と共に、抗体を、200μlの完全培地の最終量でウェルに加えた(トリプリケ
ート)。各々のプレートについて、下記の4つの内部コントロールを、トリプリケートでイ
ンキュベートした: 溶媒コントロール(BSA)、BMP-2コントロール(0.7 nM)、BMP-2 + スク
レロスチン(BMP-2 (0.7 nM)およびスクレロスチン(50 nM))ならびにスクレロスチンコン
トロール(50 nM)。プレートを、37℃、5% CO2で、さらに72時間インキュベートした。誘
導期間の最後に、培地を除去し、各ウェルに150μlのALP 基質溶液(新たに調製された)を
加えることにより、アッセイを終結させた。プレートを、3 - 30分間、インキュベートし
た。100 μlの1M NaOHを加えて、反応を停止させ、プレートをPlateshakerで振とうさせ
た。ODを、405nmで、ブランクに対して読み取り、ALP活性を、nmol/分で計算した。BMP-2
[0.7 nM BMP-2]誘導ALP産生の少なくとも70%阻害を得るために、50 nM スクレロスチンが
使用された。
WNTアッセイ
このアッセイは、スクレロスチンがSTFレポーター遺伝子のWnt1仲介誘導を阻害する能
力に基づいて抗体を試験するために確立された。
HEK293細胞のトランスフェクション
1日目に、HEK293細胞を、10% ウシ胎児血清(FCS)、1% L-グルタミン(Gibco, Cat #2503
0.024)、1% 非必須アミノ酸(Gibco, cat #11140)を含むが、抗生物質を含まないDMEM (Gi
bco, Cat#61965-026)中、24ウェル ポリ-D-リジンプレート(BD-BioCoat #356414)のウェ
ルあたり1.3 - 1.4 x 105 細胞(0.5mlの量で)で播種した。2日目に、Lipofectamine 2000
(Invitrogen, Cat#11668-019)を用いて、トランスフェクションを行った。トランスフェ
クションされる各ウェルについて、下記の量のプラスミドを、50μlの最終量のOptiMEM(
登録商標)I (Gibco, Cat#31985-047)に加えた: コントロールウェルについて(pcDNA3+, 4
80 ng; SuperTopFlash (STF) 20 ng; phRL-CMV, 0.5 ng)およびWnt1処理ウェルについて(
pcDNA-wnt1, 20 ng; pcDNA3+, 460 ng; SuperTopFlash (STF) 20 ng; phRL-CMV, 0.5 ng)
第2の試験管で、1.6μlのLipofectamine 2000を、50μlのOptiMEM(登録商標)Iで希釈し
、室温で5分間インキュベートした。次いで、2つの試験管の内容物を、脂質試験管の内容
物をDNA試験管に加えることにより混合し、室温で30分間インキュベートし、DNA-脂質複
合体を形成させた。次いで、DNA-脂質複合体(100μl)を、均一にウェルに加えて、37℃、
5% CO2で、5時間、インキュベートした。5時間のインキュベーションが終わると、細胞は
、試験試薬、例えば、SOST、抗体などで処理するための準備が整ったものとなった。
SOST用量依存性阻害の確立
用量阻害曲線を確立するために、10% FCS、1% L-グルタミンおよび1% 非必須アミノ酸
を含むが、抗生物質を含まないDMEM中に一連のrhSOSTの二倍希釈を調製し、160nMで開始
した。ストックrhSOSTの濃度は、1% FCSを含むDMEM中に260μg/mlであった。一般に、各
条件をデュプリケートで試験した。したがって、各条件について1mlの培地を調製し、ウ
ェルからトランスフェクション混合物を含む培地を除去した後、ウェルあたり450μlを加
えた。処理時間は、18-20時間であった。インキュベーションの終了後、ルシフェラーゼ
アッセイを下記したとおりに行った。
抗SOST抗体の試験
前もって抗体をSOSTと混合した後、細胞に加えた。この目的のために、20〜30nMのrhSO
STを含むDMEM培地(10% FCS、1% L-グルタミンおよび1% 非必須アミノ酸(抗生物質は含ま
ない))を調製した。次いで、異なる希釈の試験抗体を、実験デザインに応じて、培地を含
むSOSTに加えた。これらの混合物を、処理の40分前に調製した。各条件を、通常、デュプ
リケートで試験した。そうするために、各条件について1mlの培地を調製し、ウェルから
トランスフェクション混合物を含む培地を除去した後、ウェルあたり450μlを加えた。処
理時間は、18-20時間であった。インキュベーションの終了後、ルシフェラーゼアッセイ
を下記したとおりに行った。
ルシフェラーゼアッセイ
インキュベーションの終了後、培地を除去し、300μlの1X Passive Lysis Buffer (Pro
mega, Cat#E194A)を溶解細胞に加えた。次いで、ルシフェラーゼ活性を、30μlのライセ
ートを用いて、Dual-Glo Luciferase System (Promega, Cat#E2940)で測定した(デュプリ
ケート)。アッセイは、キットで提供された取扱説明書にしたがって行われた。一般には
、30μlのDual-Gloルシフェラーゼ(ホタルルシフェラーゼ; STFのために)および30μlのD
ual-Glo Stop and Glo (ウミシイタケルシフェラーゼ; トランスフェクション効率コント
ロールのために)基質を使用した。発光シグナルを、MithrasLB940装置(Berthold Technol
ogies)で測定した。
データ計算
ホタル対ウミシイタケルシフェラーゼの比率を計算した。SOSTなしのWnt1の値を1と設
定することにより、最終結果を示す。
石灰化アッセイ
細胞
MC3T3 1b細胞は、OSE2-lucを発現するMC3T3-JP細胞のクローンである。このクローンは
、pcDNA3.1+中の8x-OSE2wt-mOG2lucを用いた、MC3T3-JP (MC3T3-E1マウス骨芽細胞, Japa
n clone, Jp; Dr. T. Kokkubo, Novartis, Japanからの贈与)の安定なトランスフェクシ
ョン後に取得された。
培養培地
MC3T3-1b細胞を、一般に、10% ウシ胎児血清(FCS; Amimed Cat#2-01F100-I)、2 mM L-
グルタミン(Gibco Cat#25030-024)、50 IU ペニシリン/50 μg/ml ストレプトマイシン(A
mimed Cat#4-01F00-H)および10mM Hepes (Gibco Cat#15630-056)ならびに0.75 mg/ml G41
8 (Gibco Cat#10131-027)を補充した最小必須培地α(MEMα; Invitrogen, Cat#22561-021
)(維持培養培地)で培養した。
石灰化アッセイ
ウェルへのマトリックス結合カルシウム沈着を、Calcium kit (Axon Lab, Cat#AXON001
2)を用いて、MC3T3-1b細胞で決定した。細胞の応答性を改善するために、細胞を、96ウェ
ルプレートで、100μlのアッセイ用培養培地(G418を含まない維持培養培地)中、6x103
胞/ウェルまたは2x103 細胞/ウェルで播種し、コンフルエンスに達するまで3日間インキ
ュベートした。次いで、アッセイ用培養培地を交換し、試験される化合物を、10mM b-グ
リセロリン酸(bGP; Sigma Cat#G9891)および50μM アスコルビン酸(AA; Wako Pure Chemi
cal Cat#013-12061)と共に加えた。細胞にそれらを加える前に、試験されるスクレロスチ
ンおよびFabを、室温で2時間、別々のプレートでプレインキュベートし、その一方で、ス
クレロスチン-Fab混合物を加える前に、アッセイ用96ウェルプレートに2.1もしくは2.8 n
M BMP-2 (R&D Systems, Cat#355-BM-010)を加えた。細胞を、14日間インキュベートし、
アッセイ用培地を、3-4日ごとに置換した。簡潔には、インキュベーションの終了後、細
胞を、200 μl PBS/ウェルで2回洗浄し、50 μlの0.5 M HClを各ウェルに加えて、プレー
トを、-20℃で最短24時間、凍結させた。適当な時間で、プレートを、室温で2時間融解さ
せ、各ウェルの10μlを新しい96ウェルプレートに移した。次いで、Calcium Working Sol
ution (1:5)を加え(200μl)、5-30分後、プレートを、マイクロプレートリーダーを用い
て、595 nmで読み取った。
吸光度を、標準曲線に基づいて、カルシウムのμgへと変換し、コントロールウェル(ア
スコルビン酸およびβ-グリセロリン酸)値を、各々のデータウェルから差し引き、最終結
果をBMP-2誘導石灰化の%として示した。
SMAD1リン酸化アッセイ
材料
MC3T3-E1マウス骨芽細胞(Japan clone, kind gift of Dr. T. Kokkubo, Novartis, Jap
an) C3H10T1/2細胞(マウス胚間葉細胞; ATCC, Cat.Nb.: CCL-226)。
非グリコシル化SCL、E. coli由来(Novartis, PSU5257)
非グリコシル化15N SCL、E. coli由来(Novartis, PSU11274)
グリコシル化hSOST-APP、HEK-EBNA由来(Novartis, BTP11100)
グリコシル化rhSCL、マウス骨髄腫細胞由来(R&D Systems, Cat.Nb.: 1406-ST/CF)
抗hSOST抗体(R&D Systems, Cat.Nb.: AF1406)
PhosphoSafe Extraction Reagent (Novagen, Cat. Nb.: 71296-3)
Protease Inhibitor Cocktail Set III (Calbiochem, Cat. Nb.: 539134)
NuPAGE Novex Tris-Acetate Gel 7% 1.5mm、15ウェル(Invitrogen, Cat. Nb.: EA03585)
Tris-Acetate SDS Running Buffer 20x (Invitrogen, Cat. Nb.: LA0041)
NuPAGE Antioxidant (Invitrogen, Cat. Nb.: NP0005)
Immobilon-P Transfer Membrane 0.45um (Millipore, Cat. Nb.: IPVH00010)
Wattmanクロマトグラフィーペーパー(Merck, Cat. Nb.: 3587600)
XCell SureLock Mini-Cell and XCell II Blot Module (Invitrogen)
VersaMaxマイクロプレートリーダー(Bucher)
細胞培養および抽出
MC3T3-E1およびC3H10T1/2細胞を、一般に、各々、最小必須培地α(MEMα; Invitrogen,
Cat#22561-021)または高グルコースを含むDMEM(Invitrogen, Cat#41965-039)で培養した
。すべての培養物に10% ウシ胎児血清(FCS; BioConcept Cat#2-01F10-I, lot. Z04459P)
、2 mM L-グルタミン(Invitrogen Cat#25030-024)、50 IU ペニシリン/50 ug/ml ストレ
プトマイシン(Invitrogen Cat#15140-122)および10mM Hepes (Invitrogen Cat#15630-056
)を補充した(維持培養培地)。
細胞を、6ウェルプレートに、維持培養培地(3 ml/ウェル)で播種し、コンフルエンスま
で増殖させた(1.4x105 MC3T3-1b 細胞/ウェルで、3日後にコンフルエンスに達した; 1.0x
105 C3H10T1/2細胞/ウェルで、3日後にコンフルエンスに達した)。1% FBSを含む培養培地
で一晩の血清枯渇後、培地を、1% FBS、BMP-6 (R&D Systems, Cat#507-BP)および試験さ
れる物質を補充した新鮮なもので置換した。C3H10T1/2でのホスホ-Smad 1/3/5について記
載されたとおり(Winkler, EMBO J., 2003, 22(23):6267-76)、細胞にBMP-6および試験さ
れる物質を添加する前に、それらを、室温で1時間プレインキュベートした。抗スクレロ
スチン抗体を試験するとき、これらを、スクレロスチンで、4℃で一晩プレインキュベー
トし、その後、0.2nM BMP-6を用いて、室温で1時間インキュベートし、最後に、コンフル
エント細胞に加えた。適当な処理時間後、細胞を2mlの氷冷PBSで洗浄した。次いで、100
μl/ウェルのPhosphoSafe Extraction Reagentおよび1:200で希釈したProtease Inhibito
r Cocktailを細胞に加え、その後、氷上で5分間インキュベートした。細胞をウェルから
掻き取り、マイクロチューブに移した。細胞抽出物を、氷上で15分間維持し、5分間ごと
のボルテックス工程で中断した。その後、細胞抽出物を、16'000g、4℃で5分間、遠心分
離した。最後に、上清を、タンパク質決定のために、新しいマイクロチューブに移した。
細胞ライセート中のタンパク質濃度を、製造者の指示に基づいて、BCA Protein Assay
Kitを用いて決定した。BSAを標準として使用した。変性のために、細胞ライセートを、La
emmliバッファー(Bio-Rad, Cat#161-0737、新たに加えられたβ-Mercaptoethanol (1:20,
Merck, Cat#1.12006)を含む)を用いて、1:2に希釈し、95℃で5分間煮沸した。冷却後、
さらなる使用まで、サンプルを-20℃で貯蔵した。
ウエスタンブロット
Smad (H-465)抗体(Santa Cruz, Cat.Nb.: sc-7153)は、ヒト起源の全長Smad1を示すア
ミノ酸1-465に対して作製されたウサギポリクローナルIgGである。それは、ヒト、ラット
およびマウス起源のSmad1、Smad2、Smad3、Smad5およびSmad8を認識する。ホスホ-Smad1
(Ser463/465)/Smad5 (Ser463/465)/Smad8 (Ser426/428)抗体(Cell Signalling, Cat#9511
)は、ヒトmad5のSer463/465周辺の残基に相当する合成ホスホ-ペプチドに対して作製され
たウサギポリクローナルIgGである。それは、ヒト、マウス、ラット、ミンクおよびアフ
リカツメガエル起源のSmad1(セリン463およびセリン465で二重にリン酸化されたときのみ
)ならびにSmad5およびSmad8(同等の部位でリン酸化されたときのみ)の内在性レベルを検
出する。抗体は、他のSmad関連タンパク質と交差反応しない。
XCell SureLock Mini Cell系(Invitrogen)を、製造者の指示にしたがって製造した。タ
ンパク質サンプル(Smadについて2μg、ホスホ-Smad Western解析について5μg)を、1x Ru
nning Buffer中の7% NuPAGE Novex Tris-Acetate Gelに、等しい最終量で載せた。SeeBlu
e Plus2 プレ染色スタンダード(10 μl, 1:10; Invitrogen, Cat# LC5925)およびMagicMa
rk XP Westernタンパク質スタンダード(10 μl, 1:100;(Invitrogen, Cat#; LC5602)を、
分子量マーカーとして使用した。ゲルを、一定の電圧(150 V)で、75分間流した。
ブロッティングパッドおよびろ紙を700ml 1x NuPAGE Transfer Bufferに浸した。PVDF
転写膜を最初にメタノールに30秒間浸し、次いで、1 x NuPAGE Transfer Buffer (Invitr
ogen, Cat#NP0006, 新しく調製されたTransfer Buffer:Methanol 10:1)に移した。ゲルカ
セットプレートをゲルナイフで切り出し、前もって浸しておいたろ紙の1枚をゲルの上に
置き、すべてのトラップされた気泡を注意深く除去した。プレートを、サランラップ(登
録商標)上で上下逆さまにし、プレートを取り除いた後、前もって浸しておいたトランス
ファー膜をゲルの上に置き、すべての気泡を除去した。第2の前もって浸しておいたろ紙
を上に置き、すべての気泡を除去した。2つの浸しておいたプレーティングパッドを、Cel
l II Blot Moduleの陰極コアに入れた。ゲル/膜サンドウィッチを注意深く取り上げ、ブ
ロッティングパッドの上に置いた(ゲルが陰極コアに最も近づいた状態で)。最後に、第3
の前もって浸しておいたブロッティングパッドを、膜集合物の上に置き、陽極コアを上に
入れた。ブロットモジュールを、より低いバッファーチャンバー上のガイドレールに滑り
込ませて、製造者の指示にしたがった位置で固定した。ゲル/膜アセンブリーが覆われる
まで、ブロットモジュールを1 x NuPAGE Transfer Bufferで満たした。他のバッファーチ
ャンバーを、650 mlの脱イオン水で満たし、PVDF膜へのタンパク質トランスファーを、定
電圧(30 V)で2時間行った。
ブロッティング後、最初に、膜を、PBS中の0.05 % Tween 20で10分間洗浄し、次いで、
25ml SuperBlock T20 Blocking Bufferで、室温で1時間、穏やかな振とう下でブロッキン
グした。一次抗体(ホスホ-Smad 1/5/8またはSmad (H-465))を、SuperBlock T20 Blocking
Buffer (Pierce, Cat#37516)での1:1000希釈で膜に加えて、膜を、振とう下、4℃で一晩
インキュベートした。次いで、膜を、PBS中の0.05 % Tween 20 (Fluka, Cat#93773)で、1
0分間、3回洗浄し、その後、振とう下、室温で60分間、RP共役二次抗体(SuperBlock T20
Blocking Bufferで1:1000に希釈)でインキュベートした。各々10分間の少なくとも3回の
洗浄工程を行い、その後、膜を、SuperSignal West Femto Substrate Working Solution
(Pierce, Cat#34095)で5分間インキュベートした。最後に、膜を、プラスチックポケット
に置き、Fluor-S MultiImager (Bio-Rad)およびCameraで画像化した。1〜2分間の最適な
曝露を、30秒から5分間の間に得られた画像を比較することにより決定した。
データ解析
Quantity One (Bio-Rad)を用いて化学発光活性を測定し、XLfit4ソフトウェアを用いて
EC50値を計算した。各ホスホ-Smadシグナルを、その対応する全Smadシグナルにより標準
化した。
LRP6/スクレロスチンELISA
96ウェルマイクロタイター未処理プレートを、PBSで希釈した100 μl/ウェルのLRP6/Fc
(1 μg/ml, R&D Systems, Cat#1505-LR)で被覆した。非特異的結合(NSB)のコントロール
として、数個のウェルを、100 μl/ウェルのPBSで満たした。プレートをプラスチックフ
ィルムで覆い、室温で一晩、インキュベートした。被覆後、プレートを、PBS中の200μl/
ウェル 0.05% Tween 20 (Fluka, Cat#93773)で3回洗浄し、ウェルを、TBS中の300μl/ウ
ェル SuperBlock blocking buffer (Pierce, Cat#37535)を加えることにより、37℃で1時
間、ブロッキングした。インキュベーション後、ブロッキング溶液を除去し、PBS中の1%
BSAで希釈した100μl/ウェルのスクレロスチン(E.coli由来, Novartis; 1 - 1000ng/ml)
を加えた。プレートを、室温で2時間インキュベートし、その後、PBS中の200μl/ウェル0
.05% Tween 20で、3回洗浄した。その後、PBS中の1% BSAで希釈した100μl/ウェルの抗ス
クレロスチン抗体(1μg/ml)を加え、プレートを、室温で2時間インキュベートし、その後
、PBS中の200μl/ウェル 0.05% Tween 20で3回洗浄した。最後に、PBS中の1% BSA (Sigma
Cat. Nb.:A-7888)で希釈した100μl/ウェルのALP共役抗Goat IgG Ab (1:5000; Sigma Ca
t#A-7888)を、室温で1時間加えて、その後、プレートを、PBS中の200μl/ウェル 0.05% T
ween 20で3回洗浄した。ALPを決定するために、100μl/ウェルのALP基質(Sigma, Cat#S09
42)溶液(5ml ジエタノールアミン基質バッファー1xあたり1錠; Pierce, Cat#34064)を90
分間プレートに加えて、吸光度を405nmで測定した。
HEK293でのLRP4過剰発現
HEK293細胞(ATCC Cat#CRL-1573)を、一般に、10% FCS (BioConcept Cat#2-01F10-I, lo
t. Z04459P)、2 mM L-グルタミン(Invitrogen Cat#25030-024)、100 IU ペニシリン/100
μg/ml ストレプトマイシン(Invitrogen Cat#15140-122)および10 mM HEPES (Invitrogen
Cat#15630-056)を補充したDMEM/F12 (Invitrogen Cat#21331-020)で培養した。Hek293細
胞を、ポリ-D-リジン48ウェルプレート様式に、5x104 細胞/ウェルで播種し、24時間イン
キュベートし、その後、Lipofectamine 2000 (Invitrogen Cat#11668-019)でのトランス
フェクションを行った。トランスフェクションされる各ウェルについて、下記の量のプラ
スミドを25 μl OptiMEM(登録商標)I (Gibco, Cat#31985-047)の最終量で加えて、穏やか
に混合した: コントロールウェルについて(pmaxGFP, 62.5 ng, pcDNA3+, 125 ng; SuperT
opFlash (STF) 62.5 ng; SV40駆動ウミシイタケルシフェラーゼプラスミド, 0.75 ng)、
およびWnt1処理ウェルについて(pmaxGFP, 62.5 ng, pcDNA-wnt1, 62.5 ng; pcDNA3+, 62.
5 ng; SuperTopFlash (STF) 62.5 ng; SV40駆動ウミシイタケルシフェラーゼプラスミド,
0.75 ng)、およびLRP4-Wnt1処理ウェルについて(pcDNA3+-LRP4, 62.5 ng, pcDNA3+-wnt1
, 62.5 ng; pcDNA3+, 62.5 ng; SuperTopFlash (STF) 62.5 ng; SV40駆動ウミシイタケル
シフェラーゼプラスミド, 0.75 ng)。第2の試験管で、0.8μlのLipofectamine 2000を希
釈して、OptiMEM(登録商標)の最終量25μlとし、室温で5分間、インキュベートした。次
いで、2つの試験管の内容物を、脂質試験管の内容物をDNA試験管に加えることにより混合
し、室温で30分間インキュベートし、DNA-脂質複合体を形成させた。その後、DNA-脂質複
合体(50μl)を各ウェルに等しく加えて、5% CO2条件下、37℃で5時間、インキュベートし
た。5時間のインキュベーションが終わると、細胞は、試験試薬、例えば、SOST、DKK1 (R
&D Cat#1096-DK)、抗体などで20時間処理するための準備が整ったものとなる。“Wntアッ
セイ”について記載されたとおり(150 μlのPassive Lysis Bufferを代わりに加えた)、
ルシフェラーゼアッセイを行った。
C28A2細胞でのLRP4過剰発現
C28a2細胞(Mary Goldring, Harvard Institutes of Medicine, Boston, MA, USから入
手)を、HEPESが含まれず、非必須アミノ酸(Gibco Cat#11140)の補充が加えられたことを
除いてはHEK293と同じ培地で培養した(上記を参照のこと)。C28a2細胞を、抗生物質不含
培地で、24ウェルプレート様式に、1x105 細胞/ウェルで播種し、一晩インキュベートし
、その後、Lipofectamine 2000 (Invitrogen Cat#11668-019)でのトランスフェクション
を行った。トランスフェクションされる各ウェルについて、下記の量のプラスミド(総量6
00 ng/ウェル)を添加して、最終量50 μl OptiMEM(登録商標)I (Gibco, Cat#31985-047)
として、穏やかに混合した: コントロールウェルについて(SuperTopFlash (STF) 100 ng;
SV40駆動ウミシイタケルシフェラーゼプラスミド, 2 ngおよびpcDNA3+, 500 ng(補償の
ために))、およびWnt1処理ウェルについて(pcDNA-wnt1プラスミド, 100 ng; LRP5プラス
ミド, 100 ng; SuperTopFlash (STF) 100 ng; SV40駆動ウミシイタケルシフェラーゼプラ
スミド, 2 ngおよびpcDNA3+, 300 ng)、およびLRP4-Wnt1処理ウェルについて(pcDNA-wnt1
プラスミド, 100 ng; LRP5プラスミド, 100 ng; LRP4プラスミド, 100 ng; SuperTopFlas
h (STF) 100 ng SV40駆動ウミシイタケルシフェラーゼプラスミド, 2 ngおよびpcDNA3+,
200 ng)。第2の試験管で、1.6μlのLipofectamine 2000を、48.4μlのOptiMEM(登録商標)
で希釈し、室温で5分間、インキュベートした。次いで、2つの試験管の内容物を、脂質試
験管の内容物をDNA試験管に加えることにより混合し、室温で30分間インキュベートし、D
NA-脂質複合体を形成させた。その後、DNA-脂質複合体(100μl)を各ウェルに等しく加え
て、5% CO2条件下、37℃で2時間、インキュベートした。2時間のインキュベーションの終
了後、トランスフェクション培地を450 μl/ウェルの抗生物質不含培地で置換し、細胞を
24時間インキュベートした。次いで、細胞を、試験試薬、例えば、SOSTもしくはDKK1 (R&
D Cat#1096-DK)で20時間処理した。“Wntアッセイ”について記載されたとおり、ルシフ
ェラーゼアッセイを行った。
HEK293細胞でのLRP4ノックダウン
Wnt1/STF/Renilla Hek293細胞(Wnt1発現プラスミド、SuperTopFlashレポータープラス
ミド、およびSV40駆動ウミシイタケルシフェラーゼプラスミドを有する、Hek293細胞の安
定なトランスフェクションから得られた安定なクローン(ATCC Cat#CRL-1573))を、一般に
、10% FCS (Amimed Cat#2-0F100-I)、2 mM L-グルタミン(Invitrogen Cat#25030-081)、1
00 IU/ml ペニシリン/100 μg/ml ストレプトマイシン(Gibco Cat#15140-163)、6 μg/ml
ピューロマイシン(Invitrogen Cat#ant-pr-1)、150 μg/ml ゼオシン(Invitrogen Cat#4
5-0430)および150 μg/ml ハイグロマイシン(Invitrogen Cat#10687-010)を補充したDMEM
4500 g/L グルコース(Invitrogen Cat#41965-035)で培養した。ノックダウン実験の間、
選択抗生物質を欠損させた。細胞を、ポリ-D-リジン24ウェルプレート形式に、0.6x105
細胞/ウェルで播種し、一晩接着させ、その後、HiPerFect (Qiagen Cat#301707)を用いて
、LRP4 siRNAのトランスフェクションを行った。LRP4 siRNAのセンスおよびアンチセンス
配列は、下記のとおりであった:
LRP4a: TAAATTATCATAAAGTCCTAA / AGGACTTTATGATAATTTATT; (配列番号:160/161)
LRP4b: ATAGTGGTTAAATAACTCCAG / GGAGTTATTTAACCACTATTT; (配列番号:162/163)
LRP4c: TAAATTCTCGTGATGTGCCAT / GGCACATCACGAGAATTTATT; (配列番号:164/165)
LRP4d: TTTCTTATAGCACAGCTGGTT / CCAGCTGTGCTATAAGAAATT; (配列番号:166/167)
LRP4e: TAGACCTTTCCATCCACGCTG / GCGTGGATGGAAAGGTCTATT; (配列番号:168/169)。
トランスフェクションされる各ウェルについて、2つのエッペンドルフチューブを調製
した: 第1のチューブは、LRP4 siRNAのうちの1つの20 nMストック(0.2 μl)または2つの
異なるLRP4 siRNAの20 nMストック(0.1 μl)を含んでおり(siRNA/ウェルの最終総濃度は
、6.6 nMである)、第2のチューブは、3 μl HiPerFectおよび47 μl Optimemを含んでい
た。第2の試験管の内容物を、第1の試験管の内容物に加えて、軽くボルテックスにかけ、
室温で10分間放置した。次いで、この混合物の100μlを各ウェルに加えて、細胞を、5% C
O2下、37℃で30時間、インキュベートした。その後、トランスフェクション混合物を除去
し、新鮮な抗生物質不含培養培地(450 μl/ウェル)で置換し、さらに24時間インキュベー
トした。SOSTまたはDKK1での処理前に、培地を除去し、SOSTまたはDKK1 (R&D Cat#1096-D
K)の適当な希釈を含む新鮮な抗生物質不含培養培地で置換し、細胞を、5% CO2下、37℃で
20時間、インキュベートした。その後、“Wntアッセイ”の項で記載されたとおり、ルシ
フェラーゼ決定を行った。
動物モデル
8月齢の雌OF1/ICマウス(n=16/群, Charles River, France)に、抗スクレロスチン抗体A
NTIBODY A (25 mg/kg, h/mIgG2a) (MOR05813)またはコントロール抗体(抗PC-h/mIgG2a)を
、週2回静脈内投与した。コントロール群は、100 μ/kg PTH(1-34)またはPBSビヒクルの
毎日の静脈内投与を受けた。すべての動物について、2.5週間、処理を続けた。組織形態
計測的解析のための時間点で、半分の動物(n = 8 / 群)を安楽死させた。残りの動物(n =
8 / 群)について、5週まで処理を続けた。
動物の脛骨骨量および構造を、処理の開始時点で、末梢骨定量的コンピューター断層撮
影装置(pQCT)およびマイクロコンピューター断層撮影装置(microCT)により測定した。pQC
Tにより測定されたとおり、体重および脛骨総骨塩密度に基づいて、動物を等しく群に分
類した。処理の2.5週および5週後に、骨塩密度、骨量および構造変化を評価した。体重は
、週1回モニターされた。解剖の10日および3日前に、骨石灰化の標識化のための2種の蛍
光色素標識を、処理の2.5週後に安楽死させた動物に投与した。解剖で血液を採取した。
二重エネルギーX線吸収測定法(DEXA)を、取り出された脛骨、大腿骨および腰椎について
、解剖で行った。ミクロトーム切片法および骨形成力学の組織形態学的計測解析のために
、骨を固定し、脱水し、包理した。
処理プロトコール
コントロール抗体: 抗PC-h/mIgG2a、
濃度: 2.5 mg/ml、適用用量: 10ml/kg
ビヒクル: 50 mM Citrat, 140 mM NaCl。
抗スクレロスチン抗体: 抗SOST-MOR05813、h/mIgG2a、
2.45 mg/ml、適用用量: 10ml/kg
ビヒクル: 50 mM Citrat, 140 mM NaCl。
hPTH (1-34) (Bachem, Bubendorf, Switzerland) 100 μg/kg ビヒクル: PBS+BSA 0.1%
処理群:
1 アイソタイプコントロールiv. = 抗PC-mIgG2a
2 抗SOST-MOR05813 iv.
3 ビヒクルコントロール sc. = PBS+BSA 0.1%
4 hPTH(1-34) sc.。
維持条件
動物を、25℃、12:12時間の明暗サイクルで、4〜5匹の群で飼育した。それらに、0.8%
リンおよび0.75% カルシウム(NAFAG 3893.0.25, Kliba, Basel, Switzerland)を含む標準
的な実験食を与えた。食餌および水は、不断給餌された。
動物保護に関する声明
動物実験は、Canton of Basel-City, Switzerlandにおける有効な規制に基づいて行わ
れた。
方法
末梢骨定量的コンピューター断層撮影装置(pQCT)
動物を、吸入麻酔(Isoflurane, 2.5%)下、側臥位で入れた。左脚を伸ばして、この位置
で固定した。
断面骨量、骨密度および構造を、Oxford 50 AM X線チューブに適合させた適合Stratec-
Norland XCT-2000および0.5 mm直径のコリメーターを用いて、スカウトスキャンで検出さ
れたとおり、中部腓骨頭(mid-fibula head)および脛骨の近位端に対して1.8 mm遠位のレ
ベルで近接脛骨骨幹端においてモニターした。下記の設定を、測定のために選択した: ボ
クセルサイズ: 0.1 x 0.1 x 0.5 mm; スキャンスピード: スカウトビュー10 mm/s; 最終
スキャン3 mm/s、1ブロック、輪郭モード1、ピールモード2; 皮質閾値: 610 mg/cm3、内
部閾値: 610 mg/cm3
マイクロコンピューター断層撮影装置(microCT)
動物を、吸入麻酔(Isoflurane, 2.5%)下、側臥位で入れた。左脚を伸ばして、この位置
で固定した。
海綿骨構造を、Scanco vivaCT20 (Scanco Medical AG, Switzerland)を用いて、左側近
接脛骨骨幹端で評価した。非等方性ボクセルは、10.5 x 10.5 x 10.5 μmの寸法を有して
いた。断面像から、海綿骨コンパートメントをその輪郭をトレーシングすることにより、
皮質骨と区別した。他のスライスのすべてにおいて、関心のある量を規定するためのトレ
ーシングに基づき、境界を補間した。二次海綿骨(成長板の側面下部の下から始まる)の領
域内の143のスライスを評価した。構造パラメーターの三次元構造評価のために、370の閾
値を使用した。
二重エネルギーX線吸収測定法 (DEXA)
エクスビボDEXA測定を、左側脛骨、左側大腿骨および第1 - 4腰椎で行った。エタノー
ル(70%)を軟組織刺激のために使用した。測定を、小動物の測定のために適応させた通常
のHologic QDR-1000装置を用いて行った。0.9 cmの直径および超高分解能モード(行間) 0
.0254 cm、分解能0.0127 cm)を有するコリメーターを使用した。
蛍光色素標識:
Alizarin (20mg/kg, 皮下, アリザリンコンプレキソン, Merck, Dietikon, Switzerlan
d) - 解剖の10日前。
Calcein (30mg/kg, 皮下, Fluka, Buchs, Switzerland) - 解剖の3日前。
組織学および組織形態計測
解剖後、右側大腿骨および第5および第6腰椎をKarnovskyの固定剤に24時間入れ、4℃で
エタノールにて脱水し、樹脂に埋め込んだ(メタクリル酸メチル)。Microtome 2050 Super
cut (Reichert Jung, Arnsberg, Germany)を用いて、一組の5μm厚の非連続ミクロトーム
切片を、蛍光色素標識に基づく骨形成の評価のために、前頭体心平面(frontalmid-body p
lane)において切り出した。カメラ(SONY DXC-950P, Tokyo, Japan)を備えたLeica DM顕微
鏡(Leica, Heerbrugg, Switzerland)および適合Quantimet 600ソフトウェア(Leica, Camb
ridge, United Kingdom)を用いて、切片を調べた。動物あたり1つの切片をサンプルとし
た。サンプルの顕微鏡画像をデジタル化し、スクリーン上で半自動的に評価した。骨傾斜
、単一および二重標識化骨傾斜、ならびに内部標識幅を測定した(X200倍率)。石灰化周囲
値(%)、骨石灰化速度(マイクロメーター/日)(海綿骨コンパートメントでの切片傾斜につ
いて収集された)および1日の骨形成速度値(1日の骨形成速度/骨傾斜[マイクロメーター/
日])を計算した。すべてのパラメーターを、大腿骨遠位骨幹端の二次海綿骨および1つの
腰椎で評価した。他の組の切片を、酒石酸耐性酸性ホスファターゼ(TRAP)で染色した。骨
表面あたりの破骨細胞面(%)を二次海綿骨で評価した。
統計的解析
結果は、平均 +/- SEMとして示す。統計的解析は、スチューデントt検定(両側; 不対)
を用いて行われた。処理(抗スクレロスチン抗体またはhPTH(1-34))を、コントロール(コ
ントロール抗体またはPBS)との差異について試験した(*, + p< 0.05, **, ++ p < 0.01)
親和性決定
表面プラズモン共鳴(Biacore)を用いた選択された抗ヒトスクレロスチンFabの親和性決定
速度定数konおよびkoffを、共有結合で固定化したスクレロスチンに結合する各Fabの連
続希釈を用いて、BIAcore 3000装置(BIAcore, Uppsala, Sweden)で決定した。共有結合で
の抗原固定化のために、標準的なEDC-NHSアミンカップリング化学を用いた。動態測定を
、1.5 - 500 nMの範囲のFab濃度を用いて、20 μl/分の流速で、PBS (136 mM NaCl、2.7
mM KCl、10 mM Na2HPO4、1,76 mM KH2PO4 pH 7.4)で行った。各濃度についての注入時間
は、1分であり、その後、3分間、相分離を行った。再生のために、2 x 5 μlの10 mM グ
リシン pH 1.5使用した。BIA評価ソフトウェア3.1 (BIAcore)を用いて、すべてのセンサ
グラムを適合させた。
ライセート中のスクレロスチン結合Fabの親和性を測定するためのエレクトロケミルミネ
センス(BioVeris)に基づく結合アッセイ
E. coliライセート(BEL抽出物)中のスクレロスチン結合抗体断片の親和性の測定のため
に、結合をBioVeris M-384 SERIES(登録商標) Workstation (BioVeris Europe, Witney,
Oxfordshire, UK)により解析した。
実験を、96ウェルポリプロピレンマイクロタイタープレートで、アッセイバッファーと
して0.5 % BSAおよび0.02 % Tween 20を補充したPBSを用いて行った。
ビオチニル化ヒトスクレロスチンタンパク質を、提供者の指示にしたがって、M-280 St
reptavidin常磁性ビーズ(Dynal)に固定した。ウェルあたり、ビーズストック溶液の1:25
希釈物を加えた。100 μlの希釈化BEL抽出物およびビーズを、シェーカー上で、室温で一
晩インキュベートした。検出のために、提供者(BioVeris Europe, Witney, Oxfordshire,
UK)の指示にしたがって、BV-tagTMで標識した抗ヒト(Fab)'2 (Dianova)を使用した。
無作為に採取したクローンを上記した方法で解析した。最も高い値を生じたクローンを
、溶液平衡タイトレーションでのさらなる解析のために選択した。
溶液平衡タイトレーション(SET)を用いたFabのスクレロスチンに対する親和性の決定
KD決定のために、Fabの単量体画分(分析的SECにより解析されたとき、少なくとも90%の
単量体含有量; Superdex75, Amersham Pharmacia)を使用した。溶液中のエレクトロケミ
ルミネセンス(ECL)に基づく親和性決定およびデータ評価を、基本的に、Haenel et al.,
2005に記載されたとおり行った。一定量のFab (25 pM)を、溶液中、異なる濃度(連続3n
釈)の非標識ヒト、マウスもしくはカニクイザルスクレロスチン(出発濃度: 500 pM)で平
衡化した。常磁性ビーズM-280 Streptavidin, Dynalに結合したビオチニル化ヒトスクレ
ロスチン (0.5 μg/ml)およびBV-tag(商標) (BioVeris Europe, Witney, Oxfordshire, U
K)標識化抗ヒト(Fab)'2抗体(Dianova)を加えて、30分間インキュベートした。次いで、非
結合Fabの濃度を、M-SERIES(登録商標)384アナライザー(BioVeris Europe)を用いたECL検
出により定量化した。
親和性改善化Fabクローンを、ECLに基づくハイスループット親和性スクリーニングBioV
erisアッセイにより同定した。ヒット選択後、4個のサブクローンを同じ方法により確立
した。
BioVerisTMを用いた受容体結合阻害能アッセイ
BioVerisTMに基づく結合阻害能アッセイについて、組み換えヒトBMP-2を、提供者の指
示にしたがって、カルボン酸M-270磁性ビーズ(Dynal)に直接結合させた(NHS/EDC化学)。
アッセイを、96ウェルポリプロピレンマイクロタイタープレート(Nunc)で行った。アッセ
イバッファー(PBS + 1 % Tween 20 (ストリンジェント)もしくは0.1% Tween 20 (低スト
リンジェント) + 1 % BSA)中、50 μl/ウェルの精製化Fabを1:3の希釈工程で希釈した(出
発濃度: 1000 nM)。50 μl/ウェルのビオチニル化ヒトスクレロスチン(4 nM)を各Fab希釈
物に加えた。Eppendorf Thermomixer上、400 rpmで振とうしながら、22℃で90分間のイン
キュベーション後、25 μlのBMP-2被覆ビーズ(2.7E07ビーズ/ml)および提供者(BioVeris
Europe)の指示にしたがってBV-tag(商標)で標識した1:500希釈化Streptavidinを各ウェル
に加えて、30分間インキュベートした(800 rpm, 22℃)。BioVeris M-384 SERIES(登録商
標) Workstation (BioVeris Europe)により検出を行った。EC50決定について、4パラメー
ターロジスティック回帰モデル(XLfit, IDBS)を用いた。
免疫グロブリンの作製
ヒトIgG1フォーマットおよびヒト/マウスIgG2aフォーマットへの変換
全長IgGを発現するために、重鎖(VH)および軽鎖(VL)の可変ドメイン断片を、Fab発現ベ
クターから適当なpMorph(登録商標)Igベクター: pMorph(登録商標)_h_Ig1およびキメラヒ
ト/マウスpMorph(登録商標)2_h/m_Ig2aにサブクローン化した。制限酵素EcoRI、MfeI、Bl
pIを、VHドメイン断片のpMorph(登録商標)_h_IgG1またはpMorph(登録商標)2_h/m_IgG2aへ
のサブクローン化のために使用し、EcoRV、BsiWI、HpaIを、VLドメイン断片のpMorph(登
録商標)_h_Igκ、pMorph(登録商標)_h_IgλおよびpMorph(登録商標)2_h/m_Igλベクター
各々へのサブクローン化のために使用した。
制限酵素EcoRI、MfeIおよびBlpIを、VHドメイン断片のpMORPH(登録商標)_h_IgG1へのサ
ブクローン化のために使用し: ここで、ベクター骨格は、EcoRI/BlpI消化および6400 bp
断片の抽出により作製され、一方で、VH断片(350 bp)は、MfeIおよびBlpIでの消化、なら
びにその後の精製により作製された。ベクターおよび挿入物を、各々EcoRIおよびMfeI消
化物により作製された適合したオーバーハングにより、およびBlpI部位により連結した。
その結果、EcoRIおよびMfeI制限酵素部位は破棄される。
制限酵素MfeIおよびBlpIを、VHドメイン断片のpMORPH(登録商標)2_h/m_IgG2aへのサブ
クローン化のために使用した。新たに作製されたIgGベクターにおいて、他の修飾に関し
て、EcoRI部位(それは、適合したオーバーハングによるサブクローン化のみを可能にした
)をMfeI部位で置換し、その結果、ベクターおよび挿入物のMfeI/BlpI消化を可能にした。
VLドメイン断片のpMORPH(登録商標)_h_Igκへのサブクローン化をEcoRVおよびBsiWI部
位により行い、pMORPH(登録商標)_h_IgλおよびpMORPH(登録商標)2_h/m_Igλへのサブク
ローン化をEcoRVおよびHpaIを用いて行った。
ヒトIgGの一過的発現および精製
HEK293もしくはHKB11細胞を、等モル量のIgG重鎖および軽鎖発現ベクターでトランスフ
ェクションした。トランスフェクションの4日もしくは5日後、細胞培養上清を回収した。
上清のpHをpH 8.0に調製し、滅菌ろ過した後、溶液を、標準的なプロテインAカラムクロ
マトグラフィー(Poros 20A, PE Biosystems)にかけた。
実施例1: ヒトおよびcyno組み換えスクレロスチンタンパク質の作製
天然のシグナルペプチド(aa 1-213, NPL 005002)を特徴とするヒトスクレロスチン前駆
体(GenBank受託番号AF326739)をコードする完全長cDNAを、制限酵素部位Asp718およびXba
1への挿入により、哺乳類発現ベクターpRS5aにクローン化した。タンパク質を検出および
精製するためのタグ(APP = EFRH)を、遺伝子のC末端に付加した。
一過的6ウェルプレートトランスフェクションアッセイでの、小規模発現での検証後、
安定的トランスフェクションプールの作製を、リポフェクションにより、4つのプール(各
々1.0x10E6細胞)のトランスフェクションで開始した。トランスフェクションの48時間後
、形質転換体の選択を、抗生物質Zeocin(商標)(100 μg/ml濃度)の添加で開始した。4つ
すべてのプールが通常の増殖を開始したとき、組み換えタンパク質力価を、抗APP HPLCで
の分析的親和性クロマトグラフィーにより評価し、最大の産生プールであるPool2を、無
血清培地に適応させ、さらにスケールアップさせるために選択した。同時に、10 l規模で
の大規模一過的発現試験をまた、トランスフェクションの間のプラスミドDNAの担体とし
てポリエチレンイミンを用いて、そして培養系としてWave(商標)バイオリアクター系(C20
SPS-F, Art.-No. 100.001, Wave Biotech)を用いて行った。12-22 lの細胞培養上清を、
トランスフェクションの7-10日後に回収し、クロスフローろ過により濃縮し、精製前に膜
分離精製を行った。
ヒトおよびcyno SOSTを、免疫親和性クロマトグラフィーにより精製した。簡潔には、1
0-20 Lの組織培養上清のバッチを、クロスフローろ過(カットオフ10 kDa)により、1-2 L
まで濃縮し、製造者の指示にしたがって、独自のモノクローナル抗Ab1-40/APP (6E10-A5)
をCNBr活性化Sepharose 4Bに結合させることにより作製した50 mlの抗APP Sepharoseカラ
ム(10 mgの抗体/mlレジン)に、2 ml/分で適用した。PBSでのベースライン洗浄後、結合し
た物質を、100 mMグリシンで溶出し、pH 2.7で中和し、滅菌ろ過した。タンパク質濃度を
、コンピューター吸収係数を用いて、A280により決定した。精製したタンパク質を、最後
に、SDS-PAGE、N末端シークエンシングおよびLC-MSにより特徴づけた。精製ヒトSOSTのア
リコートを、1 mM スルホ-NHS-lc-ビオチン(Uptima; UP54398A)を用いて、37℃で1時間、
PBS中でビオチン化した。次いで、余剰の試薬を、PBSに対する大規模な透析により除去し
た。
E.coli由来ヒトSOST
His6-PreScissionタグ化SOST aa24-213 (NPL006071, プラスミドpXI504)およびSOST aa
24-213 (NPL006690, プラスミドpXI515)をリフォールディングにより作製した。E.coli T
uner (DE3)を各プラスミドで形質転換した。
バッチPSU5257を、修飾されたTB培地(バージョンlab 112)を用いて、20 l規模(V9405)
で発酵させた。細胞を、1mM IPTGを用いて3.90のOD600で誘導し、37℃で3時間30分、誘導
した。連続流遠心分離を用いて回収を行い、190gの重量の湿潤細胞ペレットを生じた。
バッチPSU11274を、15N標識化塩化アンモニウムを補充した16Lの最少M9-1培地の20 l規
模で発酵させた。1mM IPTGを用いて細胞を培養し、1.5のOD600が3.3のOD600に達すると、
連続流遠心分離を用いて回収し、50gの重量の湿潤細胞ペレットを生じた。
上記発酵から得られた湿潤細胞ペレットを、Avestin C-50乳化剤を用いて、8倍量の50m
M Tris pH 8.0 (各々5mM EDTA、DTTおよびベンズアミジン-HClを含む)に溶解し、12,000r
pmで30分間遠心分離した。上清を除去し、生じたペレットを10倍量の溶解バッファーに再
懸濁し、再び遠心分離した。該工程を3回以上繰り返し、その後、溶解バッファーを、5mM
DTTを含むMilli-Q水で置換した。ペレットをさらにこれらの条件下で2回洗浄した。封入
体を、室温で3-4時間、8M グアニジン-HCl (100mM DTT、50mM Tris pH 8および5mM EDTA
を含む)に溶解し、次いで、20,000rpmで30分間遠心分離し、0.45μMフィルターを介して
ろ過した。リホールディングを、88倍量(PSU11274)および92倍量(PSU5257)の冷却リホー
ルディングバッファー(0.9M アルギニン-HCl、5mM GSHおよび0.5mM GSSG pH 8を含む0.5M
Tris)を用いた高速希釈により開始した。溶液を4℃で1週間貯蔵した。この段階で、リホ
ールディングの完成前にPSU5257からhis6タグを除去する必要性のために、2種の調製物を
わずかに異なる方法で処理した。
PSU5257
希釈化ホールディング溶液を、2倍濃縮により、1.5倍量の50mM Tris pH 8、5mM GSH、0
.5mM GSSGに対してダイアフィルトレーションし、次いで、もとの量まで再び希釈した。
これを3回行い、その後、PreScissionプロテアーゼを加えて、溶液を4℃で48時間放置し
た。すべての濃縮/ダイアフィルトレーションは、10KDaのカットオフ膜を用いたPellicon
II限外ろ過カセットにより行われた。最後に、溶液を10倍濃縮した。
PSU11274
希釈化ホールディング溶液を10倍濃縮した。濃縮前に、4つすべてのジスルフィド架橋
の形成を確認するために、LC-MSを使用した。
次いで、両調製物を、2 x 10倍量の50mM 酢酸ナトリウムpH 5に対して透析した。沈殿
したタンパク質を除去するために、グラスウールおよび3.0μm膜を介した継続したろ過を
行った後、SP-Sepharose(商標)高速イオン交換クロマトグラフィーを用いて精製を行った
。カラムを透析バッファーで平衡化し、次いで、20カラム量を超える同じバッファー中の
0 - 1M NaCl勾配を用いて溶出した。スクレロスチンを、わずかな凸部(それは、除去され
た)を伴う単一ピークとして溶出した。PSU5257の場合には、主要なピークを集め、Superd
ex75(商標)のカラムを用いたサイズ排除クロマトグラフィーにかけて濃縮し、50mM Tris
、150mM NaClで平衡化した。PSU11274の場合には、イオン交換後にサンプルを直接提供し
た。
カニクイザルSOST cDNA (cySOST)を、アフリカミドリザルSOST配列(GenBank受託番号AF
326742)に基づくプライマーを用いて、RT-PCRにより増幅した。5'プライマー(ATGCAGCTCC
CACTGGCCCTGTGTCTTGT) (配列番号170)は、N末端のシグナルペプチド配列に相当し(それは
、最終的に分泌されたタンパク質中には存在しない); 3'プライマー(AATCAGGCCGAGCTGGAG
AACGCCTACTAG) (配列番号171)は、ヒト、アフリカミドリザルおよびマウスに保存された
領域に相当する。増幅した断片をpcDNA3.1(+)のBam HI/Eco RI部位にサブクローン化し、
配列を確認した。Gateway技術にしたがって、最終クローニングのためのC末端APPタグお
よびattB組み換え部位をpDESTRS5aに付加するために[cySOST-pDESTRS5a]、このプラスミ
ドをさらに、cyno-SOSTのPCR増幅についての鋳型として使用した。
Wave(商標)バイオリアクター系において、10L規模での大規模一過的トランスフェクシ
ョンにより発現を行い、トランスフェクションの9日後に回収し、上記したとおり精製し
た。
実施例2: HuCAL GOLD (登録商標)ライブラリーからのヒトスクレロスチン特異的抗体の作

ヒトスクレロスチンタンパク質に対する治療抗体を、抗体変異型タンパク質の起源とし
て、市販で利用可能なファージディスプレイライブラリーであるMorphoSys HuCAL GOLD (
登録商標)ライブラリーを用いて、高い結合親和性を有するクローンの選択により作製し
た。
HuCAL GOLD (登録商標)ライブラリーは、6個すべてのCDRを適当な突然変異により多様
化させたFabライブラリー(Knappik et al., 2000)であり、それは、Fabをファージ表面と
結合させるために、CysDisplay(商標)技術(WO01/05950, Loehning et al., 2001)を使用
している。
ライブラリーからのスクレロスチン特異的抗体のパニングによる選択
ヒトスクレロスチンを認識する抗体の選択のために、いくつかのパニング戦略を適用し
た。
簡潔には、HuCAL GOLD (登録商標)抗体-ファージを、異なるVHマスター遺伝子を含む3
つのプールに分類した。
これらのプールを、個々に、下記の工程にかけた:
a) 抗原(ヒトおよびマウススクレロスチン)をMaxisorp 96ウェルマイクロタイタープレー
ト(Nunc, Wiesbaden, Germany)に直接被覆する固相パニング、または
b) 抗原(ビオチニル化スクレロスチン)、各々の抗原複合体をN/A透明ストリップ(clear s
trip)に捕捉する捕捉および準溶液パニング(semi-solution panning)または、
c) ファージ-抗原複合体を、各パニングプールについてStreptavidin 磁性ビーズ(Dynabe
ads M-280; Dynal)により捕捉する、ビオチン化スクレロスチンを用いた溶液パニング。
スクレロスチン上での固相パニング
最初のスクレロスチン上でのパニングのために、Maxisorpプレートのウェルを、PBSで
希釈した300 μl (5 μg/ml)のヒトスクレロスチン(HEK細胞で産生された)で一晩被覆し
た。
400 μl PBSでの2回の洗浄工程の後、ウェルを、PBSで希釈した5% 粉乳を含むブロッキ
ングバッファーでインキュベートした。
抗体の非特異的選択を避けるために、選択に先立って、HuCAL GOLD (登録商標)ファー
ジを、ブロッキングバッファー(5% 粉乳/ PBS, 0.5% Tween 20)を用いて、室温で2時間、
プレ吸着させた。
被覆およびブロックしたMaxisorpプレートの洗浄後(2x 400 μl PBS)、300 μlのプレ
吸着ファージを、被覆したウェルに加えて、室温で2時間、穏やかに振とうした。このイ
ンキュベーションの後、PBSおよびPBS/0.05% Tween 20を用いた10回の洗浄サイクルを室
温で行った。
結合したファージを、ウェルあたり300 μlの10 mM Tris/ HCl pH 8.0中の20 mM DTTを
、室温で10分間加えることにより溶出した。溶出物を取り除き、15 mlのE. coli TG1F+
胞に加えて、0.6 - 0.8のOD600nmまで増殖させた。E. coliのファージ感染は、振とうな
しに、37℃で45分間行われた。4120xgで5分間の遠心分離後、細菌ペレットを、600 μlの
2xYT培地で各々再懸濁し、LB-CG寒天プレートに入れて、30℃で一晩インキュベートした
。次いで、コロニーをプレートから掻き取り、ファージをレスキューし、増幅させた。
2回目および3回目の選択は、ファージの結合後の洗浄条件をよりストリンジェントにし
たという差異点を除いては、最初の選択と同一の方法で行われた。いくつかのパニング条
件についての2回目の選択において、マウス交差反応性抗体を濃縮するために、マウスス
クレロスチンを抗原として使用した。いくつかのパニング条件について、ヒト組み換えス
クレロスチン(E.coliで産生された)の他のバッチを被覆した。
スクレロスチンでの準溶液パニング
2種の異なる方法を、この種のパニングについて行った: 捕捉準溶液パニングおよび標
準準溶液パニング手順。
詳細には、ビオチニル化スクレロスチンに関する捕捉準溶液パニングについて、100 μ
lの抗原を、室温で2時間、NeutrAvidin (N/A)透明ストリップ(Pierceから入手、活性化レ
ベル100 μl、結合能15 pmol/ウェル)上に被覆した。N/Aストリップを、200 μlのChemib
lockを用いて、4℃で一晩ブロックし、PBSで2回洗浄した。
ブロック化ファージ溶液(Chemiblock/ 0.05% Tween 20)を、ブロック化N/Aウェルに30
分間加えて、結合剤を除去するために、この工程をさらに30分間繰り返した。次いで、プ
レ除去ファージを、N/A透明ストリップに固定したビオチニル化スクレロスチンに移し、
ホイルで密封し、振とう下、室温で一晩インキュベートした。
翌日、ファージ溶液を抗原被覆ウェルから除去し、ウェルを洗浄した。
標準準溶液パニングについて、ブロック化(Chemiblock/0.05% Tween 20)プレ除去ファ
ージを新たなプレブロック化1.5 ml反応管(Chemiblock/0.05% Tween 20)に加えて、次い
で、ビオチニル化ヒトスクレロスチンを100 nMの最終濃度で加えて、振とう下、室温で一
晩インキュベートした。
翌日、1.5 ml反応管からのファージ-抗原溶液をNeutrAvidinストリップの新たなブロッ
ク化ウェルに加えて、室温で30分間結合を可能にし、その後、洗浄した。
両パニング手順について、結合したファージを、洗浄後に、室温で10分間、ウェルあた
り10 mM Tris/ HCl pH 8.0中の300 μlの20 mM DTTを加えることにより溶出した。溶出物
を取り出し、0.6-0.8のOD600nmまで増殖させた15 mlのE. coli TG1細胞に加えた。37℃で
45分間、振とうなしで、E. coliのファージ感染を行わせた。4120xgで5分間の遠心分離後
、細菌ペレットを600 μlの2xYT培地に各々再懸濁し、LB-CG寒天プレート上に置き、30℃
で一晩インキュベートした。次いで、プレートからコロニーを掻き取り、ファージをレス
キューし、増幅させた。
2回目および3回目の選択は、ファージの結合後の洗浄条件をよりストリンジェントにし
たという差異点を除いては、最初の選択と同一の方法で行われた。
スクレロスチンでの溶液パニング
この型のパニングについて、200 μlのStreptavidin磁性ビーズ(Dynabeads M-280; Dyn
al)をPBSで1回洗浄し、Chemiblockを用いて、室温で2時間ブロックした。Chemiblockを用
いて、500 μlのファージを、室温で1時間、回転させながら(rotating)ブロックした。ブ
ロック化ファージを、50 μlのブロック化Streptavidin磁性ビーズに対して、30分間、2
回プレ吸着させた。ファージ上清を新たなブロック化2 ml反応管に移し、異なる濃度のヒ
トビオチニル化スクレロスチンを加えて(表5、6および7を参照のこと)、室温で1時間、回
転させながらインキュベートした。100 μlのブロック化Streptavidin磁性ビーズを、各
パニングプールに加えて、ローターで10分間インキュベートした。ビーズを、約2.5分間
、粒子分離器(Dynal MPC-E)で集めて、溶液を注意深く除去した。
洗浄サイクル(表2)後、結合したファージを、室温で10分間、ウェルあたり10 mM Tris/
HCl pH 8.0中の300 μlの20 mM DTTを加えることにより溶出した。溶出物を取り出し、0
.6-0.8のOD600nmまで増殖させた15 mlのE. coli TG1F+細胞に加えた。37℃で45分間、振
とうなしで、E. coliのファージ感染を行わせた。4120xgで5分間の遠心分離後、細菌ペレ
ットを600 μlの2xYT培地に各々再懸濁し、LB-CG寒天プレート上に置き、30℃で一晩イン
キュベートした。次いで、プレートからコロニーを掻き取り、ファージをレスキューし、
増幅させた。
2回目および3回目の選択は、ファージの結合後の洗浄条件をよりストリンジェントにし
たという差異点を除いては、最初の選択と同一の方法で行われた。いくつかのパニング条
件についての2回目および3回目の選択において、抗原濃度を減少させた。
選択されたFab断片のサブクローニングおよび発現
選択されたFab断片のマイクロ発現
可溶性Fabの迅速な発現を促進するために、選択されたHuCAL GOLD(登録商標)ファージ
のFabコード挿入物を、各々のディスプレイベクターからのXbaIおよびEcoRIにより、E. c
oli発現ベクターpMORPH(登録商標)X9_MH (Rauchenberger et al., 2003)にサブクローン
化した。発現プラスミドのE. coli TG1 F-細胞への形質転換後、クロラムフェニコール耐
性単一コロニーを採取し、100 μlの2xYT-CG培地で前もって満たした滅菌96ウェルマイク
ロタイタープレートのウェルに移し、37℃で一晩増殖させた。5 μlの各々のE. coli TG-
1培養物を、ウェルあたり34 μg/ml クロラムフェニコールおよび0.1% グルコースを補充
した100 μlの2xYT-CG培地で前もって満たした新たな滅菌96ウェルマイクロタイタープレ
ートに移した。マイクロタイタープレートを、培養物が〜0.5のOD600nmでわずかに濁るま
で(〜2-4時間)、マイクロプレートシェーカ上で、400 rpmで振とうさせながら、30℃でイ
ンキュベートした。これらの発現プレートに、ウェルあたり34 μg/ml クロラムフェニコ
ールおよび3 mM IPTG (イソプロピル-β-D-チオガラクトピラノシド)を補充した20 μl 2
xYT培地を加えて(最終濃度: 0.5 mM IPTG)、マイクロタイタープレートをガス透過性テー
プで密封し、400 rpmで振とうさせながら、30℃で一晩インキュベートした。
全細胞ライセートの作製(BEL抽出物): 発現プレートの各ウェルに40 μl BELバッファ
ーを加えて、マイクロタイタープレートシェーカ(400 rpm)上で、22℃で1時間インキュベ
ートした。
E. coliでのHuCAL (登録商標)-Fab抗体の発現および精製
より大規模なスケールで、E. coli TG1 F-細胞でのpMORPH(当職商標)X9_Fab_MHにより
コードされるFab断片の発現を、34 μg/mlのクロラムフェニコールを補充した750 mlの2x
YT培地を用いて、シェーカーフラスコ培養で行った。培養物を、OD600nmが0.5に達するま
で、30℃で振とうした。Fab発現を、0.75 mM IPTG (イソプロピル-β-D-チオガラクトピ
ラノシド)の添加により誘導し、さらに30℃で20時間培養した。細胞を回収し、リゾチー
ムを用いて破壊し、Fab断片をNi-NTAクロマトグラフィーで単離した。見かけの分子量を
、キャリブレーション標準を用いたサイズ排除クロマトグラフィー(SEC)により決定した
。濃度を、UV-分光光度法(Krebs et al., 2001)により決定した。
実施例2: スクレロスチン特異的HuCAL(登録商標)抗体の同定
直接被覆したスクレロスチン上でのスクレロスチン結合Fabの検出のための酵素結合免疫
吸着法(ELISA) Maxisorp (Nunc, Rochester, NY, USA) 384ウェルプレートを、4℃で一晩
、PBS(pH 7.4)中、20 μlの2.5 μg/ml 抗原(HEK細胞で産生されたヒトスクレロスチン、
E. coli細胞で産生されたヒトスクレロスチンおよびマウススクレロスチン)で被覆した。
プレートを、5% 粉乳を含むPBS/ 0.05% Tween 20 (PBST)で、室温で1時間ブロックした
。PBSTでのウェルの洗浄後、PBSで希釈したBEL抽出物、精製化HuCAL GOLD(登録商標)Fab
もしくはコントロールFabをウェルに加えて、室温で1時間インキュベートした。一次抗体
を検出するために、下記の二次抗体を適用した: アルカリホスファターゼ(AP)共役Affini
Pure F(ab')2断片、ヤギ抗ヒト、抗マウスIgG (Jackson ImmunoResearch)。AP共役体の検
出のために、AttoPhos (Roche)のような蛍光基質を、製造者の指示にしたがって使用した
。マイクロタイタープレートのウェルを、すべてのインキュベーション工程の合間に、PB
STで3回洗浄し、二次抗体での最終インキュベーション後に、5回洗浄した。蛍光を、TECA
N Spectrafluorプレートリーダーで測定した。
ビオチニル化スクレロスチンを用いた捕捉スクリーニング
溶液パニングを行った後、HuCAL GOLD(登録商標) Fabについてスクリーニングするため
に、この種のELISAを使用した。
Maxisorp (Nunc, Rochester, NY, USA) 384ウェルプレートを、PBS(pH 7.4)で希釈した
20 μlのFd断片に特異的な5 μg/ml ヒツジ抗ヒトIgG(The Binding Site, Birmingham, U
K)で被覆した。
TBS中の3% BSA、0.05% Tween 20で、室温で2時間、ブロッキングした後、周辺質抽出物
または精製化HuCAL GOLD(登録商標) Fabを加えて、室温で1時間、インキュベートした。P
BSTで5回のプレートを洗浄後、20 μlのビオチニル化スクレロスチン(特異的な結合につ
いて)またはビオチニル化トランスフェリン(非特異的な結合について)をウェルに加えた
その後、ビオチニル化抗原スクレロスチンは、捕捉HuCAL(登録商標)Fab断片に結合する
ことが許容された。洗浄後、アルカリホスファターゼに結合したストレプトアビジン(Zym
ex)でインキュベートした。AP-ストレプトアビジンの検出のために、AttoPhos (Roche)の
ような蛍光基質を、製造者の指示(Roche Diagnostics, Mannheim, Germany)にしたがって
使用した。535 nmでの蛍光放出は、430 nmでの励起で記録された。
結果:
パニング後、濃縮されたファージプールを、pMORPH(登録商標)23ライブラリーベクター
(ファージ表面上への効率的な抗体の提示を可能にする)から可溶性Fabのペリプラズム発
現を仲介するpMORPH(登録商標)X9_Fab_MH発現ベクターにサブクローン化した。単一コロ
ニーを採取し、可溶性Fabをこれらの単一コロニーから発現させた。
全部で〜4600個のクローンを一次スクリーニングで解析し、それは、細菌ライセートか
らMaxisorpマイクロタイタープレートに固定化されたヒトおよびマウススクレロスチンへ
の直接的なFabの結合、または抗Fd抗体によるFabのMaxisorpマイクロタイタープレートへ
の捕捉、その後のビオチニル化ヒトスクレロスチンの結合により行った。検出は、アルカ
リホスファターゼ標識化抗ヒト(Fab)'2抗体での標識後のELISA、またはStreptavidinアル
カリホスファターゼを用いて行った。
組み換えスクレロスチンに関する一次スクリーニングから得られた、シグナルがバック
グラウンドを超えて>5倍であるヒットを、さらに、直接被覆された、もしくはビオチニル
化スクレロスチンを用いた溶液中のヒトHEKおよびE.coliスクレロスチンならびにマウス
スクレロスチンへの結合について解析した。すべてのスクレロスチン誘導体を認識するヒ
ットを選択し、塩基配列を決定した。
HuCAL GOLD (登録商標)Fabの特徴づけ
Biacoreを用いた親和性決定
抗スクレロスチン抗体をさらに特徴づけるために、ヒト、マウスおよびカニクイザルス
クレロスチンへの親和性を決定した。組み換えスクレロスチンタンパク質をCM5 Biacore
チップに固定し、Fabを異なる濃度で移動相に適用した。一価親和性の信頼性のある決定
のために、定性的サイズ排除クロマトグラフィーで、≧90%の単量体画分を示すFabバッチ
のみをBiacore測定について使用した。
Biacoreを用いて、組み換えヒト、カニクイザルおよびマウススクレロスチンについて
の親和性を決定した。親和性は、ヒトスクレロスチンについて、ナノモル以下から500 nM
、カニクイザルスクレロスチンについて、ナノモル以下から約5000 nM、およびマウスス
クレロスチンについて、ナノモル以下から4500 nMの範囲にある。
実施例3: BioVeris(商標)Deviceを用いた、固定化BMP-2へのスクレロスチン結合を阻害す
る抗ヒトスクレロスチンFab候補の同定
作製され、精製されたすべてのFabを、組み換えヒトBMP-2へのスクレロスチン結合を阻
害するそれらの能力について、BioVerisに基づく結合阻害能アッセイで試験した。2つの
異なるストリンジェンシー条件(バッファー系中、0.1%および1% Tween 20)を試験した。2
7個のうちの9個のFabは、ストリンジェントバッファー条件下で、固定化BMP-2へのスクレ
ロスチン結合を阻害することができた。
実施例4: MC3T3細胞でのBMP-2誘導ALP産生のスクレロスチン阻害の変換
親結合体のIgG変換およびIgGの特徴づけ
21個の候補を、各々、pMORPH(登録商標)_h_IgG1発現ベクターおよびpMORPH(登録商標)_
h_Igベクターシリーズの対応する軽鎖構築体にサブクローン化することにより、IgG1形式
に変換した。HEK293もしくはHKB11細胞の一過的なトランスフェクションにより発現を行
い、全長免疫グロブリンを細胞培養上清から精製した。精製後のIgG1の機能性を、固定化
したヒト、マウスおよびカニクイザルスクレロスチンへのELISA結合により評価した。
一次バイオアッセイでのIgG
すべての精製されたhIgGの力価を測定し、ALPアッセイで試験した。該アッセイは、BMP
-2 スクレロスチン阻害に関して信頼性があったが、選択された候補は、すべての実験で
スクレロスチン阻害を示すことができなかった(アッセイごとの活性の変動(assay to ass
ay activity variation)、プレートごとの変動(plate to plate variation)、3系のウェ
ル内の高い変動(high variance within triplicate wells))。したがって、IgGの活性の
順位付けのみが可能であった。
実施例5: LCDR3およびHCDR2カセットの同時交換による選択された抗スクレロスチンFabの
親和性成熟
ALPアッセイでIgGを試験した結果により、順位付けのみが可能となった。この順位付け
から、高リスクで、親和性成熟について、4つのFabを選択した。すべての候補を、L-CDR3
およびH-CDR2において、単一リード候補として最適化されるように選択した。
4つの選択された抗体断片の親和性および生物学的活性を増大させるために、定方向突
然変異誘発(Virnekas et al., 1994)を用いたカセット突然変異誘発により、LCDR3および
HCDR2領域を同時に最適化し、それにより、フレームワークを一定に維持した。成熟ライ
ブラリーのクローニング前に、すべての親Fab断片を、XbaI/EcoRI制限酵素部位で、発現
ベクターpMORPH(登録商標)X9_MHからCysDisplay(商標)成熟ベクターpMORPH(登録商標)25
に移した。このベクターは、システイン残基にN末端で融合したファージタンパク質pIII
およびFd抗体鎖に融合したC末端システインを提供し、その結果、ファージ表面上におけ
る各Fab断片のジスルフィド結合ディスプレイを可能にする。
HCDR2ライブラリーの作製のために、各親のFabのHCDR2領域を切り出し、590 bpのスタ
ッファーで置換した。DNAスタッファーは、二重に消化されたベクターバンドから単一消
化のバンドを分離するのを促進し、成熟パニングの間、高親和性親Fabのバックグラウン
ドを減少させる。次の工程で、スタッファーを各親クローンのFabコードプラスミドから
切り出し、高度に多様化したHCDR2成熟カセットで置換した。
同時に、4つの親クローンのうちの5つのLCDR3領域を、スタッファーの中間クローニン
グなしに、多様化LCDR3成熟カセットで置換した。
成熟ライブラリーのサイズは、1%以下のクローニングバックグラウンドで、1x107〜4x1
08クローンの範囲にあり、シークエンシングによる質決定は、各ライブラリーの十分な質
を明らかにした。親クローンMOR04520のLCDR3ライブラリーのみが小サイズ(<106)および
多くの不正確なクローンを有し、したがって、成熟パニングに含まれなかった。
LCDR3およびHCDR2各々の成熟ライブラリーについて、抗体提示ファージを調製し、ファ
ージ力価をスポットタイトレーションにより決定した。
親和性成熟のためのパニング戦略
下記の成熟ライブラリーからの抗体提示ファージを、別々のパニングおよびスクリーニ
ングにかけた:
リード1: MOR04518 (L-CDR3成熟)
リード1: MOR04518 (H-CDR2成熟)
リード2: MOR04520 (H-CDR2成熟)
リード3: MOR04532 (L-CDR3成熟)
リード3: MOR04532 (H-CDR2成熟)
リード4: MOR04799 (L-CDR3成熟)
リード4: MOR04799 (H-CDR2成熟)
各リードライブラリーについて、3つの異なるパニングを行った。各パニング戦略につ
いて、異なるストリンジェンシー条件を適用した。パニングストリンジェンシーを増加さ
せるため、および改善されたoff-rateについて選択するために、大量の洗浄および精製化
親Fabもしくは可溶性組み換えスクレロスチンとの競合を行った。成熟パニング後、豊富
なファージミドプールを、pMORPH(登録商標)X9_MH発現ベクターにサブクローン化した。
約2900個の単一コロニーを採取し、IPTGでの誘導によりFabを発現させた。
改善された親和性についてのBioVeris TM順位付けおよびスクリーニング
親和性が改善されたスクレロスチン特異的Fabの同定のために、〜2900個の単一クロー
ンの細菌ライセートを希釈し、ストレプトアビジン被覆ビーズに固定化されたビオチニル
化ヒトスクレロスチンに結合するFabについて調べた。BioVeris Workstationを用いて、
結合を解析した。最も高いシグナルを生じるクローンは、改善された親和性を示し、した
がって、溶液平衡タイトレーションによるさらなる解析のために選択された。
この目的のために、176個の単一クローンを選択し、予備親和性を、BioVerisでの4点溶
液平衡タイトレーション(SET)により決定した。これらのデータから、最大の親和性を示
す24個のクローンを選択した。これらのFabをmgスケールで精製した。
最終親和性を、8点SET測定ならびにヒト、マウスおよびカニクイザルスクレロスチンを
用いて決定した。
一次バイオアッセイでの最適化Fab
最適化Fabを細胞ALPアッセイで試験した。それらの多くは不活性であり、スクレロスチ
ン阻害の可変反転(variable reversal)は、いくつかのFabで見られた。したがって、クロ
ーンの選択物をヒト/マウスIgG2a様式に変換し、同じアッセイで試験した。しかし、ヒト
/マウスIgG2a様式でのこれらのクローンは、スクレロスチン阻害を十分に反転することが
できず、望まれるEC50 (<10nM)基準には達しなかった。最良の成熟化候補であるMOR05177
(親MOR04518から成熟したVL)は、50nM Fabで、または140 - 467nM ヒト/マウスIgG2aで
、75-85%のALPシグナルの回復を示した。
実施例6: 新規一次バイオアッセイでの親および最適化FabおよびIgGからの抗スクレロス
チン抗体の同定
スクレロスチンが、直接もしくは間接的に、Wntシグナル伝達に影響を与えることを示
す新規公開物(Wu et al. JBC 2005, He et al. JBC 2005, Bezooyen et al. ASBMR 2005,
Winkler et al. JBC 2005)に基づいて、新たな機能性バイオアッセイを開発した。
このアッセイは、HEK293細胞においてSTFのWnt1仲介活性化を阻害するスクレロスチン
の能力に基づくものである。
このアッセイでは、最初のスクリーニングで同定されたすべてのFabおよび親和性成熟
で同定されたすべてのFabを試験した。該試験は、wnt-1アッセイでの増加した有効性およ
び効果により示される成熟化Fabの増加した親和性を明らかにした。
すべての親Fabの試験により、さらなる親和性成熟のための鋳型として有望な2つのさら
なる抗体が同定された。図1は、wnt-1アッセイで同定された最も有力な抗体のうちの1つ
であるMOR05813_IgG2lambdaの活性を示す。
実施例7: 他のバイオアッセイでの親および親和性成熟化Fabの特徴づけ
石灰化アッセイでの親および親和性成熟化Fabの活性
石灰化は、石灰化マトリクスを形成するMC3T3細胞の能力に基づくものであり、それは
、骨細胞分化を受けるそれらの能力を示す。強い石灰化(ウェル(96ウェル様式)あたり、>
1μg カルシウムの沈着)が、試験されたすべてのBMP-2濃度で、14日後に測定された。さ
らにスクレロスチン濃度を増加させると、BMP-2 (2.1 nM)誘導石灰化の用量依存性阻害を
誘導した(IC50: 120 nM) (データは示していない)。
図2は、MOR05813_Fabの存在下における石灰化の一例を示す。抗体は、最初の応答の最
大80%までBMP-2誘導石灰化を回復したが、ネガティブコントロールとして使用された抗リ
ゾチームFabは効果を示さなかった。
LRP6 / スクレロスチンELISAでの親および親和性成熟化Fabの活性
LRP6 / スクレロスチンELISAは、LRP6に結合するスクレロスチンの能力に基づく。さら
に作製されたFabを特徴づけるために、FabおよびIgGの選択物を本アッセイで試験した。R
&Dから入手した抗スクレロスチン抗体(1000 ng/ml = 〜7nM)の存在下で、LRP6に結合する
スクレロスチン(0.9 nM)は、コントロールと比較して、68%まで阻害された(データは示し
ていない)。
MOR05813_IgG2 lambdaは、LRP6へのスクレロスチン結合を90 nMで90%まで阻害したが、
ネガティブコントロールとして使用された抗リゾチームIgGは、LRP6へのスクレロスチン
結合に関して効果を示さなかった(図3)。
ホスホ-Smad1アッセイでの親および親和性成熟化Fabの活性
ホスホ-Smad1アッセイ(Western)は、MC3T3-E1細胞において15分以内にSmad1リン酸化を
誘導するBMP-6の能力に基づく。MOR05318_IgG2 lambdaは、115 nMのEC50で、BMP-6誘導Sm
ad1リン酸化におけるスクレロスチンの作用を阻害し、BMP-6誘導リン酸化の最大66%までS
mad1リン酸化を回復した。ネガティブコントロールとして用いた抗リゾチームIgG(IgG C)
は、効果を示さなかった(図4)。
実施例8: 抗SOST抗体の活性における新規SOST相互作用パートナーであるLRP4の効果
LRP4 mRNAノックダウンは、SOSTの非存在下でSTF活性に影響を与えなかった(LRP4 siRN
A eは、例外)。しかしながら、それは、STF活性を阻害するSOSTの能力を10%〜30%減少さ
せた。これは、試験された5つすべてのsiRNA単独で(図5A)、または異なる組合せで(デー
タは、示していない)、実証された。過剰発現により、LRP4は、HEKおよびc28a2 supertop
flashアッセイの各々において、SOSTのIC50を5倍および16倍減少させた(図5BおよびC)。
この効果は、LRP4がDKK1のIC50に影響を与えなかったという意味において特異的であった
。LRP4のノックダウン(siRNA)は、Wnt-1誘導STFにおけるSOSTの阻害作用を減少させたが
、それは、DKK1の阻害作用を減少させなかった(図5D)。同様に、LRP4は、MOR05813_IgG2a
EC50を17.2 nMから30 nMまで増加させることにより、抗SOST抗体の作用を減少させた(図
5E)。これらのデータは、LRP4がSOST作用の促進剤であることを示す。
実施例9: 新規成熟
バイオアッセイから得られた結果に基づいて、2つの新たな抗体断片の親和性および生
物学的活性を増大させるために、定方向突然変異誘発(Virnekas et al., 1994)を用いた
カセット突然変異誘発により、LCDR3およびHCDR2領域を同時に最適化し、それにより、フ
レームワークを一定に維持した。成熟ライブラリーのクローニング前に、すべての親Fab
断片を、XbaI/EcoRI制限酵素部位で、発現ベクターpMORPH(登録商標)X9_MHからCysDispla
y(商標)成熟ベクターpMORPH(登録商標)25に移した。このベクターは、システイン残基にN
末端で融合したファージタンパク質pIIIおよびFd抗体鎖に融合したC末端システインを提
供し、その結果、ファージ表面上における各Fab断片のジスルフィド結合ディスプレイを
可能にする。
HCDR2ライブラリーの作製のために、各親のFabのHCDR2領域を切り出し、590 bpのスタ
ッファー(stuffer)で置換した。DNAスタッファーは、二重に消化されたベクターバンドか
ら単一消化のバンドを分離するのを促進し、成熟パニングの間、高親和性親Fabのバック
グラウンドを減少させる。次の工程で、スタッファーを各親クローンのFabコードプラス
ミドから切り出し、高度に多様化したHCDR2成熟カセットで置換した。
同時に、4つの親クローンのうちの5つのLCDR3領域を、スタッファーの中間クローニン
グなしに、多様化LCDR3成熟カセットで置換した。
成熟ライブラリーのサイズは、1%以下のクローニングバックグラウンドで、2x107〜2x1
08クローンの範囲にあり、シークエンシングによる質決定は、各ライブラリーの十分な質
を明らかにした。LCDR3およびHCDR2各々の成熟ライブラリーについて、抗体提示ファージ
を調製し、ファージ力価をスポットタイトレーションにより決定した。
さらなる親和性成熟のためのパニング戦略
下記の成熟ライブラリーからの抗体提示ファージを、別々のパニングおよびスクリーニ
ングにかけた:
リード1: MOR04525 (L-CDR3成熟)
リード1: MOR04525 (H-CDR2成熟)
リード2: MOR04529 (L-CDR3成熟)
リード2: MOR04529 (H-CDR2成熟)
各リードもしくはプールライブラリーについて、3つの異なるパニングを行い、各パニ
ング戦略について、異なるストリンジェンシーを適用した。パニングストリンジェンシー
を増加させるため、および改善されたoff-rateについて選択するために、可溶性組み換え
スクレロスチンタンパク質との競合を、持続されるインキュベーションの間、および洗浄
の間に行った。
パニング後、豊富なファージミドプールを、pMORPH(登録商標)X9_MH発現ベクターにサ
ブクローン化した。約1600個の単一コロニーを採取し、IPTGでの誘導によりFabを発現さ
せた。
ヒトスクレロスチンについて< 100 pMの親和性基準を、両方の親Fabの誘導体について
設けた。< 500pMのカニクイザルスクレロスチンとマウススクレロスチンとの必須の(must
)交差反応を、両方の親Fabの誘導体について設けた。MOR04525は、3つすべての種に対す
るより高い親和性を有するより多くのクローンで産生された。
実施例10: インビボ試験での抗スクレロスチン抗体の特徴づけ
8月齢の雌OF1/ICマウス(n=16/群, Charles River, France)に、抗スクレロスチン抗体M
OR05813 (24.5 mg/kg, mIgG2a)またはアイソタイプコントロール抗体(抗PC-mIgG2a)を、
週2回静脈内投与した。コントロール群は、100 μ/kg PTH(1-34)またはビヒクル(PBS + 0
.1% BSA)の毎日の静脈内投与を受けた。すべての動物について、2.5週間、処理を続けた
。組織形態計測的解析のための時間点で、半分の動物(n = 8 / 群)を安楽死させた。これ
らの動物は、骨形成力学の組織形態学的計測評価のために、解剖前10日および3日に蛍光
色素マーカーを投与された。残りの動物(n = 8 / 群)について、5週まで処理を続けた。
骨量、骨密度および構造の変化について、動物をモニターした。インビボ末梢骨定量的
コンピューター断層撮影装置[pQCT]は、MOR05177が、老齢マウスの脛骨近位端で強く骨同
化され、骨塩量(図6)および骨密度(図7)を増加させることを証明した。骨同化作用は、皮
質(図8)および網状(図9)骨コンパートメントで生じた。これらのデータは、非骨芽細胞で
、Wntシグナル伝達レポーターアッセイでのスクレロスチン作用に関して、観察されたMOR
05813の阻害効果は、インビボでのスクレロスチン阻害による骨形成応答の誘導に変換さ
れることを示す。マウスでの骨同化応答の大きさは、高投与量のhPTH(1-34)により誘導さ
れる骨同化作用に相当するものであった。
MicroCT解析は、骨梁量の増加(図9)が、主に骨同化作用と一致する骨梁構造の肥厚(図1
0)と関連することを証明した。
骨塩密度はさらに、5週まで処理された動物で増加した(図11)。DEXAによりエクスビボ
で評価された骨塩密度は、虫垂(脛骨、大腿骨)および体軸骨格(腰椎)で増加した(図12-14
)。効果は、100 μg/kgのhPTH(1-34)で毎日処理されたポジティブコントロール群で測定
されたものに相当するものであった。
組織形態測定的蛍光色素マーカーに基づく骨形成力学の解析は、骨量増加が、虫垂(図1
5)および体軸骨格(図18)における骨形成速度の実質的な増加によるものであることを証明
した。効果は、高用量のPTH(1-34)の効果に相当するものであった。骨形成速度の増加は
、塩沈着速度(図16)および石灰化面(図17)の増加に関連した。骨吸収は、破骨細胞面測定
(図19)により証明されたとおり、処理により増加しなかった。
実施例11: 本発明のスクレロスチン結合抗体を交差妨害する抗体のスクリーニング
Biacore交差妨害アッセイ
下記には、一般に、抗体もしくは他の結合剤が交差妨害を起こすか、または本発明によ
る抗体を交差妨害する可能性があるかを決定するための適当なBiacoreアッセイを記載し
ている。該アッセイが本明細書に記載されたスクレロスチン結合剤のいずれかと共に使用
され得ることは、十分に認識されている。
Biacore装置(例えば、BIAcore 3000)は、製造者の指示に基づいて操作される。
スクレロスチンを、例えば、一般的に使用されるアミンカップリング化学、例えば、ED
C-NHSアミンカップリングにより、CM5 Biacoreチップと結合させ、スクレロスチン被覆表
面を作製することができる。測定可能なレベルの結合を得るために、一般に、200-800の
スクレロスチンの共鳴ユニットをチップに結合させ得る(この量は、測定可能なレベルの
結合を提供し、同時に、使用される試験紙薬の濃度により容易に飽和可能である)。
スクレロスチンをBIAcoreチップに結合させる別の方法は、スクレロスチンの“タグ化
”版、例えば、N末端もしくはC末端Hisタグ化スクレロスチンを用いることによる。この
様式において、抗His抗体をBIAcoreチップと結合させ、次いで、Hisタグ化スクレロスチ
ンをチップの表面を通過させ、抗His抗体により捕捉され得る。
互いに交差妨害するそれらの能力を評価される2つの抗体を、適当なバッファー中、結
合部位の化学量論的な量で、例えば、1:1の比率で混合し、試験混合物を調製する。使用
されるバッファーは、タンパク質化学で通常使用される一般的なバッファー、例えば、PB
S (136 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1,76 mM KH2PO4, pH 7.4)である。結合部
位に基づいて濃度を計算すると、抗体の分子量は、該抗体上の標的(すなわち、スクレロ
スチン)結合部位の数で割った抗体の総分子量であると推定される。
試験混合物中の各抗体の濃度は、BIAcoreチップに結合したスクレロスチン分子上の抗
体についての結合部位の飽和を保証するのに十分に高い濃度であり得る。混合物中の抗体
は、同じモル濃度(結合に基づく)であり、該濃度は、一般に、1.0mMから1.5mM (結合部位
に基づく)であり得る。
また、それら自身で別々の抗体を含む別々の溶液を調製する。これらの別々の溶液のた
めに使用されるバッファーは、同じバッファーであり得て、試験混合物について使用され
るのと同じ濃度であり得る。
試験混合物を、スクレロスチン被覆BIAcoreチップを通過させ、結合を記録する。その
後、結合した抗体を、例えば、酸、例えば、30mM HClで約1分間、チップを処理すること
により除去する。チップに結合したスクレロスチン分子に損傷を与えないことが重要であ
る。
次いで、第1の抗体のみの溶液を、スクレロスチン被覆チップを通過させ、結合を記録
する。その後、例えば、上記の酸処理により、チップを処理して、チップ結合スクレロス
チンに損傷を与えることなしに、すべての結合抗体を除去する。
次いで、第2の抗体のみの溶液を、スクレロスチン被覆チップを通過させ、結合量を記
録する。
理論的な最大の結合は、各抗体のスクレロスチンへの別々の結合の総計として定義され
得る。次いで、これを、測定された抗体の混合物の実際の結合と比較する。実際の結合が
、理論的な結合のそれよりも低いとき、2つの抗体は、互いに交差妨害する。
ELISAに基づく交差妨害アッセイ
抗スクレロスチン抗体もしくは他のスクレロスチン結合剤の交差妨害はまた、ELISAア
ッセイを用いることにより検出され得る。
ELISAアッセイの一般的な原理は、ELISAプレートのウェルに抗スクレロスチン抗体を被
覆することを含む。次いで、過剰な量の第2の潜在的な交差妨害抗スクレロスチン抗体を
、溶液に加える(すなわち、ELISAプレートに結合しない)。その後、制限された量のスク
レロスチンをウェルに加える。
ウェルを被覆した抗体および溶液中の抗体は、制限された量のスクレロスチン分子の結
合に関して競合する。次いで、プレートを洗浄して、被覆した抗体に結合していないスク
レロスチンを除去し、また第2の溶液相抗体および第2の溶液相抗体とスクレロスチンの間
で形成された任意の複合体を除去する。次いで、結合したスクレロスチンの量を、適当な
スクレロスチン検出試薬を用いて測定する。被覆した抗体を交差妨害することが可能な溶
液中の抗体は、第2の溶液相抗体の非存在下で、被覆した抗体が結合可能なスクレロスチ
ン分子の数と比較して、被覆した抗体が結合可能なスクレロスチン分子の数の減少を生じ
得る。
このアッセイはさらに、Ab-XおよびAb-Yと呼ばれる2つの抗体について、下記で詳述さ
れている。Ab-Xが固定化抗体として選択される場合には、それは、ELISAプレートのウェ
ルを被覆し、その後、該プレートを適当なブロッキング溶液でブロックし、次に加える試
薬の非特異的結合を最小化する。次いで、過剰な量のAb-YをELISAプレートに加え、その
結果、ウェルあたりのAb-Yスクレロスチン結合部位のモル数は、ELISAプレートの被覆の
間に使用されるウェルあたりのAb-Xスクレロスチン結合部位のモル数の少なくとも10倍高
いものである。その後、スクレロスチンを加え、その結果、ウェルあたりの加えられたス
クレロスチンのモル数は、各ウェルを被覆するために使用されるAb-Xスクレロスチン結合
部位のモル数の少なくとも25倍低いものである。適当なインキュベーション時間後、ELIS
Aプレートを洗浄し、スクレロスチン検出試薬を加え、被覆化抗スクレロスチン抗体(この
場合には、Ab-X)に特異的に結合したスクレロスチンの量を測定する。このアッセイのた
めのバックグラウンドシグナルを、被覆化抗体(この場合には、Ab-X)、第2溶液相抗体(こ
の場合には、Ab-Y)、スクレロスチンバッファーのみ(すなわち、スクレロスチンを含まな
い)およびスクレロスチン検出試薬を有するウェルで得られたシグナルとして定義する。
このアッセイのためのポジティブコントロールシグナルを、被覆化抗体(この場合には、A
b-X)、第2溶液相抗体バッファーのみ(すなわち、第2溶液相抗体を含まない)、スクレロス
チンおよびスクレロスチン検出試薬を有するウェルで得られたシグナルとして定義する。
ELISAアッセイは、ポジティブコントロールシグナルがバックグラウンドシグナルの少な
くとも6倍であるような方法で行う必要がある。
被覆抗体として使用される抗体および第2の(競合)抗体として使用される抗体の選択か
ら生じる任意の人為的な結果(例えば、スクレロスチンについて、Ab-XとAb-Y間でのかな
りの異なる親和性)を避けるために、交差妨害アッセイは、下記の2つの形式で行うことが
必要である: 1) Ab-XがELISAプレートを被覆した抗体であり、Ab-Yが溶液中の競合抗体で
ある形式1、および2) Ab-YがELISAプレートを被覆した抗体であり、Ab-Xが溶液中の競合
抗体である形式2。
実施例12: LRP6のSOST結合におけるMOR05813_IgG2lambdaの効果を検出するためのELISALR
P6/スクレロスチンELISA
96ウェルマイクロタイター未処理プレートを、PBSで希釈した100 μl/ウェルのLRP6/Fc
(1 μg/ml, R&D Systems, Cat#1505-LR)で被覆した。非特異的結合(NSB)のコントロール
として、数個のウェルを、100 μl/ウェルのPBSで満たした。プレートをプラスチックフ
ィルムで覆い、室温で一晩、インキュベートした。被覆後、プレートを、PBS中の200μl/
ウェル 0.05% Tween 20 (Fluka, Cat#93773)で3回洗浄し、ウェルを、TBS中の300μl/ウ
ェル SuperBlock blocking buffer (Pierce, Cat#37535)を加えることにより、37℃で1時
間、ブロッキングした。インキュベーション後、ブロッキング溶液を除去し、PBS中の1%
BSAで希釈した100μl/ウェルのスクレロスチン(E.coli由来, Novartis; 1 - 1000ng/ml)
を加えた。プレートを、室温で2時間インキュベートし、その後、PBS中の200μl/ウェル0
.05% Tween 20で、3回洗浄した。その後、PBS中の1% BSAで希釈した100μl/ウェルの抗ス
クレロスチン抗体(1μg/ml)を加え、プレートを、室温で2時間インキュベートし、その後
、PBS中の200μl/ウェル 0.05% Tween 20で3回洗浄した。最後に、PBS中の1% BSA (Sigma
Cat. Nb.:A-7888)で希釈した100μl/ウェルのALP共役抗Goat IgG Ab (1:5000; Sigma Ca
t#A-7888)を、室温で1時間加えて、その後、プレートを、PBS中の200μl/ウェル 0.05% T
ween 20で3回洗浄した。ALPを決定するために、100μl/ウェルのALP基質(Sigma, Cat#S09
42)溶液(5ml ジエタノールアミン基質バッファー1xあたり1錠; Pierce, Cat#34064)を90
分間プレートに加えて、吸光度を405nmで測定した。
LRP6 / スクレロスチンELISAでの親および親和性成熟化Fabの活性
LRP6 / スクレロスチンELISAは、LRP6に結合するスクレロスチンの能力に基づく。さら
に作製されたFabを特徴づけるために、FabおよびIgGの選択物を本アッセイで試験した。R
&Dから入手した抗スクレロスチン抗体(1000 ng/ml = 〜7nM)の存在下で、LRP6に結合する
スクレロスチン(0.9 nM)は、コントロールと比較して、68%まで阻害された(データは示し
ていない)。MOR05813_IgG2 lambdaは、90 nMで、LRP6へのスクレロスチン結合を90%まで
阻害したが、ネガティブコントロールとして使用された抗リゾチームIgGは、LRP6へのス
クレロスチン結合に影響を与えなかった(図20)。
実施例13: MOR05813を用いた共処理
MOR05813 + ゾレドロン酸
8月齢の雌OF1/ICマウス(n=10/群, Charles River, France)を、卵巣切除してエストロ
ゲン枯渇による骨減少を誘導するか、またはインタクトのままにしておいた。該動物に、
抗スクレロスチン抗体MOR05813 (24 mg/kg, h/mIgG2a)またはコントロール抗体(抗PC-h/m
IgG2a, インタクトおよびOVXコントロール群)を、週2回静脈内投与した。さらなる群は、
ゾレドロン酸単独(100 μg/kg)もしくは抗スクレロスチン抗体MOR05813と組み合わせて、
単一適用を受けた。3.5週間(7回の適用で)、抗体処理を続けた。
卵巣摘出前に、動物の脛骨骨量および構造を末梢骨定量的コンピューター断層撮影装置
(pQCT)により測定した。体重および脛骨総骨塩密度に基づいて、動物を等しく群に分類し
た。処理期間の最後に、骨塩密度、骨量および構造変化を評価した。
結果は、平均 +/- SEMとして示す。統計的解析は、RS1 (Windows(登録商標)シリーズ19
99, Domain Manufacturing Corp., USA)を用いて行われた。データを一元配置分散分析(A
NOVA)にかけた。等分散性をレビンF検定により試験し、群間の差をボンフェローニ補正ダ
ネット検定により試験した。処理群とコントロール抗体処理OVX群との有意差を試験した(
p<.05*, p<.01**)。
卵巣摘出により誘導される骨減少は、老齢マウスでの抗体処理により妨害され得る(図2
1)。抗体がゾレドロン酸ビスホスホネートの単回静脈内投与と組み合わせて使用されると
、骨減少は妨害され、総骨塩量(図21A)および骨密度(図21B)の増加、ならびに皮質厚(図2
1C)および海綿状骨塩密度(図21D)の増加により示されたとおり、骨増量が誘導される。
MOR05813 + アレンドロン酸
4.5月齢の雌OF1/ICマウス(n=10/群, Charles River, France)に、抗スクレロスチン抗
体MOR05813 (10 mg/kg, h/mIgG2a)またはコントロール抗体(抗PC-h/mIgG2a, インタクト
およびOVXコントロール群)を、週2回静脈内投与した。さらなる群は、7週にわたるアレン
ドロン酸プレ処理(4 μg/kg/日; 5日/週)を受け、その後、コントロール抗体または抗ス
クレロスチン抗体MOR05813を受けた。3.5週間(7回の適用で)、抗体処理を続けた。
抗体処理の開始前に、動物の脛骨骨量および構造を末梢骨定量的コンピューター断層撮
影装置(pQCT)により測定した。体重および脛骨総骨塩密度に基づいて、動物を等しく群に
分類した。処理期間の最後に、骨塩密度、骨量および構造変化を評価した。
結果は、平均 +/- SEMとして示す。統計的解析は、RS1 (Windows(登録商標)シリーズ19
99, Domain Manufacturing Corp., USA)を用いて行われた。データを一元配置分散分析(A
NOVA)にかけた。等分散性をレビンF検定により試験し、群間の差をボンフェローニ補正ダ
ネット検定により試験した。アレンドロン酸プレ処理群とプレ処理を受けていない群との
有意差を試験した(p<.05*, p<.01**)。
アレンドロン酸ビスホスホネートでの長期間のプレ処理は、総骨塩量(図22A)および骨
密度(図22B)の増加、ならびに皮質厚(図22C)および海綿状骨塩密度(図22D)の増加により
示されたとおり、抗スクレロスチンMOR05813の骨同化作用にネガティブな影響を与えない
。投与期間を超えたビスホスホネートの抗吸収特性の持続により、総骨塩量(図22A)およ
び皮質厚(図22C)の増加が観察される。
MOR05813 + DKK1またはhPTH 6月齢雌ヌードマウス(n=8/群)に、抗スクレロスチン抗体M
OR05813 (10 mg/kg, h/mIgG2a)またはコントロール抗体(抗PC-h/mIgG2a, インタクトおよ
びOVXコントロール群) ビヒクル、抗スクレロスチン抗体MOR05813 (10、20および40 mg/k
g, IgG2)、抗Dkk1抗体(10 mg/kg, IgG1)、hPTH(1-34) (100 μ/kg)またはそれらの組み合
わせを、週2回静脈内投与した。4週間(8回の適用で)、抗体処理を続けた。
処理前に、動物の脛骨骨量および構造を末梢骨定量的コンピューター断層撮影装置(pQC
T)により測定した。体重および脛骨総骨塩密度に基づいて、動物を等しく群に分類した。
処理期間の最後に、骨塩密度、骨量および構造変化を評価した。
結果は、平均 +/- SEMとして示す。統計的解析は、RS1 (Windows(登録商標)シリーズ19
99, Domain Manufacturing Corp., USA)を用いて行われた。データを一元配置分散分析(A
NOVA)にかけた。等分散性をレビンF検定により試験し、群間の差をボンフェローニ補正ダ
ネット検定により試験した。群とビヒクル処理群との有意差を試験した(p<.05*, p<.01**
)。
骨同化効果は、抗スクレロスチンMOR05813の投与で増加する(図23)。抗DKK1抗体での共
処理は、総骨塩量(図23A)および骨密度(図23B)および皮質厚(図23C)の改善された増加、
ならびに海綿状骨塩密度(図23D)の相乗的な増加を生じる。hPTH(1-34)での共処理は、す
べての測定されたパラメーターの相乗的な増加を生じる(図23A-D)。
参照
Avsian-Kretchmer O, Hsueh AJ (2004) Comparative genomic analysis of the eight-
membered ring cystine knot-containing bone morphogenetic protein antagonists. Mo
l Endocrinol 18(1):1-12.
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith,
J. A., Struhl, K., (1998) Current Protocols in Molecular Biology, Wiley, New Yo
rk, USA
Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W
, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P
, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W. (2
001) Increased bone density in sclerosteosis is due to the deficiency of a novel
secreted protein (SOST). Hum Mol Genet. 10(5):537-43
Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers
FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D
, Van Hul W. (2002) Identification of a 52 kb deletion downstream of the SOST ge
ne in patients with van Buchem disease. J Med Gene 39(2):91-7.
Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier J
E, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, H
amersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results fr
om loss of the SOST gene product, a novel cystine knot-containing protein. Am J
Hum Genet 68(3):577-89.
Chen, B.P., Hai, T. Expression vectors for affinity purification and radiolabeli
ng of proteins using Escherichia coli as host. Gene 139, 73-75. 1994
Chen, Y., Wiesmann, C., Fuh, G., Li, B., Christinger, H. W., McKay, P., de Vos,
A. M., Lowman, H. B. (1999). Selection and analysis of an optimized anti-VEGF an
tibody: crystal structure of an affinity-matured Fab in complex with antigen. J.
Mol. Biol. 293, 865-881
Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H, Beight
on P, Papapoulos SE. (2005) Bone mineral density in sclerosteosis; affected indi
viduals and gene carriers. J Clin Endocrinol Metab 90(12):6392-5
Haenel C, Satzger M, Della Ducata D, Ostendorp R and Brocks B (2005) Chraterizat
ion of High Affinity Antibodies by Electrochemiluminescence-Based Equilibrium Ti
tration. Anal Biochem 339(1):182-4
Keller H, Kneissel M. (2005) SOST is a target gene for PTH in bone. Bone 37(2):1
48-58.
Knappik,A., Ge,L., Honegger,A., Pack,P., Fischer,M., Wellnhofer,G., Hoess,A., Wo
lle,J., Pluckthun,A., and Virnekas,B. (2000). Fully synthetic human combinatoria
l antibody libraries (HuCAL(登録商標)) based on modular consensus frameworks and
CDRs randomized with trinucleotides. J Mol Biol 296, 57-86.
Krebs,B., Rauchenberger,R., Reiffert,S., Rothe,C., Tesar,M., Thomassen,E., Cao,M
., Dreier,T., Fischer,D., Hoss,A., Inge,L., Knappik,A., Marget,M., Pack,P., Meng
,X.Q., Schier,R., Sohlemann,P., Winter,J., Wolle,J., and Kretzschmar,T. (2001).
High-throughput generation and engineering of recombinant human antibodies. J Im
munol Methods 254, 67-84.
Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin
binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 20;280(20)
:19883-7
Loehning, C. (2001). Novel methods for displaying (poly)peptides/proteins on bac
teriophage particles via disulfide bonds. WO 01/05950.
Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, P
lajzer-Frick I, Rubin EM. (2005) Genomic deletion of a long-range bone enhancer
misregulates sclerostin in Van Buchem disease. Genome Res 15(7):928-35
Low, N. M., Holliger, P., Winter, G. (1996). Mimicking somatic hypermutation: af
finity maturation of antibodies displayed on bacteriophage using a bacterial mut
ator strain. J. Mol. Biol. 260, 359-368
Rauchenberger,R., Borges,E., Thomassen-Wolf,E., Rom,E., Adar,R., Yaniv,Y., Mal
ka,M., Chumakov,I., Kotzer,S., Resnitzky,D., Knappik,A., Reiffert,S., Prassler,J
., Jury,K., Waldherr,D., Bauer,S., Kretzschmar,T., Yayon,A., and Rothe,C. (2003)
. Human combinatorial Fab Library yielding specific and functional antibodies ag
ainst the human fibroblast growth factor receptor 3. J Biol Chem. 278(40):38194-
38205
Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced
LRP5 binding and inhibition by SOST.J Biol Chem. 2006 Oct 19;
van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M
, Quax PH, Vrieling H, Papapoulos SE, Ten Dijke P, Lowik CW (2006) Wnt but not B
MP Signaling is Involved in the Inhibitory Action of Sclerostin on BMP-Stimulate
d Bone Formation.
Virnekas B, Ge L, Pluckthun A, Schneider KC, Wellnhofer G, Moroney SE (1994) Tri
nucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucl
eotides for random mutagenesis. Nucleic Acids Res. 22(25):5600-5607
J Bone Miner Res 2006 Oct 10 Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Haye
s T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleb
y M, Brunkow ME, Latham JA. (2003) Osteocyte control of bone formation via scler
ostin, a novel BMP antagonist.
EMBO J 22(23):6267-76 Winkler DG, Sutherland MS, Ojala E, Turcott E, Geoghegan
JC, Shpektor D, Skonier JE, Yu C, Latham JA (2005) Sclerostin inhibition of Wnt-
3a-induced C3H10T1/2 cell differentiation is indirect and mediated by bone morph
ogenetic proteins. J Biol Chem. 28;280(4):2498-502
骨同化効果は、抗スクレロスチンMOR05813の投与で増加する(図23)。抗DKK1抗体での共処理は、総骨塩量(図23A)および骨密度(図23B)および皮質厚(図23C)の改善された増加、ならびに海綿状骨塩密度(図23D)の相乗的な増加を生じる。hPTH(1-34)での共処理は、すべての測定されたパラメーターの相乗的な増加を生じる(図23A-D)。

本発明は、以下の態様を包含し得る。
[1]
以下を含む、単離抗体またはその抗原結合部分:
(a) 配列番号4に示すアミノ酸配列からなる重鎖可変領域CDR1;
(b) 配列番号15に示すアミノ酸配列からなる重鎖可変領域CDR2;
(c) 配列番号26に示すアミノ酸配列からなる重鎖可変領域CDR3;
(d) 配列番号37に示すアミノ酸配列からなる軽鎖可変領域CDR1;
(e) 配列番号48に示すアミノ酸配列からなる軽鎖可変領域CDR2; および
(f) 配列番号59に示すアミノ酸配列からなる軽鎖可変領域CDR3。
[2]
上記[1]に記載の抗体またはその抗原結合部分であって、
a) 1nM未満のK D でスクレロスチンポリペプチドに結合する;
c) 細胞に基づくWntシグナル伝達アッセイにおいて、スクレロスチンの阻害効果を妨害する;
d) 細胞に基づく石灰化アッセイにおいて、スクレロスチンの阻害効果を妨害する;
e) 溶液阻害アッセイにおいて、LRP6/スクレロスチン相互作用を阻害する; および/または
f) 細胞に基づく機能性アッセイにおいて、BMP6により誘導されるSmad1リン酸化に対するスクレロスチンの阻害効果を妨害する
ものである、抗体またはその抗原結合部分。
[3]
上記[1]または[2]に記載の抗体またはその抗原結合部分であって、
a) スクレロスチンの存在下、HEK293細胞株における細胞に基づくWntシグナル伝達アッセイにおいて測定される100nM未満のIC 50 ;
b) スクレロスチンの存在下、MC3T3細胞におけるBMP2誘導石灰化アッセイにおいて測定される500nM未満のIC 50 ;
c) LRP6/スクレロスチンELISAにおいて測定される10nM未満のIC 50 ; および/または
d) スクレロスチンの存在下、MC3T3-E1細胞株におけるBMP6 Smad1リン酸化アッセイにおいて測定される500nM未満のIC 50
を有するものである、抗体またはその抗原結合部分。
[4]
以下を含む、上記[1]〜[3]のいずれかに記載の抗体またはその抗原結合部分:
a) 配列番号70に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVHポリペプチド配列; または
b) 配列番号81に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVLポリペプチド配列。
[5]
配列番号81に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVLポリペプチド配列および配列番号70に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVHポリペプチド配列を含む、上記[4]に記載の抗体またはその抗原結合部分。
[6]
配列番号81に示すアミノ酸配列を有するVLポリペプチド配列および配列番号70に示すアミノ酸配列を有するVHポリペプチド配列を含む、上記[5]に記載の抗体またはその抗原結合部分。
[7]
以下を含む、上記[1]〜[5]のいずれかに記載の抗体またはその抗原結合部分:
a) 配列番号114に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長重鎖アミノ酸配列; または
b) 配列番号125に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長軽鎖アミノ酸配列。
[8]
配列番号125に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長軽鎖アミノ酸配列および配列番号114に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長重鎖アミノ酸配列を含む、上記[7]に記載の抗体またはその抗原結合部分。
[9]
配列番号125に示すアミノ酸配列を有する全長軽鎖アミノ酸配列および配列番号114に示すアミノ酸配列を有する全長重鎖アミノ酸配列を含む、上記[8]に記載の抗体またはその抗原結合部分。
[10]
ヒト抗体またはヒト化抗体である、上記[1]〜[5]のいずれかに記載の抗体またはその抗原結合部分。
[11]
IgM、IgEまたはIgGアイソタイプのものである、上記[10]に記載の抗体。
[12]
IgG1またはIgG2アイソタイプのものである、上記[11]に記載の抗体。
[13]
治療上有効量の上記[1]〜[12]のいずれかに記載の抗体またはその抗原結合部分を1以上の薬学的に許容される賦形剤、希釈剤または担体と組み合わせて含む医薬組成物。
[14]
さらなる活性成分を含む、上記[13]に記載の医薬組成物。
[15]
上記[1]〜[12]のいずれかに記載の抗体または抗原結合部分をコードする単離ポリヌクレオチド配列。
[16]
上記[15]に記載の1以上のポリヌクレオチド配列を含むクローニングまたは発現ベクター。
[17]
配列番号133-154からなる群より選択される少なくとも1つの核酸配列または少なくとも1つのCDR領域をコードする断片を含む、上記[16]に記載のベクター。
[18]
上記[17]に記載の1以上のクローニングまたは発現ベクターを含む、組換え宿主細胞。
[19]
上記[18]に記載の宿主細胞を培養し、該宿主細胞から抗体またはその抗原結合部分を単離することを含む、抗体またはその抗原結合部分の製造方法。
[20]
上記[1]〜[12]のいずれかに記載の抗体またはその抗原結合部分を含む診断キット。
[21]
スクレロスチンにより仲介されるか、または増加したレベルのスクレロスチンと関連する病的障害を処置するための、上記[13]〜[14]のいずれかに記載の医薬組成物。
[22]
病的障害が、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形成不全症(OI)、虚血壊死(骨壊死)、骨折および移植治癒(歯科インプラントおよび股関節インプラント)、他の障害による骨減少、例えば、HIV感染、癌もしくは関節炎に付随する骨減少を含む群より選択される、上記[21]に記載の医薬組成物。
[23]
スクレロスチンにより仲介されるか、または増加したレベルのスクレロスチンと関連する病的障害の処置のための医薬の製造における、上記[1]〜[12]のいずれかに記載の抗体またはその抗原結合部分の使用。
[24]
病的障害が、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形成不全症(OI)、虚血壊死(骨壊死)、骨折および移植治癒(歯科インプラントおよび股関節インプラント)、他の障害による骨減少、例えば、HIV感染、癌もしくは関節炎に付随する骨減少を含む群より選択される、上記[23]に記載の使用。
[25]
スクレロスチンにより仲介されるか、または増加したレベルのスクレロスチンと関連する病的障害の処置における使用のための、上記[1]〜[12]のいずれかに記載の抗体またはその抗原結合部分。
[26]
病的障害が、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形成不全症(OI)、虚血壊死(骨壊死)、骨折および移植治癒(歯科インプラントおよび股関節インプラント)、他の障害による骨減少、例えば、HIV感染、癌もしくは関節炎に付随する骨減少を含む群より選択される、上記[25]に記載の抗体またはその抗原結合部分。

Claims (26)

  1. 以下を含む、単離抗体またはその抗原結合部分:
    (a) 配列番号4に示すアミノ酸配列からなる重鎖可変領域CDR1;
    (b) 配列番号15に示すアミノ酸配列からなる重鎖可変領域CDR2;
    (c) 配列番号26に示すアミノ酸配列からなる重鎖可変領域CDR3;
    (d) 配列番号37に示すアミノ酸配列からなる軽鎖可変領域CDR1;
    (e) 配列番号48に示すアミノ酸配列からなる軽鎖可変領域CDR2; および
    (f) 配列番号59に示すアミノ酸配列からなる軽鎖可変領域CDR3。
  2. 請求項1に記載の抗体またはその抗原結合部分であって、
    a) 1nM未満のKDでスクレロスチンポリペプチドに結合する;
    c) 細胞に基づくWntシグナル伝達アッセイにおいて、スクレロスチンの阻害効果を妨害す
    る;
    d) 細胞に基づく石灰化アッセイにおいて、スクレロスチンの阻害効果を妨害する;
    e) 溶液阻害アッセイにおいて、LRP6/スクレロスチン相互作用を阻害する; および/また

    f) 細胞に基づく機能性アッセイにおいて、BMP6により誘導されるSmad1リン酸化に対する
    スクレロスチンの阻害効果を妨害する
    ものである、抗体またはその抗原結合部分。
  3. 請求項1または2に記載の抗体またはその抗原結合部分であって、
    a) スクレロスチンの存在下、HEK293細胞株における細胞に基づくWntシグナル伝達アッセ
    イにおいて測定される100nM未満のIC50;
    b) スクレロスチンの存在下、MC3T3細胞におけるBMP2誘導石灰化アッセイにおいて測定さ
    れる500nM未満のIC50;
    c) LRP6/スクレロスチンELISAにおいて測定される10nM未満のIC50; および/または
    d) スクレロスチンの存在下、MC3T3-E1細胞株におけるBMP6 Smad1リン酸化アッセイにお
    いて測定される500nM未満のIC50
    を有するものである、抗体またはその抗原結合部分。
  4. 以下を含む、請求項1〜3のいずれかに記載の抗体またはその抗原結合部分:
    a) 配列番号70に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVHポ
    リペプチド配列; または
    b) 配列番号81に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVLポ
    リペプチド配列。
  5. 配列番号81に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有するVLポリ
    ペプチド配列および配列番号70に示すアミノ酸配列と少なくとも95パーセントの配列同一
    性を有するVHポリペプチド配列を含む、請求項4に記載の抗体またはその抗原結合部分。
  6. 配列番号81に示すアミノ酸配列を有するVLポリペプチド配列および配列番号70に示すア
    ミノ酸配列を有するVHポリペプチド配列を含む、請求項5に記載の抗体またはその抗原結
    合部分。
  7. 以下を含む、請求項1〜5のいずれかに記載の抗体またはその抗原結合部分:
    a) 配列番号114に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長
    重鎖アミノ酸配列; または
    b) 配列番号125に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長
    軽鎖アミノ酸配列。
  8. 配列番号125に示すアミノ酸配列と少なくとも95パーセントの配列同一性を有する全長
    軽鎖アミノ酸配列および配列番号114に示すアミノ酸配列と少なくとも95パーセントの配
    列同一性を有する全長重鎖アミノ酸配列を含む、請求項7に記載の抗体またはその抗原結
    合部分。
  9. 配列番号125に示すアミノ酸配列を有する全長軽鎖アミノ酸配列および配列番号114に示
    すアミノ酸配列を有する全長重鎖アミノ酸配列を含む、請求項8に記載の抗体またはその
    抗原結合部分。
  10. ヒト抗体またはヒト化抗体である、請求項1〜5のいずれかに記載の抗体またはその抗
    原結合部分。
  11. IgM、IgEまたはIgGアイソタイプのものである、請求項10に記載の抗体。
  12. IgG1またはIgG2アイソタイプのものである、請求項11に記載の抗体。
  13. 治療上有効量の請求項1〜12のいずれかに記載の抗体またはその抗原結合部分を1以
    上の薬学的に許容される賦形剤、希釈剤または担体と組み合わせて含む医薬組成物。
  14. さらなる活性成分を含む、請求項13に記載の医薬組成物。
  15. 請求項1〜12のいずれかに記載の抗体または抗原結合部分をコードする単離ポリヌク
    レオチド配列。
  16. 請求項15に記載の1以上のポリヌクレオチド配列を含むクローニングまたは発現ベク
    ター。
  17. 配列番号133-154からなる群より選択される少なくとも1つの核酸配列または少なくと
    も1つのCDR領域をコードする断片を含む、請求項16に記載のベクター。
  18. 請求項17に記載の1以上のクローニングまたは発現ベクターを含む、組換え宿主細胞
  19. 請求項18に記載の宿主細胞を培養し、該宿主細胞から抗体またはその抗原結合部分を
    単離することを含む、抗体またはその抗原結合部分の製造方法。
  20. 請求項1〜12のいずれかに記載の抗体またはその抗原結合部分を含む診断キット。
  21. スクレロスチンにより仲介されるか、または増加したレベルのスクレロスチンと関連す
    る病的障害を処置するための、請求項13〜14のいずれかに記載の医薬組成物。
  22. 病的障害が、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形成不全症(OI)、
    虚血壊死(骨壊死)、骨折および移植治癒(歯科インプラントおよび股関節インプラント)、
    他の障害による骨減少、例えば、HIV感染、癌もしくは関節炎に付随する骨減少を含む群
    より選択される、請求項21に記載の医薬組成物。
  23. スクレロスチンにより仲介されるか、または増加したレベルのスクレロスチンと関連す
    る病的障害の処置のための医薬の製造における、請求項1〜12のいずれかに記載の抗体
    またはその抗原結合部分の使用。
  24. 病的障害が、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形成不全症(OI)、
    虚血壊死(骨壊死)、骨折および移植治癒(歯科インプラントおよび股関節インプラント)、
    他の障害による骨減少、例えば、HIV感染、癌もしくは関節炎に付随する骨減少を含む群
    より選択される、請求項23に記載の使用。
  25. スクレロスチンにより仲介されるか、または増加したレベルのスクレロスチンと関連す
    る病的障害の処置における使用のための、請求項1〜12のいずれかに記載の抗体または
    その抗原結合部分。
  26. 病的障害が、原発性および続発性骨粗鬆症、骨減少症、骨軟化症、骨形成不全症(OI)、
    虚血壊死(骨壊死)、骨折および移植治癒(歯科インプラントおよび股関節インプラント)、
    他の障害による骨減少、例えば、HIV感染、癌もしくは関節炎に付随する骨減少を含む群
    より選択される、請求項25に記載の抗体またはその抗原結合部分。
JP2016014340A 2007-10-12 2016-01-28 スクレロスチンに対する抗体の使用のための組成物および方法 Active JP6401196B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP07118414 2007-10-12
EP07118414.7 2007-10-12
EP08151911 2008-02-25
EP08151911.8 2008-02-25
EP08161342 2008-07-29
EP08161342.4 2008-07-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013078864A Division JP5913181B2 (ja) 2007-10-12 2013-04-04 スクレロスチンに対する抗体の使用のための組成物および方法

Publications (2)

Publication Number Publication Date
JP2016121170A true JP2016121170A (ja) 2016-07-07
JP6401196B2 JP6401196B2 (ja) 2018-10-03

Family

ID=40219404

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010528426A Pending JP2011502470A (ja) 2007-10-12 2008-10-10 スクレロスチンに対する抗体の使用のための組成物および方法
JP2013078864A Active JP5913181B2 (ja) 2007-10-12 2013-04-04 スクレロスチンに対する抗体の使用のための組成物および方法
JP2016014340A Active JP6401196B2 (ja) 2007-10-12 2016-01-28 スクレロスチンに対する抗体の使用のための組成物および方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010528426A Pending JP2011502470A (ja) 2007-10-12 2008-10-10 スクレロスチンに対する抗体の使用のための組成物および方法
JP2013078864A Active JP5913181B2 (ja) 2007-10-12 2013-04-04 スクレロスチンに対する抗体の使用のための組成物および方法

Country Status (36)

Country Link
US (3) US7879322B2 (ja)
EP (2) EP2586796B1 (ja)
JP (3) JP2011502470A (ja)
KR (2) KR101268675B1 (ja)
CN (1) CN101821291B (ja)
AR (1) AR068767A1 (ja)
AU (1) AU2008309514B2 (ja)
BR (1) BRPI0817879A2 (ja)
CA (1) CA2702005C (ja)
CL (1) CL2008003004A1 (ja)
CO (1) CO6270368A2 (ja)
CR (1) CR11313A (ja)
CU (1) CU23869B1 (ja)
CY (2) CY1114872T1 (ja)
DK (2) DK2586796T3 (ja)
EA (1) EA018756B1 (ja)
ES (2) ES2448542T3 (ja)
GT (1) GT201000085A (ja)
HK (1) HK1143173A1 (ja)
HN (1) HN2010000674A (ja)
HR (2) HRP20140161T1 (ja)
HU (1) HUE031995T2 (ja)
IL (1) IL204510A (ja)
LT (1) LT2586796T (ja)
MA (1) MA31760B1 (ja)
MX (1) MX2010003915A (ja)
MY (1) MY152282A (ja)
NZ (1) NZ584158A (ja)
PE (1) PE20091221A1 (ja)
PL (2) PL2203478T3 (ja)
PT (2) PT2203478E (ja)
SI (2) SI2586796T1 (ja)
TN (1) TN2010000140A1 (ja)
TW (1) TWI489993B (ja)
WO (1) WO2009047356A1 (ja)
ZA (1) ZA201001789B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502219A (ja) * 2016-12-21 2020-01-23 メレオ バイオファーマ 3 リミテッド 骨形成不全症の処置における抗スクレロスチン抗体の使用
WO2021010346A1 (ja) * 2019-07-12 2021-01-21 国立大学法人京都大学 歯の再生治療のためのusag-1を標的分子とした中和抗体
KR20220023026A (ko) * 2020-08-20 2022-03-02 한림대학교 산학협력단 인공관절 마모편에 의한 활막염과 골용해의 진단 및 치료 방법

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040009535A1 (en) * 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
EP1133558B2 (en) 1998-11-27 2016-04-13 UCB Pharma S.A. Compositions and methods for increasing bone mineralization
ES2586401T3 (es) 2003-06-16 2016-10-14 Ucb Pharma S.A. Anticuerpos específicos para la esclerostina y métodos para aumentar la mineralización ósea
US8461155B2 (en) * 2003-09-22 2013-06-11 University Of Connecticut Sclerostin and the inhibition of WNT signaling and bone formation
US7592429B2 (en) 2005-05-03 2009-09-22 Ucb Sa Sclerostin-binding antibody
US8003108B2 (en) 2005-05-03 2011-08-23 Amgen Inc. Sclerostin epitopes
US7723477B2 (en) 2005-10-31 2010-05-25 Oncomed Pharmaceuticals, Inc. Compositions and methods for inhibiting Wnt-dependent solid tumor cell growth
AU2006344359B2 (en) 2005-10-31 2013-08-15 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
HUE060822T2 (hu) 2006-12-29 2023-04-28 Ossifi Mab Llc Módszerek a csontnövekedés megváltoztatására SOST vagy WISE antagonista vagy agonista adásával
US8680019B2 (en) * 2007-08-10 2014-03-25 Protelica, Inc. Universal fibronectin Type III binding-domain libraries
US8470966B2 (en) 2007-08-10 2013-06-25 Protelica, Inc. Universal fibronectin type III binding-domain libraries
AU2008287426B2 (en) * 2007-08-10 2014-06-26 Protelica, Inc. Universal fibronectin type III binding-domain libraries
CL2008002775A1 (es) 2007-09-17 2008-11-07 Amgen Inc Uso de un agente de unión a esclerostina para inhibir la resorción ósea.
AR068767A1 (es) * 2007-10-12 2009-12-02 Novartis Ag Anticuerpos contra esclerostina, composiciones y metodos de uso de estos anticuerpos para tratar un trastorno patologico mediado por esclerostina
WO2009064944A2 (en) 2007-11-16 2009-05-22 Nuvelo, Inc. Antibodies to lrp6
EP3521311A1 (en) 2008-04-11 2019-08-07 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
WO2010037041A2 (en) 2008-09-26 2010-04-01 Oncomed Pharmaceuticals, Inc. Frizzled-binding agents and uses thereof
WO2010100200A2 (en) * 2009-03-05 2010-09-10 Novartis Ag Lyophilised antibody formulation
WO2010115932A1 (en) 2009-04-08 2010-10-14 Novartis Ag Combination for the treatment of bone loss
WO2011037791A1 (en) * 2009-09-25 2011-03-31 Merck Sharp & Dohme Corp. Antagonists of pcsk9
TWI535445B (zh) 2010-01-12 2016-06-01 安可美德藥物股份有限公司 Wnt拮抗劑及治療和篩選方法
JP2013530929A (ja) 2010-04-01 2013-08-01 オンコメッド ファーマシューティカルズ インコーポレイテッド frizzled結合剤およびその使用
CA2795734A1 (en) 2010-04-07 2011-10-13 Abbvie Inc. Tnf-.alpha. binding proteins
RU2012148716A (ru) * 2010-04-16 2014-05-27 Новартис Аг Способы и композиции для улучшения оссеоинтеграции имплантата
AU2011249782B2 (en) 2010-05-06 2014-10-02 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (LRP6) multivalent antibodies
BR112012028306A2 (pt) 2010-05-06 2020-11-03 Novartis Ag anticorpos para proteína 6 relacionada com lipoproteína de baixa densidade (lrp6) e seus fragmentos, seu uso, ácidos nucléicos, vetores, bem como composições farmacêuticas e combinações
PT3195880T (pt) 2010-05-14 2020-02-21 Amgen Inc Formulações de anticorpos antiesclerostina de concentração elevada
US9493541B2 (en) 2010-06-07 2016-11-15 Joshua Rabbani Antibodies specific for sulfated sclerostin
US9403882B2 (en) 2010-06-07 2016-08-02 Joshua Rabbani Sulfation of Wnt pathway proteins
US11167011B2 (en) 2010-06-07 2021-11-09 Enzo Biochem, Inc. Methods for treating bone loss using sclerostin peptides
US9617323B2 (en) 2010-06-07 2017-04-11 Joshua Rabbani Sulfonated sclerostin, antibodies, epitopes and methods for identification and use therefor
WO2012028683A1 (en) 2010-09-02 2012-03-08 Novartis Ag Antibody gel system for sustained drug delivery
CA2815181C (en) 2010-10-27 2020-09-15 William Gleason Richards Dkk1 antibodies and methods of use
CA2813849C (en) 2010-11-05 2021-06-15 Novartis Ag Secukinumab for use in the treatment of ankylosing spondylitis
CA2819356C (en) 2010-11-30 2023-01-24 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
MX2013010011A (es) * 2011-03-01 2014-10-24 Amgen Inc Agentes de unión biespecífica.
KR20140018315A (ko) 2011-03-25 2014-02-12 암젠 인크 항스클러로스틴 항체 결정 및 이의 제제
CA2833289A1 (en) 2011-04-19 2012-10-26 Amgen Inc. Method for treating osteoporosis
JP2014515759A (ja) 2011-04-29 2014-07-03 ノバルティス アーゲー 扁平上皮がんを治療する方法関連出願
DK2739311T3 (en) * 2011-08-04 2018-04-23 Amgen Inc Method of treating bone slit defects
US10813630B2 (en) 2011-08-09 2020-10-27 Corquest Medical, Inc. Closure system for atrial wall
US10307167B2 (en) 2012-12-14 2019-06-04 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
US10314594B2 (en) 2012-12-14 2019-06-11 Corquest Medical, Inc. Assembly and method for left atrial appendage occlusion
BR112014009810A2 (pt) 2011-10-24 2017-04-25 Abbvie Inc imunoligantes biespecíficos dirigidos contra tnf e il-17
CN104093739A (zh) 2011-10-24 2014-10-08 艾伯维公司 针对tnf的免疫结合剂
TW201323440A (zh) * 2011-10-24 2013-06-16 Abbvie Inc 抗骨硬化素(sclerostin)之免疫結合物
ES2666856T3 (es) 2011-11-04 2018-05-08 Novartis Ag Proteína 6 relacionada con lipoproteínas de baja densidad (LRP6) - constructos extensores de la vida media
KR20200056473A (ko) 2011-12-28 2020-05-22 암젠 인크 항스클레로스틴 항체의 이용을 통한 치조골 소실의 치료 방법
EP2869844B2 (en) 2012-07-05 2023-06-21 UCB Pharma S.A. Treatment for bone diseases
JP2015536933A (ja) 2012-10-23 2015-12-24 オンコメッド ファーマシューティカルズ インコーポレイテッド Wnt経路結合剤を用いて神経内分泌腫瘍を処置する方法
UY35148A (es) 2012-11-21 2014-05-30 Amgen Inc Immunoglobulinas heterodiméricas
US20140142689A1 (en) 2012-11-21 2014-05-22 Didier De Canniere Device and method of treating heart valve malfunction
RU2015125343A (ru) 2012-11-29 2017-01-11 БАЙЕР ХелсКер ЛЛСи Гуманизированные моноклональные антитела против активированного белка с и их применение
RU2015125349A (ru) * 2012-11-29 2017-01-10 Байер Хелскеа Ллк МОНОКЛОНАЛЬНЫЕ АНТИТЕЛА ПРОТИВ АКТИВИРОВАННОГО БЕЛКА С (аРС)
WO2014118705A1 (en) 2013-01-31 2014-08-07 Novartis Ag Methods of treating chronic kidney disease-mineral and bone disorder using sclerostin antagonists
AU2014212081A1 (en) 2013-02-04 2015-08-13 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a Wnt pathway inhibitor
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
WO2014144817A2 (en) 2013-03-15 2014-09-18 Amgen Inc. Inhibitory polypeptides specific to wnt inhibitors
SI2976359T2 (sl) * 2013-03-20 2022-05-31 Genzyme Corporation Postopki zdravljenja imperfektne osteogeneze
WO2014155278A2 (en) 2013-03-26 2014-10-02 Novartis Ag Methods of treating autoimmune diseases using il-17 antagonists
US9566443B2 (en) 2013-11-26 2017-02-14 Corquest Medical, Inc. System for treating heart valve malfunction including mitral regurgitation
WO2015087187A1 (en) * 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
US9763911B2 (en) 2013-12-12 2017-09-19 Mayo Foundation For Medical Education And Research Prostacyclin compositions for regulation of fracture repair and bone formation
US10842626B2 (en) 2014-12-09 2020-11-24 Didier De Canniere Intracardiac device to correct mitral regurgitation
MA41142A (fr) * 2014-12-12 2017-10-17 Amgen Inc Anticorps anti-sclérostine et utilisation de ceux-ci pour traiter des affections osseuses en tant qu'élements du protocole de traitement
AR103173A1 (es) 2014-12-22 2017-04-19 Novarits Ag Productos farmacéuticos y composiciones líquidas estables de anticuerpos il-17
US10449250B2 (en) * 2015-03-13 2019-10-22 Jiangsu Hengrui Medicine Co., Ltd. Anti-sclerostin antibody, antigen binding fragment and medical use thereof
US11077187B2 (en) 2015-11-17 2021-08-03 Oklahoma Medical Research Foundation Epitope of optimized humanized monoclonal antibodies against activated protein C and uses thereof
GB201604124D0 (en) 2016-03-10 2016-04-27 Ucb Biopharma Sprl Pharmaceutical formulation
JP2019527710A (ja) 2016-08-08 2019-10-03 アムジエン・インコーポレーテツド 抗スクレロスチン抗体を用いた結合組織付着の改善方法
WO2018115879A1 (en) 2016-12-21 2018-06-28 Mereo Biopharma 3 Limited Use of anti-sclerostin antibodies in the treatment of osteogenesis imperfecta
BR112019012570A8 (pt) * 2016-12-21 2023-01-24 Cephalon Inc Anticorpos que se ligam especificamente à il-15 humana e seus usos, composição, método in vitro para detecção de il-15 ou um complexo de il-15 e receptor de il-15-alfa, polinucleotídeo, vetor e método de produção do dito anticorpo
JP7191833B2 (ja) * 2017-01-30 2022-12-19 中外製薬株式会社 抗スクレロスチン抗体およびその使用
CN108866002A (zh) * 2017-05-12 2018-11-23 上海复旦张江生物医药股份有限公司 用于sost蛋白或抗体筛选的细胞株及其制备方法和应用
UA127219C2 (uk) * 2017-07-27 2023-06-14 Джянгсу Хенгруй Медісін Ко., Лтд. Фармацевтична композиція, що містить анти-sost антитіло, та її застосування
CN107817350B (zh) * 2017-10-26 2019-09-06 成都医学院第一附属医院 一种肺癌筛查试剂盒
AU2019243595A1 (en) 2018-03-30 2020-09-17 Amgen Inc. C-terminal antibody variants
GB201810746D0 (en) 2018-06-29 2018-08-15 Mereo Biopharma 3 Ltd Use of sclerostin antagonist
BR112021002506A2 (pt) 2018-08-10 2021-07-27 Amgen Inc método de preparação de uma formulação farmacêutica de anticorpo
CN114630677A (zh) 2019-08-12 2022-06-14 安进公司 抗硬骨素抗体配制品
TR201920272A1 (tr) * 2019-12-15 2021-06-21 Uludamar Altay Dental i̇mplantlar, greft materyalleri̇ ve prf i̇le osseoi̇ntegrasyonun artirilmasi i̇çi̇n bi̇r terapöti̇k kompozi̇syon ve bunun lokal kullanim yöntemleri̇
CN112070678B (zh) * 2020-08-10 2023-04-11 华东交通大学 一种批量蛋白质印迹膜条倾斜矫正和分割方法及系统
CN113354724A (zh) * 2021-04-28 2021-09-07 蒋青 骨硬化蛋白及其在制备治疗或预防阿尔兹海默症的相关产品上应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529647A (ja) * 2001-04-24 2004-09-30 ベイヤー コーポレーション ヒトtimp−1抗体
WO2006119062A2 (en) * 2005-05-03 2006-11-09 Ucb Pharma S.A. Sclerostin epitopes
JP5913181B2 (ja) * 2007-10-12 2016-04-27 メレオ バイオファーマ 3 リミテッド スクレロスチンに対する抗体の使用のための組成物および方法

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US6455275B1 (en) * 1980-02-25 2002-09-24 The Trustees Of Columbia University In The City Of New York DNA construct for producing proteinaceous materials in eucaryotic cells
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4475196A (en) 1981-03-06 1984-10-02 Zor Clair G Instrument for locating faults in aircraft passenger reading light and attendant call control system
US4447233A (en) 1981-04-10 1984-05-08 Parker-Hannifin Corporation Medication infusion pump
US4439196A (en) 1982-03-18 1984-03-27 Merck & Co., Inc. Osmotic drug delivery system
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4447224A (en) 1982-09-20 1984-05-08 Infusaid Corporation Variable flow implantable infusion apparatus
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4486194A (en) 1983-06-08 1984-12-04 James Ferrara Therapeutic device for administering medicaments through the skin
EP0154316B1 (en) 1984-03-06 1989-09-13 Takeda Chemical Industries, Ltd. Chemically modified lymphokine and production thereof
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
MX9203291A (es) 1985-06-26 1992-08-01 Liposome Co Inc Metodo para acoplamiento de liposomas.
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5260203A (en) 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US4881175A (en) 1986-09-02 1989-11-14 Genex Corporation Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
WO1988007089A1 (en) 1987-03-18 1988-09-22 Medical Research Council Altered antibodies
US5013653A (en) 1987-03-20 1991-05-07 Creative Biomolecules, Inc. Product and process for introduction of a hinge region into a fusion protein to facilitate cleavage
US5258498A (en) 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
ATE243754T1 (de) 1987-05-21 2003-07-15 Micromet Ag Multifunktionelle proteine mit vorbestimmter zielsetzung
US5132405A (en) 1987-05-21 1992-07-21 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5091513A (en) 1987-05-21 1992-02-25 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
GB8725529D0 (en) 1987-10-30 1987-12-02 Delta Biotechnology Ltd Polypeptides
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
US5476996A (en) 1988-06-14 1995-12-19 Lidak Pharmaceuticals Human immune system in non-human animal
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
WO1990006952A1 (en) 1988-12-22 1990-06-28 Kirin-Amgen, Inc. Chemically modified granulocyte colony stimulating factor
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
SE509359C2 (sv) 1989-08-01 1999-01-18 Cemu Bioteknik Ab Användning av stabiliserade protein- eller peptidkonjugat för framställning av ett läkemedel
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
EP1690935A3 (en) 1990-01-12 2008-07-30 Abgenix, Inc. Generation of xenogeneic antibodies
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6673986B1 (en) 1990-01-12 2004-01-06 Abgenix, Inc. Generation of xenogeneic antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
DK0546073T3 (da) 1990-08-29 1998-02-02 Genpharm Int Frembringelse og anvendelse af transgene, ikke-humane dyr, der er i stand til at danne heterologe antistoffer
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US6300129B1 (en) 1990-08-29 2001-10-09 Genpharm International Transgenic non-human animals for producing heterologous antibodies
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US6255458B1 (en) 1990-08-29 2001-07-03 Genpharm International High affinity human antibodies and human antibodies against digoxin
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
JPH059615A (ja) 1991-07-01 1993-01-19 Sumitomo Metal Mining Co Ltd スポンジCdの回収方法
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US5714350A (en) 1992-03-09 1998-02-03 Protein Design Labs, Inc. Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region
WO1993022332A2 (en) 1992-04-24 1993-11-11 Board Of Regents, The University Of Texas System Recombinant production of immunoglobulin-like domains in prokaryotic cells
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
DK1589107T3 (da) 1992-08-21 2010-04-26 Univ Bruxelles Immonuglobuliner uden lette kæder
AU6819494A (en) 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0714409A1 (en) 1993-06-16 1996-06-05 Celltech Therapeutics Limited Antibodies
SE9400088D0 (sv) 1994-01-14 1994-01-14 Kabi Pharmacia Ab Bacterial receptor structures
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6121022A (en) 1995-04-14 2000-09-19 Genentech, Inc. Altered polypeptides with increased half-life
AU6909298A (en) 1996-10-28 1998-05-22 Novartis Ag Method for the oligomerisation of peptides
US6277375B1 (en) 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
CA2290485C (en) 1997-05-21 2008-08-05 Biovation Limited Method for the production of non-immunogenic proteins
DE69827507T2 (de) 1997-06-11 2006-03-09 Borean Pharma A/S Trimerisierendes modul
DE19742706B4 (de) 1997-09-26 2013-07-25 Pieris Proteolab Ag Lipocalinmuteine
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
ES2588910T3 (es) 1998-10-09 2016-11-07 Medical Research Council Método para generar diversidad
US20040009535A1 (en) 1998-11-27 2004-01-15 Celltech R&D, Inc. Compositions and methods for increasing bone mineralization
EP1133558B2 (en) 1998-11-27 2016-04-13 UCB Pharma S.A. Compositions and methods for increasing bone mineralization
US6818418B1 (en) 1998-12-10 2004-11-16 Compound Therapeutics, Inc. Protein scaffolds for antibody mimics and other binding proteins
PL209786B1 (pl) 1999-01-15 2011-10-31 Genentech Inc Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna
ES2420835T3 (es) 1999-04-09 2013-08-27 Kyowa Hakko Kirin Co., Ltd. Procedimiento para controlar la actividad de las moléculas inmunofuncionales
DE19932688B4 (de) 1999-07-13 2009-10-08 Scil Proteins Gmbh Design von Beta-Faltblatt-Proteinen des gamma-II-kristallins antikörperähnlichen
ATE417925T1 (de) 1999-07-20 2009-01-15 Morphosys Ag Verfahren zur präsentation von (poly)peptiden/proteinen auf bakteriophagenpartikeln via disulfidbindungen
DE60033530T2 (de) 1999-08-24 2007-10-31 Medarex Inc. Humane antikörper gegen ctla-4 und deren verwendungen
CA2441903C (en) 2000-05-26 2012-07-31 National Research Council Of Canada Single-domain brain-targeting antibody fragments derived from llama antibodies
US7220840B2 (en) * 2000-06-16 2007-05-22 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to B lymphocyte stimulator protein
KR101287395B1 (ko) * 2000-06-16 2014-11-04 휴먼 게놈 사이언시즈, 인코포레이티드 면역특이적으로 BLyS에 결합하는 항체
AU3942202A (en) 2000-11-30 2002-06-11 Medarex Inc Transgenic transchromosomal rodents for making human antibodies
US20040175756A1 (en) 2001-04-26 2004-09-09 Avidia Research Institute Methods for using combinatorial libraries of monomer domains
US20050048512A1 (en) 2001-04-26 2005-03-03 Avidia Research Institute Combinatorial libraries of monomer domains
US20050053973A1 (en) 2001-04-26 2005-03-10 Avidia Research Institute Novel proteins with targeted binding
EP1421203A4 (en) 2001-05-17 2005-06-01 Diversa Corp NEW ANTIGEN-BINDING MOLECULES FOR THERAPEUTIC, DIAGNOSTIC, PROPHYLACTIC, ENZYMATIC, INDUSTRIAL AND AGRICULTURAL APPLICATIONS AND METHOD FOR THE PRODUCTION AND SCREENING THEREOF
MXPA04003798A (es) 2001-10-25 2004-07-30 Genentech Inc Composiciones de glicoproteina.
WO2003055979A2 (en) 2001-11-16 2003-07-10 Human Genome Sciences, Inc. ANTIBODIES THAT IMMUNOSPECIFICALLY BIND TO BLyS
US20040110226A1 (en) 2002-03-01 2004-06-10 Xencor Antibody optimization
US20040023356A1 (en) 2002-06-14 2004-02-05 Robb Krumlauf Wise/Sost nucleic acid sequences and amino acid sequences
FR2840910B1 (fr) 2002-06-17 2004-08-27 Rhodia Chimie Sa Composition silicone pour la realisation d'un ensemble comprenant plusieurs elements en silicone reticules par polyaddition adherant fermement les uns aux autres
US20040065598A1 (en) 2002-06-17 2004-04-08 Ross David Justin Address disambiguation for mail-piece routing
EP1558640B1 (en) 2002-10-29 2011-04-13 Anaphore, Inc. Trimeric binding proteins for trimeric cytokines
DE10324447A1 (de) 2003-05-28 2004-12-30 Scil Proteins Gmbh Generierung künstlicher Bindungsproteine auf der Grundlage von Ubiquitin
ES2586401T3 (es) 2003-06-16 2016-10-14 Ucb Pharma S.A. Anticuerpos específicos para la esclerostina y métodos para aumentar la mineralización ósea
US8461155B2 (en) 2003-09-22 2013-06-11 University Of Connecticut Sclerostin and the inhibition of WNT signaling and bone formation
EP2990053A1 (en) 2004-01-20 2016-03-02 KaloBios Pharmaceuticals, Inc. Antibody specificity transfer using minimal essential binding determinants
US20060008844A1 (en) 2004-06-17 2006-01-12 Avidia Research Institute c-Met kinase binding proteins
US7737190B2 (en) 2005-03-24 2010-06-15 E.I. Du Pont De Nemours And Company Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture
US20060264576A1 (en) 2005-03-24 2006-11-23 Roelofs Mark G Process to prepare stable trifluorostyrene containing compounds grafted to base polymers
US7592429B2 (en) * 2005-05-03 2009-09-22 Ucb Sa Sclerostin-binding antibody
DE102006002221A1 (de) 2005-11-11 2007-05-24 Micronas Gmbh Integrierter elektronischer Schaltkreis
JP5688829B2 (ja) * 2005-11-11 2015-03-25 敏一 吉川 示差的な糖尿病の予知・診断方法および糖尿病予知・診断用キット
DOP2006000277A (es) 2005-12-12 2007-08-31 Bayer Pharmaceuticals Corp Anticuerpos anti mn y métodos para su utilización
AR060017A1 (es) 2006-01-13 2008-05-21 Novartis Ag Composiciones y metodos de uso para anticuerpos de dickkopf -1
EP2094731A2 (en) 2006-11-10 2009-09-02 UCB Pharma S.A. Anti human sclerostin antibodies
US20100036091A1 (en) 2006-11-10 2010-02-11 Amgen Inc. Antibody-based diagnostics and therapeutics
HUE060822T2 (hu) 2006-12-29 2023-04-28 Ossifi Mab Llc Módszerek a csontnövekedés megváltoztatására SOST vagy WISE antagonista vagy agonista adásával
BRPI0809026A2 (pt) * 2007-03-20 2014-09-23 Lilly Co Eli Anticorpos antiesclerotina
CL2008002775A1 (es) 2007-09-17 2008-11-07 Amgen Inc Uso de un agente de unión a esclerostina para inhibir la resorción ósea.
EA201070740A1 (ru) 2007-12-14 2010-12-30 Эмджен Инк. Способ лечения перелома кости антителами против склеростина

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529647A (ja) * 2001-04-24 2004-09-30 ベイヤー コーポレーション ヒトtimp−1抗体
WO2006119062A2 (en) * 2005-05-03 2006-11-09 Ucb Pharma S.A. Sclerostin epitopes
JP5913181B2 (ja) * 2007-10-12 2016-04-27 メレオ バイオファーマ 3 リミテッド スクレロスチンに対する抗体の使用のための組成物および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. BONE MINER. RES. (2006) VOL.21, SUPPL. 1, P.S44(1161, 1162), JPN6017038640, ISSN: 0003658187 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020502219A (ja) * 2016-12-21 2020-01-23 メレオ バイオファーマ 3 リミテッド 骨形成不全症の処置における抗スクレロスチン抗体の使用
JP7050335B2 (ja) 2016-12-21 2022-04-08 メレオ バイオファーマ 3 リミテッド 骨形成不全症の処置における抗スクレロスチン抗体の使用
WO2021010346A1 (ja) * 2019-07-12 2021-01-21 国立大学法人京都大学 歯の再生治療のためのusag-1を標的分子とした中和抗体
KR20220023026A (ko) * 2020-08-20 2022-03-02 한림대학교 산학협력단 인공관절 마모편에 의한 활막염과 골용해의 진단 및 치료 방법
KR102472582B1 (ko) * 2020-08-20 2022-11-30 한림대학교 산학협력단 인공관절 마모편에 의한 활막염과 골용해의 진단 및 치료 방법

Also Published As

Publication number Publication date
GT201000085A (es) 2014-03-14
DK2586796T3 (en) 2017-02-13
IL204510A (en) 2013-01-31
US20120276591A1 (en) 2012-11-01
CY1114872T1 (el) 2016-12-14
HRP20140161T1 (hr) 2014-03-28
JP5913181B2 (ja) 2016-04-27
US20090130113A1 (en) 2009-05-21
US8246953B2 (en) 2012-08-21
CY1118691T1 (el) 2017-07-12
HK1143173A1 (en) 2010-12-24
MX2010003915A (es) 2010-04-30
KR20100074271A (ko) 2010-07-01
NZ584158A (en) 2011-10-28
WO2009047356A1 (en) 2009-04-16
PE20091221A1 (es) 2009-09-11
US8486661B2 (en) 2013-07-16
PL2203478T3 (pl) 2014-05-30
AU2008309514B2 (en) 2011-06-23
TN2010000140A1 (en) 2011-09-26
LT2586796T (lt) 2017-02-27
KR101268675B1 (ko) 2013-06-25
MY152282A (en) 2014-09-15
CU20100059A7 (es) 2012-06-29
EP2586796B1 (en) 2016-12-07
HRP20170347T1 (hr) 2017-08-11
CN101821291A (zh) 2010-09-01
JP2013153757A (ja) 2013-08-15
HUE031995T2 (en) 2017-08-28
US7879322B2 (en) 2011-02-01
SI2203478T1 (sl) 2014-03-31
AU2008309514A1 (en) 2009-04-16
CR11313A (es) 2010-05-06
HN2010000674A (es) 2013-02-04
ES2448542T3 (es) 2014-03-14
ZA201001789B (en) 2011-12-28
CL2008003004A1 (es) 2009-06-26
JP2011502470A (ja) 2011-01-27
PT2586796T (pt) 2017-03-15
EP2203478A1 (en) 2010-07-07
PT2203478E (pt) 2014-02-25
CU23869B1 (es) 2013-03-27
TWI489993B (zh) 2015-07-01
ES2614328T3 (es) 2017-05-30
AR068767A1 (es) 2009-12-02
JP6401196B2 (ja) 2018-10-03
TW200922621A (en) 2009-06-01
CN101821291B (zh) 2013-04-10
CA2702005A1 (en) 2009-04-16
DK2203478T3 (da) 2014-02-10
MA31760B1 (fr) 2010-10-01
SI2586796T1 (sl) 2017-04-26
EP2586796A1 (en) 2013-05-01
EA201000559A1 (ru) 2010-10-29
PL2586796T3 (pl) 2017-05-31
US20110052592A1 (en) 2011-03-03
CO6270368A2 (es) 2011-04-20
EA018756B1 (ru) 2013-10-30
EP2203478B1 (en) 2013-11-20
CA2702005C (en) 2016-06-14
BRPI0817879A2 (pt) 2014-06-17
KR20130029452A (ko) 2013-03-22

Similar Documents

Publication Publication Date Title
JP6401196B2 (ja) スクレロスチンに対する抗体の使用のための組成物および方法
JP6472999B2 (ja) 代謝障害を治療するための方法
US10683346B2 (en) Compositions and methods for antibodies targeting BMP6
EP2209491B1 (en) Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (lrp6)
EA039579B1 (ru) Способы и композиции антител, направленных против bmp6

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180906

R150 Certificate of patent or registration of utility model

Ref document number: 6401196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250