JP2015177559A - 双方向dcdcコンバータ - Google Patents

双方向dcdcコンバータ Download PDF

Info

Publication number
JP2015177559A
JP2015177559A JP2014049601A JP2014049601A JP2015177559A JP 2015177559 A JP2015177559 A JP 2015177559A JP 2014049601 A JP2014049601 A JP 2014049601A JP 2014049601 A JP2014049601 A JP 2014049601A JP 2015177559 A JP2015177559 A JP 2015177559A
Authority
JP
Japan
Prior art keywords
bridge circuit
transformer
voltage
period
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049601A
Other languages
English (en)
Other versions
JP6157388B2 (ja
Inventor
孝彦 山室
Takahiko Yamamuro
孝彦 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014049601A priority Critical patent/JP6157388B2/ja
Publication of JP2015177559A publication Critical patent/JP2015177559A/ja
Application granted granted Critical
Publication of JP6157388B2 publication Critical patent/JP6157388B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】昇降圧比が大きくても、電力変換効率の高い双方向DCDCコンバータを得る。
【解決手段】一次巻線側及び二次巻線側フルブリッジ回路2,4の各交流側はトランス1の一次巻線1a,二次巻線1bにそれぞれ接続され、一次巻線側フルブリッジ回路2の直流側にコンデンサ3が接続され、二次巻線側フルブリッジ回路4の直流側に第1リアクトル5を介して蓄電池7が接続される。制御回路6はトランス1の一次巻線1a側から二次巻線1b側に電力変換する場合は一次巻線側フルブリッジ回路2のハーフブリッジ回路2aの開閉タイミングを他のハーフブリッジ回路2b,4a,4bの開閉タイミングよりも進ませ、トランス1の二次巻線1b側から一次巻線1a側に電力変換する場合はハーフブリッジ回路2aの開閉タイミングを他のハーフブリッジ回路2b,4a,4bの開閉タイミングよりも遅らせるように制御する。
【選択図】図1

Description

本発明は、双方向DCDCコンバータに関する。
近年、昇降機システムにおいて、省エネルギー機能と母線電圧停電時のバックアップ機能とを備えたエレベータ用エネルギー回生蓄電システムが普及している。エレベータの巻上機から回生したエネルギーを蓄電池に充電し、蓄電池に充電したエネルギーを使って巻上機を動かすシステムである。一般にエレベータの巻上機は、かごが動く方向と乗っている人の重さとの関係により発電機になったり、電動機になったりする。そして発電機として動作するときは、発電した回生エネルギーを蓄電池に充電し、電動機として動作するときは、蓄電池に充電されたエネルギーおよび母線電圧を使って力行するようになっている。
このようなシステムにおいて、巻上機と蓄電池の間には、交流と直流との間で電力を変換するインバータと直流と直流との間で電力を変換する双方向DCDCコンバータとが接続されている。巻上機に接続されるインバータの直流側の電圧は、250V〜400V程度の高電圧となるが、蓄電池の電圧は、蓄電池の種類及び蓄電デバイスのモジュール接続方法により、20V〜40V程度の低電圧になったり、80V〜190V程度の中電圧になったりする。そして上記のような電圧値が異なるインバータの直流側と蓄電池との間の電力変換(電圧変換)を行うのが双方向DCDCコンバータである。双方向DCDCコンバータは、巻上機から回生したエネルギーを蓄電池に充電するときは降圧動作を行い、蓄電池に充電したエネルギーを使って巻上機を動かすときは昇圧動作を行う。
従来より、このような双方向DCDCコンバータには、回路構成が簡単なスイッチング素子を2個使用した非絶縁型双方向DCDCコンバータが使われていた(例えば特許文献1)。双方向DCDCコンバータのリアクトルの先に蓄電池を接続し、蓄電池にエネルギーを充電するときは、降圧コンバータとして動作し、蓄電池に充電したエネルギーを放電するときは、昇圧コンバータとして動作するものである。そしてこのような双方向DCDCコンバータにおいて2つのスイッチング素子の仕様は、耐電圧は昇圧した側の電圧値、上記システムではインバータの直流側電圧で決まり、耐電流は低電圧側つまり蓄電池に流れる電流値によって決まる。双方向DCDCコンバータのインバータ側の電力と蓄電池側の電力は双方向DCDCコンバータにおける電力損失は小さいのでほぼ同じ値になるので、蓄電池電圧が低くなれば、蓄電池に流れる電流が増加することになる。
一般にスイッチング素子は、耐電圧が高くなり、耐電流が大きくなるとスイッチング素子での損失が増大し、またスイッチング速度も遅くなる。スイッチング速度の遅い素子を使用すると双方向DCDCコンバータのスイッチング周波数も遅く設定する必要があり、そのためリアクトルはインダクタンスの大きいものを使用することになる。インダクタンスの大きいリアクトルはその抵抗値も大きくなり、リアクトルの抵抗による損失が増大する。このように従来の双方向DCDCコンバータでは、蓄電池側の電圧範囲が低くなると蓄電池側に大電流が流れるため、スイッチング素子は高電圧、大電流なものを使用することとなり、リアクトルはインダクタンス及び抵抗値が大きなものを使用することになる。その結果スイッチング素子での損失およびリアクトルでの損失が増大する。
特開2003−304644号公報(段落番号0016〜0020及び図1)
従来の双方向DCDCコンバータは、以上のように構成され、蓄電池の電圧範囲が低いので、インバータ側の高電圧に対応するために昇降圧比を大きくしなければならず、蓄電池側に大電流が流れるため、スイッチング素子での損失およびリアクトルでの損失が増大する。その結果、双方向DCDCコンバータの電力変換効率が著しく低下するという問題点があった。
この発明は、上記のような問題点を解決するためになされたものであり、昇降圧比が大きくても電力変換効率の高い双方向DCDCコンバータを得ることを目的とする。
この発明に係る双方向DCDCコンバータにおいては、
第1フルブリッジ回路と第2フルブリッジ回路と変圧器とリアクトルとコンデンサと制御装置とを有し、第1電気装置と第2電気装置との間で双方向に電力変換する双方向DCDCコンバータであって、
前記第1フルブリッジ回路は、それぞれ二つのスイッチング素子が直列に接続された第1ハーフブリッジ回路と第2ハーフブリッジ回路とを有するものであり、
前記第2フルブリッジ回路は、それぞれ二つのスイッチング素子が直列に接続された第3ハーフブリッジ回路と第4ハーフブリッジ回路とを有するものであり、
前記変圧器は、第1巻線と第2巻線とを有するものであり、
前記第1フルブリッジ回路の直流側に前記コンデンサが並列に接続されるとともに前記第1フルブリッジ回路の直流側が前記第1電気装置に接続されるものであり、前記第1フルブリッジ回路の交流側が前記変圧器の前記第1巻線に接続され、前記変圧器の前記第2巻線に前記第2フルブリッジ回路の交流側が接続され、前記第2フルブリッジ回路の直流側に前記リアクトルを介して前記第2電気装置が接続されるものであり、
前記制御装置は、前記変圧器の前記第1巻線側から前記第2巻線側に電力変換する場合は前記第1から第4までのハーフブリッジ回路のうちの前記第1ハーフブリッジ回路または前記第2ハーフブリッジ回路の開閉タイミングを他のハーフブリッジ回路の開閉タイミングよりも進ませ、前記変圧器の前記第2巻線側から前記第1巻線側に電力変換する場合は前記第1から第4までのハーフブリッジ回路のうちの前記第1ハーフブリッジ回路または前記第2ハーフブリッジ回路の開閉タイミングを他のハーフブリッジ回路の開閉タイミングよりも遅らせるものである。
この発明に係る双方向DCDCコンバータは、以上のように構成されているので、昇降圧比が大きくても電力変換効率の高い双方向DCDCコンバータを得ることができる。
この発明の実施の形態1である双方向DCDCコンバータの構成を示す構成図である。 図1の双方向DCDCコンバータが降圧動作を行うときの動作を説明するための説明図である。 蓄電池の電圧とデューティ比との関係を示す説明図である。 図1の双方向DCDCコンバータが昇圧動作を行うときの動作を説明するための説明図である。 昇圧動作時の制御信号の切替わりタイミングの詳細を示す説明図である。 実施の形態2である双方向DCDCコンバータの構成を示す構成図である。 図6の双方向DCDCコンバータが降圧動作を行うときの動作を説明するための説明図である。 図6の双方向DCDCコンバータが昇圧動作を行うときの動作を説明するための説明図である。
実施の形態1.
図1〜図5は、この発明を実施するための実施の形態1を示すものであり、図1は双方向DCDCコンバータの構成を示す構成図、図2は双方向DCDCコンバータが降圧動作を行うときの動作を説明するための説明図、図3は蓄電池の電圧とデューティ比との関係を示す説明図である。図4は双方向DCDCコンバータが昇圧動作を行うときの動作を説明するための説明図、図5は昇圧動作時の制御信号の切替わりタイミングの詳細を示す説明図である。図1において、変圧器としてのトランス1は第1巻線としての一次巻線1aの巻数がN1、第2巻線としての二次巻線1bの巻数がN2(N1>N2)、巻数比N1/N2であり、二次巻線1bにはItの電流が流れるものとする。Itの向きは、トランス1の一次巻線1aから二次巻線1bに電力変換するときは、実線の矢印の向きを正方向とし、トランス1の二次巻線1bから一次巻線1aに電力変換するときは、点線の矢印の向きを正方向とする。
そしてトランス1の一次巻線1aに第1フルブリッジ回路としての一次巻線側フルブリッジ回路2が接続されている。一次巻線側フルブリッジ回路2(詳細構成は後述)は、直流と交流との間で変換を行うものであり、交流側がトランス1の一次巻線1aと接続され、直流側にはコンデンサ3が並列に接続されとともに直流母線8に接続される。直流母線8には、図示していないがインバータを介してエレベータの巻上機が接続され、巻上機が発電機として作動するときにエネルギーを回収できるようにされている。本発明の双方向DCDCコンバータは、直流母線8を介して第1電気装置としての巻上機と後述の第2電気装置としての蓄電池7との間で双方向に電力の変換を行うものである。なお、直流母線8の電圧をVbusとする。また、トランス1の二次巻線1bには第2フルブリッジ回路としての二次巻線側フルブリッジ回路4が接続されている。二次巻線側フルブリッジ回路4(詳細構成は後述)も直流と交流との間で変換を行うものであり、交流側がトランス1と接続され、直流側には第1リアクトル5が接続されている。二次巻線側フルブリッジ回路4の直流側の電圧を電圧Vrとする。一次巻線側フルブリッジ回路2へは、制御回路6から制御信号S21〜S24が送られ、二次巻線側フルブリッジ回路4へは、制御回路6から制御信号S41〜S44が送られる。
二次巻線側フルブリッジ回路4の直流側に第1リアクトル5を介して蓄電池7が接続されている。蓄電池7の電圧をVBとする。なお蓄電池7の電圧VBは、直流母線8の電圧Vbusに比べて低い電圧にされている。第1リアクトル5は、蓄電池7にエネルギーを充電するときは平滑リアクトルとなり、蓄電池7からエネルギーを放電するときは昇圧リアクトルとなる。蓄電池7は、リチウムイオン二次電池、ニッケル水素蓄電池等の充電式電池である。また蓄電池7の代わりに、蓄電量が著しく高い電気二重層コンデンサを接続してもよい。また図示はしていないが、蓄電池7にエネルギーを充放電するときに、蓄電池7の電流リプルを減らす目的で蓄電池7と並列にコンデンサが接続される場合もある。
一次巻線側フルブリッジ回路2、二次巻線側フルブリッジ回路4は、両者同じような回路構成を有するものである。以下に一次巻線側フルブリッジ回路2、二次巻線側フルブリッジ回路4の構成について詳細に説明する。一次巻線側フルブリッジ回路2は、スイッチング素子Q21とスイッチング素子Q22とが直列に接続された第1ハーフブリッジ回路としてのハーフブリッジ回路2aと、スイッチング素子Q23とスイッチング素子Q24とが直列に接続された第2ハーフブリッジ回路としてのハーフブリッジ回路2bを有する。そして、ハーフブリッジ回路2aとハーフブリッジ回路2bとが並列に接続されている。
二次巻線側フルブリッジ回路4は、スイッチング素子Q41とスイッチング素子Q42とが直列に接続された第3ハーフブリッジ回路としてのハーフブリッジ回路4aと、スイッチング素子Q43とスイッチング素子Q44とが直列に接続された第4ハーフブリッジ回路としてのハーフブリッジ回路4bを有する。そして、ハーフブリッジ回路4aとハーフブリッジ回路4bとが並列に接続されている。スイッチング素子Q21〜Q24、Q41〜Q44はMOSFET、IGBT等の半導体スイッチを使用する。ただし、IGBTを使用するときは、MOSFETの寄生ダイオードに相当するダイオードをIGBTと並列に接続した構成とする。
次に、一次巻線側フルブリッジ回路2、二次巻線側フルブリッジ回路4と制御回路6から送られてくる制御信号S21〜S24、S41〜S44との関係について説明する。制御信号S21〜S24がスイッチング素子Q21〜Q24のゲート端子に入力され、制御信号S41〜S44がスイッチング素子Q41〜Q44のゲート端子に入力される。そしてスイッチング素子Q21〜Q24、Q41〜Q44を、それぞれの制御信号S21〜S24、S41〜S44に従ってオン(導通)、オフ(非導通)と導通状態を変化させることで双方向の電力変換動作を実現する。
次に、動作について説明する。先ず電力が直流母線8から蓄電池7に送られる場合、つまり蓄電池7にエネルギーを充電するときの動作について説明する。蓄電池7の電圧VBは、直流母線8の電圧Vbusに比較して低いので、本発明の双方向DCDCコンバータは降圧動作を行う。図2は、降圧動作を行うときの制御信号S21〜S24、S41〜S44とトランス1の二次巻線1bに流れる電流Itと二次巻線側フルブリッジ回路4の直流側の電圧Vrとの関係を示すものである。制御信号S21,S22のローからハイ、ハイからローの切換わりタイミングが他の制御信号の位相すなわち切換わりタイミングよりも時間αだけ進むようにずらしたものである。なお、制御信号がハイのときスイッチング素子はオン、制御信号がローのときスイッチング素子はオフするものとする。
T1期間の動作について以下に説明する。T1期間はTon期間とToff期間からなる。先ずTon期間について説明する。Ton期間においては制御信号S21がハイ、S22がロー、S23がロー、S24がハイ、S41がハイ、S42がロー、S43がロー、S44がハイになる。この期間は、直流母線8からエネルギーを直接蓄電池7に送る期間であり、電流の経路は次のようになる。トランス1の一次側では、直流母線8→スイッチング素子Q21→トランス1の一次巻線1a→スイッチング素子Q24→直流母線8となる。またトランス1の二次側では、トランス1の二次巻線1b→スイッチング素子Q41→第1リアクトル5→蓄電池7→スイッチング素子Q44→トランス1の二次巻線1bとなる。
トランス1の一次巻線1aには直流母線8の電圧Vbusが印加されることになり、トランス1の二次巻線1bには巻数比N1/N2の逆数を乗じた電圧が誘起される。二次巻線側フルブリッジ回路4の直流側にはトランス1の二次巻線1bと同じ電圧が出力されるため、直流側の電圧Vrは次に示すように直流母線8の電圧Vbusにトランス1の巻数比N1/N2の逆数を乗算した電圧となる。
Vr=Vbus×N2/N1 … (1)
よってTonの期間、電圧Vrは図2に示すように電圧が一定な波形となる。
トランス1の二次巻線1bに流れる電流Itは、図2に示すように第1リアクトル5があるため徐々に直線的に上昇する波形となる。この間、第1リアクトル5にエネルギーが蓄えられつつ、蓄電池7にエネルギーが充電される。
次に、T1期間のなかのToff期間について説明する。Toff期間においては、制御信号S21がロー、S22がハイ、S23がロー、S24がハイ、S41がハイ、S42がロー、S43がロー、S44がハイになる。この期間は第1リアクトル5に蓄えられたエネルギーにより電流が環流している期間であり、電流は以下のように流れる。トランス1の一次側では、トランス1の一次巻線1a→スイッチング素子Q24→スイッチング素子Q22→トランス1の一次巻線1aとなる。またトランス1の二次側では、第1リアクトル5→蓄電池7→スイッチング素子Q44→トランス1の二次巻線1b→スイッチング素子Q41→第1リアクトル5となる。
トランス1の一次巻線1aの電圧は、スイッチング素子Q22,Q24で短絡されているため0ボルトとなり、トランス1の二次巻線1bの誘起電圧も0ボルトとなる。そのため二次巻線側フルブリッジ回路4の直流側の電圧Vrも0ボルトになる。このようにToff期間においては、電圧Vrは図2に示すように0ボルトとなる。トランス1の二次巻線1bに流れる電流Itは、図2に示すように、徐々に直線的に減少するような波形になる。この期間は、第1リアクトル5に蓄えられたエネルギーにより、蓄電池7は充電される。
次に、T2期間の動作について以下に説明する。T2期間もTon期間とToff期間からなっている。T2期間は、T1期間と比較して、Ton期間、Toff期間ともに、すべての制御信号S21〜S24、S41〜S44のハイとローが反転した信号となる。その結果、トランス1の二次巻線1bに流れる電流It(図1においては、点線矢印で示す)は、図2に示すようにT1期間と比べて極性が反転した波形となる。また二次巻線側フルブリッジ回路4の直流側の電圧Vrは、T1期間と同じ極性の一定電圧の波形となる。
T1期間とT2期間を繰り返すことで、トランス1に交流電流が流れ、トランス1はエネルギーを一次巻線1aから二次巻線1bに伝達することができる。このようにして直流母線8からトランス1を介して蓄電池7にエネルギーが充電される。
このとき、蓄電池7の電圧VBは、電圧Vrを平均した値になるので
VB=Vr×Ton/T1(=T2) … (2)
となる。T1=Ton+Toffは一定値であるので、蓄電池7の電圧VBはTonを変えることで任意の電圧に降圧することができる。
図3に蓄電池7の電圧VBとTonとT1の比Ton/T1(デューティ比)の関係を示す。デューティ比が1のとき蓄電池7の電圧VBは二次巻線側フルブリッジ回路4の直流側の電圧Vrと等しくなり、デューティ比が小さくなると、デューティ比に比例して電圧VBも小さくなる。蓄電池7の電圧VBと直流母線8の電圧Vbusとの関係は、(1)式、(2)式より
VB=Vbus×(N2/N1)×Ton/T1 … (3)
となる。トランス1の巻数比N1/N2で変圧した電圧にデューティ比を乗算した電圧となる。
このように、Tonを調整することで、直流母線8の電圧Vbusをトランス1で変圧(降圧)した電圧よりもさらに低い電圧に変換して蓄電池7へエネルギーを充電することができる。
次に、電力が蓄電池7から直流母線8に送られる場合、つまり蓄電池7に充電したエネルギーを放電するときの動作について説明する。なお、蓄電池7から放電されたエネルギーは、直流母線8に接続された図示しないインバータを介して巻上機の駆動に使用される。直流母線8の電圧Vbusは、蓄電池7の電圧VBに比較して高いので、本発明の双方向DCDCコンバータは昇圧動作を行う。図4は、昇圧動作を行うときの制御信号S21〜S24,S41〜S44とトランス1の二次巻線1bに流れる電流Itと二次巻線側フルブリッジ回路4の直流側の電圧Vrとの関係を示す図である。制御信号S21,S22のローからハイ、ハイからローへの切換えタイミングのみ他の制御信号よりも位相が遅れるようにすなわち他の制御信号の切換えタイミングよりも時間βだけ遅れるようにずらしたものである。なお制御信号がハイのときスイッチング素子はオン、制御信号がローのときスイッチング素子はオフするものとする。
T1期間の動作について以下に説明する。T1期間はTon期間とToff期間からなる。先ずTon期間について説明する。制御信号S21がロー、S22がハイ、S23がロー、S24がハイ、S41がハイ、S42がロー、S43がロー、S44がハイになる。この期間は、蓄電池7のエネルギーを第1リアクトル5に充電する期間であり、電流の経路は次のようになる。トランス1の一次側では、トランス1の一次巻線1a→スイッチング素子Q22→スイッチング素子Q24→トランス1の一次巻線1aとなる。またトランス1の二次側では、蓄電池7→第1リアクトル5→スイッチング素子Q41→トランス1の二次巻線1b→スイッチング素子Q44→蓄電池7となる。
トランス1の一次巻線1aの電圧は、スイッチング素子Q22、Q24で短絡されているため、0ボルトになり、トランス1の二次巻線1bの電圧も0ボルトとなる。その結果、二次巻線側フルブリッジ回路4の直流側電圧Vrも0ボルトになる。このようにTonの期間、図4に示すように電圧Vrは0ボルトを維持した波形になる。トランス1の二次巻線1bに流れる電流Itは、図4に示すように、徐々に直線的に増加するような波形となり、第1リアクトル5にエネルギーが充電される。なおこの期間は、蓄電池7のエネルギーは直流母線8側へ放電されず、コンデンサ3に充電されたエネルギーが直流母線8側へ放電される。
次に、T1期間のToff期間について説明する。制御信号S21がハイ、S22がロー、S23がロー、S24がハイ、S41がハイ、S42がロー、S43がロー、S44がハイになる。この期間は第1リアクトル5に充電されたエネルギーを放電している期間であり、電流の経路は次のようになる。トランス1の一次側では、トランス1の一次巻線1a→スイッチング素子Q21→コンデンサ3および直流母線8→スイッチング素子Q24→トランス1の一次巻線1aとなる。またトランス1の二次側では、蓄電池7→第1リアクトル5→スイッチング素子Q41→トランス1の二次巻線1b→スイッチング素子Q44→蓄電池7となる。
その結果、二次巻線側フルブリッジ回路4の直流側の電圧Vrとして第1リアクトル5で昇圧された電圧が発生する。電圧VrとVBの関係は、TonとT1(=Ton+Toff)の比をTon/T1(デューティ比)とすると
Vr=VB×1/(1−Ton/T1) … (4)
となる。
(4)式は、一般的な、昇圧チョッパーの入力電圧、出力電圧、デューティ比の関係と同様であるので、詳細な説明は省略する。T1=Ton+Toffは一定値であるので、Tonを変えることで蓄電池7の電圧VBを任意の電圧Vrに昇圧することができる。なお電圧VrはToffの期間、図4に示すように電圧が一定な波形になる。
トランス1の二次巻線1bには電圧Vrと同じ電圧が印加され、トランス1の一次巻線1aには巻数比N1/N2に比例した電圧が誘起される。そして直流母線8にはトランス1の一次巻線1aの電圧が出力されるので、直流母線8の電圧Vbusは、以下のように表すことができる。
Vbus=Vr×N1/N2 … (5)
蓄電池の電圧VBと直流母線8の電圧Vbusの関係は、(5)式と(4)式より
Vbus=VB×1/(1−Ton/T1)×N1/N2 … (6)
すなわち、第1リアクトル5で昇圧した電圧に、さらにトランス1の巻数比N1/N2を乗算した電圧となる。トランス1による変圧比N1/N2は一定であるが、Tonを変えることで、蓄電池7の電圧VBを任意の電圧例えば直流母線8の電圧Vbusに昇圧することができる。トランス1の二次巻線1bに流れる電流Itは、図4に示すように、第1リアクトル5に充電したエネルギーを放電するため、直線的に徐々に減少するような波形になる。
次に、T2期間の動作について以下に説明する。T2期間もTon期間とToff期間からなっている。T2期間は、T1期間と比較して、Ton期間、Toff期間ともにすべての制御信号S21〜S24,S41〜S44のハイとローが反転した信号となる。その結果、トランス1の二次巻線1bに流れる電流Itは、図4に示すようにT1期間と比べて極性が反転した波形となる。また二次巻線側フルブリッジ回路4の直流側の出力電圧Vrは、T1期間と同じ極性の一定電圧の波形となる。
T1期間とT2期間を繰り返すことで、トランス1に交流電流が流れ、トランス1はエネルギーを二次巻線1bから一次巻線1aに伝達することができる。このようにして蓄電池7に充電されたエネルギーがトランス1を介して直流母線8に送られる。
次に、トランス1の巻数比N1/N2の決め方について以下に説明する。直流母線8の電圧範囲がVbusl〜Vbushとし、蓄電池7の電圧範囲がVBl〜VBhであるとする。降圧時は、Vbusl→VBhが最小の降圧率となり、昇圧時は、その逆のVBh→Vbuslが最小の昇圧率となる。よって、直流母線8の電圧範囲の下限電圧をVbuslとし、蓄電池7の電圧範囲の上限電圧をVBhとするとき、トランス1の巻数比をN1/N2≦Vbusl/VBhとなるように決めてTonを調整すれば、上記すべての電圧範囲において双方向動作することが可能となる。
数字を用いて一例を説明すると、直流母線8の電圧範囲が250V〜400V、蓄電池7の電圧範囲が20V〜40Vとすると、トランス1の巻数比はN1/N2≦250/40=6.25となる。最大降圧率の電圧は400V→20Vとなり、最大昇圧率の電圧は20V→400Vとなる。トランス1の巻数比を6.25とした場合、Tonのデューティ比(Ton/T1)は、最大降圧時は(3)式より0.3125、最大昇圧時は(6)式より0.6875となる。つまりトランス1の巻数比を6.25として、Tonのデューティ比を降圧時は1〜0.3125、昇圧時は0〜0.6875の範囲で可変とすることで上記すべての電圧範囲にて双方向動作することができる。
以上説明したように、図1に示した双方向DCDCコンバータにおいて、図2、図4に示した制御信号S21〜S24,S41〜S44によりスイッチング素子Q21〜Q24,Q41〜Q44をオン、オフ制御し、Tonを調整することで、直流母線8から蓄電池7へは、トランス1の巻数比以下の任意の電圧へ降圧動作を行い、蓄電池7から直流母線8へはトランス1の巻数比以上の任意の電圧へ昇圧動作を行う双方向DCDCコンバータを実現することができる。なお、Tonのデューティ比の調整は、図示していないが直流母線8の電圧Vbus、蓄電池7の電圧VB、蓄電池7の充放電電流等を制御回路6にフィードバックして所望の電圧Vbusあるいは電圧VBが得られるように制御すればよい。
なお、以上の説明は、ハーフブリッジ回路2aの位相を他のハーフブリッジ回路2b、ハーフブリッジ回路4a、ハーフブリッジ回路4bの位相からずらしたものであるが、代わりにハーフブリッジ回路2bの位相を他のハーフブリッジ回路2a、ハーフブリッジ回路4a、ハーフブリッジ回路4bの位相からずらしても同様の動作を実現することができる。動作原理は上述した内容と同様であるので説明を省略する。
次に、本実施の形態の双方向DCDCコンバータが、昇降圧比が高くなっても、電力変換効率が高い理由を説明する。一次巻線側フルブリッジ回路2のスイッチング素子Q21〜Q24の耐圧は直流母線8の電圧Vbusによって決まる。二次巻線側フルブリッジ回路4のスイッチング素子Q41〜Q44の耐圧は、トランス1の二次巻線1bの電圧、つまりトランス1の一次巻線1aの電圧に巻数比N1/N2の逆数を乗算した値で決まる。また一次巻線側フルブリッジ回路2のスイッチング素子Q21〜Q24に流れる電流は、二次巻線側フルブリッジ回路4のスイッチング素子に流れる電流、つまりトランス1の二次巻線1bに流れる電流Itにトランス1の巻数比N1/N2の逆数を乗算した値となる。
数字を用いて一例を説明すると、直流母線8の電圧Vbusが300V、トランス1の二次巻線1bに流れる電流Itの実効値が50A、トランス1の巻数比N1/N2=5/1とした場合、トランス1の二次巻線1bの電圧は60Vとなり、トランス1の一次巻線1aの電流は10Aとなる。その結果、スイッチング素子Q21〜Q24に要求される電圧、電流仕様は300V以上、10A以上となり、スイッチング素子Q41〜Q44に要求される電圧、電流仕様は60V以上50A以上となる。
このように本実施の形態の双方向DCDCコンバータでは、一次巻線側フルブリッジ回路2の直流側の電圧Vbusを二次巻線側フルブリッジ回路4の直流側の電圧Vrよりも高くすることにより一次巻線側フルブリッジ回路2と二次巻線側フルブリッジ回路4とで異なった仕様のスイッチング素子を選定することができる。一般にMOSFETは、耐電圧が低くなるとオン抵抗が小さくなる。トランス1の二次巻線1bには大電流が流れるが、電圧が低いため、二次巻線側フルブリッジ回路4のスイッチング素子Q41〜Q44としてオン抵抗が小さいスイッチング素子を選定することができ、スイッチング素子Q41〜Q44による損失を低減することができる。
また、トランス1の一次巻線1a側の一次巻線側フルブリッジ回路2のスイッチング素子Q21〜Q24は高電圧なものを使用することになり、オン抵抗は大きくなるが、流れる電流が小さいのでスイッチング素子による損失の増大を抑制することができる。さらに、高電圧、小電流であるスイッチング素子Q21〜Q24、または低電圧、大電流であるスイッチング素子Q41〜Q44は、高電圧、大電流であるスイッチング素子に比べてスイッチング速度が速いため双方向DCDCコンバータのスイッチング周波数を早くすることができる。トランス1の二次側電圧の低電圧化およびスイッチング周波数の高周波化により第1リアクトル5はインダクタンスの小さいものを選定することができ、抵抗成分も小さくなり、第1リアクトル5の抵抗による損失を低減することができる。
このように本実施の形態の双方向DCDCコンバータは、昇降圧比が高くなっても、トランス1の巻数比N1/N2を大きく設定することで、トランス1の一次巻線1a側、二次巻線1b側において、それぞれ最適な仕様のスイッチング素子を選定することができ、スイッチング素子における損失の増大を抑制することができる。また第1リアクトル5による抵抗損失も減少するため電力損失を低減して電力変換効率を高くすることができる。
次に、一次巻線側フルブリッジ回路2及び二次巻線側フルブリッジ回路4における第1〜第4のハーフブリッジ回路2a,2b,4a,4b内の直列に接続したスイッチング素子Q21とQ22、スイッチング素子Q23とQ24、スイッチング素子Q41とQ42、スイッチング素子Q43とQ44とのオン→オフ、オフ→オンへの切換わりタイミングについて詳細に説明する。図5は、昇圧動作時の制御信号S21〜S24,S41〜S44のタイミングを示した説明図である。制御信号S21〜S24は、直列に接続したスイッチング素子が両方とも同時にオンになる期間が発生しないように直列に接続したスイッチング素子がともに非導通となる期間Td(デッドタイム)を設定し、制御信号S41〜S44は、直列に接続したスイッチング素子が両方とも同時に導通する期間To(重なりタイム)を設定する。
以下に、デッドタイムTd、重なりタイムToを設定する理由を説明する。先ずデッドタイムTdについて説明する。一次巻線側フルブリッジ回路2の直流母線8側には、コンデンサ3が接続されている。そのためスイッチング素子の切換え時に、直列に接続した両スイッチング素子が微妙なタイミングで同時にオンになると、コンデンサ3を短絡することになり、過大な電流がスイッチング素子に流れ、スイッチング素子を破壊することになる。このように過大な電流でスイッチング素子が破壊しないように、スイッチング素子の切換え時にデッドタイムTdを設定する。
次に、重なりタイムToを設定する理由を説明する。昇圧動作時は第1リアクトル5に充電されたエネルギーを二次巻線側フルブリッジ回路4の直流側に常に送っている。その状態で、もし二次巻線側フルブリッジ回路4の直列に接続したスイッチング素子Q41とQ42との切換え時及びスイッチング素子Q43とQ44との切換え時にデッドタイムTdがあると、第1リアクトル5のエネルギーを放電する先の回路がオープン状態となり、第1リアクトル5に充電されたエネルギーの行き所がなくなる。その結果二次巻線側フルブリッジ回路4の直流側の電圧Vrが異常に上昇し、二次巻線側フルブリッジ回路4のスイッチング素子に過大な電圧が印加され、スイッチング素子を破壊することになる。二次巻線側フルブリッジ回路4のスイッチング素子Q41とQ42、スイッチング素子Q43とQ44とに重なりタイムToを設定すると、第1リアクトル5のエネルギーは二次巻線側フルブリッジ回路4のスイッチング素子を流れることになり、過大な電圧が発生しない。このように、過大な電圧によりスイッチング素子が破壊しないように、スイッチング素子の切換え時に重なりタイムToを設定する。
次に、降圧動作時について説明する。降圧動作時も制御信号S21〜S24にはデッドタイムTdを設定する。設定する理由は、昇圧動作時と同様であるので説明を省略する。制御信号S41〜S44には、重なりタイムTo、あるいはデッドタイムTdどちらを設定してもよい。その理由は、第1リアクトル5に充電されたエネルギーは、デッドタイムTdを設定した場合は、スイッチング素子Q41〜Q44の寄生ダイオード→第1リアクトル5→蓄電池7→スイッチング素子Q41〜Q44の寄生ダイオードと流れ、重なりタイムToを設定した場合は、スイッチング素子Q41〜Q44→第1リアクトル5→蓄電池7→スイッチング素子Q41〜Q44と流れる。どちらに設定しても第1リアクトル5のエネルギーは流れ続けるので、過大な電圧が発生することがない。このように、降圧動作時は過大な電流で一次巻線側フルブリッジ回路2のスイッチング素子が破壊しないように制御信号S21〜S24にはデッドタイムTdを設定するが、制御信号S41〜S44にはデッドタイムTd、あるいは重なりタイムToどちらを設定してもよい。
実施の形態2.
図6〜図8は、実施の形態2を示すものであり、図6は双方向DCDCコンバータの構成を示す構成図、図7は図6の双方向DCDCコンバータが降圧動作を行うときの動作を説明するための説明図、図8は図6の双方向DCDCコンバータが昇圧動作を行うときの動作を説明するための説明図である。この実施の形態は、損失をさらに低減するためにスイッチング素子Q21〜Q24の電圧が0ボルトになったときにスイッチングする零電圧スイッチングによるいわゆるソフトスイッチングを行うものである。図6において、第1フルブリッジ回路としての一次巻線側フルブリッジ回路22は、直列に接続されたスイッチング素子Q21とスイッチング素子Q22と、このスイッチング素子Q21とスイッチング素子Q22にそれぞれ並列に接続された並列コンデンサとしてのコンデンサC21,C22とを有する第1ハーフブリッジ回路としてのハーフブリッジ回路22aと、直列に接続されたスイッチング素子Q23とスイッチング素子Q24と、このスイッチング素子Q23とスイッチング素子Q24にそれぞれ並列に接続された並列コンデンサとしてのコンデンサC23,C24とを有する第2ハーフブリッジ回路としてのハーフブリッジ回路22bを有する。
また、ハーフブリッジ回路22aのスイッチング素子Q21とスイッチング素子Q22との接続点とトランス1の一次巻線1aとの間に第2リアクトル25が挿入されている。制御回路26は、図1の制御回路と若干動作が異なり、制御回路26から一次巻線側フルブリッジ回路22、第2フルブリッジ回路4へ制御信号S61〜S64、S81〜S84が送られる。制御信号S61〜S64がスイッチング素子Q21〜Q24のゲート端子へ送信され、制御信号S81〜S84がスイッチング素子Q41〜Q44のゲート端子へ送信される。そして、それぞれのスイッチング素子Q21〜Q24,Q41〜Q44を、制御信号に従ってオン、オフ動作させることで双方向の電力変換動作を実現するが、詳細は後述する。その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
次に、動作について詳細に説明する。基本的な動作は図1に示した双方向DCDCコンバータと同様である。先ずは電力が直流母線8から蓄電池7に送られる場合、つまり蓄電池7にエネルギーを充電するときの動作について説明する。蓄電池7の電圧VBは、直流母線8の電圧Vbusに比較して低いので、本実施の形態の双方向DCDCコンバータは降圧動作を行う。図7は、降圧動作を行うときの制御信号S61〜S64、S81〜S84とトランス1の二次巻線1bに流れる電流Itと第2フルブリッジ回路4の直流側の電圧Vrとの関係を示すものである。制御信号S61,S62のローからハイ、ハイからローの切換わりタイミングが他の制御信号の位相すなわち切換わりタイミングよりも時間α2だけ進むようにずらしたものである。なお、制御信号がハイのときスイッチング素子はオン、制御信号がローのときスイッチング素子はオフするものとする。
まず、T21期間の動作について説明する。図7に示すように、T21期間はTon期間とToff期間とTd1期間とTd2期間からなる。先ずTon期間について説明する。制御信号S61がハイ、S62がロー、S63がロー、S64がハイ、S81がハイ、S82がロー、S83がロー、S84がハイになる。この期間は、直流母線8から直接エネルギーを蓄電池7に送る期間であり、電流は次のように流れる。トランス1の一次側では、直流母線8→スイッチング素子Q21→第2リアクトル25→トランス1の一次巻線1a→スイッチング素子Q24→直流母線8と流れる。またトランス1の二次側では、トランス1の二次巻線1b→スイッチング素子Q41→第1リアクトル5→蓄電池7→スイッチング素子Q44→トランス1の二次巻線1bと流れる。
第2リアクトル25に印加される電圧は直流母線8の電圧Bbusに比べて非常に小さいので無視すると、トランス1の一次巻線1aには直流母線8の電圧Vbusが印加されていることになり、トランス1の二次巻線1bには巻数比に比例した電圧が誘起される。第2フルブリッジ回路4の直流側にはトランス1の二次巻線1bと同じ電圧が出力されるため、電圧Vrは直流母線8の電圧Vbusにトランス1の巻数比の逆数を乗算した電圧となり、実施の形態1に示した次の(1)式と同じになる。
Vr=Vbus×N2/N1 … (1)
よって、Tonの期間、電圧Vrは図7に示すように電圧が一定な波形となる。ただし、Ton期間になった瞬間、電圧Vrは電圧が急激に立ち上がるためオーバーシュートが発生することがある。このような場合、図6の電圧Vrに相当する位置に、図には示していないが、抵抗とコンデンサを直列に接続したRCスナバ回路、コンデンサのみを接続したCスナバ回路等のスナバ回路を接続することもある。
また、トランス1の二次巻線1bに流れる電流Itは、図7に示すように第1リアクトル5があるため徐々に直線的に上昇する波形となる。この間、第1リアクトル5にエネルギーが蓄えられつつ、蓄電池7にエネルギーが充電されている。
次に、T21期間のToff期間について説明する。制御信号S61がロー、S62がハイ、S63がロー、S64がハイ、S81がハイ、S82がロー、S83がロー、S84がハイになる。この期間は第1リアクトル5に蓄えられたエネルギーにより電流が環流している期間であり、電流は以下のように流れる。トランス1の一次側では、トランス1の一次巻線1a→スイッチング素子Q24→スイッチング素子Q22→第2リアクトル25→トランス1の一次巻線1aと流れる。またトランス1の二次側では、第1リアクトル5→蓄電池7→スイッチング素子Q44→トランス1の二次巻線1b→スイッチング素子Q41→第1リアクトル5と流れる。トランス1の一次巻線1aは、スイッチング素子Q22,Q24で短絡されているため0ボルトとなり、トランス1の二次巻線1bの誘起電圧も0ボルトとなる。ただし、第2リアクトル25に印加される電圧は非常に小さいので無視するものとする。そのため第2フルブリッジ回路4の直流側出力の電圧Vrも0ボルトになる。このようにToff期間の電圧Vrは、図7に示すように0ボルトとなる。
トランス1の二次側に流れる電流Itは、図7に示すように、徐々に直線的に減少するような波形になる。この期間は、第1リアクトル5に蓄えられたエネルギーにより、蓄電池7は充電される。
次に、T21期間のTd1期間について説明する。制御信号S61がロー、S62がロー、S63がロー、S64がハイ、S81がハイ、S82がロー、S83がロー、S84がハイになる。この期間は、スイッチング素子Q21がオンからオフ、スイッチング素子Q22が、オフからオンに切り替わる期間であり、直列に接続したスイッチング素子Q21,Q22が同時にオンにならないようにして、貫通電流が流れないようにするデッドタイム期間である。そして、この期間を使ってスイッチング素子Q21,Q22は、ソフトスイッチングを行い、スイッチング損失を低減している。第2リアクトル25、第1リアクトル5がTon期間に流れていた電流を維持しようとするため、コンデンサC21は電荷を充電、コンデンサC22は電荷を放電することになり、スイッチング素子Q21はオフしたときから電圧が0ボルトから徐々に上昇し、またQ22は電圧が徐々に低下し0ボルトになったときにオンすることにより、零電圧スイッチングによるソフトスイッチングを行っている。その結果、トランス1の一次巻線1aの電圧も徐々に下がるため、第2フルブリッジ回路4の直流側出力電圧Vrも、図7に示すように徐々に低くなって0ボルトになる。トランス1の二次側に流れる電流Itは、直流母線8からの電力供給が無くなるため、図7に示すように徐々に減少し始める。
次に、T21期間のTd2期間について説明する。制御信号S61がロー、S62がハイ、S63がロー、S64がロー、S81がロー、S82がロー、S83がロー、S84がローになる。この期間は、スイッチング素子Q23,Q42,Q43がオフからオン、スイッチング素子Q24,Q41,Q44がオンからオフに導通状態が切り替わる期間であり、直列に接続されたスイッチング素子Q23,Q24が同時にオンにならないようにするデッドタイム期間である。そして、この期間を使ってスイッチング素子Q23,Q24は、ソフトスイッチングを行い、スイッチング損失を低減している。トランス1の一次側では、Q24がオフしたときに第2リアクトル25に蓄えられたエネルギーによりC24が充電されるため、Q24は電圧が0ボルトから徐々に上昇することにより、またQ23はC23が電荷を徐々に放電するため電圧が徐々に減少し、0ボルトになったときにオンすることにより、零電圧スイッチングによるソフトスイッチングを行っている。
第2フルブリッジ回路4の直流側出力の電圧Vrは、図7に示すようにスイッチング素子Q23がオンするまでは、トランス1の一次巻線1aに電圧が印加されないため0ボルトのままになる。またトランス1の二次巻線1bに流れる電流Itは、第2リアクトル25に蓄えたれたエネルギーが減少するにつれて、トランス1の一次巻線1aに流れる電流も減少するため、同じように減少する波形になる。なお、この期間は、第2フルブリッジ回路4の直流側出力の電圧Vrは、0ボルトになるので、制御信号S81〜S84がハイで、スイッチング素子Q41〜Q44がオンになる重なりタイムであってもよい。
次に、T22期間の動作について以下に説明する。T22期間もTon期間とToff期間とTd1期間とTd2期間からなる。T22期間は、T21期間と比較して、Ton期間、Toff期間はすべての制御信号S61〜S64、S81〜S84のハイとローが反転した信号となり、Td1期間はS61、S62以外はハイとローが反転した信号となり、Td2期間はS61、S62のみがハイとローが反転した信号になる。その結果、トランス1の二次側に流れる電流Itは、図7に示すようにT21期間と比べて極性が反転した波形となる。また第2フルブリッジ回路4の直流出力の電圧Vrは、T21期間と同じ極性の一定電圧の波形となる。T21期間とT22期間を繰り返すことで、トランス1に交流電流が流れ、トランス1はエネルギーを一次巻線1aから二次巻線1bに伝達することができる。このようにして直流母線8からトランス1を介して蓄電池7にエネルギーが充電される。蓄電池7の電圧VBは、電圧Vrを平均した値になる。Td1期間に電圧が徐々に低下しているが、以下のように(7)式で近似することができる。
VB≒Vr×Ton/T21(=T22) … (7)
ここで、T21=Ton+Toff+Td1+Td2は一定値であるので、蓄電池7の電圧VBはTonを変えることで任意の電圧に降圧することができる。ただし、Tonの最大値は、Toffが0で、Td1期間とTd2期間の位相が重なったときになるので、T21−Td1(=Td2)になる。よってTon/T21(デューティ比)の最大値は、Ton/(Ton+Td1)となる。
蓄電池7の電圧VBと直流母線8の電圧Vbusとの関係は、(1)式、(7)式より
VB=Vbus×N2/N1×Ton/T21 … (8)
となる。すなわち、トランス1の巻数比で変圧した電圧にデューティ比を乗算した電圧となる。
このように、Tonを調整することで、直流母線8の電圧Vbusをトランス1で変圧した電圧よりも更に低い電圧に変換して、蓄電池7へエネルギーを充電することができる。
次に、電力が蓄電池7から直流母線に送られる場合、つまり蓄電池7に充電したエネルギーを放電するときの動作について説明する。直流母線8の電圧Vbusは、蓄電池7の電圧VBに比較して高いので、本発明の双方向DCDCコンバータは昇圧動作を行う。
図8は、昇圧動作を行うときの制御信号S61〜S64、S81〜S84とトランス1の二次巻線1bに流れる電流Itと第2フルブリッジ回路4の直流側の電圧Vrとの関係を示す図である。制御信号S61、S62のローからハイ、ハイからローへの切換えタイミングのみ他の制御信号と位相がβ2だけ遅れるようにずらしたものである。なお、制御信号がハイのときスイッチング素子はオン、制御信号がローのときスイッチング素子はオフするものとする。
次に、T21期間の動作について以下に説明する。T21期間はTon期間とToff期間とTd1期間とTd2期間からなる。先ずTon期間について説明する。制御信号S61がロー、S62がハイ、S63がロー、S64がハイ、S81がハイ、S82がロー、S83がロー、S84がハイになる。この期間は、蓄電池7のエネルギーを第1リアクトル5に充電する期間であり、電流は次のように流れる。トランス1の一次側では、トランス1の一次巻線1a→第2リアクトル25→スイッチング素子Q22→スイッチング素子Q24→トランス1の一次巻線1aと流れる。またトランス1の二次側では、蓄電池7→第1リアクトル5→スイッチング素子Q41→トランス1の二次巻線1b→スイッチング素子Q44→蓄電池7と流れる。トランス1の一次巻線1aの電圧は、スイッチング素子Q22,Q24で短絡されているため、0ボルトとなる。ただし、第2リアクトル25に印加される電圧は非常に小さいので無視するものとする。その結果、トランス1の二次巻線1bの電圧も0ボルトとなり、第2フルブリッジ回路4の直流側の電圧Vrも0ボルトになる。このようにTonの期間、図8に示すように電圧Vrは0ボルトを維持した波形になる。
トランス1の二次巻線1bに流れる電流Itは、図8に示すように、徐々に直線的に増加するような波形となり、第1リアクトル5にエネルギーが充電される。なお、この期間は、蓄電池7のエネルギーを直接、直流母線8側へ放電していないため、コンデンサ3に充電されたエネルギーを直流母線8側へ放電し、直流母線8の電圧Vbusを維持している。
次に、T21期間のToff期間について説明する。制御信号S61がハイ、S62がロー、S63がロー、S64がハイ、S81がハイ、S82がロー、S83がロー、S84がハイになる。この期間は第1リアクトル5に充電されたエネルギーを放電している期間であり、電流は次のように流れる。トランス1の一次側では、トランス1の一次巻線1a→第2リアクトル25→スイッチング素子Q21→コンデンサ3および直流母線8→スイッチング素子Q24→トランス1の一次巻線1aと流れる。またトランス1の二次側では、蓄電池7→第1リアクトル5→スイッチング素子Q41→トランス1の二次巻線1b→スイッチング素子Q44→蓄電池7と流れる。その結果、第2フルブリッジ回路4の直流側の電圧Vrには第1リアクトル5で昇圧された電圧が印加される。
電圧Vrと電圧VBの関係は、TonとT21(=Ton+Toff+Td1+Td2)の比をTon/T21(デューティ比)とすると
Vr=VB×1/(1−Ton/T21) … (9)
となる。(9)式は、一般的な、昇圧チョッパーの入力電圧、出力電圧、デューティ比の関係と同じであるので、詳細な説明は省略する。T21=Ton+Toff+Td1+Td2は一定値であるので、Tonを変えることで蓄電池7の電圧VBを任意の電圧Vrに昇圧することができる。また電圧VrはToffの期間、図8に示すように電圧が一定な波形になる。
トランス1の二次巻線1bには電圧Vrと同じ電圧が印加され、トランス1の一次巻線1aには巻数比に比例した電圧が誘起される。第2リアクトル25に印加される電圧は非常に小さいので無視すると、直流母線8にはトランス1の一次巻線1aの電圧が出力されることになるので、直流母線8の電圧Vbusは、以下のように表すことができる。
Vbus=Vr×N1/N2 … (10)
蓄電池の電圧VBと直流母線8の電圧Vbusの関係は、(10)式と(9)式より
Vbus=VB×1/(1−Ton/T21)×N1/N2 … (11)
となる。第1リアクトル5で昇圧した電圧に、更にトランス1の巻数比を乗算した電圧になる。トランス1による変圧率は一定であるが、Tonを変えることで、蓄電池7の電圧VBを任意の直流母線8の電圧Vbusに昇圧することができる。
トランス1の二次側に流れる電流Itは、図8に示すように、第1リアクトル5に充電したエネルギーを放電するため、直線的に徐々に減少するような波形になる。
次に、T21期間のTd1期間について説明する。制御信号S61がロー、S62がロー、S63がロー、S64がハイ、S81がハイ、S82がロー、S83がロー、S84がハイになる。この期間は、スイッチング素子Q21がオフからオン、スイッチング素子Q22が、オンからオフに切り替わる期間であり、スイッチング素子Q21,Q22が同時のオンにならないようにして、貫通電流が流れないようにするデッドタイム期間である。そして、この期間を使ってスイッチング素子Q21,Q22は、零電圧スイッチングによるソフトスイッチングを行い、スイッチング損失を低減している。第2リアクトル25、第1リアクトル5がTon期間に流れていた電流を維持しようとするため、コンデンサC21は電荷を放電、コンデンサC22は電荷を充電することになる。その結果スイッチング素子Q21は電圧が徐々に低下し、0ボルトになったときにオンすることにより、またQ22は電圧が0ボルトから徐々に上昇することになるため零電圧スイッチングとなる。ソフトスイッチングによりトランス1の一次巻線1aの電圧も徐々に上がるため、第2フルブリッジ回路4の直流側出力の電圧Vrも、図8に示すように徐々に高くなる。トランス1の二次側に流れる電流Itは、直流母線8へ電力供給を始めるため、図8に示すように徐々に減少し始める。
次に、T21期間のTd2期間について説明する。制御信号S61がハイ、S62がロー、S63がロー、S64がロー、S81がハイ、S82がハイ、S83がハイ、S84がハイになる。この期間は、スイッチング素子Q23,Q42,Q43がオフからオン、スイッチング素子Q24,Q41,Q44がオンからオフに切り替わる期間である。トランス1の一次側は、直列に接続したスイッチング素子が同時にオンにならないようにして、貫通電流が流れないようにするデッドタイム期間であり、トランス1の二次側は、直列に接続したスイッチング素子を同時にオンになるようにして、第1リアクトル5に充電したエネルギーを流し続けるための重なりタイム期間である。そして、この期間を使ってスイッチング素子Q23,Q24は、零電圧スイッチングによるソフトスイッチングを行い、スイッチング損失を低減している。
トランス1の二次側は、スイッチング素子Q41〜Q44をすべてオンしているため、トランス1の二次側には電圧が印加されないため、トランス1の二次巻線1bの電流Itは図8に示すように急激に減少し0アンペアになる。そしてトランス1の一次巻線1aの電流波形も同じように急激に減少して0アンペアになる。次に、トランスの一次側では、スイッチング素子Q21がオンしているため、直流母線8から電流が逆流を始める。その結果、第2リアクトル25とコンデンサC23、C24の共振現象により、Q24はオフしたときから電圧が0ボルトから徐々に上昇することにより、Q23は電圧が徐々に減少し0ボルトになったときにオンすることにより、零電圧スイッチングとなる。第2フルブリッジ回路4の直流側出力の電圧Vrは、トランス1の二次側のスイッチング素子Q41〜Q44がすべてオンしているため、図8に示すように0ボルトのままである。またトランス1の二次巻線1bに流れる電流Itは、図8に示すように、トランス1の一次側の電流が逆流を始めるため、同じように逆流を始める。
次に、T22期間の動作について以下に説明する。T22期間もTon期間とToff期間とTd1期間とTd2期間からなる。T22期間は、T21期間と比較して、Ton期間、Toff期間はすべての制御信号S61〜S64、S81〜S84のハイとローが反転した信号となり、Td1期間はS61、S62以外はハイとローが反転した信号となり、Td2期間はS61、S62のみがハイとローが反転した信号になる。その結果、トランス1の二次側に流れる電流Itは、図8に示すようにT21期間と比べて極性が反転した波形となる。また第2フルブリッジ回路4の直流出力の電圧Vrは、T21期間と同じ極性の一定電圧の波形となる。
T21期間とT22期間を繰り返すことで、トランス1に交流電流が流れ、トランス1はエネルギーを二次巻線1bから一次巻線1aに伝達することができる。このようにして蓄電池7に充電されたエネルギーがトランス1を介して直流母線8に送られる。
トランス1の巻数比の決め方については、実施の形態1で説明したのと同様であり、直流母線8の電圧範囲をVbusl〜Vbushとし、蓄電池7の電圧範囲はVBl〜VBhであるとする。降圧時は、Vbusl→VBhが最小の降圧率となり、昇圧時は、その逆のVBh→Vbuslが最小の昇圧率となる。よってトランス1の巻数比をN1/N2≦Vbusl/VBhとなるように決めてTonを調整すれば、上記すべての電圧範囲において双方向動作することが可能となる。数字を用いて一例を説明すると、直流母線8の電圧範囲が250V〜400V、蓄電池7の電圧範囲が20V〜40Vとすると、トランス1の巻数比はN1/N2≦250/40=6.25となる。最大降圧率の電圧は400V→20Vとなり、最大昇圧率の電圧は20V→400Vとなる。トランス1の巻数比を6.25とした場合、Tonのデューティ比(Ton/T21)は、最大降圧時は(18)式より0.3125、最大昇圧時は(16)式より0.6875となる。つまりトランス1の巻数比を6.25として、Tonのデューティ比を降圧時は1〜0.3125、昇圧時は0〜0.6875の範囲で可変とすることで上記すべての電圧範囲を双方向動作することができる。
以上説明したように、図6に示した主回路構成を有するDCDCコンバータにおいて、図7、図8に示した制御信号によりスイッチング素子をオン、オフ制御し、デューティ比(Ton/T21)を調整することで、直流母線8から蓄電池7へは、トランス1の巻数比以下の任意の電圧へ降圧動作、蓄電池7から直流母線8へはトランス1の巻数比以上の任意の電圧へ昇圧動作を行う双方向DCDCコンバータを実現することができる。なお、Tonのデューティ比の調整は直流母線8の電圧Vbus、蓄電池7の電圧VB、蓄電池7の充放電電流等を制御回路26にフィードバック(図6には示してないが)して決定すればよい。
なお、以上の説明は、第5ハーフブリッジ回路のみ位相をずらしたものであるが、第6ハーフブリッジ回路のみ位相をずらしても同様の動作を実現することができる。動作原理は上述した内容と同じであるので省略する。
このように本実施の形態のDCDCコンバータは、トランス1の一次巻線1aのスイッチング素子は、デッドタイム期間を使ってソフトスイッチングすることにより、スイッチング損失を実施の形態1に示したものよりもさらに低減することができる。
次に、コンデンサC21〜C24、第2リアクトル25の定数の決定方法について詳細に説明する。先ずは、コンデンサC21、C22について説明する。コンデンサC21,C22はTd1期間の動作で説明したように降圧時、昇圧時共にTd1期間に充放電動作を行い、スイッチング素子Q21,Q22に印加される電圧の変化を緩やかにするものである。ここでコンデンサC21、C22に印加される電圧の変化をVcとし、Td1期間にトランス1の一次巻線1aに流れる電流の平均値をId1とすると、コンデンサの電荷Qと電圧の関係より次式が成り立つ。なお、以下の説明においては便宜上コンデンサC21〜C24の容量をC21〜C24で表すことにする。
Vc=Q/C=Id1×Td1/(C21+C22) … (12)
コンデンサC21、C22は同じ値にしても特に問題ないので、C21=C22とすれば、(12)式は、
Vc=Id1×Td1/2C21 … (13)
となる。ここでVcを直流母線8の電圧Vbus以上にすることでスイッチング素子Q21,Q22をソフトスイッチングすることができる。
従って、
Vc=Id1×Td1/2C21≧Vbus … (14)
となるようにコンデンサC21、C22を選定すればよい。
数字を用いて一例を説明すると、Td1期間にトランス1の一次巻線1aに流れる電流の平均値Id1を6A、デッドタイムTd1を1μs、直流母線8の電圧Vbusを300Vとすると、コンデンサC21、C22はC21=C22≦10000pFとなる。コンデンサの容量が小さくなると電圧変化が早くなり、ソフトスイッチングによる損失の低減効果が小さくなるので、なるべく大きな値を選定する方が望ましい。
次に、コンデンサC23、C24、第2リアクトル25について説明する。コンデンサC23,C24と第2リアクトル25はTd2期間の動作で説明したように降圧時、昇圧時共に共振現象により、コンデンサC23、C24の電圧が変化し、スイッチング素子Q23,Q24に印加される電圧の変化を緩やかにするものである。降圧時の動作は、Td2期間の初期に第2リアクトル25に流れている電流によりコンデンサC23、C24の電圧が変化する。ここで第2リアクトル25のインダクタンスをL、Td2期間の初期に第2リアクトル25に流れている電流(=トランス1の一次巻線1aに流れる電流)の絶対値をIeとし、コンデンサC23、C24に印加される電圧変化の最大値をVcmaxとすると、両者に蓄えられる最大エネルギーは同じ値になるので次の関係が成り立つ。
1/2×L×Ie×Ie=1/2×(C23+C24)×Vcmax×Vcmax … (15)
スイッチング素子Q23,Q24を0ボルトスイッチングするためには、Vcmax≧Vbusが成り立てばよいので、(15)式は
1/2×L×Ie×Ie≧1/2×(C23+C24)×Vbus×Vbus … (16)
となる。コンデンサC23、C24は同じ値にしても特に問題ないので、C23=C24とすれば、(16)式から、
1/2×L×Ie×Ie≧1/2×2C23×Vbus×Vbus … (17)
の関係が成り立つ。
次に、昇圧時の動作は、直流母線8の電圧Vbusを電源として、第2リアクトル25とコンデンサC23、C24が共振現象を起こしコンデンサC23、C24の電圧が変化する。Td2期間に第2リアクトル25に流れる電流の最大値の絶対値をIe2とすると、第2リアクトル25に蓄えられる最大エネルギーとコンデンサC23、C24に蓄えられる最大エネルギーは同じ値になるので次の関係が成り立つ。
1/2×L×Ie2×Ie2=1/2×2C23×Vbus×Vbus … (18)
ここで、トランス1の一次巻線1aに流れる電流の連続性を考えると、Ie2≧Ieとなることが望ましい。もし、Ie2<IeとなるとTd2期間からTon期間に切り替わった瞬間、第1リアクトル5に流れていた電流が、スムーズにトランス1の二次巻線1bに流れないため、第2フルブリッジ回路4の直流側の電圧Vrが急激に上昇し、第2フルブリッジ回路4のスイッチング素子が過電圧で破壊する可能性がある。ただし、Ie2>Ieの場合は、Td2期間からTon期間に切り替わった瞬間、トランス1の二次巻線1bにIe2に相当する電流が流れるが、特に不具合が発生することはない。よって、Ie2≧Ieとおけば、(18)式は
1/2×L×Ie×Ie≦1/2×2C23×Vbus×Vbus … (19)
となる。降圧時の(17)式と昇圧時の(19)式の両方を満足するためには以下の関係が成り立てばよい。
1/2×L×Ie×Ie=1/2×2C23×Vbus×Vbus … (20)
(20)式を変形すると次の関係が成り立つ。
Vbus/Ie=√(L/2C23) … (21)
第2リアクトル25とコンデンサC23、C24の比は(21)式を満足するように設定すればよい。また第2リアクトル25、もしくはコンデンサC23、C24に蓄えられるエネルギーが最大になるまでの時間は、第2リアクトル25とコンデンサC23、C24の共振周期の1/2になるので、Td2と第2リアクトル25とコンデンサC23、C24の関係を次のように設定することで、最適なタイミングでTd2期間からTon期間に切り替えることができる。
Td2=π√(L×2C23) … (22)
第2リアクトル25のインダクタンスLとコンデンサC23、C24の容量Cは(21)式、(22)式が成り立つように選定すればよい。またTd2期間の初期に第2リアクトル25に流れている電流(=トランス1の一次巻線1aに流れる電流)の絶対値Ieの代わりに、Ieよりも値が大きくなるトランス1の一次巻線1aに流れる電流の実効値、もしくは直流母線8の平均電流を用いてもよい。
なお、第2リアクトル25の値は、正確にはトランス1の漏れインダクタンスを含んだ値である。トランス1の漏れインダクタンスや線路のインダクタンスで、(21)式、(22)式が満足すれば、第2リアクトル25を特別に設けることを要せずこれらインダクタンスを第2リアクトルとして用いることができる。このように第2リアクトル25とコンデンサC23、C24を選定することで、スイッチング素子Q23,Q24を零電圧スイッチングすることができると同時に、昇圧時に第2フルブリッジ回路4の直流側に過大な電圧が発生するのを抑制することができる。
なお、本発明は、その発明の範囲内において、上述した実施の形態を適宜、変形、省略することが可能である。
1 トランス、1a 一次巻線、1b 二次巻線、2 一次巻線側フルブリッジ回路、2a,2b ハーフブリッジ回路、Q21〜Q24 スイッチング素子、
3 コンデンサ、4 二次巻線側フルブリッジ回路、4a,4b ハーフブリッジ回路、Q41〜Q44 スイッチング素子、5 第1リアクトル、6 制御回路、7 蓄電池、8 直流母線、22 一次巻線側フルブリッジ回路、
22a,22b ハーフブリッジ回路、C21〜C24 コンデンサ、
25 第2リアクトル、26 制御回路。

Claims (8)

  1. 第1フルブリッジ回路と第2フルブリッジ回路と変圧器と第1リアクトルとコンデンサと制御装置とを有し、第1電気装置と第2電気装置との間で双方向に電力変換する双方向DCDCコンバータであって、
    前記第1フルブリッジ回路は、それぞれ二つのスイッチング素子が直列に接続された第1ハーフブリッジ回路と第2ハーフブリッジ回路とを有するものであり、
    前記第2フルブリッジ回路は、それぞれ二つのスイッチング素子が直列に接続された第3ハーフブリッジ回路と第4ハーフブリッジ回路とを有するものであり、
    前記変圧器は、第1巻線と第2巻線とを有するものであり、
    前記第1フルブリッジ回路の直流側に前記コンデンサが並列に接続されるとともに前記第1フルブリッジ回路の直流側が前記第1電気装置に接続されるものであり、前記第1フルブリッジ回路の交流側が前記変圧器の前記第1巻線に接続され、前記変圧器の前記第2巻線に前記第2フルブリッジ回路の交流側が接続され、前記第2フルブリッジ回路の直流側に前記第1リアクトルを介して前記第2電気装置が接続されるものであり、
    前記制御装置は、前記変圧器の前記第1巻線側から前記第2巻線側に電力変換する場合は前記第1から第4までのハーフブリッジ回路のうちの前記第1ハーフブリッジ回路または前記第2ハーフブリッジ回路の開閉タイミングを他のハーフブリッジ回路の開閉タイミングよりも進ませ、前記変圧器の前記第2巻線側から前記第1巻線側に電力変換する場合は前記第1から第4までのハーフブリッジ回路のうちの前記第1ハーフブリッジ回路または前記第2ハーフブリッジ回路の開閉タイミングを他のハーフブリッジ回路の開閉タイミングよりも遅らせるものである
    双方向DCDCコンバータ。
  2. 前記第1フルブリッジ回路は、その直流側の電圧が前記第2フルブリッジ回路の直流側の電圧よりも高いものである請求項1に記載の双方向DCDCコンバータ。
  3. 前記変圧器の前記第1巻線の巻数N1が、前記第2巻線の巻数N2より多いものである請求項1または請求項2に記載の双方向DCDCコンバータ。
  4. 前記第1電気装置の電圧範囲の下限電圧をVbuslとし、前記第2電気装置の電圧範囲の上限電圧をVBhとするとき、前記変圧器の巻数比N1/N2が次の式
    N1/N2≦Vbusl/VBh
    を満たすように決定されたものである請求項3に記載の双方向DCDCコンバータ。
  5. 前記制御装置は、前記第1ハーフブリッジ回路および前記第2ハーフブリッジ回路のそれぞれ直列に接続された前記二つのスイッチング素子をともに非導通となるデッドタイム期間を設けて開閉制御し、前記第3ハーフブリッジ回路および前記第4ハーフブリッジ回路のそれぞれ直列に接続された前記二つのスイッチング素子を同時に導通する重なりタイム期間を設けて開閉制御するものである請求項1から請求項4のいずれか1項に記載の双方向DCDCコンバータ。
  6. 第2リアクトルを有するものであって、
    前記第2リアクトルは、前記第1フルブリッジ回路と前記変圧器との間に挿入されたものであり、
    前記第1ハーフブリッジ回路と前記第2ハーフブリッジ回路は、おのおののそれぞれ直列に接続された前記二つのスイッチング素子にそれぞれ並列に接続された並列コンデンサを有するものである請求項5に記載の双方向DCDCコンバータ。
  7. 前記第2ハーフブリッジ回路のそれぞれ直列に接続された前記二つのスイッチング素子の導通状態が切り替わるときの前記コンデンサの電圧をVbusとし、前記第2リアクトルのインダクタンスをL、前記第2リアクトルに流れている電流の絶対値をIeとし、前記並列コンデンサの容量をCとするとき、Vbus/Ie=√(L/2C)の条件を満たすように、前期第2リアクトルのインダクタンスLと前記並列コンデンサの容量Cとが決定されたものである請求項6に記載の双方向DCDCコンバータ。
  8. 前記第1電気装置はエレベータの巻上機であり、前記第2電気装置は蓄電池である請求項1から請求項7のいずれか1項に記載の双方向DCDCコンバータ。
JP2014049601A 2014-03-13 2014-03-13 双方向dcdcコンバータ Active JP6157388B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049601A JP6157388B2 (ja) 2014-03-13 2014-03-13 双方向dcdcコンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049601A JP6157388B2 (ja) 2014-03-13 2014-03-13 双方向dcdcコンバータ

Publications (2)

Publication Number Publication Date
JP2015177559A true JP2015177559A (ja) 2015-10-05
JP6157388B2 JP6157388B2 (ja) 2017-07-05

Family

ID=54256253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049601A Active JP6157388B2 (ja) 2014-03-13 2014-03-13 双方向dcdcコンバータ

Country Status (1)

Country Link
JP (1) JP6157388B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012970A (ja) * 2014-06-27 2016-01-21 新電元工業株式会社 Dc/dcコンバータの制御装置及びその制御方法
CN106549596A (zh) * 2016-12-01 2017-03-29 西安奥特迅电力电子技术有限公司 一种用于两路直流电源进线互为热备用的有功功率传输装置
JP2017103835A (ja) * 2015-11-30 2017-06-08 日立オートモティブシステムズ株式会社 電力変換装置、これを用いた電源システム及び自動車
WO2017101833A1 (zh) * 2015-12-18 2017-06-22 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
JP2018061336A (ja) * 2016-10-05 2018-04-12 ニチコン株式会社 双方向絶縁型dc/dcコンバータ
WO2018105562A1 (ja) 2016-12-08 2018-06-14 株式会社東芝 電力変換装置
JP2018170845A (ja) * 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 電力変換装置
JP2019531047A (ja) * 2016-10-18 2019-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 直流電圧変換器、および直流電圧変換器の作動方法
CN110504505A (zh) * 2018-05-17 2019-11-26 大众汽车有限公司 用于蓄电池的温度调节的装置和方法、蓄电池单元
JP2021058007A (ja) * 2019-09-30 2021-04-08 株式会社エヌエフホールディングス 電力変換装置
WO2021127995A1 (en) * 2019-12-24 2021-07-01 Cree, Inc. Circuits and methods for controlling bidirectional cllc converters
KR20230018845A (ko) * 2021-07-30 2023-02-07 주식회사 원익피앤이 배터리 충방전을 위한 충방전기
KR20230023200A (ko) * 2021-08-10 2023-02-17 주식회사 원익피앤이 배터리 충방전을 위한 충방전기

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
JP2003304644A (ja) * 2002-04-08 2003-10-24 Fujitsu Access Ltd 双方向性コンバータ
JP2004091159A (ja) * 2002-09-02 2004-03-25 Otis Elevator Co エレベータの制御装置
JP2005224012A (ja) * 2004-02-05 2005-08-18 Honda Motor Co Ltd Dc−dcコンバータ
JP2006230075A (ja) * 2005-02-16 2006-08-31 Toyota Industries Corp スイッチング電源回路
JP2011130521A (ja) * 2009-12-15 2011-06-30 Yokogawa Electric Corp Dcdcコンバータ
US20110198933A1 (en) * 2010-02-17 2011-08-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Power conversion circuit and power conversion circuit system
JP2012125040A (ja) * 2010-12-08 2012-06-28 Toyota Central R&D Labs Inc 電力変換回路システム
WO2012121016A1 (ja) * 2011-03-07 2012-09-13 新電元工業株式会社 双方向dc-dcコンバータ、および、電源システム
JP2012196089A (ja) * 2011-03-17 2012-10-11 Sinfonia Technology Co Ltd Dc−dcコンバータ
WO2013121665A1 (ja) * 2012-02-14 2013-08-22 三菱電機株式会社 Dc/dcコンバータ
JP2013251998A (ja) * 2012-06-01 2013-12-12 Meidensha Corp 双方向絶縁型dc−dcコンバータの制御装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259643A (ja) * 2002-03-04 2003-09-12 Orc Mfg Co Ltd 電流共振型ソフトスイッチング電源回路
JP2003304644A (ja) * 2002-04-08 2003-10-24 Fujitsu Access Ltd 双方向性コンバータ
JP2004091159A (ja) * 2002-09-02 2004-03-25 Otis Elevator Co エレベータの制御装置
JP2005224012A (ja) * 2004-02-05 2005-08-18 Honda Motor Co Ltd Dc−dcコンバータ
JP2006230075A (ja) * 2005-02-16 2006-08-31 Toyota Industries Corp スイッチング電源回路
JP2011130521A (ja) * 2009-12-15 2011-06-30 Yokogawa Electric Corp Dcdcコンバータ
US20110198933A1 (en) * 2010-02-17 2011-08-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Power conversion circuit and power conversion circuit system
JP2011193713A (ja) * 2010-02-17 2011-09-29 Toyota Central R&D Labs Inc 電力変換回路及び電力変換回路システム
JP2012125040A (ja) * 2010-12-08 2012-06-28 Toyota Central R&D Labs Inc 電力変換回路システム
WO2012121016A1 (ja) * 2011-03-07 2012-09-13 新電元工業株式会社 双方向dc-dcコンバータ、および、電源システム
JP2012196089A (ja) * 2011-03-17 2012-10-11 Sinfonia Technology Co Ltd Dc−dcコンバータ
WO2013121665A1 (ja) * 2012-02-14 2013-08-22 三菱電機株式会社 Dc/dcコンバータ
JP2013251998A (ja) * 2012-06-01 2013-12-12 Meidensha Corp 双方向絶縁型dc−dcコンバータの制御装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012970A (ja) * 2014-06-27 2016-01-21 新電元工業株式会社 Dc/dcコンバータの制御装置及びその制御方法
JP2017103835A (ja) * 2015-11-30 2017-06-08 日立オートモティブシステムズ株式会社 電力変換装置、これを用いた電源システム及び自動車
WO2017101833A1 (zh) * 2015-12-18 2017-06-22 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
JP2018061336A (ja) * 2016-10-05 2018-04-12 ニチコン株式会社 双方向絶縁型dc/dcコンバータ
JP2019531047A (ja) * 2016-10-18 2019-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 直流電圧変換器、および直流電圧変換器の作動方法
US11128225B2 (en) 2016-10-18 2021-09-21 Robert Bosch Gmbh DC-to-DC converter and method for operating a DC-to-DC converter
CN106549596A (zh) * 2016-12-01 2017-03-29 西安奥特迅电力电子技术有限公司 一种用于两路直流电源进线互为热备用的有功功率传输装置
WO2018105562A1 (ja) 2016-12-08 2018-06-14 株式会社東芝 電力変換装置
JP2018170845A (ja) * 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 電力変換装置
KR102215215B1 (ko) * 2018-05-17 2021-02-16 폭스바겐 악티엔게젤샤프트 배터리의 온도 조절을 위한 장치, 배터리 유닛 및 배터리의 온도 조절을 위한 방법
KR20190132283A (ko) * 2018-05-17 2019-11-27 폭스바겐 악티엔 게젤샤프트 배터리의 온도 조절을 위한 장치, 배터리 유닛 및 배터리의 온도 조절을 위한 방법
CN110504505A (zh) * 2018-05-17 2019-11-26 大众汽车有限公司 用于蓄电池的温度调节的装置和方法、蓄电池单元
CN110504505B (zh) * 2018-05-17 2022-12-27 大众汽车有限公司 用于蓄电池的温度调节的装置和方法、蓄电池单元
JP2021058007A (ja) * 2019-09-30 2021-04-08 株式会社エヌエフホールディングス 電力変換装置
JP7336137B2 (ja) 2019-09-30 2023-08-31 株式会社エヌエフホールディングス 電力変換装置
WO2021127995A1 (en) * 2019-12-24 2021-07-01 Cree, Inc. Circuits and methods for controlling bidirectional cllc converters
KR20230018845A (ko) * 2021-07-30 2023-02-07 주식회사 원익피앤이 배터리 충방전을 위한 충방전기
KR102529433B1 (ko) 2021-07-30 2023-05-08 주식회사 원익피앤이 배터리 충방전을 위한 충방전기
KR20230023200A (ko) * 2021-08-10 2023-02-17 주식회사 원익피앤이 배터리 충방전을 위한 충방전기
KR102589716B1 (ko) 2021-08-10 2023-10-16 주식회사 원익피앤이 배터리 충방전을 위한 충방전기

Also Published As

Publication number Publication date
JP6157388B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6157388B2 (ja) 双方向dcdcコンバータ
JP5325983B2 (ja) Dc/dc電力変換装置
US10340810B2 (en) Bidirectional DC converter assembly having cascade of isolated resonant converter and step-up/step-down converter
US10211719B2 (en) Power converter
US9780695B2 (en) Control method of inverter circuit
KR20140015583A (ko) 전원 시스템
JP5235526B2 (ja) チョッパ型dc−dcコンバータ
JPWO2018110440A1 (ja) スナバ回路及びそれを用いた電力変換システム
JP6012822B1 (ja) 電力変換装置
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP2018170930A (ja) 電力変換装置、電力変換システム
CN110739848A (zh) 用于电动化车辆的高增益dc-dc转换器
JP6279158B2 (ja) 電力変換装置
JP2015070716A (ja) Dc/dcコンバータ
Rezaii et al. A bidirectional DC-DC converter with high conversion ratios for the electrical vehicle application
Sreedhar et al. Design and analysis of synchronous Buck converter for UPS application
JP6915566B2 (ja) 電力変換装置及び電力変換システム
JP2017123703A (ja) Dcdcコンバータ
US20210184568A1 (en) Power Converter with a High Conversion Ratio
JP2019009848A (ja) Dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP4433841B2 (ja) スイッチング電源
JP2013005642A (ja) 電力変換装置
JP2005333783A (ja) 電力出力装置およびそれを備えた車両
JP6242353B2 (ja) 出力電圧反転型dcdcコンバータ
JP4836980B2 (ja) Dc/dc電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6157388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250