CN110739848A - 用于电动化车辆的高增益dc-dc转换器 - Google Patents

用于电动化车辆的高增益dc-dc转换器 Download PDF

Info

Publication number
CN110739848A
CN110739848A CN201910650685.7A CN201910650685A CN110739848A CN 110739848 A CN110739848 A CN 110739848A CN 201910650685 A CN201910650685 A CN 201910650685A CN 110739848 A CN110739848 A CN 110739848A
Authority
CN
China
Prior art keywords
inductor
capacitor
switching device
link
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910650685.7A
Other languages
English (en)
Inventor
葛宝明
陈礼华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of CN110739848A publication Critical patent/CN110739848A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

本公开提供了“用于电动化车辆的高增益DC‑DC转换器”。一种可变电压转换器在电池与DC链路之间转移电荷。第一电感器耦合正电池节点和第一节点。第一晶体管可选择地将所述第一节点耦合到负电池节点。第一电容器具有耦合到所述负电池节点的负端子。第二电感器将所述第一电容器的正端子耦合到第二节点。第二电容器具有耦合到所述第一节点的正端子。第二晶体管可选择地将所述第二节点耦合到所述第二电容器的负端子。

Description

用于电动化车辆的高增益DC-DC转换器
技术领域
本发明总体上涉及用于电动化车辆的电驱动系统中的DC-DC转换器,并且更具体地,涉及使用相对小部件尺寸和低功率损耗来实现高电压增益的开关DC-DC转换器的电路拓扑。
背景技术
诸如混合动力电动车辆(HEV)、插电式混合动力电动车辆(PHEV)和电池电动车辆(BEV)的电动车辆使用逆变器驱动的电机来提供牵引扭矩。典型的电驱动系统可以包括通过接触器开关耦合到DC-DC转换器(也被称为可变电压转换器或VVC)的DC电源(诸如蓄电池组或燃料电池)以调节主DC链接电容器两端的主总线电压。三相马达逆变器连接在主总线与牵引马达之间,以便将DC总线电力转换为耦合到马达的绕组的AC电压以推进车辆。在车辆的减速期间,马达可以由车轮驱动并且用来递送电力以在车辆的再生制动期间对电池进行充电,其中DC-DC转换器在相反方向上工作以将所生成的电力转换为适合于对蓄电池组进行充电的电压。在一些车辆中,还可以存在另一三相逆变器以将DC总线连接到由内燃发动机驱动的发电机,以对电池进行充电或向马达提供电力。
使用对功率开关的适当调制,VVC可以在升压模式(转换为更高的电压)、降压模式(转换为更低的电压)或直通模式(电压不改变)下操作。对于在混合动力电动车辆驱动器系统中使用,VVC还被配置为可选择地提供双向电力流。
典型的VVC包括至少一个相桥,其中上部晶体管开关装置和下部晶体管开关装置(例如,绝缘栅双极晶体管,IGBT)在DC链路电容器两端串联连接。开关装置之间的中间接合部经由电感器连接到源电池。电子控制器提供开关信号(即,门信号)以根据提供期望VVC模式的调制方案来接通和断开开关装置。脉冲宽度调制通常由VVC用来控制电压的增加,其中开关信号的占空比可以改变以便将VVC电压调节到期望的幅值。
常规DC-DC转换器的电压增益被限制和/或在提供极高增益时的功率损耗很大。对于典型的电路,增益由被定义为T接通/Ts的占空比D决定,其中T接通是下部开关装置的导通持续时间并且Ts是开关周期。基于占空比,通过公式来确定电压增益G。当电压增益G大于二时,转换器效率随着增加占空比D而显著地降低。因此,常规DC-DC转换器的电压增益通常被限制为小于三。将期望较高的电压增益以在广泛的速度范围操作上减少马达逆变器损耗。另外,在大多数时间以较高的占空比操作DC-DC转换器导致相桥开关装置内的较高功率损耗和高电压应力。因此,需要能够以减小的占空比提供较高电压增益的改进的可变电压转换器。
常规交错转换器的另一潜在缺点在于,电感器中的高电流纹波在占空比D高时产生较大的功率损耗。需要大型电感器来限制电流纹波,但它们有损耗、庞大且沉重,这对于高功率HEV应用来说是不合需要的。
发明内容
在本发明的一方面,一种可变电压转换器被适配成在电力存储单元与电驱动系统中的DC链路之间转移电荷。第一电感器耦合在正电力存储节点与第一开关节点之间。第一开关装置可选择地将所述第一开关节点耦合到负电力存储节点。具有负端子的第一电容器耦合到所述负电力存储节点。第二电感器耦合在所述第一电容器的正端子与第二开关节点之间。第二电容器具有耦合到所述第一开关节点的正端子。第二开关装置可选择地将所述第二开关节点耦合到所述第二电容器的负端子。所述第一电感器和所述第二电感器在所述第一开关装置和所述第二开关装置未导通时串联连接,使得所述第二电感器对所述DC链路充电并且所述第一电感器对所述第一电容器和所述第二电容器充电。当所述第一开关装置和所述第二开关装置导通时,所述第一电感器和所述第二电感器由所述电力存储单元以及所述第一电容器和所述第二电容器并联地供能。
在本发明的优选方面,根据目标电压与链路电压之间的差异来调节PWM占空比。第一电感器和第二电感器在占空比接通阶段期间切换为并联,以从电池对所述第一电感器进行供能。所述电感器在占空比关断阶段期间切换为串联,以使所述第二电感器向所述链路中释放能量。另外地,在所述占空比关断阶段期间,可以在所述电感器之间的接合部处对一对电容器并联地充电,并且在所述占空比接通阶段期间,可以使所述电容器与所述第二电感器串联地放电。利用本发明,在使用PWM占空比的相对低值时获得高增益,由此导致降低的功率损耗。
附图说明
图1是示出混合动力电动车辆的电驱动装置中的常规可变电压转换器(VVC)的示意框图。
图2是示出使用常规VVC的典型可用电压增益的曲线图。
图3是示出根据现有技术的交错VVC的示意框图。
图4是示出根据本发明的一个实施例的VVC的示意框图。
图5是示出用于生成PWM占空比的信号和用于图4的开关装置的相关开关信号的信号图。
图6和图7是示出在占空比的接通和关断阶段期间的电流的示意图。
图8是将本发明和现有技术的VVC电路的电压增益(即,升压比)与PWM占空比进行比较的曲线图。
具体实施方式
参考图1,电动化车辆的电驱动装置10包括DC存储单元11(诸如蓄电池组或燃料电池),其通过接触器式继电器开关(未示出)耦合到可变电压转换器(VVC)12。VVC 12包括串联连接在正DC总线14与负DC总线15之间的上部开关装置和下部开关装置(例如,绝缘栅双极晶体管或IGBT)。主DC链接电容器13连接在总线14与15之间。VVC 12通常在电池11的电源电压与被适配成与马达16和发电机18一起操作的较高DC链路电压之间执行DC-DC转换。马达逆变器17和发电机逆变器19耦合在总线14与15之间。逆变器17和19各自由桥配置中的多个开关装置构成,所述多个开关装置根据来自控制器和门驱动器(未示出)的控制信号以已知的方式驱动,以调节总线14与15之间的电压。
VVC 12中的开关装置中的每一者优选地由绝缘栅双极晶体管(IGBT)构成。每个IGBT具有耦合到控制器(未示出)的相应控制(例如,基极)端子,所述控制器根据转换器的各种操作模式来控制开关。控制器可以由可商购且被配置为操作的类型的马达-发电机控制单元(MGCU)构成,如2015年8月11日发布的美国专利9,106,162所述,该美国专利以引用方式全文并入本文。
为了从VVC 12获得期望的电压增益,通常使用公知的脉冲宽度调制(PWM)方法来生成用于IGBT开关装置的门信号。对于图1所示的VVC配置,电压增益G(例如,从电池电压Vb到DC链路电压Vdc)被定义为
Figure BDA0002135113370000041
其中占空比D是相桥的下部开关装置的接通时间的百分比。如图2所示,随着占空比从零增加,增益G从1.0逐渐地增加。然而,已知的转换器无法提供高于约三的显著可用增益,因为对于高于约0.7的占空比D的值,转换器损耗显著地上升。
可以通过增加VVC中的相桥的数量来获得电压增益、效率和大小方面的一些改进,如图3所示。DC-DC可变电压转换器(VVC)20耦合在DC电源11与DC链路电容器12之间。VVC 20具有交错的相桥,包括第一相桥,所述第一相桥具有在总线14与15之间与下部开关装置22串联连接的上部开关装置21。第一电感器25将开关装置21与22之间的接合部耦合到电池11。第二相桥具有在总线14与15之间与下部开关装置24串联连接的上部开关装置23。第二电感器26将开关装置23与24之间的接合部耦合到电池11。电感器25和26可以电感耦合(如在变压器中)或者可以是独立的,其中没有交叉耦合。VVC 20可以在升压模式或降压模式下工作,其中电力流在任一方向上。开关装置21至24以交错的方式与电感器25和26一起工作,由此每个电感器和相应的相桥支持电池电流的一半(在升压模式下)。用于一个桥的相桥开关信号(所述开关信号彼此相反)与用于另一个桥的相桥开关信号相比具有180°相移,这实现交错的操作以显著减少电池电流纹波。即使可用增益可以较高并且电流纹波被减少,归因于所需要的电感器的大尺寸,交错转换器仍可能具有增益不足、功率损耗过度和成本高的缺点。
如由图4中示出的本发明的第一优选实施例所示,改进的可变电压转换器30包括耦合在正电力存储节点33与第一开关节点34之间的第一电感器31。第一开关装置Sn1可选择地将第一开关节点34耦合到负电力存储节点35。第一电容器36具有耦合到负电力存储节点35的负端子。第二电感器32耦合在第一电容器36的正端子与第二开关节点37之间。第二电容器38具有耦合到第一开关节点34的正端子。第二开关装置Sn2可选择地将第二开关节点37耦合到第二电容器38的负端子。开关装置Sn1和Sn2具有相应的反并联二极管。
为了提供双向操作,附加的开关装置包括在第二电感器32与第一开关节点34之间的开关装置Sp1、在第二电感器32与DC链路电容器12之间的开关装置Sp2,以及在第二电容器38的负端子与负电力存储节点35之间的开关装置Sp3。开关装置Sp1、Sp2和Sp3具有相应的反并联二极管,如图所示。如果仅期望正向操作(例如,升压模式和直通模式),那么只需要二极管并且可以消除开关装置Sp1、Sp2和Sp3。参考图4至图7描述升压模式(即,其中电池电压增加到用于DC链路的较高电压电平的正向操作)。降压模式(即,其中电力从逆变器流到电池并且电压幅值减小的反向操作)以本领域技术人员将容易理解的类似方式操作。
VVC 30具有用于提供等于一的电压增益G的直通模式。在这种模式下,开关装置Sp1、Sp2和Sp3持续地接通,并且开关装置Sn1和Sn2持续地断开。因此,电容器36、38和12是并联的。因此,DC链路电压VDC=VB,其中VB是电池电压。
图5示出了与在升压模式下操作相关联的信号。具有周期TS的三角波载波信号40与占空比信号41进行比较。占空比具有根据目标电压与向DC链路施加的实际电压之间的差异进行调节的值D,如本领域已知。用于开关装置Sn1和Sn2的门开关信号是相同的。用于开关装置Sp1、Sp2和Sp3的门开关信号是相同的,并且是用于开关装置Sn1和Sn2的门信号的反向信号。在载波信号40的每个周期期间,脉冲42和43表示表示用于开关装置Sn1和Sn2的占空比接通阶段。脉冲42和43具有接通时间D·TS,其为周期时间TS的一部分,其中D具有从0.0到1.0的值。低逻辑电平信号44和45表示用于开关装置Sn1和Sn2的占空比关断阶段。
使用如图5所示的开关信号来调制转换器,电流在占空比接通阶段期间如图6所示那样流动,并且在占空比关断阶段期间如图7所示那样流动。在图6和图7中,导通的开关装置/反并联二极管被示为实线,并且未导通的开关装置/反并联二极管被示为开路(具有“X”)。
在图6中,当第一开关装置Sn1和第二开关装置Sn2导通时,第一电感器31和第二电感器32与电池11以及电容器36和38并联地交换电流。因此,电感器31和32由电池11以及电容器36和38独立地供能(即,充电)。在对电感器32的充电期间,电容器36和38上的电压累加(即,它们与电感器32串联地放电),使得电感器32的充电电流较高。
在图7中,在开关装置Sn1和Sn2未导通的情况下,电感器31和32串联地操作。因此,电感器31和32一起释放能量(即,放电),其中电感器32向DC链路电容器12中放电并且电感器31向电容器36和38中放电。
在由D·TS表示的时间(即,占空比接通阶段)期间,VVC内的电压如下:
Figure BDA0002135113370000071
以及
Figure BDA0002135113370000072
其中L1是电感器31的电感,L2是电感器32的电感,C1是电容器36的电容,并且C2是电容器38的电容。在由(1-D)·TS表示的时间(即,占空比关断阶段)期间,VVC内的电压如下:
VC1=VC2 等式3
Figure BDA0002135113370000073
Figure BDA0002135113370000074
对于电感器31,以上等式得出:
VB·DTS+(Vb-VC1)(1-D)Ts=0 等式6
以及
Figure BDA0002135113370000081
对于电感器32,以上等式得出:
(VC1+VC2)DTS+(VC1-VDC)(1-D)Ts=0 等式8
以及
Figure BDA0002135113370000082
用于增益(即,电压升压比)的最终等式如下:
Figure BDA0002135113370000083
图8是示出表示根据占空比D的电压升压比的曲线50与现有技术的曲线51相比的曲线图。因此,本发明具有高得多的电压升压比和更宽的输出电压范围。当所需的DC总线电压不大于电池电压VB时,将在直通模式下控制VVC。当所需的DC总线电压大于VB时,将使用图5中的信号来调制VVC。
在代表性实施例中,电路部件的参数为:L1=L2=50μH;C1=C2=CDC=400μF;以及VB=100V。典型的电驱动装置可能需要约1000V的DC链路电压。因此,需要10的电压增益。本发明利用占空比D=0.6获得必要的增益。典型的电池电流具有500A的平均值。在1000V的DC总线电压下,电容器C1和C2的电压为250V。在实现10的升压比时,本发明的VVC将50kW功率转移到负载。为了利用现有技术VVC实现10的电压增益,占空比必须是D=0.9(即,比0.6大得多),这导致显著的功率损耗。
尽管从相同的电池电压提供相同升压的DC链路电压,但在相同水平的电池电流纹波下,本发明的VVC与现有技术转换器相比使用小得多的电感器。更小的电感器导致更低的电感器损耗、更容易在HEV中包装以及更低的成本。电容器C1和C2以及功率开关的额定电压也相对低。尽管使用附加的部件,但归因于部件的有利特性,整体成本可以降低。

Claims (13)

1.一种可变电压转换器,所述可变电压转换器被适配成在电力存储单元与电驱动系统中的DC链路之间转移电荷,所述可变电压转换器包括:
第一电感器,所述第一电感器耦合在正电力存储节点与第一开关节点之间;
第一开关装置,所述第一开关装置可选择地将所述第一开关节点耦合到负电力存储节点;
第一电容器,所述第一电容器具有耦合到所述负电力存储节点的负端子;
第二电感器,所述第二电感器耦合在所述第一电容器的正端子与第二开关节点之间;
第二电容器,所述第二电容器具有耦合到所述第一开关节点的正端子;以及
第二开关装置,所述第二开关装置可选择地将所述第二开关节点耦合到所述第二电容器的负端子;
其中所述第一电感器和所述第二电感器在所述第一开关装置和所述第二开关装置未导通时串联连接,使得所述第二电感器对所述DC链路充电并且所述第一电感器对所述第一电容器和所述第二电容器充电;并且
其中当所述第一开关装置和所述第二开关装置导通时,所述第一电感器和所述第二电感器由所述电力存储单元以及所述第一电容器和所述第二电容器并联地供能。
2.如权利要求1所述的转换器,其中所述转换器在将电荷从所述电力存储单元转移到所述DC链路的正向方向上操作,并且其中所述转换器还包括:
第一二极管,所述第一二极管进行连接以在所述第一开关装置和所述第二开关装置未导通时从所述第一电感器导通到所述第二电感器;
第二二极管,所述第二二极管进行连接以在所述第一开关装置和所述第二开关装置未导通时从所述第二电感器导通到所述DC链路;以及
第三二极管,所述第三二极管进行连接以在所述第一开关装置和所述第二开关装置未导通时从所述第二电容器的所述负端子导通到所述负电力存储节点。
3.如权利要求2所述的转换器,所述转换器还包括:
门驱动器,所述门驱动器耦合到所述第一开关装置和所述第二开关装置以根据脉冲宽度调制的占空比来同时激活所述第一开关和所述第二开关。
4.如权利要求2所述的转换器,其中所述转换器还在将电荷从所述DC链路转移到所述电力存储单元的反向方向上操作,并且其中所述转换器还包括:
第三开关装置,所述第三开关装置可选择地将所述第二电感器耦合到所述第一电感器;
第四开关装置,所述第四开关装置可选择地将所述DC链路耦合到所述第二电感器;以及
第五开关装置,所述第五开关装置可选择地将所述负电力存储节点耦合到所述第二电容器的所述负端子。
5.如权利要求1所述的转换器,其中所述DC链路由向耦合到所述电驱动系统的马达的逆变器馈电的链路电容器构成。
6.一种电驱动系统,所述电驱动系统包括:
电力存储单元;
DC链路;
逆变器,所述逆变器连接到所述DC链路并且被配置为连接到电机;以及
可变电压转换器,所述可变电压转换器被适配成在所述电力存储单元与所述DC链路之间转移电荷,所述可变电压转换器包括:
第一电感器,所述第一电感器耦合在正电力存储节点与第一开关节点之间;
第一开关装置,所述第一开关装置可选择地将所述第一开关节点耦合到负电力存储节点;
第一电容器,所述第一电容器具有耦合到所述负电力存储节点的负端子;
第二电感器,所述第二电感器耦合在所述第一电容器的正端子与第二开关节点之间;
第二电容器,所述第二电容器具有耦合到所述第一开关节点的正端子;以及
第二开关装置,所述第二开关装置可选择地将所述第二开关节点耦合到所述第二电容器的负端子;
其中所述第一电感器和所述第二电感器在所述第一开关装置和所述第二开关装置未导通时串联连接,使得所述第二电感器对所述DC链路充电并且所述第一电感器对所述第一电容器和所述第二电容器充电;并且
其中当所述第一开关装置和所述第二开关装置导通时,所述第一电感器和所述第二电感器由所述电力存储单元以及所述第一电容器和所述第二电容器并联地供能。
7.如权利要求6所述的驱动系统,其中所述转换器在将电荷从所述电力存储单元转移到所述DC链路的正向方向上操作,并且其中所述转换器还包括:
第一二极管,所述第一二极管进行连接以在所述第一开关装置和所述第二开关装置未导通时从所述第一电感器导通到所述第二电感器;
第二二极管,所述第二二极管进行连接以在所述第一开关装置和所述第二开关装置未导通时从所述第二电感器导通到所述DC链路;以及
第三二极管,所述第三二极管进行连接以在所述第一开关装置和所述第二开关装置未导通时从所述第二电容器的所述负端子导通到所述负电力存储节点。
8.如权利要求7所述的驱动系统,所述驱动系统还包括:
门驱动器,所述门驱动器耦合到所述第一开关装置和所述第二开关装置以根据脉冲宽度调制的占空比来同时激活所述第一开关和所述第二开关。
9.如权利要求7所述的驱动系统,其中所述转换器还在将电荷从所述DC链路转移到所述电力存储单元的反向方向上操作,并且其中所述转换器还包括:
第三开关装置,所述第三开关装置可选择地将所述第二电感器耦合到所述第一电感器;
第四开关装置,所述第四开关装置可选择地将所述DC链路耦合到所述第二电感器;以及
第五开关装置,所述第五开关装置可选择地将所述负电力存储节点耦合到所述第二电容器的所述负端子。
10.如权利要求6所述的驱动系统,其中所述DC链路由向所述逆变器馈电的链路电容器构成。
11.如权利要求6所述的驱动系统,其中所述电力存储单元由蓄电池组构成。
12.一种将电池电压升压到电驱动装置的DC链路上的方法,所述方法包括:
根据目标电压与链路电压之间的差异来调节PWM占空比;
在占空比接通阶段期间使第一电感器和第二电感器切换为并联,以从电池对所述第一电感器进行供能;以及
在占空比关断阶段期间使所述电感器切换为串联,以使所述第二电感器向所述链路中释放能量。
13.如权利要求12所述的方法,所述方法还包括:
在所述占空比关断阶段期间从所述第一电感器对一对电容器并联地充电;以及
在所述占空比接通阶段期间使所述电容器与所述第二电感器串联地放电,以对所述第二电感器进行供能。
CN201910650685.7A 2018-07-19 2019-07-18 用于电动化车辆的高增益dc-dc转换器 Pending CN110739848A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/039,715 2018-07-19
US16/039,715 US10715042B2 (en) 2018-07-19 2018-07-19 High gain DC-DC converter for electrified vehicles

Publications (1)

Publication Number Publication Date
CN110739848A true CN110739848A (zh) 2020-01-31

Family

ID=69148424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910650685.7A Pending CN110739848A (zh) 2018-07-19 2019-07-18 用于电动化车辆的高增益dc-dc转换器

Country Status (3)

Country Link
US (1) US10715042B2 (zh)
CN (1) CN110739848A (zh)
DE (1) DE102019119561A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115476703A (zh) * 2022-09-23 2022-12-16 首凯汽车零部件(江苏)有限公司 一种适用于电动车动力系统的复合电源系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778105B2 (en) * 2017-12-11 2020-09-15 Ford Global Technologies, Llc Interleaved DC-DC converter for electrified vehicles
US11824449B2 (en) * 2021-10-25 2023-11-21 Novatek Microelectronics Corp. Switched-capacitor power stage and switched-capacitor converter
JP2023067173A (ja) * 2021-10-29 2023-05-16 マツダ株式会社 車両の駆動ユニット
TWI792945B (zh) * 2022-03-15 2023-02-11 崑山科技大學 高電壓增益直流轉換器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089483A1 (en) 2010-01-24 2011-07-28 Duraikkannan Varadarajan Dc to dc power converter
CN102510218A (zh) 2011-11-04 2012-06-20 安徽工业大学 一种高升压比dc-dc功率变换器
US9106162B2 (en) 2012-08-31 2015-08-11 Ford Global Technologies, Llc Control strategy for an electric machine in a vehicle
TWI495244B (zh) 2013-11-14 2015-08-01 Nat Univ Tsing Hua 直流雙向電源轉換系統及其電路
CN103812349B (zh) 2014-02-19 2016-03-02 重庆大学 一种高升压dc/dc变换器
CN104009633B (zh) 2014-05-07 2016-08-17 华南理工大学 一种电流连续型高增益dc-dc变换器电路
CN106549577B (zh) 2016-12-08 2019-04-02 北京理工大学 非隔离双向高增益dc/dc变换器及变频控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115476703A (zh) * 2022-09-23 2022-12-16 首凯汽车零部件(江苏)有限公司 一种适用于电动车动力系统的复合电源系统
CN115476703B (zh) * 2022-09-23 2023-10-31 首凯高科技(江苏)有限公司 一种适用于电动车动力系统的复合电源系统

Also Published As

Publication number Publication date
US10715042B2 (en) 2020-07-14
DE102019119561A1 (de) 2020-01-23
US20200028434A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US10358041B2 (en) Electric vehicle
US8384236B2 (en) Vehicle mounted converter
US11772505B2 (en) System and method for charging using motor driving system
US9438115B2 (en) Power supply system
CN110739848A (zh) 用于电动化车辆的高增益dc-dc转换器
US10632859B2 (en) Drive system, in particular for a vehicle, and method for heating a drive system
JP5855133B2 (ja) 充電装置
JP6157388B2 (ja) 双方向dcdcコンバータ
US20150131330A1 (en) Bidirectional dc-dc converter system and circuit thereof
Dusmez et al. A novel low cost integrated on-board charger topology for electric vehicles and plug-in hybrid electric vehicles
US10778105B2 (en) Interleaved DC-DC converter for electrified vehicles
EP3255771B1 (en) Bidirectional dc-dc convertor
JP2023114972A (ja) モーター駆動システムを用いた車両用バッテリー充電システム
US20140078801A1 (en) Advanced dc voltage adjustment using switched capacitors
KR20160007867A (ko) 풀브릿지 저전압 dc-dc 컨버터
CN115997334A (zh) 直流-直流转换器组件
US11411505B2 (en) DC-DC converter with pre-charging of a first electrical network from a second electrical network
JP6953634B2 (ja) Dc/dcコンバータを備える車両充電器
CN114499194A (zh) 电源控制装置
CN111211688A (zh) Dc-dc变换器和双向dc-dc变换器及包括其的不间断电源
CN112753159A (zh) 电源单元和使用该电源单元的电源系统
US11671048B2 (en) Multiphase voltage transformer for a supply network and method for powering down an intermediate circuit voltage of this supply network
WO2023067376A1 (en) Bidirectional dc-dc converter
JP2023177830A (ja) Dc-dcコンバータ
CN116896245A (zh) 宽范围输入dc/dc转换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination