WO2013121665A1 - Dc/dcコンバータ - Google Patents

Dc/dcコンバータ Download PDF

Info

Publication number
WO2013121665A1
WO2013121665A1 PCT/JP2012/082299 JP2012082299W WO2013121665A1 WO 2013121665 A1 WO2013121665 A1 WO 2013121665A1 JP 2012082299 W JP2012082299 W JP 2012082299W WO 2013121665 A1 WO2013121665 A1 WO 2013121665A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
power source
voltage
semiconductor switching
power
Prior art date
Application number
PCT/JP2012/082299
Other languages
English (en)
French (fr)
Inventor
亮太 近藤
山田 正樹
優介 檜垣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112012005868.2T priority Critical patent/DE112012005868T5/de
Priority to JP2014500054A priority patent/JP5762617B2/ja
Priority to US14/364,186 priority patent/US9455641B2/en
Priority to CN201280067171.5A priority patent/CN104054249B/zh
Publication of WO2013121665A1 publication Critical patent/WO2013121665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DC / DC converter in which a primary side and a secondary side are insulated by a transformer, and more particularly, to a DC / DC converter capable of bidirectional power transmission between two DC power sources.
  • the conventional bidirectional DC / DC converter includes a first switch interposed between one end of the primary winding of the transformer and the first voltage positive terminal, and one end of the primary winding and the first voltage negative terminal.
  • a switch a coil, a fifth switch interposed between one end of the coil and the second voltage positive terminal, a sixth switch interposed between one end of the coil and the second voltage negative terminal, and one end of the secondary winding And a seventh switch inserted between the other end of the coil, an eighth switch inserted between one end of the secondary winding and the second voltage negative terminal, and between the other end of the secondary winding and the other end of the coil.
  • a ninth switch interposed between the other end of the secondary winding and the tenth switch interposed between the second voltage negative terminal (For example, see Patent Document 1).
  • a bidirectional DC / DC converter includes a transformer that connects a voltage type full bridge circuit connected to a first power source and a current type switching circuit connected to a second power source. .
  • a snubber capacitor is connected to each switching element of the voltage-type full bridge circuit, and a primary winding of the transformer, a resonance reactor, and a resonance capacitor are connected in series.
  • a voltage clamp circuit including a switching element and a clamp capacitor is connected to the current type switching circuit (see, for example, Patent Document 2).
  • Patent Documents 1 and 2 since the configuration is different between the primary side and the secondary side, the control cannot be simply reversed even if the power transmission direction is reversed, and the output is caused by the time delay until the control switching. It has been difficult to obtain a stable output when the voltage rises excessively or falls.
  • the present invention has been made to solve the above-described problems, and can transmit power bidirectionally over a wide voltage range with a simple circuit configuration without providing a separate booster circuit, and with low loss. It is an object of the present invention to provide a DC / DC converter that can simultaneously realize the conversion. It is another object of the present invention to enable control that promptly follows and stably outputs changes in the power transmission direction and steep load fluctuations.
  • the DC / DC converter performs bidirectional power transmission between the first DC power source and the second DC power source.
  • the DC / DC converter includes a transformer and a plurality of semiconductor switching elements, and is connected between the first DC power source and the first winding of the transformer to convert power between DC / AC.
  • a second converter that has a plurality of semiconductor switching elements and is connected between the second DC power source and the second winding of the transformer to convert power between DC and AC;
  • the first and second converter sections include capacitors connected in parallel to the semiconductor switching elements, and first and second reactors connected to AC input / output lines.
  • the control circuit uses the first reactor to transfer each semiconductor switching element in the first converter unit to a zero voltage during power transmission from the first DC power source to the second DC power source.
  • the semiconductor switching element in the second converter unit is controlled to zero voltage by using the second reactor during power transmission from the second DC power source to the first DC power source. It controls to switch.
  • the DC / DC converter power can be transmitted bidirectionally in a wide voltage range with a simple circuit configuration.
  • zero voltage switching is possible regardless of the power transmission direction, and loss can be reduced by reducing the number of components.
  • the circuit configuration is symmetrical with the transformer interposed therebetween, bidirectional power transmission is possible with simple control.
  • FIG. Embodiment 1 of the present invention will be described below.
  • 1 is a diagram showing a circuit configuration of a battery charge / discharge device as a DC / DC converter according to Embodiment 1 of the present invention.
  • the battery charging / discharging device performs charging / discharging of the battery 2 by bidirectional power conversion between a DC power source 1 as a first DC power source and a battery 2 as a second DC power source. It is.
  • the battery charging / discharging device includes a DC / DC converter circuit 100 and a control circuit 15 serving as a main circuit.
  • the DC / DC converter circuit 100 includes a first smoothing capacitor 3 connected in parallel to the DC power source 1, a first switching circuit 4 serving as a first converter unit, and a high-frequency transformer 8 serving as an insulated transformer.
  • the second switching circuit 10 as the second converter unit and the second smoothing capacitor 11 connected in parallel to the battery 2 are provided.
  • the first switching circuit 4 is a full bridge circuit having a plurality of semiconductor switching elements 5a to 5d made of IGBTs or MOSFETs each having a diode connected in antiparallel, the DC side being the first smoothing capacitor 3, and the AC side being the high frequency. Connected to the first winding 8a of the transformer 8 to perform bidirectional power conversion between DC and AC.
  • the first switching circuit 4 is a zero voltage switching circuit in which the voltage across the elements at the time of switching of each of the semiconductor switching elements 5a to 5d can be made substantially zero voltage, and is parallel to each of the semiconductor switching elements 5a to 5d.
  • Capacitors 6a to 6d are connected.
  • a first reactor 7 is connected to an AC input / output line between the semiconductor switching elements 5a to 5d and the high-frequency transformer 8, and the first reactor 7 and the first winding 8a are connected in series.
  • the second switching circuit 10 is a full bridge circuit having a plurality of semiconductor switching elements 12a to 12d made of IGBTs or MOSFETs each having a diode connected in antiparallel, the DC side being the second smoothing capacitor 11, and the AC side being the high frequency. Connected to the second winding 8b of the transformer 8 to perform bidirectional power conversion between DC and AC.
  • the second switching circuit 10 is a zero voltage switching circuit in which the voltage across the semiconductor switching elements 12a to 12d can be set to almost zero voltage at the time of switching.
  • the semiconductor switching elements 12a to 12d are connected in parallel to each other. Capacitors 13a to 13d are connected.
  • a second reactor 9 is connected to an AC input / output line between the semiconductor switching elements 12a to 12d and the high-frequency transformer 8, and the second reactor 9 and the second winding 8b are connected in series.
  • a current sensor 14 for detecting a charging current i (current with the arrow direction being positive) of the battery 2 is installed between the second smoothing capacitor 11 and the battery 2, and the sensed output is controlled. Input to the circuit 15.
  • a voltage sensor 16 for detecting the voltage v of the first smoothing capacitor 3 is installed, and the sensed output is input to the control circuit 15.
  • a drive signal G ⁇ that controls the switching of the semiconductor switching elements 5a to 5d and 12a to 12d of the first and second switching circuits 4 and 10 is provided. 5, G-12 is generated and the first and second switching circuits 4 and 10 are driven and controlled.
  • FIG. 2 is a control block diagram when power is transmitted from the DC power source 1 to the battery 2, that is, when the battery 2 is charged.
  • the charging current i that is the output current of the DC / DC converter circuit 100 is detected by the current sensor 14 and input to the control circuit 15.
  • the control circuit 15 compares the input charging current i with the charging current command value i * , feeds back the difference, and outputs the output DUTY of the first switching circuit 4 and the second switching circuit 10.
  • the drive signals G-5 and G-12 of the semiconductor switching elements 5a to 5d and 12a to 12d are determined.
  • the voltage of the first smoothing capacitor 3 connected in parallel to the DC power supply 1 is the same DC voltage as the voltage of the DC power supply 1.
  • FIG. 3 shows driving signals G-5 (G-5a to G-5d), G-12 (G) of the semiconductor switching elements 5a to 5d and 12a to 12d of the first switching circuit 4 and the second switching circuit 10, respectively. -12a to G-12d) are shown.
  • the semiconductor switching element 5a in the first switching circuit 4 and the semiconductor switching element 12d in the second switching circuit 10 are in phase with each other.
  • the semiconductor switching element 5a is a first reference element
  • the semiconductor switching element 12d is a second reference element.
  • a period in which the semiconductor switching element 5d having a diagonal relationship with the semiconductor switching element 5a (first reference element) is turned on simultaneously with the semiconductor switching element 5a is a first diagonal on-time t1, and the semiconductor switching element 12d.
  • a period in which the semiconductor switching element 12a having a diagonal relationship with the (second reference element) is simultaneously turned on at the same time as the semiconductor switching element 12d is defined as a second diagonal on-time t2, and a period is defined as T.
  • simultaneous on the state in which two or more semiconductor switching elements are both on.
  • the drive signals G-5a and G-5d of the semiconductor switching elements 5a and 5b have a waveform in which the phase is inverted by 180 ° with the same on-time width.
  • the drive signals G-5c and G-5d have waveforms with the same ON time width and the phases inverted by 180 °.
  • the positive (high voltage side) semiconductor switching elements 5a, 5c, 12a, 12c and the negative constituting the bridge circuits of the first and second switching circuits 4, 10 which are full bridge circuits each having two bridge circuits.
  • the semiconductor switching elements 5b, 5d, 12b, and 12d on the side (low voltage side) are controlled with an on-time ratio of 50%.
  • the on-time ratio of 50% is neglected the short-circuit prevention time set to prevent the positive-side semiconductor switching element and the negative-side semiconductor switching element from being simultaneously turned on. After one is turned off, the other is turned on after the set short-circuit prevention time has elapsed.
  • the voltage 13d is set so as to increase to the voltage of the first and second smoothing capacitors 3 and 11, or to decrease to near zero voltage.
  • the first switching circuit 4 applies a positive pulse of the voltage V1 during the period (first diagonal on time) t1 when the semiconductor switching elements 5a and 5d are simultaneously turned on.
  • a negative pulse of voltage ( ⁇ V1) is output during a period t1a in which the elements 5b and 5c are simultaneously turned on, and applied to the first winding 8a of the high-frequency transformer 8.
  • the winding ratio of the first winding 8a and the second winding 8b of the high-frequency transformer 8 is N1: N2, at this time, the second winding 8b of the high-frequency transformer 8 includes ( ⁇ V1) ⁇ A voltage of N2 / N1 is applied.
  • the operation of the DC / DC converter circuit 100 within one period will be described below.
  • the voltage of the battery 2 is higher than the voltage generated in the second winding 8b.
  • the semiconductor switching element 5a is turned on, the semiconductor switching element 5c is turned off, and then the semiconductor switching element 5d is turned on, so that the semiconductor switching elements 5a and 5d are simultaneously turned on.
  • a current flows through the path of the first smoothing capacitor 3 ⁇ the semiconductor switching element 5 a ⁇ the first reactor 7 ⁇ the first winding 8 a ⁇ the semiconductor switching element 5 d ⁇ the first smoothing capacitor 3.
  • a positive voltage is applied to the first winding 8a of the high-frequency transformer 8, and a positive voltage is generated in the second winding 8b.
  • the semiconductor switching elements 5c and 5d are switched while the semiconductor switching element 5a is turned on, and the capacitors 6c and 6d connected in parallel to the semiconductor switching elements 5c and 5d are charged and discharged, whereby the semiconductor switching elements 5c and 5d are Zero voltage switching.
  • the semiconductor switching elements 12b and 12d are simultaneously turned on, and the second winding 8b ⁇ second reactor 9 ⁇ semiconductor switching element 12b ⁇ semiconductor switching element 12d ⁇ second winding. A current flows through the path of the line 8b, and the second reactor 9 is excited (FIG. 4).
  • the second switching circuit 10 turns off the semiconductor switching element 12b, then turns on the semiconductor switching element 12a, and turns on the second winding 8b ⁇ second reactor 9 ⁇ semiconductor switching element 12a ⁇ second A current flows through the path of the smoothing capacitor 11 ⁇ the semiconductor switching element 12 d ⁇ the second winding 8 b, and the excitation energy of the second reactor 9 is supplied to the second smoothing capacitor 11.
  • the semiconductor switching elements 12a and 12b are switched while the semiconductor switching element 12d is turned on, and the semiconductor switching elements 12a and 12b are switched to zero voltage due to the influence of the capacitors 13a and 13b connected in parallel, respectively (FIG. 5). . Since the semiconductor switching element 12a is connected to the second smoothing capacitor 11 by an antiparallel diode, rectification is possible even if the semiconductor switching element 12a is not turned on.
  • the semiconductor switching elements 5b, 12c are turned on at the same timing.
  • the first switching circuit 4 on the first winding 8a side of the high-frequency transformer 8 is connected to the first reactor 7, the first winding 8a, the semiconductor switching element 5d, the semiconductor switching element 5b, and the first reactor 7 path. The current circulates and no voltage is applied to the first winding 8a.
  • the current flowing through the second reactor 9 is recirculated and flows through the second winding 8b.
  • the semiconductor switching elements 5a and 5b are switched while the semiconductor switching element 5d is turned on, and the semiconductor switching elements 5a and 5b are affected by the capacitors 6a and 6b connected in parallel, respectively. Zero voltage switching is performed (FIG. 6).
  • the semiconductor switching element 5d is turned off and then the semiconductor switching element 5c is turned on, so that the semiconductor switching elements 5b and 5c are simultaneously turned on, and the first smoothing capacitor 3 ⁇ semiconductor A current flows through a path of the switching element 5 c ⁇ the first winding 8 a ⁇ the first reactor 7 ⁇ the semiconductor switching element 5 b ⁇ the first smoothing capacitor 3.
  • a negative voltage is applied to the first winding 8a of the high-frequency transformer 8, and a negative voltage is generated in the second winding 8b.
  • the semiconductor switching elements 5c and 5d are switched while the semiconductor switching element 5b is turned on, and the semiconductor switching elements 5c and 5d are switched to zero voltage due to the influence of the capacitors 6c and 6d connected in parallel.
  • the semiconductor switching elements 12a and 12c are turned on simultaneously, and the second winding 8b ⁇ the semiconductor switching element 12c ⁇ the semiconductor switching element 12a ⁇ the second reactor 9 ⁇ the second winding.
  • the semiconductor switching element 12a is turned off, the semiconductor switching element 12b is turned on, and the second winding 8b ⁇ semiconductor switching element 12c ⁇ second smoothing capacitor 11 ⁇ semiconductor switching.
  • a current flows through the path of the element 12b ⁇ the second reactor 9 ⁇ the second winding 8b, and the excitation energy of the second reactor 9 is supplied to the second smoothing capacitor 11.
  • the semiconductor switching elements 12a and 12b are switched while the semiconductor switching element 12c is turned on, and the semiconductor switching elements 12a and 12b perform zero voltage switching due to the influence of the capacitors 13a and 13b connected in parallel, respectively (FIG. 8). . Since the semiconductor switching element 12b is connected to the second smoothing capacitor 11 by the anti-parallel diode, the semiconductor switching element 12b can be rectified without being turned on.
  • the semiconductor switching elements 5a and 12d are turned on at the same timing.
  • the first switching circuit 4 on the first winding 8 a side of the high-frequency transformer 8 is connected to the first reactor 7 ⁇ the semiconductor switching element 5 a ⁇ the semiconductor switching element 5 c ⁇ the first winding 8 a ⁇ the first reactor 7.
  • the current flows back and no voltage is applied to the first winding 8a.
  • the voltage generated in the second winding 8b of the high-frequency transformer 8 is boosted to supply power to the battery 2.
  • a period for exciting the second reactor 9 is provided within a period (t 1, t 1 a) in which the voltage is applied to the high-frequency transformer 8, that is, the second reactor 9 is a boost reactor. Is used for boosting operation.
  • the switching of the semiconductor switching elements 5a to 5d in the first switching circuit 4 on the primary side of the high-frequency transformer 8 is all zero voltage switching by the action of the capacitors 6a to 6d and the first reactor 7. Note that a part of the switching of the second switching circuit 10 on the secondary side is zero voltage switching.
  • FIG. 10 is a control block diagram when power is transferred from the battery 2 to the DC power source 1, that is, when the battery 2 is discharged.
  • the DC / DC converter circuit 100 outputs to the DC power source 1, and the voltage v of the first smoothing capacitor 3 becomes the output voltage.
  • This output voltage v is detected by the voltage sensor 16 and input to the control circuit 15.
  • the control circuit 15 compares the input output voltage v with the output voltage command value v * , feeds back the difference, and outputs the output DUTY of the first switching circuit 4 and the second switching circuit 10.
  • the drive signals G-5 and G-12 of the semiconductor switching elements 5a to 5d and 12a to 12d are determined.
  • the second smoothing capacitor 11 connected in parallel to the battery 2 has the same DC as the voltage of the battery 2. Voltage. As shown in FIG. 11, in the second switching circuit 10, when the semiconductor switching elements 12a and 12d are simultaneously turned on, the second smoothing capacitor 11 ⁇ the semiconductor switching element 12a ⁇ the second reactor 9 ⁇ the second winding 8b. ⁇ Current flows through the path of the semiconductor switching element 12 d ⁇ second smoothing capacitor 11. As a result, a positive voltage is applied to the second winding 8b of the high-frequency transformer 8, and a positive voltage is generated in the first winding 8a.
  • the semiconductor switching elements 5b and 5d are simultaneously turned on, and the first winding 8a ⁇ the first reactor 7 ⁇ the semiconductor switching element 5b ⁇ the semiconductor switching element 5d ⁇ the first winding.
  • the state shown in FIG. 11 is obtained by reversing the first and second switching circuits 4 and 10 from the state shown in FIG. 4 when power is transmitted from the DC power source 1 to the battery 2.
  • the first and second switching circuits 4 and 10 are symmetrically configured around the transformer 8 with the high-frequency transformer 8 interposed therebetween, and power is transmitted from the battery 2 to the DC power source 1.
  • the power transmission can be similarly performed. Yes.
  • control using the drive signals G-5 and G-12 in reverse means that the semiconductor switching element 12d for the semiconductor switching element 5a, the semiconductor switching element 12c for the semiconductor switching element 5b, and the semiconductor switching element 5c.
  • the semiconductor switching element corresponding to the semiconductor switching element 12b and the semiconductor switching element 5d is determined as the semiconductor switching element 12a, and the switching control pattern is reversed between the corresponding semiconductor switching elements.
  • the voltage generated in the first winding 8 a of the high-frequency transformer 8 is boosted to supply power to the DC power source 1.
  • a period for exciting the first reactor 7 is provided within a period in which a voltage is applied to the high-frequency transformer 8, that is, the first reactor 7 is used as a boost reactor.
  • the switching of the semiconductor switching elements 12a to 12d in the second switching circuit 10 serving as the primary side of the high-frequency transformer 8 is all zero voltage switching by the action of the capacitors 13a to 13d and the second reactor 9. Note that a part of the switching of the first switching circuit 4 on the secondary side is zero voltage switching.
  • the second diagonal on time t2 when the two are simultaneously turned on will be described below.
  • the period during which power is transferred from the first winding 8a of the high-frequency transformer 8 to the second winding 8b and the voltage is generated in the second winding 8b is as follows: This is a period in which the semiconductor switching elements 5a and 5d are simultaneously turned on (first diagonal on time t1) and a period in which the semiconductor switching elements 5b and 5c are simultaneously turned on (t1a). By making this period as long as possible, it is possible to reduce the loss related to the return period of the first switching circuit 4 and the second switching circuit 10.
  • the first diagonal on-time t1 is set so that the period during which the voltage is applied to the first winding 8a of the high-frequency transformer 8 is maximized.
  • the first diagonal on-time t1 is set to the maximum on-time tmax.
  • the maximum on-time tmax is set based on the time required for each semiconductor switching element 5a to 5d of the first switching circuit 4 to perform zero voltage switching. Since the semiconductor switching elements 5b and 5c are simultaneously turned on (t1a) is equal to the first diagonal on time t1, this period is also set to the maximum on time tmax.
  • the semiconductor switching elements 12a and 12d are simultaneously turned on so that the period during which the voltage is applied to the second winding 8b of the high-frequency transformer 8 is maximized.
  • a second diagonal on-time t2 is set. That is, the second diagonal on time t2 is set to the maximum on time tmax. At this time, the period (t2a) during which the semiconductor switching elements 12b and 12c are simultaneously turned on is also set to the maximum on-time tmax.
  • the control circuit 15 controls the driving signals G-5 and G of the semiconductor switching elements 5a to 5d and 12a to 12d so that the first diagonal on time t1 and the second diagonal on time t2 satisfy a predetermined relationship.
  • FIG. 12 is a diagram showing the relationship between the first diagonal on-time t1 and the second diagonal on-time t2.
  • the first diagonal on-time t1 is indicated by a solid line
  • the second diagonal on-time t2 is indicated by a dotted line.
  • a in the figure indicates power transmission from the DC power source 1 to the battery 2 on the right side of the reference point A at the reference point A where the power transmitted between the DC power source 1 and the battery 2 is 0, for example.
  • the power transmission from the battery 2 to the DC power source 1 is shown on the left side.
  • the reference point A is a point where the first diagonal on-time t1 and the second diagonal on-time t2 are both the maximum on-time tmax.
  • the control circuit 15 depends on the control amount in the direction of increasing the amount of power transfer from the DC power source 1 to the battery 2, and the first diagonal on-time t1 and the second diagonal The on-time t2 is changed.
  • the phase for driving the semiconductor switching elements 5c and 5d of the first switching circuit 4 is controlled.
  • the phase for driving the semiconductor switching elements 12a and 12b is controlled so that the second diagonal on-time t2 becomes the maximum on-time tmax.
  • the first diagonal on-time t1 becomes the maximum on-time tmax and the output needs to be further increased by feedback control
  • the phase for driving the semiconductor switching elements 12a and 12b of the second switching circuit 10 is adjusted so as to reduce the time t2.
  • the phase for driving the semiconductor switching elements 12a and 12b of the second switching circuit 10 is controlled.
  • the first switching circuit 4 controls the phase for driving the semiconductor switching elements 5c and 5d so that the first diagonal on-time t1 becomes the maximum on-time tmax.
  • the phase for driving the semiconductor switching elements 5c and 5d of the first switching circuit 4 is adjusted so as to reduce the time t1.
  • the control circuit 15 drives the semiconductor switching element 5a of the first switching circuit 4 and the semiconductor switching element 12d of the second switching circuit 10 with the drive signals G-5a and G-12d having the same phase,
  • the phase for driving the semiconductor switching elements 5c and 5d is controlled
  • the semiconductor switching elements 12a and 12b are driven. This is done by controlling the phase.
  • the first diagonal on-time t1 and the second diagonal on-time depend on the control amount in the direction of increasing the amount of power transfer from the DC power source 1 to the battery 2 regardless of the power transmission direction.
  • t2 is changed so as to satisfy the set relationship (the relationship shown in FIG. 12). This makes it possible to perform bidirectional power conversion by controlling the DC / DC converter circuit 100 by the same drive control method regardless of the power transmission direction. As a result, bidirectional power conversion operation can be realized with simple control.
  • the first and second switching circuits 4 and 10 are configured such that each of the semiconductor switching elements 5a to 5d and 12a to 12d is capable of zero voltage switching, and becomes zero voltage switching when becoming the primary side of the high frequency transformer 8. To be controlled.
  • the first and second reactors 7 and 9 that have acted on the zero voltage switching are on the secondary side of the high-frequency transformer 8, they are operated as step-up reactors.
  • boosting can be performed by the boosting operation of the secondary-side switching circuit without providing a separate booster circuit. For example, at the time of power transmission from the DC power source 1 to the battery 2, the voltage generated in the second winding 8 b of the high-frequency transformer 8 is converted to the second reactor 9, the second switching circuit 10, and the second smoothing capacitor 11.
  • the booster circuit By forming the booster circuit by the above, it is possible to charge the battery 2 even when the voltage of the battery 2 is higher than the voltage generated in the second winding 8b. Therefore, power can be transmitted bidirectionally over a wide voltage range with a simple circuit configuration. In addition, zero voltage switching is possible regardless of the power transmission direction, and loss can be reduced by reducing the number of components.
  • the turn ratio of the high-frequency transformer 8 and the first and second reactors 7 and 9 can be optimally designed according to the voltage ranges of the DC power supply 1 and the battery 2, respectively.
  • the difference between the output voltage command value v * and the output voltage v is fed back to create the discharge current command value ( ⁇ i) * of the battery 2.
  • the first and second switching are performed by feedback control so that the discharge current ( ⁇ i) obtained by inverting the sign of the charging current i of the battery 2 detected by the current sensor 14 matches the discharge current command value ( ⁇ i) *.
  • the output DUTY of the circuit may be determined.
  • the discharge current command value ( ⁇ i) * is created with the polarity being positive.
  • the discharge current command value being positive indicates a state in which the power transmission direction is maintained in the direction from the battery 2 to the DC power source 1.
  • the first diagonal ON time t1 of the first switching circuit 4 is adjusted so that the discharge current ( ⁇ i) from the battery 2 to the DC power supply 1 matches the discharge current command value ( ⁇ i) * .
  • the second diagonal ON time t2 of the second switching circuit 10 is maintained at the maximum ON time tmax.
  • the discharge current command value ( ⁇ i) * is created with negative polarity.
  • the discharge current command value being negative refers to a state in which the direction of power transmission is switched to the direction from the DC power source 1 to the battery 2.
  • the second diagonal ON time t2 of the second switching circuit 10 is adjusted so that the discharge current ( ⁇ i) matches the discharge current command value ( ⁇ i) * .
  • the first diagonal ON time t1 of the first switching circuit 4 is maintained at the maximum ON time tmax.
  • the control circuit 15 can realize the bidirectional control shown in FIG. 12 based only on the charge / discharge current ⁇ i flowing between the DC power supply 1 and the battery 2.
  • the control amount in the direction of increasing the amount of power transfer from the DC power source 1 to the battery 2 is the charging current i.
  • the control based only on the charge / discharge current ⁇ i provides the following effects. For example, when power is supplied from the battery 2 to the DC power supply 1 side, if the load connected to the DC power supply 1 suddenly decreases, the output voltage on the DC power supply 1 side increases. At this time, the difference between the output voltage command value v * and the output voltage v is negative, the discharge current command value ( ⁇ i) * of the battery 2 is also negative, that is, changes to the command value on the charging side of the battery 2, and the direct current The current command value is such that the battery 2 is charged with the energy corresponding to the overvoltage of the power source 1.
  • the reference point A is obtained when power is transferred from the DC power source 1 to the battery 2, for example.
  • the first diagonal on-time t1 is controlled to be reduced, and the first switching circuit 4 is stepped down.
  • the second diagonal on-time t 2 is controlled so as to decrease when the power consumption becomes the reference point A and when the power transfer amount is further reduced.
  • the circuit 10 is stepped down. In this way, the operation can be continued with consistent control without changing the control method, regardless of the current (power) transmission direction, and further step-up and step-down.
  • the semiconductor switching element 5a of the first switching circuit 4 and the semiconductor switching element 12d of the second switching circuit 10 are driven by the drive signals G-5a and G-12d having the same phase. This is the same as driving the semiconductor switching element 5b and the semiconductor switching element 12c with drive signals G-5b and G-12c having the same phase.
  • the first reference element and the second reference element that are driven by the drive signal having the same phase may be other combinations, for example, a combination of the semiconductor switching element 5c and the semiconductor switching element 12b, or the semiconductor switching element 5d A combination with the semiconductor switching element 12a may be used, and the same effect can be obtained.
  • FIG. 16 shows drive signals G-5 (G-5a to G-5d) of the semiconductor switching elements 5a to 5d and 12a to 12d of the first switching circuit 4 and the second switching circuit 10 according to the second embodiment.
  • G-12 (G-12a to G-12d) waveforms are shown.
  • the positive-side semiconductor switching element and the negative-side semiconductor switching element that constitute the bridge circuits of the first and second switching circuits 4 and 10 are It is controlled with an on-time ratio of 50%.
  • the voltage 13d is set so as to increase to the voltage of the first and second smoothing capacitors 3 and 11, or to decrease to near zero voltage.
  • the first switching circuit 4 applies a positive pulse of the voltage V1 during the period (first diagonal on time) t1 when the semiconductor switching elements 5a and 5d are simultaneously turned on.
  • a negative pulse of voltage ( ⁇ V1) is output during a period t1a in which the elements 5b and 5c are simultaneously turned on, and applied to the first winding 8a of the high-frequency transformer 8.
  • the winding ratio of the first winding 8a and the second winding 8b of the high-frequency transformer 8 is N1: N2, and at this time, the second winding 8b of the high-frequency transformer 8 has ( ⁇ V1) ⁇ N2
  • a voltage of / N1 is applied.
  • the output voltage waveform of the first switching circuit 4 shown in FIG. 16 is a voltage applied to the first winding 8a, but is the same as the voltage generated in the second winding 8b if the magnitude is ignored. .
  • the control circuit 15 compares the input charging current i with the charging current command value i * , similarly to the case shown in FIG. The difference is fed back to determine the outputs DUTY of the first switching circuit 4 and the second switching circuit 10, and the drive signals G-5 and G-12 of the semiconductor switching elements 5a to 5d and 12a to 12d are determined.
  • the operation of the DC / DC converter circuit 100 within one cycle is shown below. Note that the voltage of the battery 2 is higher than the voltage generated in the second winding 8b.
  • the time b1 is the same control as the time a1 in the first embodiment, and in the first switching circuit 4, the semiconductor switching element 5a is in the on state, the semiconductor switching element 5c is turned off, and then the semiconductor switching element 5d is turned on. As a result, the semiconductor switching elements 5a and 5d are simultaneously turned on. In the second switching circuit 10, the semiconductor switching elements 12b and 12d are simultaneously turned on. As a result, a current flows through the current path shown in FIG. 4, a positive voltage is applied to the first winding 8a of the high-frequency transformer 8, a positive voltage is generated in the second winding 8b, and the second reactor 9 is excited.
  • the second switching circuit 10 turns off the semiconductor switching element 12b and then turns on the semiconductor switching element 12a by the same control as at time a2 in the first embodiment. Thereby, a current flows through the current path shown in FIG. 5, and the excitation energy of the second reactor 9 is supplied to the second smoothing capacitor 11.
  • the semiconductor switching element 5b is turned on after the semiconductor switching element 5a is turned off.
  • a current flows through the current path shown in FIG. 17, and the first switching circuit 4 on the first winding 8a side of the high-frequency transformer 8 is connected to the first reactor 7 ⁇ the first winding 8a ⁇ the semiconductor switching element.
  • the current circulates through the path 5d ⁇ semiconductor switching element 5b ⁇ first reactor 7, and no voltage is applied to the first winding 8a.
  • the semiconductor switching element 12c is turned on after the semiconductor switching element 12d is turned off. Thereby, a current flows through the current path shown in FIG. 6, and in the second switching circuit 10 on the second winding 8b side, the second reactor 9 ⁇ the semiconductor switching element 12a ⁇ the semiconductor switching element 12c ⁇ the second winding. In the path from the line 8b to the second reactor 9, the current flowing through the second reactor 9 is circulated and also flows through the second winding 8b.
  • the time b5 is the same control as the time a4 in the first embodiment.
  • the semiconductor switching element 5c is turned on after the semiconductor switching element 5d is turned off. 5c turns on simultaneously.
  • the semiconductor switching elements 12a and 12c are simultaneously turned on. As a result, a current flows through the current path shown in FIG. 7, a negative voltage is applied to the first winding 8a of the high-frequency transformer 8, a negative voltage is generated in the second winding 8b, and the second reactor 9 is excited to the reverse polarity.
  • the second switching circuit 10 turns off the semiconductor switching element 12a and then turns on the semiconductor switching element 12b by the same control as at time a5 in the first embodiment. Thereby, a current flows through the current path shown in FIG. 8, and the excitation energy of the second reactor 9 is supplied to the second smoothing capacitor 11.
  • the semiconductor switching element 5a is turned on after the semiconductor switching element 5b is turned off.
  • current flows through the current path shown in FIG. 18, and the first switching circuit 4 on the first winding 8 a side of the high-frequency transformer 8 is connected to the first reactor 7 ⁇ the semiconductor switching element 5 a ⁇ the semiconductor switching element 5 c ⁇
  • the current flows back through the path from the first winding 8a to the first reactor 7, and no voltage is applied to the first winding 8a.
  • the semiconductor switching element 12d is turned on after the semiconductor switching element 12c is turned off.
  • a current flows through the current path shown in FIG. 9, and in the second switching circuit 10 on the second winding 8b side, the second reactor 9 ⁇ second winding 8b ⁇ semiconductor switching element 12d ⁇ semiconductor switching.
  • the voltage generated in the second winding 8b of the high-frequency transformer 8 is boosted to supply power to the battery 2.
  • the control circuit 15 determines and controls the output DUTY of the first and second switching circuits 4 and 10
  • two semiconductor switching elements having a diagonal relationship in the first switching circuit 4 are simultaneously turned on.
  • Control is performed so as to provide periods (time b1 to b2, times b5 to b6) for exciting the second reactor 9 within periods (t1, t1a) during which voltage is applied.
  • the second switching circuit 10 performs a boost operation using the second reactor 9 as a boost reactor.
  • the switching of the semiconductor switching elements 5a to 5d in the first switching circuit 4 on the primary side of the high-frequency transformer 8 is performed by the capacitors 6a to 6d and the first switching circuit 4.
  • the operation of one reactor 7 results in all zero voltage switching, and a part of the switching of the secondary side second switching circuit 10 is zero voltage switching.
  • the control circuit 15 compares the input output voltage v with the output voltage command value v * , feeds back the difference, and the first switching circuit 4 and The output DUTY of the second switching circuit 10 is determined, and the drive signals G-5 and G-12 of the semiconductor switching elements 5a to 5d and 12a to 12d are determined.
  • the first and second switching circuits 4 and 10 are symmetrically arranged with the high-frequency transformer 8 interposed therebetween.
  • the power can be transmitted similarly.
  • the voltage generated in the first winding 8 a of the high-frequency transformer 8 is boosted to supply power to the DC power source 1.
  • a period for exciting the first reactor 7 is provided within a period in which a voltage is applied to the high-frequency transformer 8, that is, the first reactor 7 is used as a step-up reactor for boosting operation.
  • the switching of the semiconductor switching elements 12a to 12d in the second switching circuit 10 which is the primary side of the high-frequency transformer 8 is all zero voltage switching by the action of the capacitors 13a to 13d and the second reactor 9, and the secondary switching Part of the switching of the first switching circuit 4 on the side is zero voltage switching.
  • the first switching circuit 4 and the second switching circuit 10 are made by making the power transfer period from the primary winding to the secondary winding as long as possible. It is possible to reduce the loss related to the reflux period. For this reason, in the control for transmitting power from the DC power source 1 to the battery 2, the period during which the voltage is applied to the first winding 8a of the high-frequency transformer 8, that is, the diagonal on-time t1 is set to a preset maximum time.
  • the first switching circuit 4 is controlled.
  • the period during which voltage is applied to the second winding 8 b of the high-frequency transformer 8, that is, the diagonal on-time t 2 becomes the preset maximum time.
  • the second switching circuit 10 is controlled. The time during which the diagonal on-times t1 and t2 are maximized is set based on the time required for the semiconductor switching elements 5a to 5d and 12a to 12d to perform zero voltage switching.
  • the first and second switching circuits 4 and 10 are configured such that each of the semiconductor switching elements 5a to 5d and 12a to 12d can be switched to zero voltage, and when the first switching circuit 4 and 10 become the primary side of the high-frequency transformer 8, It is controlled to be switching.
  • the first and second reactors 7 and 9 that have acted on the zero voltage switching are on the secondary side of the high-frequency transformer 8, they are operated as step-up reactors.
  • boosting can be performed by the boosting operation of the secondary-side switching circuit without providing a separate booster circuit.
  • the voltage generated in the second winding 8 b of the high-frequency transformer 8 is converted to the second reactor 9, the second switching circuit 10, and the second smoothing capacitor 11.
  • the booster circuit By forming the booster circuit by the above, it is possible to charge the battery 2 even when the voltage of the battery 2 is higher than the voltage generated in the second winding 8b. Therefore, power can be transmitted bidirectionally over a wide voltage range with a simple circuit configuration. In addition, zero voltage switching is possible regardless of the power transmission direction, and loss can be reduced by reducing the number of components.
  • Embodiment 3 FIG.
  • the case where the battery charging / discharging device outputs a voltage higher than the voltage generated in the winding of the high-frequency transformer 8 has been described.
  • the output voltage is the winding of the high-frequency transformer 8.
  • a case where the voltage is lower than the voltage generated on the line will be described.
  • the second winding 8b ⁇ the second reactor 9 ⁇ the antiparallel diode of the semiconductor switching element 12a ⁇ the second smoothing capacitor 11 ⁇ the semiconductor switching element 12d.
  • the first winding 8a side of the high-frequency transformer 8 is placed on the first winding 8a side as shown in FIG.
  • the current flows through the path of the first reactor 7 ⁇ the first winding 8 a ⁇ the semiconductor switching element 5 d ⁇ the semiconductor switching element 5 b ⁇ the first reactor 7.
  • the second reactor 9 ⁇ the antiparallel diode of the semiconductor switching element 12a ⁇ the second smoothing capacitor 11 ⁇ the antiparallel diode of the semiconductor switching element 12d ⁇ second Current flows through the path of the winding 8b ⁇ second reactor 9.
  • the current flowing through the second reactor 9 becomes zero, the current on the second winding 8b side of the high-frequency transformer 8 disappears.
  • the first switching circuit 4 when the semiconductor switching element 5c is turned on after the semiconductor switching element 5d is turned off, the first winding 8a side of the high-frequency transformer 8 is placed on the first winding 8a side as shown in FIG.
  • the current flows through the path of the first smoothing capacitor 3 ⁇ the semiconductor switching element 5c ⁇ the first winding 8a ⁇ the first reactor 7 ⁇ the semiconductor switching element 5b ⁇ the first smoothing capacitor 3, and power is transmitted.
  • the second winding 8b ⁇ the antiparallel diode of the semiconductor switching element 12c ⁇ the first smoothing capacitor 11 ⁇ the antiparallel diode of the semiconductor switching element 12b ⁇ the second A current flows through the path of the second reactor 9 ⁇ second winding 8b.
  • the first winding 8a side of the high-frequency transformer 8 is placed on the first winding 8a side as shown in FIG.
  • the current flows through the path of the first reactor 7 ⁇ the semiconductor switching element 5 a ⁇ the semiconductor switching element 5 c ⁇ the first winding 8 a ⁇ the first reactor 7.
  • the current path does not change on the second winding 8b side of the high-frequency transformer 8, and when the current flowing through the second reactor 9 becomes zero, the current on the second winding 8b side disappears.
  • the second switching circuit 10 performs a rectifying operation and transmits power from the DC power supply 1 to the battery 2.
  • the control of the charging current i of the battery 2 controls the DUTY of the diagonal on time in which the two semiconductor switching elements 5a, 5d (5b, 5c) that are in the diagonal relationship in the first switching circuit 4 are simultaneously turned on.
  • the two semiconductor switching elements 12 a and 12 d (12 b and 12 c) that are in the opposite direction to the above operation and have a diagonal relationship in the second switching circuit 10 are connected.
  • the first switching circuit 4 is realized by performing a rectifying operation by controlling the DUTY of the diagonal on-time that is simultaneously turned on.
  • the secondary switching circuit 100 When the DC / DC converter circuit 100 operates in this manner, when the power is transmitted at a voltage lower than the voltage generated in the secondary winding 8b (8a) of the high frequency transformer 8, the secondary switching circuit is used.
  • the drive signals of the semiconductor switching elements 12a to 12d (5a to 5d) of 10 (4) can be stopped, and the control can be simplified.
  • the first and second switching circuits 4 and 10 are configured such that each of the semiconductor switching elements 5a to 5d and 12a to 12d is capable of zero voltage switching, and becomes the primary side of the high-frequency transformer 8. Sometimes it is controlled to achieve zero voltage switching.
  • the secondary winding 8b (8a) is used by using the control of the second embodiment.
  • the control of this embodiment power can be transmitted bidirectionally in a wide voltage range with a simple circuit configuration.
  • zero voltage switching is possible regardless of the power transmission direction, and loss can be reduced by reducing the number of components.
  • the switching circuit 10 (4) on the secondary side of the high-frequency transformer 8 performs the rectifying operation by turning off all the semiconductor switching elements 12a to 12d (5a to 5d).
  • the semiconductor switching elements 12a to 12d (5a to 5d) of the secondary side switching circuit 10 (4) may be turned on in accordance with the generated winding voltage.
  • the semiconductor switching elements 5a to 5d (12a to 12d) are elements that are bidirectionally conductive, such as MOSFETs.
  • the semiconductor switching elements 12a to 12d in the second switching circuit 10 are controlled in synchronization with the timing of voltage application to the first winding 8a of the high-frequency transformer 8.
  • the second switching circuit 10 is rectified.
  • the semiconductor switching elements 5a to 5d in the first switching circuit 4 are controlled in synchronization with the timing of voltage application to the second winding 8b of the high-frequency transformer 8.
  • the first switching circuit 4 is rectified.
  • Embodiment 5 FIG.
  • the battery 2 is used as the second DC power source, and the voltage of the DC power source 1 is controlled only during power transmission from the battery 2 to the DC power source 1. Control that switches the polarity of the discharge current command value of the battery 2 according to the polarity of the deviation obtained by subtracting the output voltage from the output voltage command value was applicable. Such control can also be applied to power transmission from the DC power source 1 to the second DC power source.
  • voltage control of the DC power source on the power receiving side is performed in bidirectional power transmission. Do.
  • FIG. 19 is a diagram showing a circuit configuration of a DC power supply / discharge device as a DC / DC converter according to Embodiment 5 of the present invention.
  • the DC power supply charging / discharging device performs power transmission by bidirectional power conversion between a DC power supply 1 as a first DC power supply and a second DC power supply 2a.
  • the configuration of DC / DC converter circuit 100 is the same as that of the first embodiment.
  • a current sensor 14 is installed between the second smoothing capacitor 11 and the second DC power supply 2a to detect a charging current i (current with the arrow direction being positive) to the second DC power supply 2a.
  • the voltage sensors 16 and 17 for detecting the voltages V1 and V2 of the first and second smoothing capacitors 3 and 11 are installed.
  • the sensed outputs of the sensors 14, 16, and 17 are input to the control circuit 15a.
  • G-5 and G-12 are generated to drive and control the first and second switching circuits 4 and 10.
  • the voltage of the first smoothing capacitor 3 is equivalent to the voltage of the DC power supply 1
  • the voltage of the second smoothing capacitor 11 is equivalent to the voltage of the second DC power supply 2a.
  • FIG. 20 is a control block diagram of the DC power supply charging / discharging device.
  • FIG. 20A shows control for transmitting power from the second DC power supply 2a to the DC power supply 1, and FIG. The control for transmitting power from the second DC power source 2a is shown. Note that only the feedback control mode is different from that in the first embodiment, and the periodic basic control of each of the first and second switching circuits 4 and 10 is performed in the first embodiment shown in FIGS. Is the same as
  • the voltage V1 of the DC power supply 1 is used as the output voltage, and the output voltage V1 is subtracted from the output voltage command value V1 *. If the difference is positive, the discharge current command value ( ⁇ i) * of the second DC power supply 2a is created with the polarity being positive.
  • the positive discharge current command value indicates a state in which the power transmission direction is maintained in the direction from the second DC power source 2a to the DC power source 1.
  • the first diagonal ON time t1 of the first switching circuit 4 is set so that the discharge current (-i) from the second DC power supply 2a to the DC power supply 1 coincides with the discharge current command value (-i) *. Adjust. At this time, the second diagonal ON time t2 of the second switching circuit 10 is maintained at the maximum ON time tmax.
  • the discharge current command value ( ⁇ i) * is created with the polarity being negative.
  • the discharge current command value being negative indicates a state in which the direction of power transmission is switched to the direction from the DC power source 1 to the second DC power source 2a.
  • the second diagonal ON time t2 of the second switching circuit 10 is adjusted so that the discharge current ( ⁇ i) matches the discharge current command value ( ⁇ i) * .
  • the first diagonal ON time t1 of the first switching circuit 4 is maintained at the maximum ON time tmax.
  • the control circuit 15a can realize the bidirectional control shown in FIG. 12 based only on the charge / discharge current ⁇ i flowing between the DC power supply 1 and the second DC power supply 2a.
  • the output voltage command value V2 * is set with the voltage V2 of the second DC power supply 2a as the output voltage .
  • the charging current command value i * to the second DC power supply 2a is created with the positive polarity.
  • the charging current command value being positive indicates a state in which the power transmission direction is maintained in the direction from the DC power source 1 to the second DC power source 2a.
  • the second diagonal ON time t2 of the second switching circuit 10 is adjusted so that the charging current i to the second DC power supply 2a matches the charging current command value i * .
  • the first diagonal ON time t1 of the first switching circuit 4 is maintained at the maximum ON time tmax.
  • the charge current command value i * is created with the polarity being negative.
  • the charging current command value being negative refers to a state in which the direction of power transmission is switched to the direction from the second DC power source 2a to the DC power source 1.
  • the first diagonal ON time t1 of the first switching circuit 4 is adjusted so that the charging current i matches the charging current command value i * .
  • the second diagonal ON time t2 of the second switching circuit 10 is maintained at the maximum ON time tmax.
  • the control circuit 15a can realize the bidirectional control shown in FIG.
  • the amount of control in the direction of increasing the amount of power transfer from the DC power source 1 to the battery 2 in FIG. 12 is the charging current i in this embodiment.
  • the operation can be continued with consistent control regardless of the power transmission direction. Then, the power transmission direction can be seamlessly switched by switching the polarity of the current command value of the charge / discharge current ⁇ i. As a result, even in the case of a sudden load change or the like, the operation can be stably continued with a quick response.
  • Embodiment 6 FIG.
  • the first and second reactors 7 and 9 are individually installed.
  • the same effect can be obtained by using at least one of them as the leakage inductance of the high-frequency transformer 8. It becomes.
  • the number of components can be reduced, and bidirectional operation can be realized with a simple configuration.
  • the battery 2 is used as one DC power source (second DC power source), but the present invention is not limited to this. Furthermore, both the first and second DC power supplies may be constituted by a battery.

Abstract

 双方向に電力伝送するDC/DCコンバータ(100)は、高周波トランス(8)の第1の巻線(8a)と直流電源(1)との間に第1のスイッチング回路(4)が接続され、第2の巻線(8b)とバッテリ(2)との間に第2のスイッチング回路(10)が接続される。第1、第2のスイッチング回路(4、10)は、各半導体スイッチング素子(5a~5d、12a~12d)にコンデンサ(6a~6d、13a~13d)が並列接続され、交流入出力線に第1、第2のリアクトル(7、9)が接続される。そして電力伝送時に、高周波トランス(8)の一次側のスイッチング回路(4、10)はゼロ電圧スイッチングを行い、二次側のスイッチング回路(10、4)はリアクトル(9、7)を用いて昇圧動作する。

Description

DC/DCコンバータ
 この発明は、トランスによって一次側と二次側とが絶縁されたDC/DCコンバータに関し、特に、2つの直流電源の間で双方向に電力伝送可能なDC/DCコンバータに関するものである。
 従来の双方向DC/DCコンバータは、トランスの1次巻線の一端及び第1電圧正極端子間に介挿した第1スイッチと、1次巻線の一端及び第1電圧負極端子間に介挿した第2スイッチと、1次巻線の他端及び第1電圧の正極端子間に介挿した第3スイッチと、1次巻線の他端と第1電圧負極端子間に介挿した第4スイッチと、コイルと、コイルの一端及び第2電圧正極端子間に介挿した第5スイッチと、コイルの一端及び第2電圧負極端子間に介挿した第6スイッチと、2次巻線の一端及びコイルの他端間に介挿した第7スイッチと、2次巻線の一端及び第2電圧負極端子間に介挿した第8スイッチと、2次巻線の他端及びコイルの他端間に介挿した第9スイッチと、2次巻線の他端及び第2電圧負極端子間に介挿した第10スイッチを有する(例えば、特許文献1参照)。
 また、従来の別例による双方向DC/DCコンバータは、第1の電源に接続された電圧型フルブリッジ回路と第2の電源に接続された電流型スイッチング回路とを接続するトランスを備えている。そして、電圧型フルブリッジ回路の各スイッチング素子にはスナバコンデンサがそれぞれ接続され、トランスの一次巻き線と共振リアクトルと共振コンデンサとが直列接続される。また、スイッチング素子とクランプコンデンサとで構成した電圧クランプ回路が電流型スイッチング回路に接続される(例えば、特許文献2参照)。
特開2009-177940号公報 特開2009-55747号公報
 上記特許文献1のような双方向DC/DCコンバータにおいては、トランスの両側にスイッチング回路を配置し、二次側のスイッチング回路の後段に昇圧チョッパ回路を別途設けて、一次側、二次側の電圧およびトランスの巻き線比によって設定できない電圧範囲については、昇圧チョッパ回路が昇圧動作して目標電圧に調整していた。このため、昇圧チョッパ回路の分、部品点数の増加と損失が増加するという問題点があった。
 また、上記特許文献2では、ゼロ電圧スイッチングを用いた制御によりスイッチング損失を低減するものであるが、電力移行方向が逆転した際には、ゼロ電圧スイッチングができずスイッチング損失が増大してしまうという問題点があった。
 さらに、特許文献1、2においては、一次側と二次側とで構成が異なるため、電力伝送方向が逆転しても制御を単に逆転させることはできず、制御切り替えまでの時間遅れによって、出力電圧が過大に上昇したり、下降したり安定な出力を得ることが困難であった。
 この発明は、上記のような問題点を解消するために成されたものであって、別途昇圧回路を設けることなく、簡易な回路構成で広い電圧範囲で双方向に電力伝送でき、しかも低損失化を同時に実現できるDC/DCコンバータを提供することを目的とする。さらに、電力伝送方向の変化や急峻な負荷変動に対しても、速やかに追従して安定的に出力する制御が可能になることを目的とする。
 この発明に係るDC/DCコンバータは、第1の直流電源と第2の直流電源との間の双方向の電力伝送を行う。該DC/DCコンバータは、トランスと、複数の半導体スイッチング素子を有して上記第1の直流電源と上記トランスの第1の巻線との間に接続されて、直流/交流間で電力変換する第1のコンバータ部と、複数の半導体スイッチング素子を有して上記第2の直流電源と上記トランスの第2の巻線との間に接続されて、直流/交流間で電力変換する第2のコンバータ部と、上記第1、第2のコンバータ部内の上記各半導体スイッチング素子を制御する制御回路とを備える。上記第1、第2のコンバータ部は、上記各半導体スイッチング素子に並列接続されたコンデンサと、交流入出力線に接続された第1、第2のリアクトルとを有する。そして、上記制御回路は、上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記第1のリアクトルを利用して上記第1のコンバータ部内の上記各半導体スイッチング素子がゼロ電圧スイッチングするように制御し、上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記第2のリアクトルを利用して上記第2のコンバータ部内の上記各半導体スイッチング素子がゼロ電圧スイッチングするように制御するものである。
 上記DC/DCコンバータによると、簡易な回路構成で広い電圧範囲で双方向に電力伝送できる。また、電力伝送方向に依らずゼロ電圧スイッチングが可能になると共に、部品点数が少ないことにより損失低減が図れる。
 さらに、トランスを挟んで対称な回路構成となるため、簡素な制御で双方向の電力伝送が可能になる。
この発明の実施の形態1によるバッテリ充放電装置の回路構成図である。 この発明の実施の形態1によるバッテリ充放電装置の充電時の制御ブロック図である。 この発明の実施の形態1によるバッテリ充放電装置の駆動信号波形図である。 この発明の実施の形態1によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態1によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態1によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態1によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態1によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態1によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態1によるバッテリ充放電装置の放電時の制御ブロック図である。 この発明の実施の形態1によるバッテリ充放電装置の放電動作を説明する図である。 この発明の実施の形態1による2つのスイッチング回路の駆動信号における対角オン時間の関係を示す図である。 この発明の実施の形態1によるバッテリ充放電装置の充電時の駆動信号波形図である。 この発明の実施の形態1によるバッテリ充放電装置の放電時の駆動信号波形図である。 この発明の実施の形態1によるバッテリ充放電装置の放電時の別例による制御ブロック図である。 この発明の実施の形態2によるバッテリ充放電装置の充電時の駆動信号波形図である。 この発明の実施の形態2によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態2によるバッテリ充放電装置の充電動作を説明する図である。 この発明の実施の形態5による直流電源充放電装置の回路構成図である。 この発明の実施の形態5による直流電源充放電装置の制御ブロック図である。
実施の形態1.
 以下、この発明の実施の形態1について説明する。
 図1は、この発明の実施の形態1によるDC/DCコンバータとしてのバッテリ充放電装置の回路構成を示した図である。図に示すように、バッテリ充放電装置は、第1の直流電源としての直流電源1と第2の直流電源としてのバッテリ2との間で双方向の電力変換によるバッテリ2の充放電を行うものである。
 バッテリ充放電装置は、主回路となるDC/DCコンバータ回路100と制御回路15とを備える。DC/DCコンバータ回路100は、直流電源1に並列に接続された第1の平滑コンデンサ3と、第1のコンバータ部としての第1のスイッチング回路4と、絶縁されたトランスとしての高周波トランス8と、第2のコンバータ部としての第2のスイッチング回路10と、バッテリ2に並列に接続された第2の平滑コンデンサ11とを備える。
 第1のスイッチング回路4は、それぞれダイオードが逆並列接続されたIGBTあるいはMOSFET等から成る複数の半導体スイッチング素子5a~5dを有するフルブリッジ回路で、直流側が第1の平滑コンデンサ3に、交流側が高周波トランス8の第1の巻線8aに接続されて、直流/交流間の双方向の電力変換を行う。また、第1のスイッチング回路4は、各半導体スイッチング素子5a~5dのスイッチング時の素子の両端電圧がほぼゼロ電圧にできるゼロ電圧スイッチング回路であり、各半導体スイッチング素子5a~5dにはそれぞれ並列にコンデンサ6a~6dが接続される。また、半導体スイッチング素子5a~5dと高周波トランス8との間の交流入出力線には第1のリアクトル7が接続され、第1のリアクトル7と第1の巻線8aとが直列接続される。
 第2のスイッチング回路10は、それぞれダイオードが逆並列接続されたIGBTあるいはMOSFET等から成る複数の半導体スイッチング素子12a~12dを有するフルブリッジ回路で、直流側が第2の平滑コンデンサ11に、交流側が高周波トランス8の第2の巻線8bに接続されて、直流/交流間の双方向の電力変換を行う。また、第2のスイッチング回路10は、各半導体スイッチング素子12a~12dのスイッチング時の素子の両端電圧がほぼゼロ電圧にできるゼロ電圧スイッチング回路であり、各半導体スイッチング素子12a~12dにはそれぞれ並列にコンデンサ13a~13dが接続される。また、半導体スイッチング素子12a~12dと高周波トランス8との間の交流入出力線には第2のリアクトル9が接続され、第2のリアクトル9と第2の巻線8bとが直列接続される。
 また、第2の平滑コンデンサ11とバッテリ2との間には、バッテリ2の充電電流i(矢印の向きを正とする電流)を検出する電流センサ14が設置され、そのセンシングされた出力が制御回路15に入力される。さらに、第1の平滑コンデンサ3の電圧vを検出する電圧センサ16が設置され、そのセンシングされた出力が制御回路15に入力される。制御回路15では、入力された電流i、電圧vの値に基づいて、第1、第2のスイッチング回路4、10の各半導体スイッチング素子5a~5d、12a~12dをスイッチング制御する駆動信号G-5、G-12を生成して第1、第2のスイッチング回路4、10を駆動制御する。
 次に、バッテリ充放電装置の動作について以下に説明する。
 図2は、直流電源1からバッテリ2への電力伝送、即ちバッテリ2を充電する場合の制御ブロック図である。DC/DCコンバータ回路100の出力電流である充電電流iは、電流センサ14で検出されて制御回路15に入力される。図に示すように、制御回路15では、入力された充電電流iを充電電流指令値iと比較し、差分をフィードバックして第1のスイッチング回路4および第2のスイッチング回路10の出力DUTYを決定し、各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5、G-12を決定する。
 また、直流電源1に並列接続された第1の平滑コンデンサ3の電圧は、直流電源1の電圧と同じ直流電圧となる。
 図3は、第1のスイッチング回路4、第2のスイッチング回路10の各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5(G-5a~G-5d)、G-12(G-12a~G-12d)の波形を示す。図に示すように、第1のスイッチング回路4内の半導体スイッチング素子5aと、第2のスイッチング回路10内の半導体スイッチング素子12dとは、駆動信号の位相を一致させている。この場合、半導体スイッチング素子5aが第1の基準素子、半導体スイッチング素子12dが第2の基準素子となる。
 また、半導体スイッチング素子5a(第1の基準素子)と対角の関係にある半導体スイッチング素子5dが半導体スイッチング素子5aと同時にオンしている期間を第1の対角オン時間t1、半導体スイッチング素子12d(第2の基準素子)と対角の関係にある半導体スイッチング素子12aが半導体スイッチング素子12dと同時にオンしている期間を第2の対角オン時間t2、周期をTとおく。
 なお、2つ以上の半導体スイッチング素子が共にオンしている状態のことを、ここでは同時オンと称する。
 半導体スイッチング素子5a、5bの駆動信号G-5a、G-5dは、それぞれ同じオン時間幅でその位相が180°反転した波形となっている。同様に、駆動信号G-5c、G-5dは、それぞれ同じオン時間幅でその位相が180°反転した波形となっている。駆動信号G-12a、G-12bについても、また駆動信号G-12c、G-12dについても同様である。それぞれ2つのブリッジ回路を有するフルブリッジ回路である第1、第2のスイッチング回路4、10の各ブリッジ回路を構成する正側(高電圧側)の半導体スイッチング素子5a、5c、12a、12cおよび負側(低電圧側)の半導体スイッチング素子5b、5d、12b、12dは、それぞれ50%のオン時間比率で制御される。なお、50%のオン時間比率というのは、正側の半導体スイッチング素子と負側の半導体スイッチング素子との同時オンを防止する為に設定された短絡防止時間を無視したもので、実際には、一方がオフした後、設定された短絡防止時間の経過後に他方がオンする。そして、各半導体スイッチング素子5a~5d、12a~12dがゼロ電圧スイッチングするように、短絡防止時間の間に各半導体スイッチング素子5a~5d、12a~12dに並列接続されたコンデンサ6a~6d、13a~13dの電圧が第1、第2の平滑コンデンサ3、11の電圧まで増加する、あるいはゼロ電圧近辺まで低下するように設定されている。
 直流電源1の電圧をV1とすると、第1のスイッチング回路4は、半導体スイッチング素子5a、5dが同時オンする期間(第1の対角オン時間)t1に電圧V1の正のパルスを、半導体スイッチング素子5b、5cが同時オンする期間t1aに電圧(-V1)の負のパルスを出力して、高周波トランス8の第1の巻線8aに印加する。高周波トランス8の第1の巻線8aと第2の巻線8bとの巻線比をN1:N2とすると、この時、高周波トランス8の第2の巻線8bには、(±V1)×N2/N1の電圧が印加される。
 図3および図4~図9に基づいて、一周期内のDC/DCコンバータ回路100の動作を以下に示す。なお、バッテリ2の電圧は、第2の巻線8bに発生する電圧より高いものとする。
 時刻a1において、第1のスイッチング回路4では半導体スイッチング素子5aがオン状態で、半導体スイッチング素子5cをオフした後、半導体スイッチング素子5dをオンすることにより、半導体スイッチング素子5a、5dが同時オンすると、第1の平滑コンデンサ3→半導体スイッチング素子5a→第1のリアクトル7→第1の巻線8a→半導体スイッチング素子5d→第1の平滑コンデンサ3の経路で電流が流れる。これにより、高周波トランス8の第1の巻線8aには正の電圧が印加され、第2の巻線8bに正電圧が発生する。また、半導体スイッチング素子5c、5dのスイッチングは半導体スイッチング素子5aがオン状態で行い、半導体スイッチング素子5c、5dに並列接続されたコンデンサ6c、6dが充放電されることにより半導体スイッチング素子5c、5dはゼロ電圧スイッチングとなる。
 また、第2のスイッチング回路10では、半導体スイッチング素子12b、12dが同時オンしており、第2の巻線8b→第2のリアクトル9→半導体スイッチング素子12b→半導体スイッチング素子12d→第2の巻線8bの経路で電流が流れ、第2のリアクトル9が励磁される(図4)。
 時刻a2において、第2のスイッチング回路10では半導体スイッチング素子12bをオフした後、半導体スイッチング素子12aをオンして、第2の巻線8b→第2のリアクトル9→半導体スイッチング素子12a→第2の平滑コンデンサ11→半導体スイッチング素子12d→第2の巻線8bの経路で電流が流れ、第2のリアクトル9の励磁エネルギを第2の平滑コンデンサ11に供給する。この時、半導体スイッチング素子12a、12bのスイッチングは半導体スイッチング素子12dがオン状態で行い、半導体スイッチング素子12a、12bはそれぞれ並列接続されたコンデンサ13a、13bの影響でゼロ電圧スイッチングとなる(図5)。なお、半導体スイッチング素子12aの逆並列ダイオードによって第2の平滑コンデンサ11に接続されるため、半導体スイッチング素子12aはオンしなくても、整流は可能となる。
 時刻a3において、第1、第2のスイッチング回路4、10では、半導体スイッチング素子5a、12dが同じタイミングでオフした後、半導体スイッチング素子5b、12cが同じタイミングでオンする。高周波トランス8の第1の巻線8a側の第1のスイッチング回路4が、第1のリアクトル7→第1の巻線8a→半導体スイッチング素子5d→半導体スイッチング素子5b→第1のリアクトル7の経路で電流が環流し、第1の巻線8aに電圧印加が無い状態となる。これにより第2の巻線8b側の第2のスイッチング回路10では、第2のリアクトル9→半導体スイッチング素子12a→半導体スイッチング素子12c→第2の巻線8b→第2のリアクトル9の経路で、第2のリアクトル9に流れる電流が還流して第2の巻線8bにも流れる。またこの時、第1のスイッチング回路4では、半導体スイッチング素子5a、5bのスイッチングは半導体スイッチング素子5dがオン状態で行い、半導体スイッチング素子5a、5bはそれぞれ並列接続されたコンデンサ6a、6bの影響でゼロ電圧スイッチングとなる(図6)。
 時刻a4において、第1のスイッチング回路4では、半導体スイッチング素子5dをオフした後、半導体スイッチング素子5cをオンすることにより、半導体スイッチング素子5b、5cが同時オンし、第1の平滑コンデンサ3→半導体スイッチング素子5c→第1の巻線8a→第1のリアクトル7→半導体スイッチング素子5b→第1の平滑コンデンサ3の経路で電流が流れる。これにより、高周波トランス8の第1の巻線8aには負の電圧が印加され、第2の巻線8bに負電圧が発生する。また、半導体スイッチング素子5c、5dのスイッチングは半導体スイッチング素子5bがオン状態で行い、半導体スイッチング素子5c、5dはそれぞれ並列接続されたコンデンサ6c、6dの影響でゼロ電圧スイッチングとなる。
 また、第2のスイッチング回路10では、半導体スイッチング素子12a、12cが同時オンしており、第2の巻線8b→半導体スイッチング素子12c→半導体スイッチング素子12a→第2のリアクトル9→第2の巻線8bの経路で電流が流れ、第2のリアクトル9が逆極性に励磁される(図7)。
 時刻a5において、第2のスイッチング回路10では半導体スイッチング素子12aをオフした後、半導体スイッチング素子12bをオンして、第2の巻線8b→半導体スイッチング素子12c→第2の平滑コンデンサ11→半導体スイッチング素子12b→第2のリアクトル9→第2の巻線8bの経路で電流が流れ、第2のリアクトル9の励磁エネルギを第2の平滑コンデンサ11に供給する。この時、半導体スイッチング素子12a、12bのスイッチングは半導体スイッチング素子12cがオン状態で行い、半導体スイッチング素子12a、12bはそれぞれ並列接続されたコンデンサ13a、13bの影響でゼロ電圧スイッチングとなる(図8)。なお、半導体スイッチング素子12bの逆並列ダイオードによって第2の平滑コンデンサ11に接続されるため、半導体スイッチング素子12bはオンしなくても、整流は可能となる。
 時刻a6(=a0)において、第1、第2のスイッチング回路4では、半導体スイッチング素子5b、12cが同じタイミングでオフした後、半導体スイッチング素子5a、12dが同じタイミングでオンする。高周波トランス8の第1の巻線8a側の第1のスイッチング回路4が、第1のリアクトル7→半導体スイッチング素子5a→半導体スイッチング素子5c→第1の巻線8a→第1のリアクトル7の経路で電流が還流し、第1の巻線8aに電圧印加が無い状態となる。これにより第2の巻線8b側の第2のスイッチング回路10では、第2のリアクトル9→第2の巻線8b→半導体スイッチング素子12d→半導体スイッチング素子12b→第2のリアクトル9の経路で、第2のリアクトル9に流れる電流が還流して第2の巻線8bにも流れる。またこの時、第1のスイッチング回路4では、半導体スイッチング素子5a、5bのスイッチングは半導体スイッチング素子5cがオン状態で行い、半導体スイッチング素子5a、5bはそれぞれ並列接続されたコンデンサ6a、6bの影響でゼロ電圧スイッチングとなる(図9)。
 次いで時刻a1(=a7)の制御に戻る。
 このような一連の制御(a1~a6)を繰り返すことによって、高周波トランス8の第2の巻線8bに発生する電圧を昇圧してバッテリ2に電力を供給する。その際、第2のスイッチング回路10では、高周波トランス8に電圧印加されている期間(t1、t1a)内に第2のリアクトル9を励磁する期間を設け、即ち、第2のリアクトル9を昇圧リアクトルに用いて昇圧動作する。
 また、高周波トランス8の一次側の第1のスイッチング回路4における各半導体スイッチング素子5a~5dのスイッチングは、コンデンサ6a~6dおよび第1のリアクトル7の作用で、全てゼロ電圧スイッチングとなる。なお、二次側の第2のスイッチング回路10のスイッチングは、一部がゼロ電圧スイッチングとなる。
 次にバッテリ2から直流電源1に電力伝送する場合について説明する。
 図10は、バッテリ2から直流電源1への電力伝送、即ちバッテリ2を放電する場合の制御ブロック図である。この場合、DC/DCコンバータ回路100は、直流電源1に出力しており、第1の平滑コンデンサ3の電圧vが出力電圧となる。この出力電圧vは、電圧センサ16で検出されて制御回路15に入力される。図に示すように、制御回路15では、入力された出力電圧vを出力電圧指令値vと比較し、差分をフィードバックして第1のスイッチング回路4および第2のスイッチング回路10の出力DUTYを決定し、各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5、G-12を決定する。
 バッテリ2から電力供給される場合には、直流電源1から電力供給される場合の逆方向動作となるため、バッテリ2に並列に接続された第2の平滑コンデンサ11はバッテリ2の電圧と同じ直流電圧となる。
 図11に示すように、第2のスイッチング回路10では、半導体スイッチング素子12a、12dが同時オンすると、第2の平滑コンデンサ11→半導体スイッチング素子12a→第2のリアクトル9→第2の巻線8b→半導体スイッチング素子12d→第2の平滑コンデンサ11の経路で電流が流れる。これにより、高周波トランス8の第2の巻線8bには正の電圧が印加され、第1の巻線8aに正電圧が発生する。
 また、第1のスイッチング回路4では、半導体スイッチング素子5b、5dが同時オンしており、第1の巻線8a→第1のリアクトル7→半導体スイッチング素子5b→半導体スイッチング素子5d→第1の巻線8aの経路で電流が流れ、第1のリアクトル7が励磁される。
 図11に示す状態は、直流電源1からバッテリ2への電力伝送時の図4の状態と、第1、第2のスイッチング回路4、10を逆にしたものである。DC/DCコンバータ回路100は、高周波トランス8を挟んで第1、第2のスイッチング回路4、10をトランス8を中心に対称に構成しており、バッテリ2から直流電源1に電力伝送する場合は、直流電源1からバッテリ2へ電力伝送する場合と、第1、第2のスイッチング回路4、10の駆動信号G-5、G-12を逆に用いて制御することで、同様に電力伝送が行える。なお、駆動信号G-5、G-12を逆に用いて制御するとは、半導体スイッチング素子5aに対して半導体スイッチング素子12d、半導体スイッチング素子5bに対して半導体スイッチング素子12c、半導体スイッチング素子5cに対して半導体スイッチング素子12b、半導体スイッチング素子5dに対して半導体スイッチング素子12aというようにそれぞれ対応する半導体スイッチング素子を決めて、対応する半導体スイッチング素子同士でスイッチング制御パターンを逆にすることである。そして、高周波トランス8の第1の巻線8aに発生する電圧を昇圧して直流電源1に電力を供給する。
 この場合、第1のスイッチング回路4では、高周波トランス8に電圧印加されている期間内に第1のリアクトル7を励磁する期間を設け、即ち、第1のリアクトル7を昇圧リアクトルに用いて昇圧動作する。
 また、高周波トランス8の一次側となる第2のスイッチング回路10における各半導体スイッチング素子12a~12dのスイッチングは、コンデンサ13a~13dおよび第2のリアクトル9の作用で、全てゼロ電圧スイッチングとなる。なお、二次側の第1のスイッチング回路4のスイッチングは、一部がゼロ電圧スイッチングとなる。
 次に、半導体スイッチング素子5a(第1の基準素子)と半導体スイッチング素子5dとが同時オンする第1の対角オン時間t1と、半導体スイッチング素子12d(第2の基準素子)と半導体スイッチング素子12aが同時オンする第2の対角オン時間t2とについて、以下に説明する。
 直流電源1からバッテリ2を充電する制御では、高周波トランス8の第1の巻線8aから第2の巻線8bに電力移行されて第2の巻線8bに電圧が発生している期間は、半導体スイッチング素子5a、5dの同時オンする期間(第1の対角オン時間t1)、および半導体スイッチング素子5b、5cの同時オンする期間(t1a)である。この期間を出来る限り長くすることで、第1のスイッチング回路4および第2のスイッチング回路10の還流期間に関わる損失を低減することが可能となる。
 このため、直流電源1からバッテリ2に電力伝送する制御では、高周波トランス8の第1の巻線8aに電圧が印加される期間が最大となるように、第1の対角オン時間t1を設定する。即ち、第1の対角オン時間t1を最大オン時間tmaxに設定する。この最大オン時間tmaxは、第1のスイッチング回路4の各半導体スイッチング素子5a~5dがゼロ電圧スイッチングする為に要する時間に基づいて設定する。なお、半導体スイッチング素子5b、5cの同時オンする期間(t1a)は第1の対角オン時間t1に等しい為、この期間も最大オン時間tmaxに設定される。
 逆に、バッテリ2から直流電源1に電力伝送する制御では、高周波トランス8の第2の巻線8bに電圧が印加される期間が最大となるように、半導体スイッチング素子12a、12dの同時オンする第2の対角オン時間t2を設定する。即ち、第2の対角オン時間t2を最大オン時間tmaxに設定する。このとき、半導体スイッチング素子12b、12cの同時オンする期間(t2a)も最大オン時間tmaxに設定される。
 制御回路15は、第1の対角オン時間t1と第2の対角オン時間t2とが所定の関係を満たすように各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5、G-12を生成する。図12は、第1の対角オン時間t1と第2の対角オン時間t2との関係を示した図である。図において、第1の対角オン時間t1は実線で、第2の対角オン時間t2は点線で示す。図中のAは、直流電源1、バッテリ2間で伝送される電力が例えば0の基準点Aで、基準点Aより右側に、直流電源1からバッテリ2への電力伝送を示し、基準点Aより左側にバッテリ2から直流電源1への電力伝送を示す。また、この基準点Aは、第1の対角オン時間t1と第2の対角オン時間t2とが共に最大オン時間tmaxとなる点である。図12に示すように、制御回路15は、直流電源1からバッテリ2への電力移行量を増加させる方向への制御量に依存して、第1の対角オン時間t1と第2の対角オン時間t2とを変化させる。
 直流電源1からバッテリ2に電力伝送する場合、第1の対角オン時間t1が最大オン時間tmax以下であれば、例えば図2で示されたフィードバック制御の結果を受けて、第1の対角オン時間t1を調整するために、第1のスイッチング回路4の半導体スイッチング素子5c、5dを駆動する位相を制御する。この時、第2のスイッチング回路10では第2の対角オン時間t2が最大オン時間tmaxとなるように半導体スイッチング素子12a、12bを駆動する位相を制御する。第1の対角オン時間t1が最大オン時間tmaxとなり、フィードバック制御により更に出力の増加が必要な場合には、図13に示すように、t1=tmaxを維持したまま、第2の対角オン時間t2を減少させるように第2のスイッチング回路10の半導体スイッチング素子12a、12bを駆動する位相を調整する。
 また、バッテリ2から直流電源1に電力伝送する場合についても同様で、第2の対角オン時間t2が最大オン時間tmax以下であれば、例えば図10で示されたフィードバック制御の結果を受けて、第2の対角オン時間t2を調整するために、第2のスイッチング回路10の半導体スイッチング素子12a、12bを駆動する位相を制御する。この時、第1のスイッチング回路4では第1の対角オン時間t1が最大オン時間tmaxとなるように半導体スイッチング素子5c、5dを駆動する位相を制御する。第2の対角オン時間t2が最大オン時間tmaxとなり、フィードバック制御により更に出力の増加が必要な場合には、図14に示すように、t2=tmaxを維持したまま、第1の対角オン時間t1を減少させるように第1のスイッチング回路4の半導体スイッチング素子5c、5dを駆動する位相を調整する。
 このように、制御回路15は、第1のスイッチング回路4の半導体スイッチング素子5aと第2のスイッチング回路10の半導体スイッチング素子12dとを同位相の駆動信号G-5a、G-12dで駆動し、第1の対角オン時間t1を変化させる時は、半導体スイッチング素子5c、5dを駆動する位相を制御し、第2の対角オン時間t2を変化させる時は、半導体スイッチング素子12a、12bを駆動する位相を制御して行う。
 そして、電力の伝送方向によらず、直流電源1からバッテリ2への電力移行量を増加させる方向への制御量に依存して、第1の対角オン時間t1、第2の対角オン時間t2を、設定された関係(図12にて示した関係)を満たすように変化させる。これにより、電力伝送方向に依らず、同じ駆動制御法にてDC/DCコンバータ回路100を制御して双方向電力変換を行うことが可能となる。これにより、簡素な制御で双方向電力変換動作の実現が可能となる。
 また、第1、第2のスイッチング回路4、10は、各半導体スイッチング素子5a~5d、12a~12dがゼロ電圧スイッチング可能に構成され、高周波トランス8の一次側となる時に、ゼロ電圧スイッチングとなるように制御される。そして、ゼロ電圧スイッチングに作用した第1、第2のリアクトル7、9を、高周波トランス8の二次側となるときには、昇圧リアクトルとして動作させる。これにより、別途昇圧回路を設けることなく、二次側のスイッチング回路の昇圧動作により昇圧できる。
 例えば、直流電源1からバッテリ2への電力伝送時では、高周波トランス8の第2の巻線8bに発生する電圧を、第2のリアクトル9と第2のスイッチング回路10と第2の平滑コンデンサ11によって昇圧回路を形成することで、第2の巻線8bに発生する電圧よりもバッテリ2の電圧が高い場合にも、バッテリ2を充電することが可能となる。
 このため簡易な回路構成で広い電圧範囲で双方向に電力伝送できる。また、電力伝送方向に依らずゼロ電圧スイッチングが可能になると共に、部品点数が少ないことにより損失低減が図れる。
 なお、高周波トランス8の巻数比、および第1、第2のリアクトル7、9は、直流電源1とバッテリ2との各電圧範囲に応じてそれぞれ最適な設計が可能である。
 また、バッテリ2から直流電源1に電力伝送する際に、上記実施の形態では、直流電源1への出力電圧vを出力電圧指令値vに追従するようにフィードバック制御したが、以下に示す制御でも良い。図15に示すように、出力電圧指令値vと出力電圧vとの差分をフィードバックして、バッテリ2の放電電流指令値(-i)を作成する。そして、電流センサ14で検出されるバッテリ2の充電電流iを符号反転した放電電流(-i)が放電電流指令値(-i)に一致するようにフィードバック制御によって第1、第2のスイッチング回路の出力DUTYを決定しても良い。
 具体的には、出力電圧指令値vから出力電圧vを減算した差分が正の場合、極性を正として放電電流指令値(-i)を作成する。放電電流指令値が正とは、バッテリ2から直流電源1の方向に、電力伝送方向を保持している状態を指している。そしてバッテリ2から直流電源1への放電電流(-i)が放電電流指令値(-i)に一致するように、第1のスイッチング回路4の第1の対角ON時間t1を調整する。このとき第2のスイッチング回路10の第2の対角ON時間t2は最大オン時間tmaxに維持される。
 出力電圧指令値vから出力電圧vを減算した差分が負の場合、極性を負として放電電流指令値(-i)を作成する。放電電流指令値が負とは、電力伝送方向を切り替えて、直流電源1からバッテリ2の方向になった状態を指している。そして放電電流(-i)が放電電流指令値(-i)に一致するように、第2のスイッチング回路10の第2の対角ON時間t2を調整する。このとき第1のスイッチング回路4の第1の対角ON時間t1は最大オン時間tmaxに維持される。
 これにより、制御回路15は、直流電源1とバッテリ2の間に流れる充放電電流±iのみに基づいて、図12で示す双方向の制御を実現することが可能となる。なお、図12における、直流電源1からバッテリ2への電力移行量を増加させる方向への制御量は充電電流iとなる。
 このように、充放電電流±iのみに基づく制御では、以下のような効果が得られる。例えばバッテリ2から直流電源1側に電力供給している際に、直流電源1に接続される負荷が急に小さくなった場合、直流電源1側の出力電圧が上昇する。この時、出力電圧指令値vと出力電圧vとの差分がマイナスとなり、バッテリ2の放電電流指令値(-i)もマイナス、すなわちバッテリ2を充電する側の指令値に変化し、直流電源1の過電圧分のエネルギをバッテリ2に充電するような電流指令値となる。そして、これに追従するように電流を制御することによって、電流(電力)伝送方向の逆転に対しても制御方法を変更すること無く、一貫した制御で動作を継続することができる。これにより、負荷急変の場合にも安定に動作を継続することが可能となる。
 また、図12で示す第1の対角オン時間t1と第2の対角オン時間t2との関係を用いて制御すると、例えば直流電源1からバッテリ2への電力伝送時に、基準点Aになって、さらに移行電力量を減少させる時、第1の対角オン時間t1が減少するように制御され、第1のスイッチング回路4が降圧制御される。また、バッテリ2から直流電源1への電力伝送時に、基準点Aになって、さらに移行電力量を減少させる時、第2の対角オン時間t2が減少するように制御され、第2のスイッチング回路10が降圧制御される。
 このように、電流(電力)伝送方向、さらには昇圧、降圧に依らず、制御方法を変更すること無く、一貫した制御で動作を継続することができる。
 また、上記説明では、第1のスイッチング回路4の半導体スイッチング素子5aと第2のスイッチング回路10の半導体スイッチング素子12dとを同位相の駆動信号G-5a、G-12dで駆動するものとしたが、これは半導体スイッチング素子5bと半導体スイッチング素子12cとを同位相の駆動信号G-5b、G-12cで駆動する事と同じ事である。また、同位相の駆動信号で駆動する第1の基準素子と第2の基準素子は、他の組み合わせでも良く、例えば、半導体スイッチング素子5cと半導体スイッチング素子12bとの組み合わせ、あるいは半導体スイッチング素子5dと半導体スイッチング素子12aとの組み合わせでも良く、同様の効果を得ることができる。
実施の形態2.
 上記実施の形態1では、第1のスイッチング回路4の半導体スイッチング素子5aと第2のスイッチング回路10の半導体スイッチング素子12dとを同位相の駆動信号で制御したが、その他の制御について以下に説明する。なお、バッテリ充放電装置の回路構成は、上記実施の形態1と同様である。
 図16は、この実施の形態2による第1のスイッチング回路4、第2のスイッチング回路10の各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5(G-5a~G-5d)、G-12(G-12a~G-12d)の波形を示す。
 上記実施の形態1と同様に、第1、第2のスイッチング回路4、10の各ブリッジ回路を構成する正側の半導体スイッチング素子および負側の半導体スイッチング素子は、短絡防止時間を無視すると、それぞれ50%のオン時間比率で制御される。また、各半導体スイッチング素子5a~5d、12a~12dがゼロ電圧スイッチングするように、短絡防止時間の間に各半導体スイッチング素子5a~5d、12a~12dに並列接続されたコンデンサ6a~6d、13a~13dの電圧が第1、第2の平滑コンデンサ3、11の電圧まで増加する、あるいはゼロ電圧近辺まで低下するように設定されている。
 直流電源1の電圧をV1とすると、第1のスイッチング回路4は、半導体スイッチング素子5a、5dが同時オンする期間(第1の対角オン時間)t1に電圧V1の正のパルスを、半導体スイッチング素子5b、5cが同時オンする期間t1aに電圧(-V1)の負のパルスを出力して、高周波トランス8の第1の巻線8aに印加する。高周波トランス8の第1の巻線8aと第2の巻線8bとの巻線比をN1:N2と、この時、高周波トランス8の第2の巻線8bには、(±V1)×N2/N1の電圧が印加される。図16に示す第1のスイッチング回路4の出力電圧波形は、第1の巻線8aに印加される電圧であるが、大きさを無視すると第2の巻線8bに発生する電圧と同様である。
 直流電源1からバッテリ2への電力伝送において、上記実施の形態1の図2で示した場合と同様に、制御回路15が、入力された充電電流iを充電電流指令値iと比較し、差分をフィードバックして第1のスイッチング回路4および第2のスイッチング回路10の出力DUTYを決定し、各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5、G-12を決定する。
 一周期内のDC/DCコンバータ回路100の動作を以下に示す。なお、バッテリ2の電圧は、第2の巻線8bに発生する電圧より高いものとする。
 時刻b1は、上記実施の形態1の時刻a1と同様の制御で、第1のスイッチング回路4では半導体スイッチング素子5aがオン状態で、半導体スイッチング素子5cをオフした後、半導体スイッチング素子5dをオンすることにより、半導体スイッチング素子5a、5dが同時オンする。また、第2のスイッチング回路10では、半導体スイッチング素子12b、12dが同時オンしている。これにより、図4に示す電流経路で電流が流れ、高周波トランス8の第1の巻線8aには正の電圧が印加され、第2の巻線8bに正電圧が発生し、第2のリアクトル9が励磁される。
 時刻b2は、上記実施の形態1の時刻a2と同様の制御で、第2のスイッチング回路10では半導体スイッチング素子12bをオフした後、半導体スイッチング素子12aをオンする。これにより、図5に示す電流経路で電流が流れ、第2のリアクトル9の励磁エネルギを第2の平滑コンデンサ11に供給する。
 時刻b3において、第1のスイッチング回路4では、半導体スイッチング素子5aがオフした後、半導体スイッチング素子5bがオンする。これにより、図17に示す電流経路で電流が流れ、高周波トランス8の第1の巻線8a側の第1のスイッチング回路4が、第1のリアクトル7→第1の巻線8a→半導体スイッチング素子5d→半導体スイッチング素子5b→第1のリアクトル7の経路で電流が環流し、第1の巻線8aに電圧印加が無い状態となる。
 時刻b4において、第2のスイッチング回路4では、半導体スイッチング素子12dがオフした後、半導体スイッチング素子12cがオンする。これにより、図6に示す電流経路で電流が流れ、第2の巻線8b側の第2のスイッチング回路10では、第2のリアクトル9→半導体スイッチング素子12a→半導体スイッチング素子12c→第2の巻線8b→第2のリアクトル9の経路で、第2のリアクトル9に流れる電流が還流して第2の巻線8bにも流れる。
 時刻b5は、上記実施の形態1の時刻a4と同様の制御で、第1のスイッチング回路4では、半導体スイッチング素子5dをオフした後、半導体スイッチング素子5cをオンすることにより、半導体スイッチング素子5b、5cが同時オンする。また、第2のスイッチング回路10では、半導体スイッチング素子12a、12cが同時オンしている。これにより、図7に示す電流経路で電流が流れ、高周波トランス8の第1の巻線8aには負の電圧が印加され、第2の巻線8bに負電圧が発生し、第2のリアクトル9が逆極性に励磁される。
 時刻b6は、上記実施の形態1の時刻a5と同様の制御で、第2のスイッチング回路10では半導体スイッチング素子12aをオフした後、半導体スイッチング素子12bをオンする。これにより、図8に示す電流経路で電流が流れ、第2のリアクトル9の励磁エネルギを第2の平滑コンデンサ11に供給する。
 時刻b7において、第1のスイッチング回路4では、半導体スイッチング素子5bがオフした後、半導体スイッチング素子5aがオンする。これにより、図18に示す電流経路で電流が流れ、高周波トランス8の第1の巻線8a側の第1のスイッチング回路4が、第1のリアクトル7→半導体スイッチング素子5a→半導体スイッチング素子5c→第1の巻線8a→第1のリアクトル7の経路で電流が還流し、第1の巻線8aに電圧印加が無い状態となる。
 時刻b8において、第2のスイッチング回路4では、半導体スイッチング素子12cがオフした後、半導体スイッチング素子12dがオンする。これにより、図9に示す電流経路で電流が流れ、第2の巻線8b側の第2のスイッチング回路10では、第2のリアクトル9→第2の巻線8b→半導体スイッチング素子12d→半導体スイッチング素子12b→第2のリアクトル9の経路で、第2のリアクトル9に流れる電流が還流して第2の巻線8bにも流れる。
 次いで時刻b1(=a9)の制御に戻る。
 このような一連の制御(b1~b8)を繰り返すことによって、高周波トランス8の第2の巻線8bに発生する電圧を昇圧してバッテリ2に電力を供給する。制御回路15は、第1、第2のスイッチング回路4、10の出力DUTYを決定して制御する際、第1のスイッチング回路4内で対角の関係にある2つの半導体スイッチング素子が同時オンする対角オン時間t1(=t1a)と、第2のスイッチング回路10内で対角の関係にある2つの半導体スイッチング素子が同時オンする対角オン時間t2とを決定し、さらに、高周波トランス8に電圧印加されている期間(t1、t1a)内に第2のリアクトル9を励磁する期間(時刻b1~b2、時刻b5~b6)を設けるように制御する。これにより、第2のスイッチング回路10は、第2のリアクトル9を昇圧リアクトルに用いて昇圧動作する。
 また、この実施の形態2においても、上記実施の形態1と同様に、高周波トランス8の一次側の第1のスイッチング回路4における各半導体スイッチング素子5a~5dのスイッチングは、コンデンサ6a~6dおよび第1のリアクトル7の作用で、全てゼロ電圧スイッチングとなり、二次側の第2のスイッチング回路10のスイッチングは、一部がゼロ電圧スイッチングとなる。
 次にバッテリ2から直流電源1に電力伝送する場合について説明する。上記実施の形態1の図10で示した場合と同様に、制御回路15が、入力された出力電圧vを出力電圧指令値vと比較し、差分をフィードバックして第1のスイッチング回路4および第2のスイッチング回路10の出力DUTYを決定し、各半導体スイッチング素子5a~5d、12a~12dの駆動信号G-5、G-12を決定する。
 DC/DCコンバータ回路100は、高周波トランス8を挟んで第1、第2のスイッチング回路4、10を対称に構成しており、バッテリ2から直流電源1に電力伝送する場合は、直流電源1からバッテリ2へ電力伝送する場合と、第1、第2のスイッチング回路4、10の駆動信号G-5、G-12を逆に用いて制御することで、同様に電力伝送が行える。そして、高周波トランス8の第1の巻線8aに発生する電圧を昇圧して直流電源1に電力を供給する。
 そして、第1のスイッチング回路4では、高周波トランス8に電圧印加されている期間内に第1のリアクトル7を励磁する期間を設け、即ち、第1のリアクトル7を昇圧リアクトルに用いて昇圧動作する。
 また、高周波トランス8の一次側となる第2のスイッチング回路10における各半導体スイッチング素子12a~12dのスイッチングは、コンデンサ13a~13dおよび第2のリアクトル9の作用で、全てゼロ電圧スイッチングとなり、二次側の第1のスイッチング回路4のスイッチングは、一部がゼロ電圧スイッチングとなる。
 この実施の形態においても、高周波トランス8の一次側の巻線から二次側の巻線に電力移行される期間を出来る限り長くすることで、第1のスイッチング回路4および第2のスイッチング回路10の還流期間に関わる損失を低減することが可能となる。
 このため、直流電源1からバッテリ2に電力伝送する制御では、高周波トランス8の第1の巻線8aに電圧が印加される期間、即ち、対角オン時間t1が予め設定した最大時間になるように第1のスイッチング回路4を制御する。また、バッテリ2から直流電源1に電力伝送する制御では、高周波トランス8の第2の巻線8bに電圧が印加される期間、即ち、対角オン時間t2が予め設定した最大時間となるように第2のスイッチング回路10を制御する。
 対角オン時間t1、t2が最大となる時間は、各半導体スイッチング素子5a~5d、12a~12dがゼロ電圧スイッチングする為に要する時間に基づいて設定する。
 以上のように、第1、第2のスイッチング回路4、10は、各半導体スイッチング素子5a~5d、12a~12dがゼロ電圧スイッチング可能に構成され、高周波トランス8の一次側となる時に、ゼロ電圧スイッチングとなるように制御される。そして、ゼロ電圧スイッチングに作用した第1、第2のリアクトル7、9を、高周波トランス8の二次側となるときには、昇圧リアクトルとして動作させる。これにより、別途昇圧回路を設けることなく、二次側のスイッチング回路の昇圧動作により昇圧できる。
 例えば、直流電源1からバッテリ2への電力伝送時では、高周波トランス8の第2の巻線8bに発生する電圧を、第2のリアクトル9と第2のスイッチング回路10と第2の平滑コンデンサ11によって昇圧回路を形成することで、第2の巻線8bに発生する電圧よりもバッテリ2の電圧が高い場合にも、バッテリ2を充電することが可能となる。
 このため簡易な回路構成で広い電圧範囲で双方向に電力伝送できる。また、電力伝送方向に依らずゼロ電圧スイッチングが可能になると共に、部品点数が少ないことにより損失低減が図れる。
実施の形態3.
 上記実施の形態2では、バッテリ充放電装置は、高周波トランス8の巻線に発生する電圧よりも高い電圧を出力する場合について説明したが、この実施の形態では、出力電圧が高周波トランス8の巻線に発生する電圧よりも低い場合について説明する。
 まず、直流電源1からバッテリ2へ電力伝送する場合、第2のスイッチング回路10内の半導体スイッチング素子12a~12dは全てオフ状態とする。この時、第1のスイッチング回路4の半導体スイッチング素子5a、5dを同時オンすると、図5に示すものと同様に、高周波トランス8の第1の巻線8a側には、第1の平滑コンデンサ3→半導体スイッチング素子5a→第1のリアクトル7→第1の巻線8a→半導体スイッチング素子5d→第1の平滑コンデンサ3の経路で電流が流れ、電力が伝送される。この時、高周波トランス8の第2の巻線8b側には、第2の巻線8b→第2のリアクトル9→半導体スイッチング素子12aの逆並列ダイオード→第2の平滑コンデンサ11→半導体スイッチング素子12dの逆並列ダイオード→第2の巻線8bの経路で電流が流れる。
 次に、第1のスイッチング回路4では、半導体スイッチング素子5aがオフした後、半導体スイッチング素子5bをオンすると、図17に示すものと同様に、高周波トランス8の第1の巻線8a側には、第1のリアクトル7→第1の巻線8a→半導体スイッチング素子5d→半導体スイッチング素子5b→第1のリアクトル7の経路で電流が流れる。この時、高周波トランス8の第2の巻線8b側には、第2のリアクトル9→半導体スイッチング素子12aの逆並列ダイオード→第2の平滑コンデンサ11→半導体スイッチング素子12dの逆並列ダイオード→第2の巻線8b→第2のリアクトル9の経路で電流が流れる。そして、第2のリアクトル9に流れる電流がゼロになると、高周波トランス8の第2の巻線8b側の電流は無くなる。
 次に、第1のスイッチング回路4では、半導体スイッチング素子5dをオフした後、半導体スイッチング素子5cをオンすると、図8に示すものと同様に、高周波トランス8の第1の巻線8a側には、第1の平滑コンデンサ3→半導体スイッチング素子5c→第1の巻線8a→第1のリアクトル7→半導体スイッチング素子5b→第1の平滑コンデンサ3の経路で電流が流れ、電力が伝送される。この時、高周波トランス8の第2の巻線8b側には、第2の巻線8b→半導体スイッチング素子12cの逆並列ダイオード→第1の平滑コンデンサ11→半導体スイッチング素子12bの逆並列ダイオード→第2のリアクトル9→第2の巻線8bの経路で電流が流れる。
 次に、第1のスイッチング回路4では、半導体スイッチング素子5bがオフした後、半導体スイッチング素子5aをオンすると、図18に示すものと同様に、高周波トランス8の第1の巻線8a側には、第1のリアクトル7→半導体スイッチング素子5a→半導体スイッチング素子5c→第1の巻線8a→第1のリアクトル7の経路で電流が流れる。この時、高周波トランス8の第2の巻線8b側については、電流経路は変化せず、第2のリアクトル9に流れる電流がゼロになると、第2の巻線8b側の電流は無くなる。
 以上の一連の動作を繰り返すことによって、第2のスイッチング回路10は整流動作を行い、直流電源1からバッテリ2へ電力伝送を行う。バッテリ2の充電電流iの制御は、第1のスイッチング回路4内で対角の関係にある2つの半導体スイッチング素子5a、5d(5b、5c)が同時オンする対角オン時間のDUTYを制御することによって実現する。
 一方、バッテリ2から直流電源1へ電力伝送する場合、上記の動作と逆方向となり、第2のスイッチング回路10内で対角の関係にある2つの半導体スイッチング素子12a、12d(12b、12c)が同時オンする対角オン時間のDUTYを制御し、第1のスイッチング回路4は整流動作を行うことによって実現する。
 このようにDC/DCコンバータ回路100が動作することによって、高周波トランス8の二次側の巻線8b(8a)に発生する電圧よりも低い電圧で電力伝送する場合に、二次側のスイッチング回路10(4)の各半導体スイッチング素子12a~12d(5a~5d)の駆動信号を止める事が出来、制御の簡素化が実現できる。
 また、この実施の形態においても、第1、第2のスイッチング回路4、10は、各半導体スイッチング素子5a~5d、12a~12dがゼロ電圧スイッチング可能に構成され、高周波トランス8の一次側となる時に、ゼロ電圧スイッチングとなるように制御される。
 また、二次側の巻線8b(8a)に発生する電圧よりも高い電圧での電力伝送を所望するときに、上記実施の形態2の制御を用い、二次側の巻線8b(8a)に発生する電圧よりも低い電圧での電力伝送を所望するときに、この実施の形態の制御を用いることにより、簡易な回路構成で広い電圧範囲で双方向に電力伝送できる。また、電力伝送方向に依らずゼロ電圧スイッチングが可能になると共に、部品点数が少ないことにより損失低減が図れる。
実施の形態4.
 上記実施の形態3では高周波トランス8の二次側のスイッチング回路10(4)は、半導体スイッチング素子12a~12d(5a~5d)を全てオフして整流動作を行っていたが、高周波トランス8に発生する巻線電圧に合わせて、二次側のスイッチング回路10(4)の半導体スイッチング素子12a~12d(5a~5d)をオンさせても良い。なお、この場合、半導体スイッチング素子5a~5d(12a~12d)はMOSFET等、双方向導通する素子を用いる。
 直流電源1からバッテリ2への電力伝送時には、高周波トランス8の第1の巻線8aに電圧印加するタイミングに同期させて第2のスイッチング回路10内の各半導体スイッチング素子12a~12dを制御して第2のスイッチング回路10を整流動作させる。また、バッテリ2から直流電源1への電力伝送時には、高周波トランス8の第2の巻線8bに電圧印加するタイミングに同期させて第1のスイッチング回路4内の各半導体スイッチング素子5a~5dを制御して第1のスイッチング回路4を整流動作させる。
 各半導体スイッチング素子5a~5d、12a~12dを、例えばMOSFETにて構成すると、導通時の両端電圧は、逆並列ダイオードのオン電圧よりも低い。このため、上記のような同期整流動作によりMOSFET側を電流が流れるため、導通損失を低減することが可能となる。
実施の形態5.
 上記実施の形態1では、第2の直流電源にバッテリ2を用い、バッテリ2から直流電源1への電力伝送時においてのみ、直流電源1を電圧制御しており、その際、直流電源1への出力電圧指令値から出力電圧を差し引いた偏差の極性に応じて、バッテリ2の放電電流指令値の極性を切り替える制御が適用可能であった。このような制御は、直流電源1から第2の直流電源への電力電送においても適用でき、この実施の形態5では、双方向の電力電送において、電力を受電する側の直流電源の電圧制御を行う。
 図19は、この発明の実施の形態5によるDC/DCコンバータとしての直流電源充放電装置の回路構成を示した図である。図に示すように、直流電源充放電装置は、第1の直流電源としての直流電源1と第2の直流電源2aとの間で双方向の電力変換による電力伝送を行うもので、主回路となるDC/DCコンバータ回路100と制御回路15aを備える。DC/DCコンバータ回路100の構成は実施の形態1と同様である。
 また、第2の平滑コンデンサ11と第2の直流電源2aとの間には、第2の直流電源2aへの充電電流i(矢印の向きを正とする電流)を検出する電流センサ14が設置され、第1、第2の平滑コンデンサ3、11の各電圧V1、V2を検出する各電圧センサ16、17が設置される。そして、各センサ14、16、17のセンシングされた出力が制御回路15aに入力される。制御回路15aでは、入力された電流i、電圧V1、V2の値に基づいて、第1、第2のスイッチング回路4、10の各半導体スイッチング素子5a~5d、12a~12dをスイッチング制御する駆動信号G-5、G-12を生成して第1、第2のスイッチング回路4、10を駆動制御する。
 なお、第1の平滑コンデンサ3の電圧は直流電源1の電圧と同等であり、第2の平滑コンデンサ11の電圧は第2の直流電源2aの電圧と同等である。
 図20は、直流電源充放電装置の制御ブロック図であり、特に図20(a)は第2の直流電源2aから直流電源1へ電力伝送する制御を示し、図20(b)は直流電源1から第2の直流電源2aへ電力伝送する制御を示す。
 なお、フィードバック制御様式が上記実施の形態1と異なるのみで、各第1、第2のスイッチング回路4、10の周期的な基本の制御は、図3~図14で示した上記実施の形態1のものと同様である。
 第2の直流電源2aから直流電源1へ電力伝送する制御では、図20(a)に示すように、直流電源1の電圧V1を出力電圧として、出力電圧指令値V1から出力電圧V1を減算した差分が正の場合、極性を正として第2の直流電源2aの放電電流指令値(-i)を作成する。放電電流指令値が正とは、第2の直流電源2aから直流電源1の方向に、電力伝送方向を保持している状態を指している。そして第2の直流電源2aから直流電源1への放電電流(-i)が放電電流指令値(-i)に一致するように、第1のスイッチング回路4の第1の対角ON時間t1を調整する。このとき第2のスイッチング回路10の第2の対角ON時間t2は最大オン時間tmaxに維持される。
 出力電圧指令値V1から出力電圧V1を減算した差分が負の場合、極性を負として放電電流指令値(-i)を作成する。放電電流指令値が負とは、電力伝送方向を切り替えて、直流電源1から第2の直流電源2aへの方向になった状態を指している。そして放電電流(-i)が放電電流指令値(-i)に一致するように、第2のスイッチング回路10の第2の対角ON時間t2を調整する。このとき第1のスイッチング回路4の第1の対角ON時間t1は最大オン時間tmaxに維持される。
 これにより、制御回路15aは、直流電源1と第2の直流電源2aとの間に流れる充放電電流±iのみに基づいて、図12で示す双方向の制御を実現することが可能となる。
 次に、直流電源1から第2の直流電源2aへ電力伝送する制御では、図20(b)に示すように、第2の直流電源2aの電圧V2を出力電圧として、出力電圧指令値V2から出力電圧V2を減算した差分が正の場合、極性を正として第2の直流電源2aへの充電電流指令値iを作成する。充電電流指令値が正とは、直流電源1から第2の直流電源2aへの方向に、電力伝送方向を保持している状態を指している。そして第2の直流電源2aへの充電電流iが充電電流指令値iに一致するように、第2のスイッチング回路10の第2の対角ON時間t2を調整する。このとき第1のスイッチング回路4の第1の対角ON時間t1は最大オン時間tmaxに維持される。
 出力電圧指令値V2から出力電圧V2を減算した差分が負の場合、極性を負として充電電流指令値iを作成する。充電電流指令値が負とは、電力伝送方向を切り替えて、第2の直流電源2aから直流電源1への方向になった状態を指している。そして充電電流iが充電電流指令値iに一致するように、第1のスイッチング回路4の第1の対角ON時間t1を調整する。このとき第2のスイッチング回路10の第2の対角ON時間t2は最大オン時間tmaxに維持される。
 これにより、制御回路15aは、直流電源1と第2の直流電源2aとの間に流れる充放電電流±iのみに基づいて、図12で示す双方向の制御を実現することが可能となる。
 なお、図12における、直流電源1からバッテリ2への電力移行量を増加させる方向への制御量は、この実施の形態では充電電流iとなる。
 この実施の形態では、直流電源1、第2の直流電源2aの双方に対して電圧制御を行う機能を有し、電力伝送方向によらず一貫した制御で動作を継続することができる。そして、充放電電流±iの電流指令値の極性を切り替えることで、電力伝送方向のシームレスな切替を行うことができる。これにより、負荷急変などの場合にも早い応答で、安定に動作を継続することができる。
実施の形態6.
 上記実施の形態1~5においては、第1、第2のリアクトル7、9を個別に設置したが、これらの少なくとも一方を高周波トランス8の漏れインダクタンスで兼ねる事でも同様の効果を得ることが可能となる。これにより、構成部品の削減が可能となり、簡素な構成で双方向動作が実現できる。
 また、上記実施の形態1~4では一方の直流電源(第2の直流電源)にバッテリ2を用いたがこれに限るものではない。さらにまた第1、第2の直流電源の双方をバッテリで構成しても良い。
 なお、この発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (15)

  1. 第1の直流電源と第2の直流電源との間の双方向の電力伝送を行うDC/DCコンバータにおいて、
    トランスと、複数の半導体スイッチング素子を有して上記第1の直流電源と上記トランスの第1の巻線との間に接続されて、直流/交流間で電力変換する第1のコンバータ部と、複数の半導体スイッチング素子を有して上記第2の直流電源と上記トランスの第2の巻線との間に接続されて、直流/交流間で電力変換する第2のコンバータ部と、上記第1、第2のコンバータ部内の上記各半導体スイッチング素子を駆動制御して上記第1、第2のコンバータ部を制御する制御回路とを備え、
    上記第1、第2のコンバータ部は、上記各半導体スイッチング素子に並列接続されたコンデンサと、交流入出力線に接続された第1、第2のリアクトルとを有し、
    上記制御回路は、
     上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記第1のリアクトルを利用して上記第1のコンバータ部内の上記各半導体スイッチング素子がゼロ電圧スイッチングするように制御し、
     上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記第2のリアクトルを利用して上記第2のコンバータ部内の上記各半導体スイッチング素子がゼロ電圧スイッチングするように制御する、
    DC/DCコンバータ。
  2. 上記制御回路は、
     上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記トランスの上記第2の巻線に発生する電圧より上記第2の直流電源の電圧が高いとき、上記第2のリアクトルを用いて上記第2のコンバータ部が昇圧動作するように制御し、
     上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記トランスの上記第1の巻線に発生する電圧より上記第1の直流電源の電圧が高いとき、上記第1のリアクトルを用いて上記第1のコンバータ部が昇圧動作するように制御する、
    請求項1に記載のDC/DCコンバータ。
  3. 上記制御回路は、
     上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記トランスの上記第2の巻線に発生する電圧より上記第2の直流電源の電圧が高いとき、上記トランスの上記第1の巻線に電圧が印加される時間が予め設定した最大時間となるように上記第1のコンバータ部を制御し、
     上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記トランスの上記第1の巻線に発生する電圧より上記第1の直流電源の電圧が高いとき、上記トランスの上記第2の巻線に電圧が印加される時間が予め設定した最大時間となるように上記第2のコンバータ部を制御する、
    請求項2に記載のDC/DCコンバータ。
  4. 上記第1、第2のコンバータ部は、それぞれ二つのブリッジ回路によるフルブリッジ回路で構成された、
    請求項1から請求項3のいずれか1項に記載のDC/DCコンバータ。
  5. 上記制御回路は、
     上記第1、第2のコンバータ部を構成する上記フルブリッジ回路の各ブリッジ回路の正側の半導体スイッチング素子および負側の半導体スイッチング素子を、短絡防止時間を無視すると、それぞれ50%のオン時間比率で制御する、
    請求項4に記載のDC/DCコンバータ。
  6. 上記制御回路は、
     上記第1のコンバータ部内の一方のブリッジ回路の正側/負側のいずれかの半導体スイッチング素子である第1の基準素子と、上記第2のコンバータ部内の一方のブリッジ回路の正側/負側のいずれかの半導体スイッチング素子である第2の基準素子とを、同位相の駆動信号で制御する、
    請求項5に記載のDC/DCコンバータ。
  7. 上記制御回路は、上記第1のコンバータ部内で上記第1の基準素子と対角の関係にある半導体スイッチング素子が上記第1の基準素子と共にオンする第1の対角オン時間、および、上記第2のコンバータ部内で上記第2の基準素子と対角の関係にある半導体スイッチング素子が上記第2の基準素子と共にオンする第2の対角オン時間が、設定された関係を満たすように上記第1、第2のコンバータを制御することにより、双方向の電力伝送を行う、
    請求項6に記載のDC/DCコンバータ。
  8. 上記制御回路は、
     上記第1の対角オン時間と上記第2の対角オン時間が共に設定された最大オン時間になる点を基準点とし、上記第1の直流電源から上記第2の直流電源への電力伝送の制御量を上記基準点より増大するときは、上記第1の対角オン時間を上記最大オン時間に保持すると共に、上記第2の対角オン時間を減少させ、上記第1の直流電源から上記第2の直流電源への電力伝送の制御量を上記基準点より減少するときは、上記第2の対角オン時間を上記最大オン時間に保持すると共に、上記第1の対角オン時間を減少させるように上記第1、第2のコンバータを制御する、
    請求項7に記載のDC/DCコンバータ。
  9. 上記最大オン時間は、上記第1、第2のコンバータ内の上記各半導体スイッチング素子が上記ゼロ電圧スイッチングする為の時間に基づいて設定される、
    請求項8に記載のDC/DCコンバータ。
  10. 上記制御回路は、
     上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記トランスの上記第2の巻線に発生する電圧より上記第2の直流電源の電圧が低いとき、上記第2のコンバータ部が整流動作するように制御し、
     上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記トランスの上記第1の巻線に発生する電圧より上記第1の直流電源の電圧が低いとき、上記第1のコンバータ部が整流動作するように制御する、
    請求項1から請求項3のいずれか1項に記載のDC/DCコンバータ。
  11. 上記制御回路は、
     上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記トランスの上記第1の巻線に電圧印加するタイミングに同期させて上記第2のコンバータ部内の上記半導体スイッチング素子を制御して上記第2のコンバータ部を整流動作させ、
     上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記トランスの上記第2の巻線に電圧印加するタイミングに同期させて上記第1のコンバータ部内の上記半導体スイッチング素子を制御して上記第1のコンバータ部を整流動作させる、
    請求項10項に記載のDC/DCコンバータ。
  12. 上記制御回路は、
     上記第1の直流電源あるいは上記第2の直流電源の電圧を電圧指令値から減算した差分をフィードバックして、上記第1、第2の直流電源間に流れる電流の電流指令値を作成し、上記電流指令値の極性に応じて上記第1、第2の直流電源間の電力伝送方向を切り替えると共に、上記第1のコンバータ部の上記第1の対角オン時間、あるいは上記第1のコンバータ部の上記第2の対角オン時間を調整する、
    ことを特徴とする請求項7または請求項8に記載のDC/DCコンバータ。
  13. 上記制御回路は、
     上記第1の直流電源から上記第2の直流電源への電力伝送時に、上記第2の直流電源の電圧を電圧指令値から減算した第1の差分の極性が正の場合には、上記第2の直流電源への電力伝送方向を保持して上記第2のコンバータ部の上記第2の対角オン時間を調整し、上記第1の差分が負になると上記第1の直流電源への電力伝送方向に切り替えて上記第1のコンバータ部の上記第1の対角オン時間を調整し、
     上記第2の直流電源から上記第1の直流電源への電力伝送時に、上記第1の直流電源の電圧を電圧指令値から減算した第2の差分の極性が正の場合には、上記第1の直流電源への電力伝送方向を保持して上記第1のコンバータ部の上記第1の対角オン時間を調整し、上記第2の差分が負になると上記第2の直流電源への電力伝送方向に切り替えて上記第2のコンバータ部の上記第2の対角オン時間を調整する、
    請求項12に記載のDC/DCコンバータ。
  14. 上記第1、第2のリアクトルの一方、あるいは双方を、上記トランスの漏れインダクタンスで構成する、
    請求項1から請求項3のいずれか1項に記載のDC/DCコンバータ。
  15. 上記第1、第2の直流電源の一方あるいは双方をバッテリで構成し、上記第1の直流電源と上記第2の直流電源との間の双方向の電力伝送を行うことで上記バッテリの充放電を行う、
    請求項1から請求項3のいずれか1項に記載のDC/DCコンバータ。
PCT/JP2012/082299 2012-02-14 2012-12-13 Dc/dcコンバータ WO2013121665A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012005868.2T DE112012005868T5 (de) 2012-02-14 2012-12-13 DC-DC-Wandler
JP2014500054A JP5762617B2 (ja) 2012-02-14 2012-12-13 Dc/dcコンバータ
US14/364,186 US9455641B2 (en) 2012-02-14 2012-12-13 DC/DC converter
CN201280067171.5A CN104054249B (zh) 2012-02-14 2012-12-13 Dc/dc转换器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012029001 2012-02-14
JP2012-029001 2012-02-14
JP2012223837 2012-10-09
JP2012-223837 2012-10-09

Publications (1)

Publication Number Publication Date
WO2013121665A1 true WO2013121665A1 (ja) 2013-08-22

Family

ID=48983807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082299 WO2013121665A1 (ja) 2012-02-14 2012-12-13 Dc/dcコンバータ

Country Status (4)

Country Link
US (1) US9455641B2 (ja)
JP (1) JP5762617B2 (ja)
DE (1) DE112012005868T5 (ja)
WO (1) WO2013121665A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075944A (ja) * 2012-10-05 2014-04-24 Origin Electric Co Ltd 双方向コンバータ
WO2014098221A1 (ja) * 2012-12-21 2014-06-26 オリジン電気株式会社 コンバータ及び双方向コンバータ
WO2014097844A1 (ja) * 2012-12-18 2014-06-26 日産自動車株式会社 電源装置
WO2015004825A1 (ja) * 2013-07-11 2015-01-15 三菱電機株式会社 Dc/dcコンバータ
WO2015072009A1 (ja) * 2013-11-15 2015-05-21 オリジン電気株式会社 双方向コンバータ
JP2015154506A (ja) * 2014-02-10 2015-08-24 オリジン電気株式会社 Dc−dcコンバータ
JP2015177559A (ja) * 2014-03-13 2015-10-05 三菱電機株式会社 双方向dcdcコンバータ
JP2015204714A (ja) * 2014-04-15 2015-11-16 日鉄住金テックスエンジ株式会社 双方向電源装置
JP2017042013A (ja) * 2015-08-21 2017-02-23 東洋電機製造株式会社 電力変換装置
JP2018026961A (ja) * 2016-08-10 2018-02-15 Tdk株式会社 スイッチング電源装置
US20180054136A1 (en) * 2015-03-24 2018-02-22 Mitsubishi Electric Corporation Power conversion device
US9948194B2 (en) 2015-02-02 2018-04-17 Mitsubishi Electric Corporation DC/DC converter including phase shift control
US10158286B2 (en) 2015-02-02 2018-12-18 Mitsubishi Electric Corporation DC/DC converter
JP2020520227A (ja) * 2017-05-15 2020-07-02 ダイナパワー カンパニー エルエルシー Dc/dcコンバータ及びその制御
US10742128B2 (en) 2016-06-30 2020-08-11 Mitsubishi Electric Corporation Parallel power supply device
JP7330108B2 (ja) 2020-01-08 2023-08-21 新電元工業株式会社 コンバータ

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2798730B1 (en) * 2011-12-28 2017-11-08 DET International Holding Limited Resonant bi-directional dc-ac converter
JP5929703B2 (ja) * 2012-10-22 2016-06-08 三菱電機株式会社 Dc/dcコンバータ
JP5807658B2 (ja) * 2013-05-21 2015-11-10 トヨタ自動車株式会社 電力変換装置及び電力変換方法
DE102014214542A1 (de) * 2014-07-24 2016-02-11 Rheinisch-Westfälisch-Technische Hochschule Aachen Gleichspannungswandler mit Transformator
US9800071B2 (en) * 2015-02-24 2017-10-24 Green Cubes Technology Corporation Methods and system for add-on battery
CN104836274B (zh) * 2015-03-31 2017-03-29 北京交通大学 宽电压范围高效率高频隔离电池充放电电路及其控制方法
CN106067738B (zh) * 2015-04-23 2020-04-14 松下知识产权经营株式会社 电力变换装置
JP6710976B2 (ja) * 2015-06-01 2020-06-17 住友電気工業株式会社 電力変換装置及び電力変換装置の制御方法
US9973099B2 (en) * 2015-08-26 2018-05-15 Futurewei Technologies, Inc. AC/DC converters with wider voltage regulation range
CN106891744B (zh) * 2015-12-18 2019-11-08 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891748B (zh) * 2015-12-18 2019-02-26 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
US9847723B2 (en) * 2016-05-09 2017-12-19 Omron Corporation Power conversion device
US9837908B2 (en) * 2016-05-09 2017-12-05 Omron Corporation Power conversion device
DE112017003632T5 (de) * 2016-07-19 2019-04-11 Mitsubishi Electric Corporation Dc/dc-umrichter
JP6883489B2 (ja) * 2017-08-22 2021-06-09 ダイヤモンド電機株式会社 コンバータ
JP6752335B2 (ja) * 2018-07-10 2020-09-09 シャープ株式会社 Dc/dcコンバータ
JP7099356B2 (ja) * 2019-02-19 2022-07-12 オムロン株式会社 電力変換装置
DE102019106485B4 (de) * 2019-03-14 2021-04-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Weissach-Gleichrichteranordnung
EP3968507A4 (en) * 2019-05-07 2022-05-04 Mitsubishi Electric Corporation CURRENT TRANSFORMING DEVICE
JP6747569B1 (ja) * 2019-11-21 2020-08-26 富士電機株式会社 電力変換装置、制御方法、および制御プログラム
CN110912413A (zh) * 2019-12-06 2020-03-24 天津工业大学 一种能量双向流动节能装置及其能量双向流动控制方法
JP7209868B2 (ja) * 2019-12-16 2023-01-20 三菱電機株式会社 Dc/dcコンバータ及び電力変換装置
JP2022002454A (ja) * 2020-06-22 2022-01-06 富士電機株式会社 電力変換装置
EP3982527A1 (en) * 2020-10-07 2022-04-13 Ecole Polytechnique Federale De Lausanne (Epfl) A dc/dc converter and a method for operating a dc/dc converter
CN112202342B (zh) * 2020-11-03 2021-06-25 深圳威迈斯新能源股份有限公司 双向谐振变换器磁平衡电路及其控制方法
KR20220085934A (ko) * 2020-12-15 2022-06-23 현대모비스 주식회사 양방향 절연형 dc-dc 컨버터 및 그 제어장치와 운용방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230075A (ja) * 2005-02-16 2006-08-31 Toyota Industries Corp スイッチング電源回路
JP2010093952A (ja) * 2008-10-08 2010-04-22 Shindengen Electric Mfg Co Ltd 双方向dc/dcコンバータ
JP2011130521A (ja) * 2009-12-15 2011-06-30 Yokogawa Electric Corp Dcdcコンバータ
JP2011193713A (ja) * 2010-02-17 2011-09-29 Toyota Central R&D Labs Inc 電力変換回路及び電力変換回路システム
JP2011234541A (ja) * 2010-04-28 2011-11-17 Panasonic Electric Works Co Ltd 双方向dc/dcコンバータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107683A (ja) 1994-10-03 1996-04-23 Mitsubishi Electric Corp 電動機の運転制御装置及び絶縁型双方向直流電圧変換回路
JP4274364B2 (ja) 2004-02-05 2009-06-03 本田技研工業株式会社 Dc−dcコンバータ
CN101361254B (zh) 2005-11-24 2012-05-30 株式会社小松制作所 Ac连接双方向dc—dc转换器、使用了该转换器的混合电源系统及混合动力车辆
JP4378400B2 (ja) 2007-08-28 2009-12-02 日立コンピュータ機器株式会社 双方向dc−dcコンバータ及び双方向dc−dcコンバータの制御方法
JP5308682B2 (ja) 2008-01-24 2013-10-09 新電元工業株式会社 双方向dc/dcコンバータ
GB0816455D0 (en) * 2008-09-09 2008-10-15 Univ Aberdeen Power converter
CN102301577B (zh) * 2009-01-29 2014-10-01 布鲁萨电子公司 用于单相和三相操作的转换器、直流电压源及电池充电器
JP5250915B2 (ja) 2009-04-03 2013-07-31 株式会社小松製作所 トランス結合型昇圧器の制御装置
WO2010115867A1 (de) * 2009-04-09 2010-10-14 Siemens Aktiengesellschaft Bidirektionale und berührungsfreie übertragung von leistung zum laden von elektrofahrzeugen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230075A (ja) * 2005-02-16 2006-08-31 Toyota Industries Corp スイッチング電源回路
JP2010093952A (ja) * 2008-10-08 2010-04-22 Shindengen Electric Mfg Co Ltd 双方向dc/dcコンバータ
JP2011130521A (ja) * 2009-12-15 2011-06-30 Yokogawa Electric Corp Dcdcコンバータ
JP2011193713A (ja) * 2010-02-17 2011-09-29 Toyota Central R&D Labs Inc 電力変換回路及び電力変換回路システム
JP2011234541A (ja) * 2010-04-28 2011-11-17 Panasonic Electric Works Co Ltd 双方向dc/dcコンバータ

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075944A (ja) * 2012-10-05 2014-04-24 Origin Electric Co Ltd 双方向コンバータ
WO2014097844A1 (ja) * 2012-12-18 2014-06-26 日産自動車株式会社 電源装置
WO2014098221A1 (ja) * 2012-12-21 2014-06-26 オリジン電気株式会社 コンバータ及び双方向コンバータ
WO2015004825A1 (ja) * 2013-07-11 2015-01-15 三菱電機株式会社 Dc/dcコンバータ
WO2015072009A1 (ja) * 2013-11-15 2015-05-21 オリジン電気株式会社 双方向コンバータ
JP2015154506A (ja) * 2014-02-10 2015-08-24 オリジン電気株式会社 Dc−dcコンバータ
JP2015177559A (ja) * 2014-03-13 2015-10-05 三菱電機株式会社 双方向dcdcコンバータ
JP2015204714A (ja) * 2014-04-15 2015-11-16 日鉄住金テックスエンジ株式会社 双方向電源装置
US9948194B2 (en) 2015-02-02 2018-04-17 Mitsubishi Electric Corporation DC/DC converter including phase shift control
DE112015006096B4 (de) 2015-02-02 2023-08-17 Mitsubishi Electric Corporation Dc/dc-umsetzer
US10158286B2 (en) 2015-02-02 2018-12-18 Mitsubishi Electric Corporation DC/DC converter
US20180054136A1 (en) * 2015-03-24 2018-02-22 Mitsubishi Electric Corporation Power conversion device
US10044282B2 (en) * 2015-03-24 2018-08-07 Mitsubishi Electric Corporation Power conversion device
JP2017042013A (ja) * 2015-08-21 2017-02-23 東洋電機製造株式会社 電力変換装置
US10742128B2 (en) 2016-06-30 2020-08-11 Mitsubishi Electric Corporation Parallel power supply device
JP2018026961A (ja) * 2016-08-10 2018-02-15 Tdk株式会社 スイッチング電源装置
JP2020520227A (ja) * 2017-05-15 2020-07-02 ダイナパワー カンパニー エルエルシー Dc/dcコンバータ及びその制御
JP7166293B2 (ja) 2017-05-15 2022-11-07 ダイナパワー カンパニー エルエルシー Dc/dcコンバータ及びその制御
US11757361B2 (en) 2017-05-15 2023-09-12 Dynapower Company Llc DC/DC converter and control thereof
JP7330108B2 (ja) 2020-01-08 2023-08-21 新電元工業株式会社 コンバータ

Also Published As

Publication number Publication date
US20150015181A1 (en) 2015-01-15
US9455641B2 (en) 2016-09-27
JP5762617B2 (ja) 2015-08-12
JPWO2013121665A1 (ja) 2015-05-11
DE112012005868T5 (de) 2014-11-13
CN104054249A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5762617B2 (ja) Dc/dcコンバータ
JP5929703B2 (ja) Dc/dcコンバータ
EP3787171B1 (en) Isolated dc/dc converters for wide output voltage range and control methods thereof
JP6490093B2 (ja) 電力変換装置
US9948194B2 (en) DC/DC converter including phase shift control
US9641089B2 (en) DC-DC converter
EP1801960B1 (en) Bi-directional DC-DC converter and control method
RU2473159C1 (ru) Преобразователь электрической мощности
US9093908B2 (en) Bidirectional DC-DC converter and method of controlling bidirectional DC-DC converter
JP5968553B2 (ja) 電力変換装置
CN109314466B (zh) 并联电源装置
WO2015045485A1 (ja) 電力変換装置
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
US8830701B2 (en) DC-DC converter
WO2013136378A1 (ja) 電力変換装置
WO2021053910A1 (ja) 電力変換装置
JP7209868B2 (ja) Dc/dcコンバータ及び電力変換装置
JP2021048700A (ja) 電力変換装置
JP6025885B2 (ja) 電力変換装置
JP6270753B2 (ja) 電力変換装置
JP2007043770A (ja) 直列電気二重層コンデンサ装置
JP2009044877A (ja) コンデンサ充電装置
JP7262055B2 (ja) 電力変換装置
US8830700B2 (en) DC-DC converter and method for controlling DC-DC converter
US20230291319A1 (en) System and method for providing a compensation factor for a dc/dc converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500054

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364186

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120058682

Country of ref document: DE

Ref document number: 112012005868

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868662

Country of ref document: EP

Kind code of ref document: A1