JP2015065433A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2015065433A
JP2015065433A JP2014174928A JP2014174928A JP2015065433A JP 2015065433 A JP2015065433 A JP 2015065433A JP 2014174928 A JP2014174928 A JP 2014174928A JP 2014174928 A JP2014174928 A JP 2014174928A JP 2015065433 A JP2015065433 A JP 2015065433A
Authority
JP
Japan
Prior art keywords
light
transistor
circuit
wiring
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174928A
Other languages
English (en)
Other versions
JP2015065433A5 (ja
JP6525530B2 (ja
Inventor
秋元 健吾
Kengo Akimoto
健吾 秋元
純一 肥塚
Junichi Hizuka
純一 肥塚
寛暢 高橋
Hironobu Takahashi
寛暢 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2014174928A priority Critical patent/JP6525530B2/ja
Publication of JP2015065433A publication Critical patent/JP2015065433A/ja
Publication of JP2015065433A5 publication Critical patent/JP2015065433A5/ja
Application granted granted Critical
Publication of JP6525530B2 publication Critical patent/JP6525530B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】X線等の放射線照射に対して安定性が高く、電気特性の低下を抑制できる構成の撮像装置を提供する。【解決手段】基板と、画素回路と、シンチレータと、が上記順序で重畳しており、画素回路は、受光素子および当該受光素子と電気的に接続された回路部と、を有し、基板には発熱体が形成されている構成とし、撮像時以外に当該発熱体に通電させることにより画素回路を構成するトランジスタを加熱し、当該トランジスタのX線照射による電気特性の劣化を回復させる。【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、本発明は、例えば、半導体装置、表示装置、発光装置、蓄電装置、光電変換装置、撮像装置、それらの駆動方法、または、それらの製造方法に関する。特に、本発明は、シンチレータを有する撮像装置に関する。
医療現場では、X線フィルムを用いた写真技術による医療用画像診断装置が広く普及している。
上記X線フィルムを用いた撮像方法では、撮影したX線フィルムの管理が煩雑となるため、画像の電子化が進められている。画像を電子化する方法の一つとして、イメージングプレートを用いる方法が知られている。イメージングプレートは、X線が照射されることで光を発することができ、当該光をスキャナで検出することによって、電子化された画像を得ることができる。
イメージングプレートは、X線が照射されることによって光を発する特性(輝尽性)を有する材料(輝尽性蛍光体)が塗布された板であり、X線フィルムよりもX線吸収差の検出感度が高い。また、X線照射の情報を消去することができ、繰り返して使用することができる。しかしながら、イメージングプレートで取得できる情報はアナログ情報であり、それを電子化するにはデジタル化処理をするという工程が残されていた。
そのため、近年では、デジタルデータを直接取得できるフラットパネルディテクタが注目されている(例えば、特許文献1、2)。フラットパネルディテクタは、直接方式と間接方式の二方式があり、直接方式はX線検出素子を用いてX線を電荷に直接変換する方式であり、間接方式はX線をシンチレータによって可視光に変換し、その光をフォトダイオードで電荷に変換する方式である。いずれの方式においても、フラットパネルディテクタは、マトリクス状に配置された複数の画素回路を有している。
特開平2−164067号公報 特開2002−151669号公報
フラットパネルディテクタの画素回路が有するトランジスタは、半導体材料や絶縁材料を含んで構成されている。エネルギーの強いX線等の放射線が当該半導体材料や当該絶縁材料に照射されると欠陥準位や固定電荷などが生成され、トランジスタの電気特性を変動させてしまうことがある。
このような現象は、シンチレータを透過してしまう微量の放射線によっても起こりうるため、フラットパネルディテクタの消費電力の増加や信頼性の悪化の一要因となっている。
したがって、本発明の一態様では、X線等の放射線照射に対して安定性が高い撮像装置を提供することを目的の一つとする。または、解像度の高い撮像装置を提供することを目的の一つとする。または、少ない放射線量で撮像することができる撮像装置を提供することを目的の一つとする。または、低消費電力の撮像装置を提供することを目的の一つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、表示機能を有する構成の撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、画素回路に酸化物半導体を用いたトランジスタを有し、X線等の放射線を用いて画像を取得する撮像装置に関する。
本発明の一態様は、基板と、画素回路と、シンチレータと、が上記順序で重畳しており、画素回路は、受光素子および当該受光素子と電気的に接続された回路部と、を有し、基板には発熱体が形成されていることを特徴とする撮像装置である。
また、本発明の他の一態様は、発光装置と、基板と、画素回路と、シンチレータと、が上記順序で重畳しており、画素回路は、受光素子および当該受光素子と電気的に接続された回路部と、を有し、基板には発熱体が形成され、発光装置が発する光は画素回路に照射される構成であることを特徴とする撮像装置である。
上記発光装置は、500nm乃至600nmの波長の単色光、または当該範囲の波長が混在した光を含んで発することが好ましい。
上記画素回路は酸化物半導体をチャネル形成領域に用いた、トップゲート型のトランジスタを有することが好ましい。
また、本発明の他の一態様は、基板と、画素回路と、シンチレータと、が上記順序で重畳しており、画素回路は、受光素子および当該受光素子と電気的に接続された撮像用回路部と、発光素子および当該発光素子と電気的に接続された発光用回路部と、を有し、基板には発熱体が形成されていることを特徴とする撮像装置である。
上記3つの態様の撮像装置において、受光素子には、フォトダイオード、または、一対の電極間に半導体層を有する可変抵抗素子を用いることができる。
また、上記基板および発熱体は、透光性を有していてもよい。
また、上記発光素子が発する光は、500nm乃至600nmの波長の単色光、または当該範囲の波長が混在した光を含んで発することが好ましい。
また、発光素子を有する撮像装置の態様において、画素回路は酸化物半導体をチャネル形成領域に用いた、ボトムゲート型のトランジスタを有することが好ましい。
本発明の一態様により、X線等の放射線照射に対して安定性が高い撮像装置を提供することができる。または、解像度の高い撮像装置を提供することができる。または、少ない放射線量で撮像することができる撮像装置を提供することができる。または、低消費電力の撮像装置を提供することができる。または、信頼性の高い撮像装置を提供することができる。または、表示機能を有する構成の撮像装置を提供することができる。または、新規な撮像装置などを提供することができる。なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合もある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果を有さない場合もある。
撮像装置を説明する断面図。 撮像装置を説明する上面図。 発熱体を説明する図。 X線照射前後のトランジスタのId−Vg特性。 熱処理後のId−Vg特性からシフト値の戻り量を算出した結果を示す図。 熱処理と同時に光照射を行った場合のシフト値の戻り量をId−Vg特性から算出した結果を示す図。 画素回路の構成を説明する図。 画素回路の動作を説明するタイミングチャート。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 積分回路を説明するための図。 撮像装置を説明する断面図および上面図。 画素回路の構成を説明する図。 表示機能を有する撮像装置を説明する図。 グローバルシャッタ方式とローリングシャッタ方式の動作を説明するタイミングチャート。 撮像システムの構成を説明する図。 画素回路の構成を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(又は第1の端子など)とトランジスタのドレイン(又は第2の端子など)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(又は第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(又は第1の端子など)からトランジスタのドレイン(又は第2の端子など)への電気的パスであり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(又は第2の端子など)からトランジスタのソース(又は第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様であるX線等の放射線を用いる撮像装置について、図面を参照して説明する。
図1は、本発明の一態様の撮像装置の構成を示す断面図である。図1(A)に示す撮像装置10は、基板100上に画素アレイ110が形成され、当該画素アレイ上にシンチレータ120が形成された構成となっている。
シンチレータ120は、X線やガンマ線などの放射線が照射されると、そのエネルギーを吸収して可視光や紫外光を発する物質、または当該物質を含む材料からなる。例えば、GdS:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、CsI、CaF、BaF、CeF、LiF、LiI、ZnOなどの材料や、それらを樹脂やセラミクスに分散させたものが知られている。
基板100上に形成される画素アレイ110は、例えば、図2の上面図に示すような構成とすることができる。なお、図2では明瞭化のため、シンチレータ120を省いて図示している。
画素アレイ110はマトリクス状に形成された複数の画素回路210からなり、当該画素回路には、受光素子220および当該受光素子と電気的に接続された回路部230が含まれる。
また、本発明の一態様の撮像装置では、回路部230に酸化物半導体を活性層としたトランジスタを用いることができる。酸化物半導体を用いたトランジスタは非晶質シリコンを用いたトランジスタよりも移動度が高いため、トランジスタを小さくすることが容易であり、画素を小さくすることができる。すなわち、撮像装置の解像度を高めることができる。
また、基板100上には、画素アレイ110だけでなく、画素アレイ110を駆動するための第1の回路240および第2の回路250が設けられていてもよい。
なお、図2では、一例として画素アレイ110を駆動するための回路を二つの領域に配置する構成を例示したが、当該回路の構成はこれに限られない。例えば、画素アレイ110を駆動するための回路を一つの領域にまとめて配置してもよい。また、画素アレイ110を駆動するための回路を三つ以上に分割して配置してもよい。また、画素アレイ110を駆動するための回路は、画素回路210に含まれるトランジスタと同様に基板100上に直接形成する構成であってもよいし、COG(Chip On Glass)などでICチップを実装する構成であってもよい。また、TCP(Tape Carrier Package)やCOF (Chip On Film)などを画素アレイ110に接続する構成であってもよい。または、それらが混在する構成であってもよい。
基板100には、例えば、図3に示すような発熱体101が形成されている。発熱体101には金属線や導電膜などの抵抗体を用いることができ、通電させることによりジュール熱を発する。発熱体101は基板の表裏のどちらに形成されていてもよく、基板100に埋め込まれていてもよい。なお、図3に示す構成は一例であり、発熱体101の形状は限定されない。また、本発明の一態様の撮像装置の構成では、発熱体101を含む基板100に高い透光性が望まれる場合がある。当該構成においては、発熱体101に透光性を有する抵抗体を用いることが好ましい。例えば、発熱体101には、タングステン、クロム、チタン、窒化チタン、窒化タンタル等の金属や窒化物、または酸化亜鉛、酸化スズ、酸化インジウムなどの酸化物を用いることができる。
また、本発明の一態様の撮像装置は、図1(B)に示す構成であってもよい。撮像装置20は、図1(A)に示す撮像装置10の基板100に接して発光装置130が設けられた構成となっている。発光装置130の光源としては、発光ダイオード等を用いることができる。
被写体を透過したX線等の放射線はシンチレータ120に入射され、フォトルミネッセンスと呼ばれる現象により可視光や紫外光などの光(蛍光)に変換される。そして、当該光を画素回路210に設けられた受光素子220で検知し、画像データを取得する。
ただし、シンチレータ120に照射された放射線の一部はフォトルミネッセンスに利用されず、シンチレータ120を通過してしまう。X線等の放射線がトランジスタを構成する半導体材料や絶縁材料に照射されるとその部位に欠陥準位などが生成し、トランジスタの電気特性を変動させてしまう。そのため、撮像装置の消費電力を増加させたり、信頼性を悪化させたりすることがある。
例えば、チャネル形成領域が酸化物半導体で形成され、ゲート絶縁膜が酸化シリコン膜を含んで形成されたトランジスタに強いX線を照射する加速試験を行うと、トランジスタのしきい値電圧がマイナス方向にシフトしてしまう。
図4は、酸化物半導体を活性層に用いたトランジスタのX線照射前後におけるId−Vg特性(Vd=10V)の一例である。当該トランジスタは活性層に酸化物半導体、ゲート絶縁膜に窒化シリコン膜と酸化シリコン膜の積層を用いたボトムゲート型の構成であり、L/W=6/50(μm)である。
初期状態ではオフ電流が低く、ノーマリーオフの優れた特性を示すが、50GyのX線照射後では、電流の立ち上がるゲート電圧(Vg)がマイナス方向に大きくシフトする。当該トランジスタの、しきい値電圧のシフト量(ΔVth)は−2.6V、シフト値のシフト量(ΔShift)は−2.7Vである。ここで、シフト値(Shift)とは、Id=1×10−12[A]におけるゲート電圧(Vg)と本明細書では定義する。なお、トランジスタはトップゲート型であっても同様に劣化する。
X線照射時の劣化に関しては、次のようなモデルを立てることができる。まず、X照射により酸化物半導体(トランジスタの活性層、例えばIn−Ga−Zn酸化物)中に電子−正孔が生成される。次に、生成された正孔が酸素欠損に起因する酸化物半導体中の深い欠陥準位にトラップされる。次にトラップされた正孔が酸化シリコン(トランジスタのゲート絶縁膜)におけるNBOHC(Non Bridging Oxygen Hole Center)の欠陥準位に注入される。そして、注入された正孔は、酸化シリコン中において正の電荷を持つ固定電荷となり、トランジスタのしきい値電圧を変動させる。
このように劣化したトランジスタに対して、熱処理を行うと電流の立ち上がるゲート電圧(Vg)がプラス方向にシフトする。熱処理後のId−Vg特性からシフト値の戻り量(ΔShift2)を算出した結果を図5に示す。25℃のプロットは熱処理なしを示し、60℃および125℃のプロットはそれぞれの温度で30分間の熱処理を行ったサンプルの結果を示している。図5に示すように熱処理を高い温度で行うほど、シフト値が回復しやすいことがわかる。
また、図6は、上記同様の劣化したトランジスタに対して、熱処理と同時に光照射を行った場合のシフト値の戻り量(ΔShift2)をId−Vg特性から算出した結果である。熱処理温度は60℃とし、各波長で30分間の光照射を行っている。なお、darkは光照射を行わずに、熱処理のみとしている。また、縦軸はdarkの値を1として規格化した値である。
図6から、シフト値の戻り量(ΔShift2)がdarkのときよりも値が大きくなる条件がX線照射時の劣化を回復することができるといえる。具体的には、500nm乃至600nmの波長が好ましく、550nm前後の波長がより好ましい。熱処理および当該波長範囲の光は、前述したゲート絶縁膜中の固定電荷を減少させることに大きく寄与する。つまり、これらの熱と光は、新たな劣化原因にはならず、かつ劣化の回復に要する活性化エネルギーを供給するといえる。
一方、500nmよりも短い波長の光や600nmよりも長い波長の光は、上記固定電荷の減少に対する寄与が小さい、別の劣化要因を生じさせる、またはId−Vg特性をマイナスシフトさせるような一時的な光電流を生じさせるため、シフト値の戻り量が小さくなる。
したがって、熱処理の温度および時間を調整することで、X線照射時の劣化を回復することができる。または、500nm乃至600nmの波長の光を照射することで、X線照射時の劣化を回復することができる。または、熱処理と光照射を組み合すことでX線照射時の劣化を回復することができる。ただし、高温での熱処理は撮像装置の構成要素および撮像装置周辺に不具合を生じさせないための冷却対策または熱対策が必要なことから、温度を抑えた熱処理と光照射を組み合すことでX線照射時の劣化を回復することが好ましい。例えば、60乃至80℃程度の熱処理と550nm前後の波長の光を照射することにより、大規模な冷却対策または熱対策を不要とし、X線照射時の劣化を迅速に回復することができる。
上記実験結果から、発明者らは図1(A)、(B)に示す撮像装置を提案するに至った。図1(A)に示す撮像装置10では、基板100に形成された発熱体により画素アレイ110を熱処理し、X線照射により劣化したトランジスタの電気特性を回復させる。なお、十分な冷却対策または熱対策が施されていれば、100℃以上の高温で画素アレイ110を熱処理してもよい。
また、図1(B)に示す撮像装置20では、基板100に形成された発熱体101により画素アレイ110を熱処理し、かつ発光装置130から画素アレイ110に向かって光を照射し、X線照射により劣化したトランジスタの電気特性を回復させる。なお、十分な冷却対策または熱対策が施されていれば、100℃以上の高温で画素アレイ110を熱処理してもよい。また、発光装置130から発せられる光は500nm乃至600nmの波長の単色光のほか、当該範囲の光が混在した光であってもよい。なお、発光装置130から発せられる光が画素アレイ110が有するトランジスタの活性層に効率良く照射されるように、当該トランジスタはトップゲート構造であることが好ましい。
本発明の一態様の撮像装置10、20において、上記の発熱体101による画素アレイ110の熱処理、および発光装置130による画素アレイ110への光照射は、撮像操作時以外のタイミングで行うことが好ましい。撮像時に画素アレイ110の熱処理を行うと、トランジスタのオフ電流が増加し、ダイナミックレンジが低下してしまう。また、発光装置130から光が発せられると受光素子220で検知されてしまうため、撮像が不可能となってしまう。したがって、撮像の合間などの待機時に上記熱処理および光照射を行うことが好ましい。または、当該撮像装置を含む撮像システムの電源投入時や遮断時に、タイマーなどを用いて上記熱処理および光照射を行ってもよい。また、当該撮像システムには熱処理後の撮像動作が速やかに行えるように、撮像装置を冷却する手段(送風装置など)を備えていてもよい。
以上により、X線等の放射線照射に対して安定性が高く、電気特性の低下を抑制できる構成の撮像装置を提供することができる。
図17(A)は、撮像装置10または撮像装置20が収納されたディテクタユニットの一例である。ディテクタユニット991には、取っ手992が設けられている。なお、ディテクタユニット991には、本発明の一態様の撮像装置だけでなく、当該撮像装置の周辺機器の一部、または、全部が収納されている場合もある。
図17(B)には、撮像システム998の全体構成図の一例を示す。ディテクタユニット991が、台995に取り付けられている。ディテクタユニット991には、コンピュータ999が接続されている場合がある。X線源996から照射されたX線997は被写体994を透過し、ディテクタユニット991で検出される。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、実施の形態1で説明した画素回路210ついて説明する。
図2に示す画素回路210として用いることのできる回路の一例を図7(A)に示す。回路211は、受光素子220としてフォトダイオード320、当該受光素子と接続される回路部230に第1のトランジスタ301、第2のトランジスタ302、および第3のトランジスタ303を含んだ構成となっている。
フォトダイオード320のアノードは第1の配線311(RS)、フォトダイオード320のカソードは第1のトランジスタ301のソースまたはドレインの一方、第1のトランジスタ301のソースまたはドレインの他方は配線305(FD)、第1のトランジスタ301のゲートは第2の配線312(TX)、第2のトランジスタ302のソースまたはドレインの一方は第4の配線314(GND)、第2のトランジスタ302のソースまたはドレインの他方は第3のトランジスタ303のソースまたはドレインの一方、第2のトランジスタ302のゲートは配線305(FD)、第3のトランジスタ303のソースまたはドレインの他方は第5の配線315(OUT)、第3のトランジスタ303のゲートは第3の配線313(SE)、に各々電気的に接続されている。
なお、第4の配線314には、GND、VSS、VDDなどの電位が供給されていてもよい。ここで、電位や電圧は相対的なものである。そのため、GNDの電位の大きさは、必ずしも、0ボルトであるとは限らないものとする。
フォトダイオード320は受光素子であり、画素回路に入射した光に応じた電流を生成する動作を行う。第1のトランジスタ301は、フォトダイオード320による配線305(FD)への電荷蓄積を制御する。第2のトランジスタ302は、配線305(FD)の電位に応じた信号を出力する動作を行う。第3のトランジスタ303は、読み出し時に画素回路の選択を制御する。
なお、配線305(FD)は、電荷保持ノードであり、フォトダイオード320が受ける光の量に応じて変化する電荷を保持する、所謂電荷蓄積部である。実質的な電荷蓄積部は、配線305(FD)と電気的に接続される第1のトランジスタのソース領域またはドレイン領域近傍の空乏層容量、配線305(FD)の配線容量、配線305(FD)と電気的に接続される第2のトランジスタ302のゲート容量などである。
なお、第2のトランジスタ302と第3のトランジスタ303とは、第5の配線315と第4の配線314との間で、直列接続されていればよい。したがって、第4の配線314、第2のトランジスタ302、第3のトランジスタ303、第5の配線315の順で並んでもよいし、第4の配線314、第3のトランジスタ303、第2のトランジスタ302、第5の配線315の順で並んでもよい。
第1の配線311(RS)は、配線305(FD)をリセットするための信号線である。なお、回路211における第1の配線311(RS)は、配線305(FD)への電荷蓄積を行うための信号線でもある。第2の配線312(TX)は、第1のトランジスタ301を制御するための信号線である。第3の配線313(SE)は、第3のトランジスタ303を制御するための信号線である。第4の配線314(GND)は、基準電位(例えばGND)を設定する信号線である。第5の配線315(OUT)は、回路211で得られた情報を読み出すための信号線である。
また、画素回路210は、図7(B)に示す構成であってもよい。図7(B)に示す回路212は、図7(A)に示す回路211と構成要素は同じであるが、フォトダイオード321のアノードが第1のトランジスタ301のソースまたはドレインの一方と電気的に接続され、フォトダイオード321のカソードが第1の配線311(RS)と電気的に接続される点で異なる。
次に、図7(A)、(B)に示す各素子の構成について説明する。
フォトダイオード320、321には、シリコン半導体などでpn型やpin型の接合が形成された素子を用いることができる。シンチレータが可視光を発する場合は、i型の半導体層を非晶質シリコンで形成したpin型フォトダイオードを用いることが好ましい。非晶質シリコンは可視光の波長領域における感度が高く、微弱な可視光を検知しやすい。
なお、i型の半導体とは、フェルミ準位がバンドギャップの中央に位置する所謂真性半導体の他、半導体に含まれるp型を付与する不純物、またはn型を付与する不純物がそれぞれ1×1020atoms/cm以下の濃度であり、暗伝導度に対して光伝導度が高い半導体を指す。
第1のトランジスタ301、第2のトランジスタ302、および第3のトランジスタ303は、非晶質シリコン、微結晶シリコン、多結晶シリコン、単結晶シリコンなどのシリコン半導体を用いて形成することも可能であるが、酸化物半導体を用いたトランジスタで形成することが好ましい。酸化物半導体でチャネル形成領域を形成したトランジスタは、極めてオフ電流が低い特性を示す特徴を有している。
特に、配線305(FD)と接続されている第1のトランジスタ301のリーク電流が大きいと、配線305(FD)に蓄積された電荷が保持できる時間が十分でなくなる。したがって、当該トランジスタに酸化物半導体を用いたトランジスタを使用することで、フォトダイオード320を介した不要な電荷の流出を防止することができる。
また、第2のトランジスタ302、第3のトランジスタ303においても、リーク電流が大きいと、第4の配線314または第5の配線315に不必要な電荷の出力が起こるため、これらのトランジスタとして、酸化物半導体でチャネル形成領域を形成したトランジスタを用いることが好ましい。
また、第2のトランジスタ302に酸化物半導体を用いた極めてオフ電流の低いトランジスタを用いることで、撮像のダイナミックレンジを拡大することができる。図7(A)に示す画素回路構成では、フォトダイオード320に入射される光の強度が大きいときに第2のトランジスタ302のゲート電位が小さくなる。また、図7(B)に示す画素回路構成では、フォトダイオード321に入射される光の強度が小さいときに第2のトランジスタ302のゲート電位が小さくなる。酸化物半導体を用いたトランジスタは極めてオフ電流が低いため、ゲート電位が極めて小さい場合においても当該ゲート電位に応じた電流を正確に出力することができる。したがって、検出することのできる照度のレンジ、すなわちダイナミックレンジを広げることができる。
また、図7(B)に示す画素回路構成においては、第2のトランジスタ302のゲート電位が比較的小さいとき、すなわち、シンチレータからフォトダイオード321に照射される光の強度が小さい場合においても十分なダイナミックレンジを得られる。つまり、シンチレータが発する光の強度は小さくてもよいことになるため、被写体に照射するX線強度を小さくすることができる。
次に、図7(A)の回路211の動作の例について図8(A)に示すタイミングチャートを用いて説明する。
図8(A)では簡易に説明するため、各配線の電位は、二値変化する信号として与える。ただし、各電位はアナログ信号であるため、実際には状況に応じて二値に限らず種々の値を取り得る。なお、図に示す信号401は第1の配線311(RS)の電位、信号402は第2の配線312(TX)の電位、信号403は第3の配線313(SE)の電位、信号404は配線305(FD)の電位、405は第5の配線315(OUT)の電位に相当する。
時刻Aにおいて、第1の配線311の電位(信号401)を”High”、第2の配線312の電位(信号402)を”High”とすると、フォトダイオード320に順方向バイアスが印加され、配線305の電位(信号404)が”High”となる。すなわち、電荷蓄積部の電位は第1の配線311の電位に初期化され、リセット状態となる。以上がリセット動作の開始である。なお、第5の配線315の電位(信号405)は、”High”にプリチャージしておく。
時刻Bにおいて、第1の配線311の電位(信号401)を”Low”、第2の配線312の電位(信号402)を”High”とするとリセット動作が終了し、蓄積動作が開始される。ここで、フォトダイオード320には逆方向バイアスが印加されるため、逆方向電流により、配線305の電位(信号404)が低下し始める。フォトダイオード320は、光が照射されると逆方向電流が増大するので、照射される光の量に応じて配線305の電位(信号404)の低下速度は変化する。すなわち、フォトダイオード320に照射する光の量に応じて、第2のトランジスタ302のソースとドレイン間のチャネル抵抗が変化する。
なお、ここでフォトダイオード320に照射される光とは、シンチレータによってX線等の放射線から変換された光を指す。
時刻Cにおいて、第2の配線312の電位(信号402)を”Low”とすると蓄積動作が終了し、配線305の電位(信号404)は一定となる。ここで、当該電位は、蓄積動作中にフォトダイオード320が生成した電荷量により決まる。すなわち、フォトダイオード320に照射されていた光の量に応じて変化する。また、第1のトランジスタ301は、酸化膜半導体層でチャネル形成領域を形成したオフ電流が極めて低いトランジスタで構成されているため、後の選択動作(読み出し動作)を行うまで、配線305の電位を一定に保つことが可能である。
なお、第2の配線312の電位(信号402)を”Low”とする際に、第2の配線312と配線305との間における寄生容量により、配線305の電位に変化が生じることがある。当該電位の変化量が大きい場合は、蓄積動作中にフォトダイオード320が生成した電荷量を正確に取得できないことになる。当該電位の変化量を低減するには、第1のトランジスタ301のゲート−ソース(もしくはゲート−ドレイン)間容量を低減する、第2のトランジスタ302のゲート容量を増大する、配線305に保持容量を設ける、などの対策が有効である。なお、本実施の形態では、これらの対策により当該電位の変化を無視できるものとしている。
時刻Dに、第3の配線313の電位(信号403)を”High”にすると、第3のトランジスタ303が導通して選択動作が開始され、第4の配線314と第5の配線315が、第2のトランジスタ302と第3のトランジスタ303とを介して導通する。そして、第5の配線315の電位(信号405)は、低下していく。なお、第5の配線315のプリチャージは、時刻D以前に終了しておけばよい。ここで、第5の配線315の電位(信号405)が低下する速さは、第2のトランジスタ302のソースとドレイン間の電流に依存する。すなわち、蓄積動作中にフォトダイオード320に照射されている光の量に応じて変化する。
時刻Eにおいて、第3の配線313の電位(信号403)を”Low”にすると、第3のトランジスタ303が遮断されて選択動作は終了し、第5の配線315の電位(信号405)は、一定値となる。ここで、一定値となる値は、フォトダイオード320に照射されていた光の量に応じて変化する。したがって、第5の配線315の電位を取得することで、蓄積動作中にフォトダイオード320に照射されていた光の量を知ることができる。
より具体的には、フォトダイオード320に照射されている光が強いと、配線305の電位は低くなり、第2のトランジスタ302のゲート電圧は低くなるので、第5の配線315の電位(信号405)はゆっくりと低下する。したがって、第5の配線315からは比較的高い電位を読み出すことができる。
逆に、フォトダイオード320に照射されている光が弱いと、配線305の電位は高くなり、第2のトランジスタ302のゲート電圧は高くなるので、第5の配線315の電位(信号405)は速く低下する。したがって、第5の配線315からは比較的低い電位を読み出すことができる。
次に、図7(B)の回路212の動作の例について図8(B)に示すタイミングチャートを用いて説明する。
時刻Aにおいて、第1の配線311の電位(信号401)を”Low”、第2の配線312の電位(信号402)を”High”とすると、フォトダイオード321に順方向バイアスが印加され、配線305の電位(信号404)が”Low”となる。すなわち、電荷蓄積部の電位はリセット状態となる。以上がリセット動作の開始である。なお、第5の配線315電位(信号405)は、”High”にプリチャージしておく。
時刻Bにおいて、第1の配線311の電位(信号401)を”High”、第2の配線312の電位(信号402)を”High”とするとリセット動作が終了し、蓄積動作が開始される。ここで、フォトダイオード321には逆方向バイアスが印加されるため、逆方向電流により、配線305の電位(信号404)が増加し始める。フォトダイオード321は、光が照射されると逆方向電流が増大するので、照射される光の量に応じて配線305の電位(信号404)の増加速度は変化する。すなわち、フォトダイオード321に照射する光の量に応じて、第2のトランジスタ302のソースとドレイン間のチャネル抵抗が変化する。
時刻C以降の動作は、図8(A)のタイミングチャートの説明を参照することができ、時刻Eにおいて、第5の配線315の電位を取得することで、蓄積動作中にフォトダイオード321に照射されていた光の量を知ることができる。
また、画素回路210は、図9(A)、(B)に示す構成であってもよい。
図9(A)に示す回路213は、図7(A)に示す回路211の構成に第4のトランジスタ304が加えられた構成であり、当該トランジスタのゲートは第1の配線311と電気的に接続され、ソースまたはドレインの一方は配線305(FD)と電気的に接続され、ソースまたはドレインの他方は第7の配線317と電気的に接続され、フォトダイオード320のアノードが第6の配線316に電気的に接続される。ここで、第6の配線316はフォトダイオード320に常時逆バイアスを印加するための信号線(低電位線)である。また、第7の配線317は配線305を高電位にリセットするための信号線(高電位線)である。
第4のトランジスタ304は、配線305(FD)をリセットするためのリセットトランジスタとして機能する。したがって、図7(A)に示す回路211とは異なり、フォトダイオード320を介したリセット動作は行われず、該フォトダイオードは常時逆バイアスが印加されている。配線305(FD)のリセットは、第1の配線311(RS)の電位を”High”に制御することで行うことができ、回路213は、図7(A)に示す回路211と同じく、図8(A)に示すタイミングチャートで動作することができる。
また、図9(B)に示す回路214は、図8(B)に示す回路212の構成に第4のトランジスタ304が加えられた構成であり、当該トランジスタのゲートは第1の配線311と電気的に接続され、ソースまたはドレインの一方は配線305(FD)と電気的に接続され、ソースまたはドレインの他方は第7の配線317と電気的に接続され、フォトダイオード321のカソードが第6の配線316に電気的に接続される。ここで、第6の配線316はフォトダイオード321に常時逆バイアスを印加するための信号線(高電位線)である。また、第7の配線317は配線305を低電位にリセットするための信号線(低電位線)である。
第4のトランジスタ304は、配線305(FD)をリセットするためのリセットトランジスタとして機能する。したがって、図7(B)に示す回路212とは異なり、フォトダイオード321を介したリセット動作は行われず、フォトダイオード321は常時逆バイアスが印加されている。配線305(FD)のリセットは、第1の配線311(RS)の電位を”High”に制御することで行うことができ、回路214は、図8(C)に示すタイミングチャートで動作することができる。
なお、図9(A)、(B)では、第1のトランジスタ301が設けられている場合の例を示したが、本発明の実施形態の一態様は、これに限定されない。図18(A)、(B)に示すように、図9(A)、(B)に示す回路213、214の構成から第1のトランジスタ301がのぞかれた構成の回路216、217を有することも可能である。
なお、第4のトランジスタ304は、非晶質シリコン、微結晶シリコン、多結晶シリコン、単結晶シリコンなどのシリコン半導体を用いて形成することも可能であるが、リーク電流が大きいと、電荷蓄積部で電荷が保持できる時間が十分でなくなってしまう。したがって、第1のトランジスタ301と同じく、酸化物半導体で形成したオフ電流が極めて小さい特性を有するトランジスタを用いることが好ましい。
また、画素回路210は、図10に示す構成であってもよい。図10に示す回路215は、図7(A)または図7(B)の構成における受光素子をフォトダイオードから可変抵抗素子330に置き換えた構成である。当該可変抵抗素子には、一対の電極と、その一対の電極間に設けられたi型の導電型を有する半導体層を用いることができる。
例えば、当該半導体層としてi型非晶質シリコン層を用いると、可視光が照射されることにより抵抗が変化するため、フォトダイオードを用いた場合と同様に配線305の電位を変化させることができ、蓄積動作中に可変抵抗素子330に照射されていた光の量を知ることができる。また、i型の導電型を有する半導体層として、バンドギャップが3eV以上の酸化物半導体を用いてもよい。当該酸化物半導体は、紫外光が照射されることにより抵抗が変化するため、配線305の電位を変化させることができ、蓄積動作中に可変抵抗素子330に照射されていた光の量を知ることができる。なお、可変抵抗素子330に照射される光の波長を選択するには、シンチレータ120の種類を変更すればよい。
図10に示す回路215は、第6の配線316の電位を”Low”、第7の配線317の電位を”High”とすれば、図8(A)のタイミングチャートに従って動作させることができる。また、第6の配線316の配線を”High”、第7の配線317の電位を”Low”とすることで、図8(C)のタイミングチャートに従って動作させることができる。
また、画素回路210に用いるトランジスタは、図11(A)または図11(B)に示すように、第1のトランジスタ301、第2のトランジスタ302、および第3のトランジスタ303にバックゲートを設けた構成であってもよい。図11(B)はフロントゲートと同じ電位がバックゲートに印加される構成であり、オン電流を増加させることができる。また、図11(A)はバックゲートに定電位を印加する構成であり、しきい値電圧を制御することができる。なお、図11(A)においては、バックゲートが第4の配線314(GND)と電気的に接続される構成を例示したが、定電位が供給される別の配線と電気的に接続されていてもよい。なお、図11(A)、(B)は回路211においてトランジスタにバックゲートを設けた例を示したが、同様の構成を回路212、回路213、回路214、回路215、回路216、回路217に示す回路にも適用することもできる。また、一つの画素回路に含まれるトランジスタに対し、フロントゲートと同じ電位がバックゲートに印加される構成、バックゲートに定電位を印加する構成、またはバックゲートを設けない構成を必要に応じて任意に組み合わせた回路構成としてもよい。
なお、上述した回路例において、第5の配線315(OUT)には、図12(A)、(B)、(C)に示すような積分回路が接続されていてもよい。当該回路によって、読み出し信号のS/N比を高めることができ、より微弱な光を検出することができる。すなわち、撮像装置の感度を高めることができる。
図12(A)は、演算増幅回路(OPアンプともいう)を用いた積分回路である。演算増幅回路の反転入力端子は、抵抗素子Rを介して第5の配線315(OUT)に接続される。演算増幅回路の非反転入力端子は、接地電位に接続される。演算増幅回路の出力端子は、容量素子Cを介して演算増幅回路の反転入力端子に接続される。
図12(B)は、図12(A)とは異なる構成の演算増幅回路を用いた積分回路である。演算増幅回路の反転入力端子は、抵抗素子Rと容量素子C1を介して第5の配線315(OUT)に接続される。演算増幅回路の非反転入力端子は、接地電位に接続される。演算増幅回路の出力端子は、容量素子C2を介して演算増幅回路の反転入力端子に接続される。
図12(C)は、図12(A)および図12(B)とは異なる構成の演算増幅回路を用いた積分回路である。演算増幅回路の非反転入力端子は、抵抗素子Rを介して第5の配線315(OUT)に接続される。演算増幅回路の反転入力端子は、演算増幅回路の出力端子に接続される。なお、抵抗素子Rと容量素子Cは、CR積分回路を構成する。また、演算増幅回路はユニティゲインバッファを構成する。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、X線等の放射線を用いる撮像装置について、実施の形態1とは異なる例を図面を参照して説明する。なお、実施の形態1と共通する部分は符号を同じとし、詳細な説明は省略する。
図13(A)は、本発明の一態様の撮像装置の構成を示す断面図である。図13(A)に示す撮像装置30は、基板100上に画素アレイ111が形成され、当該画素アレイ上にシンチレータ120が形成された構成となっている。
基板100上に形成される画素アレイ111は、例えば、図13(B)の上面図に示すような構成とすることができる。なお、図13(B)では明瞭化のため、シンチレータ120を省いて図示している。
画素アレイ111はマトリクス状に形成された複数の画素回路710からなり、当該画素回路には、受光素子720および当該受光素子と電気的に接続された撮像用回路部730と、発光素子760および当該発光素子と電気的に接続された発光用回路部770が含まれる(図13(C)参照)。
本発明の一態様の撮像装置では、撮像用回路部730および発光用回路部770に酸化物半導体を活性層としたトランジスタを用いることができる。酸化物半導体を用いたトランジスタは非晶質シリコンを用いたトランジスタよりも移動度が高いため、トランジスタを小さくすることが容易であり、画素を小さくすることができる。すなわち、撮像装置の解像度を高めることができる。
上記酸化物半導体を活性層としたトランジスタは、実施の形態1で説明したように、シンチレータ120を通過する一部のX線によって劣化が生じる。当該劣化を回復させる手段として、実施の形態1では発熱体101による熱処理および発光装置130による光照射を用いたが、本実施の形態の撮像装置30では、発熱体101による熱処理に加え、発光素子760による光照射を用いる。
発光素子760としては、例えば有機EL素子を用いることができる。また、当該発光素子が発する光の波長は、実施の形態1で説明したように500nm乃至600nmであることが好ましく、550nm前後であることがさらに好ましい。
なお、発光素子760は、図示するように撮像用回路部730および発光用回路部770上に形成され、両方の回路部に光が照射されるようにするため、ボトムエミッション構造(基板100側に光を射出する構成)とすることが好ましい。また、撮像用回路部730および発光用回路部770に含まれるトランジスタの活性層に光が効率よく照射されるように、当該トランジスタはボトムゲート構造とすることが好ましい。
図14は、撮像用回路部730として図7(A)に示した回路211を用い、基準電位線である第4の配線314(GND)を共有して発光素子760および発光用回路部770を接続した画素回路710の回路図である。
発光用回路部770は、第5のトランジスタ840のソースまたはドレインの一方に信号線820が接続され、ソースまたはドレインの他方に第6のトランジスタ890のゲートおよび容量素子850の一方の電極が接続され、第5のトランジスタ840のゲートには走査線811が接続され、第6のトランジスタ890のソースまたはドレインの一方には電源線830が接続され、ソースまたはドレインの他方には発光素子760の一方の電極が接続され、発光素子760の他方の電極は第4の配線314(GND)と接続されている。
発光素子760および発光用回路部770は、少なくとも容量素子850の電位が保持可能という特徴を生かすことで、次のように、発光の保持が可能である。
まず、第5のトランジスタ840がオン状態となる電位を走査線811に供給する。この動作により、信号線820の電位が、容量素子850の一方の電極、および第6のトランジスタ890のゲート電極に与えられる。すなわち、容量素子850および第6のトランジスタ890のゲートを含むノードには、所定の電荷が与えられる。ここで、第6のトランジスタ890は、当該ノードに供給された電位に応じた電流を発光素子760に流し、発光強度を制御する。
その後、走査線811の電位を第5のトランジスタ840がオフ状態となる電位として、第5のトランジスタ840をオフ状態とすることにより、容量素子850および第6のトランジスタ890のゲートを含むノードの電位が保持され、発光素子760からの発光が保持される。なお、第5のトランジスタ840に酸化物半導体で形成したオフ電流が極めて小さいトランジスタを用いると上記ノードの電位は長期間保持できる。そのため、当該ノードに電位を供給するための動作の間隔を拡大しても発光素子760の発光強度が長期間維持できるようになり、消費電力を低減することができる。
当該発光素子が発する光を撮像用回路部730および発光用回路部770が有するトランジスタの活性層に照射することでX線照射による電気特性の劣化を回復することができる。
なお、撮像用回路部730および発光用回路部770に開口部を設け、かつ基板100および発熱体101に発光素子760が発する光に対して透光性を有する材料を用いれば撮像装置30を表示装置としても用いることができる。例えば、図15に示すように撮像装置30を含む撮像システム900の入力側(シンチレータ120側)に被写体920を透過したX線を入射させる。そして、撮像装置30の撮像用回路部730から出力された映像信号は信号処理装置910で諧調信号に変換され、撮像装置30の発光用回路部770に入力されることにより撮像システム900の出力側(基板100側)で画像を表示することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、実施の形態2で説明した画素回路の駆動方法の一例について説明する。
実施の形態2で説明したように、画素回路の動作は、リセット動作、蓄積動作、および選択動作の繰り返しである。X線等の放射線を用いた撮像装置においては、生体への影響を考慮し、放射線の照射時間を極力短くすることが好ましい。放射線の照射時間の短縮し、短時間での撮像を実現するためには、全画素回路のリセット動作、蓄積動作、選択動作を速やかに実行することが必要である。
そのため、撮像方法としては、図16(A)のタイミングチャートに示すようなグローバルシャッタ方式での駆動方法を用いることが好ましい。なお、図16(A)は、マトリクス状に複数の画素回路を有し、当該画素回路に図7(A)の回路211を有する撮像装置を例として、第1行目から第n行目(nは3以上の自然数)の回路211の動作を説明するものである。なお、下記の動作説明は、図9(A)の回路213、図10の回路215、および図11(A)、(B)に示す回路にも適用することができる。
図16(A)において、信号501、信号502、信号503は、第1行目、第2行目、第n行目の各画素回路に接続された第1の配線311(RS)に入力される信号である。また、信号504、信号505、信号506は、第1行目、第2行目、第n行目の各画素回路に接続された第2の配線312(TX)に入力される信号である。また、信号507、信号508、信号509は、第1行目、第2行目、第n行目の各画素回路に接続された第3の配線313(SE)に入力される信号である。
また、期間510は、1回の撮像に要する期間である。また、期間511は、各行の画素回路がリセット動作を同時に行っている期間であり、期間520は、各行の画素回路が蓄積動作を同時に行っている期間である。なお、選択動作は各行の画素回路で順次行われる。一例として、期間531は、第1行目の画素回路が選択動作を行っている期間である。このように、グローバルシャッタ方式では、全画素回路で略同時にリセット動作が行われた後、全画素回路で略同時に蓄積動作が行われ、1行毎に順次読み出し動作が行われる。
つまり、グローバルシャッタ方式では、全ての画素回路において蓄積動作が略同時に行われているため、各行の画素回路における撮像の同時性が確保される。したがって、放射線照射と蓄積動作とを同期させることで、被写体へ放射線を照射する時間を短くすることができる。すなわち、グローバルシャッタ方式では、期間520のみに放射線照射を行えばよい。
一方、図16(B)は、ローリングシャッタ方式を用いた場合のタイミングチャートである。なお、信号501乃至509は図16(A)の説明を参照することができる。期間610は1回の撮像に要する期間である。期間611、期間612、期間612はそれぞれ、第1行目、第2行目、第n行目のリセット期間であり、期間621、期間622、期間623はそれぞれ、第1行目、第2行目、第n行目の蓄積動作期間である。また、期間631は、1行目の画素回路が選択動作を行っている期間である。このように、ローリングシャッタ方式では、蓄積動作が全ての画素回路では同時に行われず、行毎に順次行われるため、各行の画素回路における撮像の同時性が確保されない。したがって、放射線照射と蓄積動作とを同期させたとしても、放射線照射時間に相当する期間620(期間621乃至期間623の合計)は、グローバルシャッタ方式における放射線照射期間である期間520よりも長くなってしまう。ただし、蓄積動作期間を短くすることなどによって、期間620を短くすることができるため、本発明の一態様の撮像装置の駆動方式として、ローリングシャッタ方式を用いることもできる。
グローバルシャッタ方式を実現するためには、蓄積動作が終了した後も、読み出しまでの間に各画素回路における配線305(FD)の電位を長時間保つ必要がある。配線305(FD)の電位の長時間の保持は、前述したように第1のトランジスタ301に極めてオフ電流の低い、チャネル形成領域を酸化物半導体で形成したトランジスタを用いることで実現できる。一方、第1のトランジスタ301にチャネル形成領域をシリコン半導体などで形成したトランジスタを適用した場合は、オフ電流が高いために配線305(FD)の電位を長時間保持できず、グローバルシャッタ方式を用いることが困難となる。
以上のように、画素回路にチャネル形成領域を酸化物半導体で形成したトランジスタを用いることでグローバルシャッタ方式を容易に実現することができ、被写体に照射する放射線量が少ない撮像装置を提供することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
10 撮像装置
20 撮像装置
30 撮像装置
100 基板
101 発熱体
110 画素アレイ
111 画素アレイ
120 シンチレータ
130 発光装置
210 画素回路
211 回路
212 回路
213 回路
214 回路
215 回路
216 回路
217 回路
220 受光素子
230 回路部
240 回路
250 回路
301 第1のトランジスタ
302 第2のトランジスタ
303 第3のトランジスタ
304 第4のトランジスタ
305 配線
311 第1の配線
312 第2の配線
313 第3の配線
314 第4の配線
315 第5の配線
316 第6の配線
317 第7の配線
320 フォトダイオード
321 フォトダイオード
330 可変抵抗素子
401 信号
402 信号
403 信号
404 信号
405 信号
501 信号
502 信号
503 信号
504 信号
505 信号
506 信号
507 信号
508 信号
509 信号
510 期間
511 期間
520 期間
531 期間
610 期間
611 期間
612 期間
620 期間
621 期間
622 期間
623 期間
631 期間
710 画素回路
720 受光素子
730 撮像用回路部
760 発光素子
770 発光用回路部
811 走査線
820 信号線
830 電源線
840 第5のトランジスタ
850 容量素子
890 第6のトランジスタ
900 撮像システム
910 信号処理装置
920 被写体
991 ディテクタユニット
992 手
994 被写体
995 台
996 X線源
997 X線
998 撮像システム
999 コンピュータ

Claims (11)

  1. シンチレータと、
    画素回路と、
    基板と、
    が上記順序で重畳しており、
    前記画素回路は、受光素子および当該受光素子と電気的に接続された回路部と、
    を有し、
    前記基板には発熱体が形成されていることを特徴とする撮像装置。
  2. シンチレータと、
    画素回路と、
    基板と、
    発光装置と、
    が上記順序で重畳しており、
    前記画素回路は、受光素子および当該受光素子と電気的に接続された回路部と、
    を有し、
    前記基板には発熱体が形成され、
    前記発光装置が発する光は前記画素回路に照射される構成であることを特徴とする撮像装置。
  3. 請求項1または2において、前記発光装置は、500nm乃至600nmの波長の単色光、または当該範囲の波長が混在した光を含んで発することを特徴とする撮像装置。
  4. 請求項1乃至3のいずれか一項において、前記画素回路は酸化物半導体をチャネル形成領域に用いた、トップゲート型のトランジスタを有することを特徴とする撮像装置。
  5. シンチレータと、
    画素回路と、
    基板と、
    が上記順序で重畳しており、
    前記画素回路は、
    受光素子および当該受光素子と電気的に接続された撮像用回路部と、
    発光素子および当該発光素子と電気的に接続された発光用回路部と、
    を有し、
    前記基板には発熱体が形成されていることを特徴とする撮像装置。
  6. 請求項1乃至5のいずれか一項において、前記受光素子は、フォトダイオードであることを特徴とする撮像装置。
  7. 請求項1乃至6のいずれか一項において、前記受光素子は、一対の電極間に半導体層を有する可変抵抗素子であることを特徴とする撮像装置。
  8. 請求項1乃至7のいずれか一項において、前記発熱体は、透光性を有することを特徴とする撮像装置。
  9. 請求項1乃至8のいずれか一項において、前記基板は、透光性を有することを特徴とする撮像装置。
  10. 請求項5乃至9のいずれか一項において、前記発光素子は、500nm乃至600nmの波長の単色光、または当該範囲の波長が混在した光を含んで発することを特徴とする撮像装置。
  11. 請求項5乃至10のいずれか一項において、前記画素回路は酸化物半導体をチャネル形成領域に用いた、ボトムゲート型のトランジスタを有することを特徴とする撮像装置。
JP2014174928A 2013-08-30 2014-08-29 撮像装置 Expired - Fee Related JP6525530B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174928A JP6525530B2 (ja) 2013-08-30 2014-08-29 撮像装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013179560 2013-08-30
JP2013179560 2013-08-30
JP2014174928A JP6525530B2 (ja) 2013-08-30 2014-08-29 撮像装置

Publications (3)

Publication Number Publication Date
JP2015065433A true JP2015065433A (ja) 2015-04-09
JP2015065433A5 JP2015065433A5 (ja) 2017-09-07
JP6525530B2 JP6525530B2 (ja) 2019-06-05

Family

ID=52581806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174928A Expired - Fee Related JP6525530B2 (ja) 2013-08-30 2014-08-29 撮像装置

Country Status (2)

Country Link
US (1) US9360564B2 (ja)
JP (1) JP6525530B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028286A (ja) * 2015-07-23 2017-02-02 株式会社半導体エネルギー研究所 撮像装置および電子機器
JP2019220684A (ja) * 2018-06-19 2019-12-26 シャープ株式会社 放射線検出器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9674470B2 (en) 2014-04-11 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and method for driving electronic device
KR102419715B1 (ko) 2014-06-09 2022-07-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 장치
TW202243228A (zh) 2014-06-27 2022-11-01 日商半導體能源研究所股份有限公司 攝像裝置及電子裝置
US9729809B2 (en) 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
US9685476B2 (en) * 2015-04-03 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10242617B2 (en) * 2016-06-03 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and driving method
JP7139327B2 (ja) 2017-06-27 2022-09-20 株式会社半導体エネルギー研究所 半導体装置および電子部品
CN109216391B (zh) * 2018-09-11 2021-02-19 京东方科技集团股份有限公司 一种探测面板、其制作方法及检测装置

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113652A (ja) * 1984-06-28 1986-01-21 Nec Corp 放射線劣化減少対策を施した搭載用センサ
JPS6175560A (ja) * 1984-09-21 1986-04-17 Hitachi Ltd イメ−ジセンサ
JPS61166162A (ja) * 1985-01-18 1986-07-26 Ricoh Co Ltd イメ−ジセンサ
JPS6211268A (ja) * 1985-07-08 1987-01-20 Sharp Corp 画像読取装置
JPS6243585A (ja) * 1985-08-21 1987-02-25 Toshiba Corp X線ct用検出器
JPS62154780A (ja) * 1985-12-27 1987-07-09 Toshiba Corp イメ−ジセンサ
JPH04110691A (ja) * 1990-08-30 1992-04-13 Shimadzu Corp 放射線検出器
JPH04134290A (ja) * 1990-09-26 1992-05-08 Shimadzu Corp 放射線検出器
JPH0530278A (ja) * 1991-07-22 1993-02-05 Hitachi Ltd 画像読み取り装置,ラインイメージセンサ及びシフトレジスタ
JPH05145052A (ja) * 1991-11-19 1993-06-11 Hamamatsu Photonics Kk 固体撮像素子
JPH07169985A (ja) * 1994-10-27 1995-07-04 Semiconductor Energy Lab Co Ltd 半導体装置
JP2000150895A (ja) * 1998-11-16 2000-05-30 Alps Electric Co Ltd 薄膜トランジスタ及び画像表示装置の駆動装置
JP2003017676A (ja) * 2001-04-27 2003-01-17 Canon Inc 放射線撮像装置およびそれを用いた放射線撮像システム
JP2003107163A (ja) * 2001-08-09 2003-04-09 Koninkl Philips Electronics Nv 加熱装置を備えて提供されるx線検出器
JP2004146778A (ja) * 2002-08-30 2004-05-20 Sharp Corp 光電変換装置及びその製造方法
JP2007035773A (ja) * 2005-07-25 2007-02-08 Canon Inc 電磁波検出装置、放射線検出装置及び放射線撮像システム
JP2007181183A (ja) * 2005-11-29 2007-07-12 Canon Inc 放射線撮像装置、その制御方法、及びそれを実行させるためのプログラムを記録した記録媒体
JP2007248285A (ja) * 2006-03-16 2007-09-27 Canon Inc 放射線検出装置
JP2008134237A (ja) * 2006-11-01 2008-06-12 Canon Inc 放射線撮像装置
JP2008178522A (ja) * 2007-01-24 2008-08-07 Canon Inc 放射線撮像装置及びその駆動方法
JP2008309517A (ja) * 2007-06-12 2008-12-25 Canon Inc 放射線検出装置および放射線撮像システム
JP2009277702A (ja) * 2008-05-12 2009-11-26 Canon Inc 半導体素子の閾値電圧の制御方法
JP2010523997A (ja) * 2007-04-12 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ シンチレータの空間利得分布の決定
JP2011146525A (ja) * 2010-01-14 2011-07-28 Fujifilm Corp 電界効果型トランジスタの製造方法、表示装置の製造方法、x線撮像装置の製造方法及び光センサの製造方法
JP2011176235A (ja) * 2010-02-25 2011-09-08 Sony Corp 放射線撮像装置およびその駆動方法
JP2011216606A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 薄膜トランジスタの製造方法
JP2012049208A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 酸化物半導体薄膜、薄膜トランジスタおよび薄膜トランジスタを備えた装置
JP2012049210A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 酸化物半導体薄膜およびその製造方法、並びに薄膜トランジスタ、薄膜トランジスタを備えた装置
JP2012108052A (ja) * 2010-11-18 2012-06-07 Fujifilm Corp 放射線画像撮影装置
JP2012113292A (ja) * 2010-11-05 2012-06-14 Semiconductor Energy Lab Co Ltd 表示装置の駆動方法
JP2012229940A (ja) * 2011-04-25 2012-11-22 Fujifilm Corp 放射線撮影装置、放射線撮影システム及び放射線撮影方法
JP2013096731A (ja) * 2011-10-28 2013-05-20 Fujifilm Corp 放射線撮影装置
JP2013110400A (ja) * 2011-10-28 2013-06-06 Semiconductor Energy Lab Co Ltd 撮像装置

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH02164067A (ja) 1988-12-19 1990-06-25 Fujitsu Ltd X線画像センサ
EP0473125B1 (en) * 1990-08-30 1996-01-31 Shimadzu Corporation Radiation detector
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
KR100394896B1 (ko) 1995-08-03 2003-11-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 투명스위칭소자를포함하는반도체장치
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
JP2002151669A (ja) 2000-11-14 2002-05-24 Toshiba Corp X線撮像装置
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN101057333B (zh) 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5100670B2 (ja) 2009-01-21 2012-12-19 株式会社半導体エネルギー研究所 タッチパネル、電子機器
KR101819757B1 (ko) 2009-06-17 2018-01-17 더 리젠츠 오브 더 유니버시티 오브 미시간 평판 x-선 영상기에서의 포토다이오드 및 기타 센서 구조물, 및 박막 전자 회로에 기초하여 평판 x-선 영상기에서의 포토다이오드 및 기타 센서 구조물의 토폴로지적 균일성을 향상시키는 방법
EP2524395A4 (en) 2010-01-15 2014-06-18 Semiconductor Energy Lab SEMICONDUCTOR COMPONENT AND CONTROL METHOD THEREFOR
US8872120B2 (en) 2012-08-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and method for driving the same
KR102069683B1 (ko) 2012-08-24 2020-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 방사선 검출 패널, 방사선 촬상 장치, 및 화상 진단 장치

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113652A (ja) * 1984-06-28 1986-01-21 Nec Corp 放射線劣化減少対策を施した搭載用センサ
JPS6175560A (ja) * 1984-09-21 1986-04-17 Hitachi Ltd イメ−ジセンサ
JPS61166162A (ja) * 1985-01-18 1986-07-26 Ricoh Co Ltd イメ−ジセンサ
JPS6211268A (ja) * 1985-07-08 1987-01-20 Sharp Corp 画像読取装置
JPS6243585A (ja) * 1985-08-21 1987-02-25 Toshiba Corp X線ct用検出器
JPS62154780A (ja) * 1985-12-27 1987-07-09 Toshiba Corp イメ−ジセンサ
JPH04110691A (ja) * 1990-08-30 1992-04-13 Shimadzu Corp 放射線検出器
JPH04134290A (ja) * 1990-09-26 1992-05-08 Shimadzu Corp 放射線検出器
JPH0530278A (ja) * 1991-07-22 1993-02-05 Hitachi Ltd 画像読み取り装置,ラインイメージセンサ及びシフトレジスタ
JPH05145052A (ja) * 1991-11-19 1993-06-11 Hamamatsu Photonics Kk 固体撮像素子
JPH07169985A (ja) * 1994-10-27 1995-07-04 Semiconductor Energy Lab Co Ltd 半導体装置
JP2000150895A (ja) * 1998-11-16 2000-05-30 Alps Electric Co Ltd 薄膜トランジスタ及び画像表示装置の駆動装置
JP2003017676A (ja) * 2001-04-27 2003-01-17 Canon Inc 放射線撮像装置およびそれを用いた放射線撮像システム
JP2003107163A (ja) * 2001-08-09 2003-04-09 Koninkl Philips Electronics Nv 加熱装置を備えて提供されるx線検出器
JP2004146778A (ja) * 2002-08-30 2004-05-20 Sharp Corp 光電変換装置及びその製造方法
JP2007035773A (ja) * 2005-07-25 2007-02-08 Canon Inc 電磁波検出装置、放射線検出装置及び放射線撮像システム
JP2007181183A (ja) * 2005-11-29 2007-07-12 Canon Inc 放射線撮像装置、その制御方法、及びそれを実行させるためのプログラムを記録した記録媒体
JP2007248285A (ja) * 2006-03-16 2007-09-27 Canon Inc 放射線検出装置
JP2008134237A (ja) * 2006-11-01 2008-06-12 Canon Inc 放射線撮像装置
JP2008178522A (ja) * 2007-01-24 2008-08-07 Canon Inc 放射線撮像装置及びその駆動方法
JP2010523997A (ja) * 2007-04-12 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ シンチレータの空間利得分布の決定
JP2008309517A (ja) * 2007-06-12 2008-12-25 Canon Inc 放射線検出装置および放射線撮像システム
JP2009277702A (ja) * 2008-05-12 2009-11-26 Canon Inc 半導体素子の閾値電圧の制御方法
JP2011146525A (ja) * 2010-01-14 2011-07-28 Fujifilm Corp 電界効果型トランジスタの製造方法、表示装置の製造方法、x線撮像装置の製造方法及び光センサの製造方法
JP2011176235A (ja) * 2010-02-25 2011-09-08 Sony Corp 放射線撮像装置およびその駆動方法
JP2011216606A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 薄膜トランジスタの製造方法
JP2012049208A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 酸化物半導体薄膜、薄膜トランジスタおよび薄膜トランジスタを備えた装置
JP2012049210A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 酸化物半導体薄膜およびその製造方法、並びに薄膜トランジスタ、薄膜トランジスタを備えた装置
JP2012113292A (ja) * 2010-11-05 2012-06-14 Semiconductor Energy Lab Co Ltd 表示装置の駆動方法
JP2012108052A (ja) * 2010-11-18 2012-06-07 Fujifilm Corp 放射線画像撮影装置
JP2012229940A (ja) * 2011-04-25 2012-11-22 Fujifilm Corp 放射線撮影装置、放射線撮影システム及び放射線撮影方法
JP2013096731A (ja) * 2011-10-28 2013-05-20 Fujifilm Corp 放射線撮影装置
JP2013110400A (ja) * 2011-10-28 2013-06-06 Semiconductor Energy Lab Co Ltd 撮像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028286A (ja) * 2015-07-23 2017-02-02 株式会社半導体エネルギー研究所 撮像装置および電子機器
JP2019220684A (ja) * 2018-06-19 2019-12-26 シャープ株式会社 放射線検出器
US11158658B2 (en) 2018-06-19 2021-10-26 Sharp Kabushiki Kaisha Radiation detector

Also Published As

Publication number Publication date
US20150060675A1 (en) 2015-03-05
US9360564B2 (en) 2016-06-07
JP6525530B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6525530B2 (ja) 撮像装置
US8901562B2 (en) Radiation imaging device, radiation imaging display system, and transistor
JP6247863B2 (ja) 撮像装置
KR102032003B1 (ko) 신속한 파워 업을 갖는 방사선 촬영 검출기, 이미징 장치 및 이를 이용한 방법
US7491960B2 (en) Radiographic apparatus and control method therefor
US7081629B2 (en) Radiographic apparatus
US20060113484A1 (en) Radiation image pick-up device and radiation image pick-up method
US9412783B2 (en) Image pickup unit and image pickup display system
TWI693831B (zh) 使用雙閘極tft結構的設備及方法
US9608120B2 (en) Image pickup unit and image pickup display system
KR20140034691A (ko) 광 검출 회로 및 반도체 장치
US20130100327A1 (en) Image pickup unit and image pickup display system
US9190448B2 (en) Imaging device and operation method thereof
CN113421942B (zh) 光电探测晶体管及其制造方法及相应的光电探测方法
US20140263952A1 (en) High performance digital imaging system
US9291720B2 (en) Radiographic detector with rapid power-up, imaging apparatus and methods using the same
CN113437099B (zh) 光电探测器及其制造方法及相应的光电探测方法
US10136075B2 (en) Compensation circuit for an x-ray detector
JP2012033835A (ja) 光電子素子の駆動方法及び該駆動方法で駆動される光電子装置
EP2778715A1 (en) A pixel unit for a radiographic image detecting apparatus
US11108983B2 (en) Imaging device
US9536921B2 (en) Radiation image-pickup device and radiation image-pickup display system
US20130112883A1 (en) Radiation Image Detector and Method of Driving the Same
JP2018164139A (ja) 撮像装置および電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R150 Certificate of patent or registration of utility model

Ref document number: 6525530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees