JP2015019563A - 制御装置、駆動装置および画像形成装置 - Google Patents

制御装置、駆動装置および画像形成装置 Download PDF

Info

Publication number
JP2015019563A
JP2015019563A JP2014105112A JP2014105112A JP2015019563A JP 2015019563 A JP2015019563 A JP 2015019563A JP 2014105112 A JP2014105112 A JP 2014105112A JP 2014105112 A JP2014105112 A JP 2014105112A JP 2015019563 A JP2015019563 A JP 2015019563A
Authority
JP
Japan
Prior art keywords
signal
motor
phase
circuit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014105112A
Other languages
English (en)
Inventor
拓也 邑田
Takuya Murata
拓也 邑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014105112A priority Critical patent/JP2015019563A/ja
Priority to US14/290,087 priority patent/US9294021B2/en
Priority to CN201410426348.7A priority patent/CN104242747B/zh
Publication of JP2015019563A publication Critical patent/JP2015019563A/ja
Priority to US15/019,632 priority patent/US9742325B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/007Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor wherein the position is detected using the ripple of the current caused by the commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】ブラシレスDCモータの出力軸または被駆動体に検出装置を備えることなく、位置・ホールド制御をすること。
【解決手段】ドライバ回路220は、モータ210から出力される磁極位相信号に応じて極性を切換えてモータ210に電力を供給するモータ駆動回路221と、磁極位相信号を変換して、モータ210の出力軸の回転量及び回転方向を表し、当該磁極位相信号に対して分解能の高い回転位置検出信号を出力する回転位置検出回路222と、を備える。
【選択図】図4

Description

本発明は、制御装置、駆動装置および画像形成装置に関する。
従来より、複写機、ファクシミリ、およびプリンタ等の画像形成装置では、パルス制御により位置・速度・ホールド制御が可能なステッピングモータが多くの部位で駆動力源として用いられてきた。
ステッピングモータは、パルス制御により位置・速度・ホールド制御が可能であるという利点があるが、負荷変動や経時変化による脱調を考慮して必要以上のトルクを出力して使用する必要が有るので、エネルギー効率が悪く、また、実負荷以上の高出力モータが必要になることから、必然的に大きく重いモータとなってしまうという欠点がある。
一方、ブラシレスDCモータは、負荷に応じた電流が流れるため高効率であるという利点があるが、モータ単体ではステッピングモータのような位置・ホールド制御ができないという欠点がある。
そこで、ブラシレスDCモータの出力軸にロータリエンコーダを設けて回転位置制御を行う方法(特許文献1参照)、あるいは、ブラシレスDCモータが駆動する被駆動体にリニアエンコーダを設けて回転位置制御を行う方法(特許文献2参照)などが知られている。
しかしながら、ブラシレスDCモータの出力軸または被駆動体にエンコーダまたはレゾルバ等の検出装置を設けた場合、塵埃等が検出装置の駆動部に噛み込むことによる不具合の発生、検出装置の熱影響による誤作動、または、部品点数が増加することによる製造費用の増加などの問題が発生する。
本発明は、上記に鑑みてなされたものであって、ブラシレスDCモータの出力軸または被駆動体に検出装置を備えることなく、位置・ホールド制御をすることができる駆動装置および画像形成装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の制御装置は、モータから出力される磁極位相信号に応じて前記モータに電力を供給するモータ駆動部と、前記磁極位相信号を変換して、前記モータの出力軸の回転量及び回転方向を表し、当該磁極位相信号に対して分解能の高い回転位置検出信号を出力する回転位置検出部とを備えることを特徴とする。
本発明によれば、ブラシレスDCモータの出力軸または被駆動体に検出装置を備えることなく、位置・ホールド制御をすることができるという効果を奏する。
図1は、本実施形態にかかる画像形成装置の概略構成を示す図である。 図2は、プロセスカートリッジの近傍における部分拡大図である。 図3は、画像形成装置に利用される原稿搬送装置の概略構成を示す図である。 図4は、第1実施形態の駆動装置の概略構成を示すブロック図である。 図5は、モータを駆動軸でない側から見た場合の平面図である。 図6は、モータを駆動軸でない側から見た場合の斜視図である。 図7は、第2実施形態の駆動装置の概略構成を示すブロック図である。 図8は、スライス方式による回転位置検出回路の概略構成を示す回路図である。 図9は、選択信号の選択方法を説明するための各信号のタイミングチャートである。 図10は、第2の位相検出回路で用いられる判定論理を示す図である。 図11は、信号選択回路で用いられる選択条件を示す図である。 図12は、第3の位相検出回路の作用を示す各信号のタイミングチャートである。 図13は、ベクトル方式による回転位置検出回路の概略構成を示す回路図である。 図14は、角度探索シーケンスのタイミングチャートを示す図である。 図15は、角度探索シーケンスの動作(カウントn=1)を示す図である。 図16は、角度探索シーケンスの動作(カウントn=2)を示す図である。 図17は、角度探索シーケンスの動作(カウントn=3)を示す図である。 図18は、角度探索シーケンスの動作(カウントn=4)を示す図である。 図19は、2チャンネルエンコーダ等価信号の生成論理を示す図である。
以下に添付図面を参照して、制御装置、駆動装置および画像形成装置の実施形態を詳細に説明する。なお、以下では、画像形成装置を複写機、プリンタ、スキャナ装置、ファクシミリ装置等の画像形成装置であるとして実施形態の説明をするが、コピー機能、プリンタ機能、スキャナ機能およびファクシミリ機能のうち少なくとも2つの機能を有する複合機に本発明を適用することも可能である。
〔画像形成装置〕
図1は、本実施形態にかかる画像形成装置100の概略構成を示す図である。図1に示されるように、画像形成装置100は、イエロー、マゼンタ、シアン、ブラック(以下、それぞれ「Y」、「M」、「C」、「K」と記す。)のトナー像を生成するための4つのプロセスカートリッジ6Y,6M,6C,6Kを備えている。
これらプロセスカートリッジ6Y,6M,6C,6Kは、画像形成剤として、互いに異なる色のYトナー、Mトナー、Cトナー、Kトナーを用いるが、それ以外は同様の構成になっている。各プロセスカートリッジ6Y,6M,6C,6Kは、それぞれ画像形成装置100本体に脱着可能であり、一度に消耗部品を交換できるようになっており、寿命到達時に交換される。
プロセスカートリッジ6Y,6M,6C,6Kは同様の構成であるので、Yトナー像を生成するためのプロセスカートリッジ6Yを例に挙げて、画像形成装置100の概略構成を説明する。図2は、図1に示すプロセスカートリッジ6Yの近傍における部分拡大図である。以下では、図1の参照に併せて、図2の参照を行う。
図2に示されるように、プロセスカートリッジ6Yは、潜像担持体としての感光体ドラム1Y、ドラムクリーニング装置2Y、除電装置(不図示)、帯電装置4Y、現像装置5Y等を備えている。
帯電装置4Yは、感光体ドラム1Yの表面を一様に帯電する装置である。感光体ドラム1Yは、ドラム回転機構により図中時計回りに回転され、感光体ドラム1Yが回転することにより、帯電装置4Yは、感光体ドラム1Yの表面を一様に帯電する。
一様に帯電された感光体ドラム1Yの表面は、レーザ光Lによって露光走査されてY用の静電潜像を担持する。感光体ドラム1Yの表面上の静電潜像は、Yトナーを用いる現像装置5YによってYトナー像に現像される。そして、感光体ドラム1Yの表面上のYトナー像は、中間転写ベルト8上に中間転写される。なお、この工程を中間転写工程という。
ドラムクリーニング装置2Yは、中間転写工程を経た後の感光体ドラム1Yの表面に残留したトナーを除去する装置である。また、除電装置は、クリーニング後の感光体ドラム1Yの残留電荷を除電する装置である。この除電により、感光体ドラム1Yの表面が初期化されて次の画像形成に備えられる。
なお、他のプロセスカートリッジ6M、6C、6Kにおいても、同様にして各感光体ドラム1M、1C、1K上にそれぞれMトナー像、Cトナー像、Kトナー像が形成されて、中間転写ベルト8上に中間転写される。
図1に示されるように、各プロセスカートリッジ6Y,6M,6C,6Kの図中下方には、露光装置7が配設されている。
露光装置7は、上記説明した各感光体ドラム1Y,1M,1C,1Kの表面上の静電潜像を形成するための装置である。露光装置7は、形成すべき画像の情報に基づいて発したレーザ光Lを、プロセスカートリッジ6Y,6M,6C,6Kにおけるそれぞれの感光体ドラム1Y,1M,1C,1Kに照射して、感光体ドラム1Y,1M,1C,1Kの表面を露光する。この露光により、感光体ドラム1Y,1M,1C,1Kの表面上にそれぞれY静電潜像、M静電潜像、C静電潜像、K静電潜像が形成される。
なお、露光装置7は、光源から発したレーザ光Lを、モータによって回転駆動したポリゴンミラーで走査しながら、複数の光学レンズやミラーを介して感光体ドラムに照射することにより、所望の静電潜像を感光体ドラム1Y,1M,1C,1Kの表面にそれぞれ形成する。
図1に示されるように、露光装置7の図中下側には、給紙手段が配設されている。給紙手段は、紙収容カセット26、紙収容カセット26に組み込まれた給紙ローラ27、およびレジストローラ対28等を有している。
紙収容カセット26は、記録材としての用紙99を複数枚重ねて収納しており、一番上の用紙99には給紙ローラ27が当接している。給紙ローラ27が駆動機構によって図中反時計回りに回転せしめられると、一番上の用紙99がレジストローラ対28のローラ間に向けて給紙される。
レジストローラ対28は、用紙99を挟み込むべく両ローラを回転駆動するが、挟み込んですぐに回転を一旦停止させる。そして、用紙99を適切なタイミングで後述の2次転写ニップに向けて送り出す。
一方、図1に示されるように、プロセスカートリッジ6Y,6M,6C,6Kの図中上方には、中間転写体である中間転写ベルト8を張架しながら無端移動させる中間転写ユニット15が配設されている。
中間転写ユニット15は、中間転写ベルト8のほか、ベルトクリーニング装置10等を備えている。また、4つの1次転写バイアスローラ9Y,9M,9C,9K,2次転写バックアップローラ12、クリーニングバックアップローラ13、テンションローラ14等も備えている。
中間転写ベルト8は、上記7つのローラに張架されながら、少なくとも1つのローラの回転駆動によって図中反時計回りに無端移動される。1次転写バイアスローラ9Y,9M,9C,9Kは、それぞれ中間転写ベルト8を各感光体ドラム1Y,1M,1C,1Kとの間に挟み込んでそれぞれ1次転写ニップを形成している。すなわち、1次転写バイアスローラ9Y,9M,9C,9Kは、中間転写ベルト8を介して各感光体ドラム1Y,1M,1C,1Kの反対側に配置され、中間転写ベルト8に対してトナーとは逆極性(例えばプラス極性)の転写バイアスを印加する。
1次転写バイアスローラ9Y,9M,9C,9Kを除くローラは、全て電気的に接地されている。中間転写ベルト8は、その無端移動に伴ってY,M,C,K用の1次転写ニップを順次通過していく過程で、各感光体ドラム1Y,1M,1C,1K上のYトナー像、Mトナー像、Cトナー像、Kトナー像が重ね合わされて1次転写される。これにより、中間転写ベルト8上に4色重ね合わせトナー像(以下、「4色トナー像」という。)が形成される。
また、2次転写バックアップローラ12は、2次転写ローラ19との間に中間転写ベルト8を挟み込んで2次転写ニップを形成している。中間転写ベルト8上に形成された4色トナー像は、この2次転写ニップで用紙99に転写される。そして、用紙99の白色と相まって、フルカラートナー像となる。
2次転写ニップを通過した後の中間転写ベルト8には、用紙99に転写されなかった転写残トナーが付着している。転写残トナーは、ベルトクリーニング装置10によってクリーニングされる。2次転写ニップにおいては、用紙99が互いに順方向に表面移動する中間転写ベルト8と2次転写ローラ19との間に挟まれて、レジストローラ対28側とは反対方向に搬送される。
2次転写ニップから送り出された用紙99は、画像形成装置100本体に対して着脱自在なユニットとしての定着ユニット20のローラ間を通過する際に、熱と圧力の影響を受けて、表面のフルカラートナー像が定着される。その後、用紙99は、排紙ローラ対29のローラ間を経て画像形成装置100外へと排出される。
画像形成装置100本体の筺体の上面には、スタック部30が形成されており、上記排紙ローラ対29によって機外に排出された用紙99は、このスタック部30に順次スタックされる。
なお、図1に示されるように、中間転写ユニット15と、これよりも上方にあるスタック部30との間には、ボトル支持部31が配設されている。このボトル支持部31には、各色トナーをそれぞれ収容する剤収容器としてのトナーボトル32Y,32M,32C,32Kがセットされている。
各トナーボトル32Y,32M,32C,32K内の各色トナーは、それぞれトナー供給装置により、プロセスカートリッジ6Y,6M,6C,6Kの現像装置に適宜補給される。各トナーボトル32Y,32M,32C,32Kは、プロセスカートリッジ6Y,6M,6C,6Kとは独立して画像形成装置100本体に対して脱着可能である。
図3は、上記説明した画像形成装置100に付加して利用される原稿搬送装置101の概略構成を示す図である。原稿搬送装置101は、図1に示された画像形成装置100の上部に配置され、画像形成装置100および原稿搬送装置101が一体としてコピー装置、MFP等として機能する。したがって、原稿搬送装置101が付加された画像形成装置100も、区別することなく画像形成装置100という名で呼ぶこととする。
図3に示される原稿搬送装置101は、被読取原稿を固定された読取装置部に搬送し、所定の速度で搬送しながら画像読取を行う、被読取原稿処理装置(以下ADF)に適用されるものである。
原稿搬送装置101は、被読取原稿束をセットする原稿セット部A、セットされた原稿束から1枚毎原稿を分離して給送する分離給送部B、給送された原稿を突当整合し、整合後の原稿を引き出し搬送するレジスト部C、搬送される原稿をターンさせて、原稿面を読取り側(下方)に向けて搬送するターン部D、原稿の表面画像を、コンタクトガラスの下方より読取を行わせる第1読取搬送部E、読取後の原稿の裏面画像を読取る第2読取搬送部F、表裏の読取が完了した原稿を機外に排出する排紙部G、読取完了後の原稿を積載保持するスタック部Hを備える。原稿搬送装置101は、上記搬送動作の駆動を行う駆動源としてピックアップモータ、給紙モータ、読取モータ、排紙モータ、底板上昇モータ等を備えている。
原稿テーブル42は、可動原稿テーブル43を備えて構成され、読取られる用紙99がセットされる。用紙99は原稿テーブル42に原稿面を上向きの状態でセットされる。原稿テーブル42は、サイドガイドを備え、用紙99の幅方向を搬送方向と直交する方向に位置する。セットされた用紙99はセットフィラー44、セットセンサ45により検知され、本体制御部に送信される。
原稿テーブル42には、原稿長さ検知センサ70、71(反射型センサまたは、用紙99枚にても検知可能なアクチエーター・タイプのセンサが用いられる)が配置される。原稿長さ検知センサ70、71は、原稿の搬送方向長さを判定する。このとき原稿長さ検知センサ70、71は少なくとも同一原稿サイズの縦か横かを判断可能に配置される。
可動原稿テーブル43は、底板上昇モータにより矢印a,b方向に上下動可能となっている。可動原稿テーブル43に原稿がセットされたことをセットフィラー44、セットセンサ45により検知すると、底板上昇モータを正転させて原稿束の最上面がピックアップローラ47と接触するように可動原稿テーブル43を上昇させる。なお、図3では、上昇状態が実線で記載されている。
ピックアップローラ47は、ピックアップモータによりカム機構で矢印c、dの方向に動作すると共に、可動原稿テーブル43が上昇し可動原稿テーブル43上の原稿上面により押されてc方向に上がりテーブル上昇検知センサ48により上限を検知可能となっている。
給紙ベルト49は給紙モータの正転により給紙方向に駆動され、リバースローラ50は給紙モータの正転により給紙と逆方向に回転駆動され、最上位の原稿とその下の原稿を分離して、最上位の原稿のみを給紙できる構成となっている。
リバースローラ50は、給紙ベルト49と所定圧で接し、2枚以上の原稿が給紙ベルト49とリバースローラ50との間に侵入したとき、本来の駆動方向である時計方向に回転し、余分な原稿を押し戻す働きをし、原稿の重送を防止する。
給紙ベルト49とリバースローラ50との作用により1枚に分離された原稿は給紙ベルト49によって更に送られ、突き当てセンサ51によって先端が検知され更に進んで停止しているプルアウトローラ52に突き当たる、その後前出の突き当てセンサ51の検知から所定量の定められた距離だけ送られ、結果的には、プルアウトローラ52に所定量撓みを持って押し当てられた状態で給紙モータを停止させることにより、給紙ベルト49の駆動が停止する。
このとき、ピックアップモータを回転させることでピックアップローラ47を原稿上面から退避させ、原稿を給紙ベルト49の搬送力のみで送ることにより、原稿先端は、プルアウトローラ52の上下ローラ対のニップに進入し、先端の整合(スキュー補正)が行われる。
プルアウトローラ52は、前記スキュー補正機能を有すると共に、分離後にスキュー補正された原稿を中間ローラ54まで搬送するものであり、給紙モータの逆転により駆動される。なお、給紙モータ逆転時、プルアウトローラ52と中間ローラ54は駆動されるが、ピックアップローラ47と給紙ベルト49は駆動されていない。
原稿幅センサ53は、奥行き方向に複数個並べられ、プルアウトローラ52により搬送された原稿の搬送方向に直行する幅方向のサイズを検知する。また、原稿の搬送方向の長さは原稿の先端後端を突き当てセンサ51で読取ることにより、モータパルスから原稿の長さを検知する。
プルアウトローラ52および中間ローラ54の駆動によりレジスト部Cからターン部Dに原稿が搬送される際には、レジスト部Cでの搬送速度を第1読取搬送部Eでの搬送速度よりも高速に設定して原稿を読取部へ送り込む処理時間の短縮が図られている。
原稿の先端が読取入口センサ55により検出されると、読取モータを正転駆動して読取入口ローラ56、読取出口ローラ63、CIS出口ローラ67を駆動する。
原稿の先端をレジストセンサ57にて検知すると、所定の搬送距離をかけて減速し、図示していない第1読取部が配置される読取位置60の手前で一時停止すると共に、本体制
御部にI/Fを介して停止信号を送信する。
続いて本体制御部より読取り開始信号を受信すると、停止していた原稿は、読取位置に原稿先端が到達するまでに所定の搬送速度に立ち上がるように増速されて搬送される。
読取モータのパルスカウントにより検出された原稿先端が読取部に到達するタイミングで、本体制御部に対して第1面の副走査方向有効画像領域を示すゲート信号が、第1読取部を原稿後端が抜けるまで送信される。
片面原稿の読取の場合には、第1読取搬送部Eを通過した原稿は第2読取部65を経て排紙部Gへ搬送される。この際、排紙センサ64により原稿の先端を検知すると、排紙モータを正転駆動して排紙ローラ68を反時計方向に回転させる。
また、排紙センサ64による原稿の先端検知からの排紙モータパルスカウントにより、原稿後端が排紙ローラ68の上下ローラ対のニップから抜ける直前に排紙モータ駆動速度を減速させて、排紙トレイ69上に排出される原稿が飛び出さないように制御される。
第2読取部65表面は、原稿に付着した糊上のものが読取ライン上に転写することによる縦すじを防止するため、コーティング処理が施されコーティング部材が配置されている。
このコーティング部材は、第2読取部65の読取面に汚れ分解機能を有するコーティング材、または、親水性を有するコーティング材を塗布して形成したものである。これらのコーティング材は公知のものを使用することができる。
〔第1実施形態の駆動装置〕
図4は、第1実施形態の駆動装置200‐1の概略構成を示すブロック図である。図4に示される駆動装置200‐1は、例えば、図1に示された画像形成装置100本体の給紙ローラ27等を駆動する駆動機構に利用することができる。また、例えば、図3に示された原稿搬送装置101の読取入口ローラ56、読取出口ローラ63、またはCIS出口ローラ67を駆動する駆動機構に利用することができる。
図4に示されるように、駆動装置200‐1は、駆動源であるモータ210とモータ210に電力供給するドライバ回路220とドライバ回路220を介してモータ210を制御する制御回路230‐1とを備える。ただし、図4ではドライバ回路220と制御回路230‐1とが分離して記載されているが、例えば図5および図6に示すように、2つの回路は同一の基板上に構成されていることが好ましい。図5は、モータ210を駆動軸でない側(駆動軸とは反対側)から見た場合の平面図であり、図6は、モータ210を駆動軸でない側から見た場合の斜視図である。図5および図6において、符号300はコネクタを表し、符号211、212、213はホール素子を表し、符号301、302、303はスイッチとして機能するFETを表している。ドライバ回路220と制御回路230‐1とは、入力信号が同一の信号であるので、同一の基板上に構成することにより、基板の有効活用ができる。さらに、図4に示されるドライバ回路220は、モータ210に搭載されていない形式で示されているが、ドライバ回路220をモータ210上の基板に搭載した場合は、ハーネス本数の削減が図れるため、コストダウンにつながる。また、図4では制御回路230-1が一つのドライバ220を介して一つのモータ210を駆動しているが、制御回路230‐1にて複数のドライバ220を介して複数のモータ210を駆動しても良い。その際は、ドライバ回路220と制御回路230‐1は同一の基板上に構成しても良いが、分離していた方が望ましい。これは、モータ210の巻線近傍に配置されるホール素子211,212,213とドライバ回路220を同一の基板上に構成することが望ましいため、複数のドライバ回路220と制御回路230‐1を同一の基板上に構成することができなくなるためである。
モータ210は、三相駆動のブラシレスDCモータである。すなわち、モータ210は、整流子を有さず、ドライバ回路220から供給される直流電流が半導体スイッチにより切換えられることにより磁極の方向が切換えられる電動機である。
モータ210は、整流子を有さないので、別途の方法で磁極の方向を切換えなければならない。このために、モータ210は、モータ210の磁極位相を表す磁極位相信号をフィードバックする仕組みを有する。図4に示されるモータ210は、三相駆動であるので、磁極位相信号をフィードバックするために、3つのホール素子211,212,213を備えている。ホール素子211,212,213は、ホール効果によりモータ210内の磁界を検出する素子である。ホール素子211,212,213から出力される磁極位相信号は、ホール信号とも呼ばれる。
なお、図4に示されるモータ210は、磁極位相信号フィードバックのために、ホール素子211,212,213を備えているが、逆起電力を検出するなどのいわゆるセンサレスブラシレスDCモータであってもよい。また、図4ではドライバ回路220とホール素子211,212,213とが分離して記載されているが、例えば図5および図6に示すように、同一の基板上に構成されていることが好ましい。その理由は、ハーネスによる接続よりも外部からのノイズによる信号乱れが発生しにくくなるためと、ハーネス本数の削減が図られコストダウンにつながるからである。より具体的には、図5および図6の例では、コネクタ300は後述の目標駆動信号生成手段240に接続されるので、目標駆動信号生成手段240から入力される後述の目標駆動信号のみを入力するだけで済む。これにより、ハーネスの本数を削減することができる。また、後述するように、目標駆動信号生成手段240からの出力は、従来ステッピングモータに対して出力されていたものと同様に回転方向とパルス数を示す信号であるので、従来のステッピングモータに対して駆動装置200−1(図5および図6に示される部分)の交換を行うことができる。
ドライバ回路220は、モータ駆動回路221と回転位置検出回路222とを備えている。
ドライバ回路220内のモータ駆動回路221は、モータ210から出力される磁極位相信号に応じてモータ210に電力を供給する。この例では、モータ駆動回路221は請求項の「モータ駆動部」に対応している。より具体的には以下のとおりである。モータ駆動回路221は、4象限ドライバとして構成されており、制御回路230‐1から得られた制御信号とホール素子211,212,213から得られたホール信号とに基づいて、モータ210に与える電流および電圧を独立に制御する。
一方、ドライバ回路220内の回転位置検出回路222は、モータ210から出力される磁極位相信号を変換して、モータ210の出力軸の回転量及び回転方向を表し、当該磁極位相信号に対して分解能の高い回転位置検出信号を出力する。この例では、回転位置検出回路222は請求項の「回転位置検出部」に対応している。より具体的には以下のとおりである。回転位置検出回路222は、ホール素子211,212,213から得られたホール信号から、モータ210の出力軸の回転位置を表す回転位置信号を生成する。この回転位置信号は、モータ210の出力軸にロータリエンコーダを設けた場合の2チャンネルエンコーダ等価信号であり、請求項の「回転位置検出信号」に対応している。回転位置検出回路222が2チャンネルエンコーダ等価信号を生成する方法は、例えばスライス方式とベクトル方式とがあり、これらの方法は後に別途詳述される。
制御回路230‐1は、回転位置検出回路222から出力された回転位置信号と、上位装置から入力される目標駆動信号とに基づき、モータ駆動回路221に制御信号を送信する。この例では、制御回路230−1は請求項の「制御部」に対応している。また、この例では、ドライバ回路220と制御回路230−1との組み合わせは請求項の「制御装置」に対応していると考えることもできる。また、ドライバ回路220のみの部分が請求項の「制御装置」に対応していると考えることもできる。以下、制御回路230−1の具体的な内容を説明する。制御回路230−1は、外部の目標駆動信号生成手段240からの目標駆動信号と回転位置検出回路222からの回転位置信号とを比較し、ドライバ回路220がモータ210に供給すべきDC電力を制御する。なお、この例では、目標駆動信号生成手段240は請求項の「上位装置」に対応している。
制御回路230‐1は、目標位置・速度計算回路231と、位置・速度追従制御器232と、モータ位置・速度計算回路233とを備えている。
目標位置・速度計算回路231は、外部の目標駆動信号生成手段240から、目標駆動信号としての回転方向信号と移動パルス数の信号を取得する。そして、目標位置・速度計算回路231は、得られた目標駆動信号と制御回路230‐1が有するオシレータの時間信号とから、モータ210の目標位置および目標速度を導出し、目標位置および目標速度を位置・速度追従制御器232へ伝達する。
一方、モータ位置・速度計算回路233は、ドライバ回路220内の回転位置検出回路222から回転位置信号を受信し、モータ210の出力軸の回転方向および移動パルス数を取得する。先述のように回転位置信号は、モータ210の出力軸にロータリエンコーダを設けた場合の2チャンネルエンコーダ等価信号であり、モータの出力軸の回転角度に応じて出力が変化する、定位相差(本実施形態では90°)の2チャンネル信号である。したがって、モータ位置・速度計算回路233は、この位相差を利用して、モータ210の出力軸の回転方向および移動パルス数を取得することができる。
さらに、モータ位置・速度計算回路233は、モータ210の出力軸の回転方向および移動パルス数とオシレータの時間信号とから、モータ210の回転位置および回転速度を導出し、回転位置および回転速度を位置・速度追従制御器232へ伝達する。
位置・速度追従制御器232は、目標位置・速度計算回路231から取得した目標位置および目標速度とモータ位置・速度計算回路233から取得した回転位置および回転速度とが一致するように、必要に応じてPWM出力、回転方向、スタート、ストップ、ブレーキといった信号を送るようにモータ駆動回路221を制御する。
モータ駆動回路221は、先述のように4象限ドライバとして構成されている。したがって、制御回路230‐1は、目標駆動信号から単位時間当りの目標回転量ΔXtおよび目標総回転量Xtを求めるとともに、回転位置信号から単位時間当りのモータ回転量ΔXmおよびモータ総回転量Xmを求め、その後、目標総回転量Xtとモータ総回転量Xmが等しく(Xt=Xm)、且つ、単位時間当りの目標回転量ΔXtと単位時間当りのモータ回転量ΔXmが等しく(ΔXt=ΔXm)なるように、モータ駆動回路221への制御信号を変化させることで、モータ210の回転を制御するように構成されている。
以上のように、本実施形態の駆動装置200‐1は、通常、モータ駆動回路221がモータ210に供給する電力の極性を切換えるために用いるホール信号をモータ210の出力軸の回転位置の検出にも用いる。このため、本実施形態の駆動装置200‐1は、ドライバ回路220内にホール信号を変換してモータ210の出力軸の回転量および回転方向を表す回転位置信号を出力する回転位置検出回路を設けている。この構成により、本実施形態の駆動装置200‐1は、モータ210の出力軸または被駆動体にエンコーダまたはレゾルバ等の検出装置を設けなくとも、位置・ホールド制御をすることができる。
また、本実施形態の駆動装置200‐1における回転位置検出信号は、モータ210の出力軸にロータリエンコーダを設けた場合の2チャンネルエンコーダ等価信号であり、従来駆動装置と互換性が非常に高い。とくに、本実施形態の駆動装置200‐1は、従来より画像形成装置100内の駆動機構に利用されていたステッピングモータに対して、他の構成を変更することを必要としないで交換することが可能である。なお、2チャンネルエンコーダ等価信号は、一般的には電気角で90°の位相差を持つ2つの矩形波信号であるが、正弦波や三角波等、矩形波以外の波形信号でもよい。
〔第2実施形態の駆動装置〕
図7は、第2実施形態の駆動装置200‐2の概略構成を示すブロック図である。図7に示される駆動装置200は、例えば、図3における原稿搬送装置101の読取入口ローラ56、読取出口ローラ63、またはCIS出口ローラ67を駆動する駆動機構に利用することができる。また、例えば、図1における画像形成装置100本体の給紙ローラ27等を駆動する駆動機構に利用することができる。なお、第2実施形態の駆動装置200‐2は、第1実施形態の駆動装置200‐1と共通の構成が多いので、以下では、適宜省略して説明を行う。
モータ210は、ブラシレスDCモータである。すなわち、モータ210は、整流子を有さず、ドライバ回路220から供給される直流電流が半導体スイッチにより切換えられることにより磁極の方向が切換えられる電動機である。
ドライバ回路220は、モータ駆動回路221と回転位置検出回路222とを備えている。
ドライバ回路220内のモータ駆動回路221は、4象限ドライバとして構成されており、制御回路230‐2から得られた制御信号とホール素子211,212,213から得られたホール信号とに基づいて、モータ210に与える電流および電圧を独立に制御する。
一方、ドライバ回路220内の回転位置検出回路222は、ホール素子211,212,213から得られたホール信号から、モータ210の出力軸の回転位置を表す回転位置信号を生成する。この回転位置信号は、モータ210の出力軸にロータリエンコーダを設けた場合の2チャンネルエンコーダ等価信号である。回転位置検出回路222が2チャンネルエンコーダ等価信号を生成する方法は、例えばスライス方式とベクトル方式とがあり、これらの方法は後に別途詳述される。
制御回路230‐2は、外部の目標駆動信号生成手段240からの目標駆動信号と回転位置検出回路222からの回転位置信号とを比較し、ドライバ回路がモータ210に供給すべきDC電力を制御する。
具体的には制御回路230‐2は、目標位置計算回路234と、位置追従制御器235と、モータ位置計算回路236とを備えている。
制御回路230‐2内の目標位置計算回路234は、外部の目標駆動信号生成手段240から、目標駆動信号としての回転方向信号と移動パルス数の信号を取得する。そして、目標位置計算回路234は、得られた目標駆動信号とオシレータの時間信号とから、モータ210の目標位置を導出し、目標位置を位置追従制御器235へ伝達する。
一方、制御回路230‐2内のモータ位置計算回路236は、ドライバ回路220内の回転位置検出回路222から回転位置信号を受信し、モータ210の出力軸の回転方向および移動パルス数を取得する。さらに、モータ位置計算回路236は、モータ210の出力軸の回転方向および移動パルス数とオシレータの時間信号とから、モータ210の回転位置を導出し、回転位置を位置追従制御器235へ伝達する。
位置追従制御器235は、目標位置計算回路234から取得した目標位置とモータ位置計算回路236から取得した回転位置とが一致するように、必要に応じてPWM出力、回転方向、スタート、ストップ、ブレーキといった信号を送るようにモータ駆動回路221を制御する。
モータ駆動回路221は、先述のように4象限ドライバとして構成されている。したがって、制御回路230‐2は、目標駆動信号から目標総回転量Xtを求めるとともに、回転位置信号からモータ総回転量Xmを求め、その後、目標総回転量Xtとモータ総回転量Xmが等しくなるように、モータ駆動回路221への制御信号を変化させることで、モータ210の回転を制御するように構成されている。
以上のように、本実施形態の駆動装置200‐2は、通常、モータ駆動回路221がモータ210に供給する電力の極性を切換えるために用いるホール信号をモータ210の出力軸の回転位置の検出にも用いる。このため、本実施形態の駆動装置200‐2は、ドライバ回路220内にホール信号を変換してモータ210の出力軸の回転量および回転方向を表す回転位置信号を出力する回転位置検出回路を設けている。この構成により、本実施形態の駆動装置200‐2は、モータ210の出力軸または被駆動体にエンコーダまたはレゾルバ等の検出装置を設けなくとも、位置・ホールド制御をすることができる。
また、本実施形態の駆動装置200‐2における回転位置検出信号は、モータ210の出力軸にロータリエンコーダを設けた場合の2チャンネルエンコーダ等価信号であり、従来駆動装置と互換性が非常に高い。とくに、本実施形態の駆動装置200‐2は、従来より画像形成装置100内の駆動機構に利用されていたステッピングモータに対して、他の構成を変更することを必要としないで交換することが可能である。なお、2チャンネルエンコーダ等価信号は、一般的には電気角で90°の位相差を持つ2つの矩形波信号であるが、正弦波や三角波等、矩形波以外の波形信号でもよい。
以下、上記説明した第1実施形態の駆動装置200‐1および第2実施形態の駆動装置200‐2において共通構成である回転位置検出回路222の構成例について説明する。
〔スライス方式〕
図8は、スライス方式による回転位置検出回路222の概略構成を示す回路図である。図8に示されるように、回転位置検出回路222は、U相のホール素子211からのホール信号と、V相のホール素子212からのホール信号と、W相のホール素子213からのホール信号とが入力され、2チャンネルエンコーダ等価信号を出力する回路である。
各ホール信号は差動信号であり、U相のホール素子211からの差動信号をU1,U1−とし、V相のホール素子212からの差動信号をV1,V1−とし、W相のホール素子213からの差動信号をW1,W1−とする。また、回転位置検出回路222から出力される2チャンネルエンコーダ等価信号をENC1,ENC2とする。
図8に示されるように、回転位置検出回路222は、第1の位相検出回路310と第2の位相検出回路320と第3の位相検出回路330と位相分割回路340と信号選択回路350と合成回路360とを備える。
ホール素子211,212,213からの各差動信号(U1,U1−;V1,V1−;W1,W1−)は、それぞれ第1の位相検出回路310と第2の位相検出回路320と信号選択回路350とに入力される。
第1の位相検出回路310は3個の比較器311,312,313を備えて構成される。各比較器311,312,313は、入力される各差動信号の振幅を所定の基準レベルRefと比較して、ハイ(Hi)レベル又はロー(Low)レベルを有する比較位相信号U2,V2,W2を発生して合成回路360に出力する。ここで、第1の位相検出回路310からの比較位相信号U2,V2,W2は、所定の位相を有する第1の位相情報信号phAとなる。なお、第1の位相検出回路310が行う上記判定方法は、以下で図9を参照しながら詳述する。
第2の位相検出回路320は3個の比較器321,322,323を備えて構成されている。各比較器321,322,323は、2値の比較位相信号U3,V3,W3を発生して位相分割回路340および合成回路360に出力する。ここで、第2の位相検出回路320からの比較位相信号U3,V3,W3はそれぞれ所定の位相を有する第2位相情報信号phBとなる。なお、第2の位相検出回路320が行う上記判定方法は、以下で図9を参照しながら詳述する。
位相分割回路340は、比較位相信号U2,V2,W2,U3,V3,W3に基づいて、信号選択指令を発生して信号選択回路350に出力する。ここで、信号選択回路350には、差動信号U1,U1−,V1,V1−,W1,W1−が入力されており、信号選択回路350は、位相分割回路340からの信号選択指令に基づき、以下で図9を参照しながら詳述するように適切な信号を選択し、これを選択信号Xとして第3の位相検出回路330に出力する。なお、信号選択回路350が行う上記選択方法は、以下で図9を参照しながら詳述する。
図9は、選択信号Xの選択方法を説明するための各信号のタイミングチャートである。ここで、差動信号(U1,U1−;V1,V1−;W1,W1−)は、ホール素子211,212,213からの各差動信号であるので、それぞれの位相差は120°である。
まず、図9に示されるように、第1の位相検出回路310においては、(1)センサ信号U1とセンサ信号U1−との大小比較の結果として比較位相信号U2を得て、(2)センサ信号V1とセンサ信号V1−との大小比較の結果として比較位相信号V2を得て、(3)センサ信号W1とセンサ信号W1−との大小比較の結果として比較位相信号W2を得ている。
一方、第2の位相検出回路320においては、図10に示される判定論理に従い、差動信号U1,V1,W1を比較することにより、比較位相信号U3,V3,W3を得ている。なお、差動信号U1−,V1−,W1−に基づいて同様に比較しても比較位相信号U3,V3,W3を得ることができる。
そして、信号選択回路350は、比較位相信号U2,V2,W2,U3,V3,W3を図11に示される選択条件にあてはめることにより、差動信号(U1,U1−;V1,V1−;W1,W1−)のうちから一つの信号を選択し、これを選択信号Xとして出力する。
上記のように信号選択回路350により選択された選択信号Xは、分割位相が30度であり、分割区間境界において連続した信号である。正弦波において、位相が150度から180度、0度から30度の区間は非常に直線性が高く、後段の第3の位相検出回路330において、位相レベルを検出するのに非常に有利となる。
第3の位相検出回路330は、Nを2以上の整数として、N−1個の電圧源332‐1〜332‐(N−1)と、N個の位相検出器331‐1〜331‐Nを備えて構成される。そして、第3の位相検出回路330は、信号選択回路350から入力された選択信号Xを、N−1個の電圧源332‐1〜332‐(N−1)により生成された複数のしきい値レベルと比較し、位相情報信号ph(1)〜ph(4)を合成回路360に出力する。これら位相情報信号ph(1)〜ph(4)は、選択信号Xが所定のしきい値レベルに到達することによりモータ210が所定の角度を回転したことを知り得る位相情報であり、第3の位相情報信号phCとなる。
合成回路360は、第1の位相情報信号phAと、第2の位相情報信号phBと、第3の位相情報信号phCとを合成して、2チャンネルエンコーダ等価信号を出力する。
以下、上記説明した信号のおよび合成を各信号の位相の観点から説明する。図12は、第3の位相検出回路330の作用を示す各信号のタイミングチャートである。図12は、信号選択回路350から出力される選択信号Xと、第1の位相検出回路310および第2の位相検出回路320から出力される比較位相信号U2,V2,W2,U3,V3,W3と、第3の位相検出回路330から出力される位相情報信号ph(1)〜ph(4)とを並べて記載したタイミングチャートである。
なお、先述のように、比較位相信号U2,V2,W2が、第1の位相情報信号phAであり、比較位相信号U3,V3,W3が、第2の位相情報信号phBであり、位相情報信号ph(1)〜ph(4)が第3の位相情報信号phCである。また、上記例では、電気角30°区間を5等分するようなしきい値レベルLV(1)〜LV(4)が用いられている。
図12から読み取れるように、合成回路360は、位相情報信号ph(1),ph(3),比較位相信号U3,V3,W3を合成してその合成信号をENC1とし、位相情報信号ph(2),ph(4),比較位相信号U2,V2,W2を合成してその合成信号をENC1とした場合、ENC1,ENC2は、2チャンネルエンコーダ等価信号となっている。
以上のように、スライス方式による回転位置検出回路222によれば、モータ210の出力軸にロータリエンコーダを設けなくとも、ドライバ回路220内に回転位置検出回路222を備えることにより2チャンネルエンコーダ等価信号を得ることができる。
なお、上記説明したスライス方式による回転位置検出回路222は、スライス方式による回転位置検出回路の一例である。上記説明した構成以外にも、ホール素子211,212,213からのホール信号(U1,U1−;V1,V1−;W1,W1−)のうち直線性が高い位相区間を選択して繋ぎ合わせることにより選択信号Xを出力する信号選択回路350と、選択信号を所定のしきい値と比較してホール信号の位相情報を検出する位相検出回路と、位相情報に基づいて2チャンネルエンコーダ等価信号ENC1,ENC2を合成する合成回路とを備える回転位置検出回路222を適宜利用することが可能である。
〔ベクトル方式〕
図13は、ベクトル方式による回転位置検出回路222の概略構成を示す回路図である。図13に示されるように、回転位置検出回路222は、U相のホール素子211からのホール信号と、V相のホール素子212からのホール信号とが入力され、2チャンネルエンコーダ等価信号を出力する回路である。
各ホール信号は差動信号であり、U相のホール素子211からの差動信号をU+,U−とし、V相のホール素子212からの差動信号をV+,V−とする。また、回転位置検出回路222から出力される2チャンネルエンコーダ等価信号をENC1,ENC2とする。
なお、本実施形態のベクトル方式による回転位置検出回路222は、U相のホール素子211からの差動信号U+,U−と、V相のホール素子212からの差動信号V+,V−とを用いるが、W相のホール素子213からの差動信号W+,W−も用いる実施形態も利用可能である。また、本実施形態のベクトル方式による回転位置検出回路222においても、U相、V相、およびW相のうち任意の2つの磁極相を選択して実施することが可能である。
図13に示されるように、回転位置検出回路222は、差動アンプ410とベクトル生成回路420とベクトル回転回路430と角度探索制御回路440と2相パルス生成回路450とを備える。
差動アンプ410は、U相のホール素子211からの差動信号U+,U−およびV相のホール素子212からの差動信号V+,V−をシングルエンド化し、それぞれアナログホール信号AU,AVとして出力する。ここで、アナログホール信号AU,AVの波形は、モータ210の出力軸の回転角度θに対して位相が異なる2つの正弦関数で表わされる形になる。
ベクトル生成回路420は、減算アンプ421と加算アンプ422とサンプルホールド回路423,424とを備え、差動アンプ410から入力されたアナログホール信号AU,AVからX軸成分とY軸成分とからベクトル(Vx,Vy)を生成する。
減算アンプ421は、差動アンプ410から入力されたアナログホール信号AU,AVを減算した後にゲイン(1/√3)を乗じ、サンプルホールド回路423は、減算アンプ421の出力をトリガfsのタイミングでサンプルホールドしてX軸出力Vxとして出力する。また、加算アンプ422は、差動アンプ410から入力されたアナログホール信号AU、AVを加算し、サンプルホールド回路424は、加算アンプ422の出力をトリガfsのタイミングでサンプルホールドしてY軸出力Vyとして出力する。
なお、トリガfsは、発振器により生成されたクロック信号clkを分周して作成されたものを用いる。ただし、このトリガfsを作成する際の分周比は、後述する角度探索制御回路440のシーケンスに対して矛盾の無いように、後述の検出角度データθdの語長よりも大きくするように設定する。
ベクトル生成回路420により作成されたベクトル(Vx,Vy)は、X軸出力VxとY軸出力Vyとが90°の位相差である角度θに関する三角関数となることが簡単な計算で確かめられる。
ベクトル回転回路430は、ベクトル生成回路420により作成された角度θに関する三角関数を後述する検出角度データθdの値に変換することにより、ベクトル(Vx,Vy)を回転変換し、それぞれ回転X軸成分Vx’、回転Y軸成分Vy’として出力する。
ベクトル回転回路430は、乗算器431と加算アンプ432と減算アンプ433とメモリ434とDAC(デジタル‐アナログコンバータ)435とを備える。
メモリ434は、不揮発メモリであり、1周期を64分割して、振幅を128[LSB]で表す正弦データsindat及び余弦データcosdatを保持し、6ビットの語長を有する検出角度データθdの値に従ってデータ値を出力する。
DAC(デジタル‐アナログコンバータ)435は、メモリ434の出力したデータ値sindat、cosdatを、その値に比例したアナログ値に変化して、アナログ正弦値Asin、アナログ余弦値Acosとして出力する。
乗算器431は、アナログ乗算器であり、X軸成分VxおよびY軸成分Vyと、アナログ正弦値Asinおよびアナログ余弦値Acosとを、それぞれ組み合わせて乗じた4つの乗算結果を出力する。
加算アンプ432は、乗算器431の乗算結果から所定の2つを加算して、回転X軸成分Vx’として出力する。なお、このときVx’にゲインを乗じる構成としてもよい。減算アンプ433は、乗算器431の乗算結果から所定の2つの一方から他方を減算して、回転Y軸成分Vy’として出力する。なお、このときVy’にゲインを乗じる構成としてもよい。
上記構成によれば、ベクトル回転回路430は、X軸成分Vx、Y軸成分Vyの表すベクトルを検出角度データθdの値だけ時計回りに回転させる演算をしたことになる。なお、本実施例におけるアナログ正弦値Asin及びアナログ余弦値Acosは、本実施形態における複数の位相を有する基準正弦波に相当する。
ベクトル回転回路430から出力された回転Y軸成分Vy’は、角度探索制御回路440に入力される。
角度探索制御回路440は、符号判定回路441とシーケンサ442と逐次近似レジスタ(SAR)443とを備え、トリガfsの到来の度に、検出角度データθdを変化させて、回転Y軸成分Vy’が近似的に0になる検出角度を探索する。
符号判定回路441は、回転Y軸成分Vy’の値の正負を判定して、符号判定結果signを出力する。なお、上記判定は0を基準に示しているが、所定のオフセット値に対する大小により符号を判定するように構成してもよい。
逐次近似レジスタ(SAR)443は、シーケンサ442により値を適宜書き換えられ、その値を検出角度データθdとして出力する。本実施形態においては、データ語長は6ビットとする。
シーケンサ442は、トリガfsの到来の度に、逐次近似レジスタ(SAR)443の値を書き換え、その結果として変化する符合判定結果signの値により逐次近似レジスタ(SAR)443の値を確定させるという角度探索シーケンスを実行する。
以下では、シーケンサ442の動作を図14〜図18を用いて詳細に説明する。
先ず、トリガfsがシーケンサ442に到来すると、図14に示すようにカウントn=1とし、図15に示すように逐次近似レジスタ(SAR)443の最上位ビットであるbit5の値のみ1として、残りの値は全て0とする。なお、逐次近似レジスタ(SAR)443の値を書き換えることは、検出角度データθdの値を変化させることと同じである。
変更された検出角度データθdは、ベクトル回転回路430にフィードバックされ、ベクトル回転回路430によりベクトル(Vx、Vy)が時計回りにθ1=180°だけ回転させられる。このときの回転X軸成分Vx’、回転Y軸成分Vy’をそれぞれVx’(1)、Vy’(1)とおくと、シーケンサ442は、Vy’(1)の符号を符号判定結果signの値により検出し、符号が正ならば逐次近似レジスタ(SAR)443の最上位のビット5を1に確定する。
次のクロックclkが到来すると、図14に示すようにカウントn=2とし、図16に示すように逐次近似レジスタ(SAR)443の最上位から2ビット目であるbit4の値を1に書き換える。一方、bit5の値については、確定した値1のままでよいため書き換えず、その他のビットの値も書き換えない。
再び変更された検出角度データθdは、ベクトル回転回路430にフィードバックされ、ベクトル回転回路430によりベクトル(Vx、Vy)が時計回りにθ1+θ2=180°+90°だけ回転させられる。ここで、同様に回転結果をVx’(2)、Vy’(2)とおくと、シーケンサ442は、Vy’(2)の符号を符号判定結果signにより検出し、符号が負ならば逐次近似レジスタ(SAR)443のbit4を0に確定する。
次のクロックclkが到来すると、図14に示すようにカウントn=3として、図17に示すように逐次近似レジスタ(SAR)443の最上位から3ビット目であるbit3の値を1に書き換える。同時に、n=2のときに確定したbit4の値も0に書き換え、の他のビットの値は書き換えない。
再び変更された検出角度データθdは、ベクトル回転回路430にフィードバックされ、ベクトル回転回路430によりベクトル(Vx、Vy)が時計回りにθ1+θ2−θ3=180°+90°−45°だけ回転させられる。同様に回転結果をVx’(3)、Vy’(3)とおくと、シーケンサ442は、Vy’(3)の符号を符号判定結果signにより検出し、符号が負ならば逐次近似レジスタ(SAR)443のbit3を0に確定する。
次のクロックclkが到来すると、図14に示すようにカウントn=4として、図18に示すように逐次近似レジスタ(SAR)443の最上位から4ビット目であるbit2の値を1に書き換える。同時に、n=3のときに確定したbit3の値も0に書き換え、その他のビットの値は書き換えない。
再び変更された検出角度データθdは、ベクトル回転回路430にフィードバックされ、ベクトル回転回路430によりベクトル(Vx、Vy)が時計回りにθ1+θ2−θ3−θ4=180°+90°−45°−22.5°だけ回転する。同様に回転結果をVx’(4)、Vy’(4)とおくと、シーケンサ442は、Vy’(4)の符号を符号判定結果signにより検出し、符号が正ならば逐次近似レジスタ(SAR)443のbit2を1に確定する。
シーケンサ442は、以上のようなシーケンスをn=1から6になるまで6ステップ繰り返す。これは逐次近似レジスタ(SAR)443の語長に相当し、全てのbitの値が確定される。ただし、最後のステップだけは次のステップがないため、逐次近似レジスタ(SAR)443のbit0の値が0に確定した場合は、書き換える処理が必要になる。
以上のシーケンサ442の動作を一般化して説明すると、ベクトル(Vx’(n)、Vy’(n))の回転角度θn(n=1、2、・・・6)を1ステップごとに半分にして、また回転方向としては、回転したベクトルのY軸成分Vy’が正ならば次のステップは時計回り方向へ、負ならば次のステップは反時計回り方向へ、ベクトル(Vx、Vy)を回転させる。
最終的にベクトル(Vx’(n)、Vy’(n))はX軸に最も近くまで回転するため、角度探索シーケンスにおける総回転角度が、ベクトル(Vx、Vy)とX軸とのなす角度として検出できる。これは、いわゆる2分法による近似探索アルゴリズムである。
以上のようにして、X軸を位相の基準としたモータ210の出力軸の角度を示す検出角度データθdを検出することができる。このとき、検出角度データθdに所定のオフセットを加えた値を回転子角度として検出し、X軸以外の所定の位相を基準としてモータ210の出力軸の角度を示す検出角度データθdを検出してもよい。
上記のように決定された検出角度データθdは、2相パルス生成回路450に入力される。
2相パルス生成回路450は、トリガfsの到来の度に検出角度データθdの下位2ビットを参照して、図19に示す生成論理に従い、2チャンネルエンコーダ等価信号ENC1,ENC2を出力する。
以上のように、ベクトル方式による回転位置検出回路222によれば、モータ210の出力軸にロータリエンコーダを設けなくとも、ドライバ回路220内に回転位置検出回路222を備えることにより2チャンネルエンコーダ等価信号を得ることができる。
なお、上記説明したベクトル方式による回転位置検出回路222は、ベクトル方式による回転位置検出回路の一例である。上記説明した構成以外にも、磁極位相信号のうち少なくとも2つの磁極相についての差動信号U+,U−,V+,V−に基づいて、モータ210の出力軸の回転角度についての三角関数を各成分の値に持つベクトル(Vx、Vy)を生成するベクトル生成回路420と、ベクトル(Vx、Vy)とアナログ正弦値Asin及びアナログ余弦値Acosとを演算することにより、ベクトル(Vx、Vy)を回転させるベクトル回転回路430と、ベクトル回転回路430によりベクトル(Vx、Vy)を順次回転させて回転後ベクトル(Vx’(n)、Vy’(n))を得て、この回転の角度を検出角度データθdとして検出する角度探索制御回路440と、検出角度データθdに基づいて2チャンネルエンコーダ等価信号ENC1,ENC2を得る2相パルス生成回路450とを備える回転位置検出回路222を適宜利用することが可能である。
100 画像形成装置
101 原稿搬送装置
1Y,1M,1C,1K 感光体ドラム
2Y ドラムクリーニング装置
4Y 帯電装置
5Y 現像装置
6Y,6M,6C,6K プロセスカートリッジ
7 露光装置
8 中間転写ベルト
9Y,9M,9C,9K 1次転写バイアスローラ
10 ベルトクリーニング装置
12 2次転写バックアップローラ
13 クリーニングバックアップローラ
14 テンションローラ
15 中間転写ユニット
19 2次転写ローラ
20 定着ユニット
26 紙収容カセット
27 給紙ローラ
28 レジストローラ対
29 排紙ローラ対
30 スタック部
31 ボトル支持部
32Y,32M,32C,32K トナーボトル
42 原稿テーブル
43 可動原稿テーブル
44 セットフィラー
45 セットセンサ
47 ピックアップローラ
48 テーブル上昇検知センサ
49 給紙ベルト
50 リバースローラ
51 突き当てセンサ
52 プルアウトローラ
53 原稿幅センサ
54 中間ローラ
55 読取入口センサ
56 読取入口ローラ
57 レジストセンサ
60 読取位置
63 読取出口ローラ
64 排紙センサ
65 第2読取部
67 CIS出口ローラ
68 排紙ローラ
69 排紙トレイ
99 用紙
200‐1,200‐2 駆動装置
210 モータ
211,212,213 ホール素子
220 ドライバ回路
221 モータ駆動回路
222 回転位置検出回路
230‐1,230‐2 制御回路
231 目標位置・速度計算回路
232 位置・速度追従制御器
233 モータ位置・速度計算回路
234 目標位置計算回路
235 位置追従制御器
236 モータ位置計算回路
240 目標駆動信号生成手段
310 第1の位相検出回路
320 第2の位相検出回路
330 第3の位相検出回路
340 位相分割回路
350 信号選択回路
360 合成回路
321,322,323 比較器
332‐1〜332‐(N−1) 電圧源
331‐1〜331‐N 位相検出器
410 差動アンプ
420 ベクトル生成回路
430 ベクトル回転回路
440 角度探索制御回路
450 2相パルス生成回路
421,433 減算アンプ
422,432 加算アンプ
423,424 サンプルホールド回路
431 乗算器
434 メモリ
441 符号判定回路
442 シーケンサ
特開平09−047056号公報 特開2007−097365号公報

Claims (11)

  1. モータから出力される磁極位相信号に応じて前記モータに電力を供給するモータ駆動部と、
    前記磁極位相信号を変換して、前記モータの出力軸の回転量及び回転方向を表し、当該磁極位相信号に対して分解能の高い回転位置検出信号を出力する回転位置検出部と、
    を備えることを特徴とする制御装置。
  2. 前記回転位置検出部から出力された前記回転位置検出信号と、上位装置から入力される目標駆動信号とに基づき、前記モータ駆動部に制御信号を送信する制御部を有することを特徴とする請求項1に記載の制御装置。
  3. 前記モータ駆動部と前記回転位置検出部とは、同一の基板上に構成されることを特徴とする請求項2に記載の制御装置。
  4. 前記回転位置検出部と、前記磁極位相信号を生成する手段とが、同一の基板上に構成されることを特徴とする請求項2または請求項3に記載の制御装置。
  5. 前記モータ駆動部と前記制御部とが、同一の基板上に構成されることを特徴とする請求項2〜4の何れか1項に記載の制御装置。
  6. 前記モータ駆動部と前記制御部とが、同一チップ上に構成されることを特徴とする請求項2〜4の何れか1項に記載の制御装置。
  7. 前記回転位置検出信号は、前記モータの出力軸の回転角度に応じて出力が変化する定位相差の2チャンネル信号であることを特徴とする請求項2〜6の何れか1項に記載の制御装置。
  8. 前記回転位置検出部は、
    前記磁極位相信号のうち直線性が高い位相区間を選択して繋ぎ合わせることにより選択信号を出力する信号選択部と、
    前記選択信号を所定のしきい値と比較して前記磁極位相信号の位相情報を検出する位相検出部と、
    前記位相情報に基づいて前記回転位置検出信号を合成する合成部と、
    を備えることを特徴とする請求項2〜7の何れか1項に記載の制御装置。
  9. 前記回転位置検出部は、
    前記磁極位相信号のうち少なくとも2つの磁極相についての差動信号を相互演算し、前記出力軸の回転角度についての三角関数を各成分の値に持つベクトルを生成するベクトル生成部と、
    前記ベクトルと基準正弦波とを演算することにより、前記ベクトルを回転させるベクトル回転部と、
    前記ベクトルが所定位相になるまで前記ベクトル回転部により前記ベクトルを回転させた角度を回転角度として検出する角度探索制御部と、
    前記回転角度に基づいて前記回転位置検出信号を得る2相パルス生成部と、
    を備えることを特徴とする請求項2〜8の何れか1項に記載の制御装置。
  10. 請求項2に記載の制御装置と、前記モータとを有する駆動装置。
  11. 請求項10に記載の駆動装置を備えることを特徴とする画像形成装置。
JP2014105112A 2013-06-10 2014-05-21 制御装置、駆動装置および画像形成装置 Pending JP2015019563A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014105112A JP2015019563A (ja) 2013-06-10 2014-05-21 制御装置、駆動装置および画像形成装置
US14/290,087 US9294021B2 (en) 2013-06-10 2014-05-29 Control device, driving device, and image forming apparatus
CN201410426348.7A CN104242747B (zh) 2013-06-10 2014-06-09 控制设备、驱动设备和图像形成装置
US15/019,632 US9742325B2 (en) 2013-06-10 2016-02-09 Control device, driving device, and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013122258 2013-06-10
JP2013122258 2013-06-10
JP2014105112A JP2015019563A (ja) 2013-06-10 2014-05-21 制御装置、駆動装置および画像形成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019116779A Division JP2019154236A (ja) 2013-06-10 2019-06-24 制御装置、駆動装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2015019563A true JP2015019563A (ja) 2015-01-29

Family

ID=52004917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105112A Pending JP2015019563A (ja) 2013-06-10 2014-05-21 制御装置、駆動装置および画像形成装置

Country Status (3)

Country Link
US (2) US9294021B2 (ja)
JP (1) JP2015019563A (ja)
CN (1) CN104242747B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146729A (ja) * 2015-02-09 2016-08-12 株式会社デンソー モータ制御装置
JP2016178860A (ja) * 2015-03-18 2016-10-06 株式会社リコー 制御装置、モータ駆動装置、シート搬送装置および画像形成装置
JP2017158422A (ja) * 2016-03-01 2017-09-07 株式会社リコー 位相調整装置、位相検出装置、モータ駆動装置、モータ駆動システム、画像形成装置、及び搬送装置
US10401768B2 (en) 2015-06-18 2019-09-03 Ricoh Company, Ltd. Signal level, adjustment apparatus, phase detection apparatus, motor drive controller, conveyer, image forming apparatus, and signal level adjustment method
US10505478B2 (en) 2016-05-09 2019-12-10 Nidec Corporation Motor module, motor step operation control system, and motor control device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387667B2 (ja) 2014-04-21 2018-09-12 株式会社リコー 信号増幅装置及びそれを備えたモータ駆動制御装置
JP6492917B2 (ja) 2014-04-25 2019-04-03 株式会社リコー 角度検出装置、モータ駆動制御装置、及びモータ装置
JP6554896B2 (ja) 2014-04-25 2019-08-07 株式会社リコー 角度検出装置、モータ駆動制御装置、及びモータ装置
US9595903B2 (en) * 2015-03-20 2017-03-14 General Electric Company Controller for motor
JP2017070014A (ja) 2015-09-28 2017-04-06 株式会社リコー モータ制御装置、駆動装置、搬送装置、画像形成装置、モータ制御方法、およびプログラム
KR102021461B1 (ko) * 2015-12-18 2019-09-16 한국원자력연구원 모터 제어 장치 및 방법
US20170187321A1 (en) * 2015-12-28 2017-06-29 Ricoh Company, Ltd. Motor control device, motor control system, image forming apparatus, conveyance apparatus, and motor control method
US10277152B2 (en) * 2016-03-30 2019-04-30 Canon Kabushiki Kaisha Motor control apparatus, sheet conveying apparatus, image forming apparatus
JP2018007532A (ja) 2016-07-08 2018-01-11 株式会社リコー モータ制御装置、モータ駆動装置、モータ駆動システム、画像形成装置、及び搬送装置
JP2018102022A (ja) * 2016-12-19 2018-06-28 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、制御方法、および画像形成装置
JP6552532B2 (ja) * 2017-02-09 2019-07-31 キヤノン株式会社 シート搬送装置及び画像形成装置
EP3631971A4 (en) * 2017-05-30 2021-03-03 Scott Technologies, Inc. CONFIGURABLE MOTOR CONTROL
JP2019022421A (ja) * 2017-07-21 2019-02-07 東芝テック株式会社 ステッピングモータ駆動装置及びプリンタ装置
CN111801883B (zh) * 2018-03-02 2024-04-12 日本电产株式会社 位置推定方法、位置推定装置以及电动机模块
CN110829909B (zh) * 2019-10-18 2021-12-28 北京曙光航空电气有限责任公司 一种无刷直流电动机斩波控制方法
CN110759004B (zh) * 2019-12-25 2020-03-31 常州磐宇仪器有限公司 电机边界判定方法及其在进样针推杆上的自适应定位使用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040036428A1 (en) * 2002-08-20 2004-02-26 International Business Machines Corporation Direction detection and count method for three channel commutation sensor
JP2004155233A (ja) * 2002-11-05 2004-06-03 Koito Mfg Co Ltd 車両用前照灯装置
JP2011223711A (ja) * 2010-04-07 2011-11-04 Mitsubishi Electric Corp 電流検出回路および電動パワーステアリング用制御装置
JP2012182933A (ja) * 2011-03-02 2012-09-20 Mitsubishi Electric Corp モータ制御装置
JP2012215947A (ja) * 2011-03-31 2012-11-08 Brother Ind Ltd モータ制御装置及び画像形成装置
JP2013099023A (ja) * 2011-10-28 2013-05-20 Ricoh Co Ltd モータ駆動制御装置及び方法
JP2013102658A (ja) * 2011-11-10 2013-05-23 Rohm Co Ltd モータ駆動装置及びこれを用いた電気機器
JP2013108971A (ja) * 2011-10-25 2013-06-06 Ricoh Co Ltd 角度検出装置、モータ駆動装置及び画像形成装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504404A (en) * 1993-09-17 1996-04-02 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling motor
JPH0947056A (ja) 1995-07-27 1997-02-14 Fuji Xerox Co Ltd モータの速度および位置制御装置
JP3700305B2 (ja) * 1996-04-19 2005-09-28 松下電器産業株式会社 ブラシレスモータの駆動装置とモータのロータ位置検出装置
JPH1052084A (ja) 1996-08-02 1998-02-20 Japan Servo Co Ltd 3相ブラシレスモータの制御用パルス信号発生回路
JP2003312056A (ja) * 2002-04-26 2003-11-06 Konica Minolta Holdings Inc 画像形成装置
JP2007097365A (ja) 2005-09-30 2007-04-12 Brother Ind Ltd モータ制御方法及びモータ制御装置
JP5039357B2 (ja) * 2006-02-14 2012-10-03 株式会社リコー ブラシレスモータの駆動制御装置、画像読取装置及び画像形成装置
DE102009027346A1 (de) * 2009-06-30 2011-01-05 Robert Bosch Gmbh Verfahren und elektrische Schaltung zum Betreiben eines Elektromotors, insbesondere eines Stellmotors für eine Komponente einer Brennkraftmaschine
JP5899648B2 (ja) 2010-07-27 2016-04-06 株式会社リコー 駆動装置、画像形成装置および画像形成装置の周辺装置
US8928270B2 (en) 2011-09-26 2015-01-06 Ricoh Company, Ltd. Electric motor system and motor control method
JP5742025B2 (ja) 2011-10-31 2015-07-01 株式会社リコー ドライバ基板付きdcモータ、モータシステム、搬送装置及び画像形成装置
JP6194583B2 (ja) 2012-01-31 2017-09-13 株式会社リコー モータ制御装置、モータ制御方法、モータシステム、搬送装置及び画像形成装置
JP5713031B2 (ja) 2012-02-06 2015-05-07 株式会社リコー モータ制御装置、モータシステム、搬送装置、画像形成装置、モータ制御方法およびプログラム
JP5747831B2 (ja) 2012-02-07 2015-07-15 株式会社リコー モータ制御装置、搬送装置、画像形成装置、モータ制御方法およびプログラム
JP6064576B2 (ja) 2012-03-12 2017-01-25 株式会社リコー モータ制御装置およびモータ制御方法
JP6160189B2 (ja) 2012-06-01 2017-07-12 株式会社リコー モータ制御装置、画像処理装置、及びモータ制御方法
JP5729361B2 (ja) 2012-08-08 2015-06-03 株式会社リコー モータ制御装置、駆動装置、搬送装置、画像処理装置、モータ制御方法及びモータ制御プログラム
JP5942696B2 (ja) 2012-08-17 2016-06-29 株式会社リコー モータ制御装置およびモータ制御方法、ならびに、画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040036428A1 (en) * 2002-08-20 2004-02-26 International Business Machines Corporation Direction detection and count method for three channel commutation sensor
JP2004155233A (ja) * 2002-11-05 2004-06-03 Koito Mfg Co Ltd 車両用前照灯装置
JP2011223711A (ja) * 2010-04-07 2011-11-04 Mitsubishi Electric Corp 電流検出回路および電動パワーステアリング用制御装置
JP2012182933A (ja) * 2011-03-02 2012-09-20 Mitsubishi Electric Corp モータ制御装置
JP2012215947A (ja) * 2011-03-31 2012-11-08 Brother Ind Ltd モータ制御装置及び画像形成装置
JP2013108971A (ja) * 2011-10-25 2013-06-06 Ricoh Co Ltd 角度検出装置、モータ駆動装置及び画像形成装置
JP2013099023A (ja) * 2011-10-28 2013-05-20 Ricoh Co Ltd モータ駆動制御装置及び方法
JP2013102658A (ja) * 2011-11-10 2013-05-23 Rohm Co Ltd モータ駆動装置及びこれを用いた電気機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146729A (ja) * 2015-02-09 2016-08-12 株式会社デンソー モータ制御装置
JP2016178860A (ja) * 2015-03-18 2016-10-06 株式会社リコー 制御装置、モータ駆動装置、シート搬送装置および画像形成装置
JP2020092601A (ja) * 2015-03-18 2020-06-11 株式会社リコー 制御装置、モータ駆動装置、シート搬送装置および画像形成装置
US10401768B2 (en) 2015-06-18 2019-09-03 Ricoh Company, Ltd. Signal level, adjustment apparatus, phase detection apparatus, motor drive controller, conveyer, image forming apparatus, and signal level adjustment method
JP2017158422A (ja) * 2016-03-01 2017-09-07 株式会社リコー 位相調整装置、位相検出装置、モータ駆動装置、モータ駆動システム、画像形成装置、及び搬送装置
US10505478B2 (en) 2016-05-09 2019-12-10 Nidec Corporation Motor module, motor step operation control system, and motor control device

Also Published As

Publication number Publication date
CN104242747B (zh) 2017-09-29
US9742325B2 (en) 2017-08-22
US20160164443A1 (en) 2016-06-09
US20140361715A1 (en) 2014-12-11
US9294021B2 (en) 2016-03-22
CN104242747A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
JP2015019563A (ja) 制御装置、駆動装置および画像形成装置
JP6888647B2 (ja) 駆動装置、画像形成装置および画像形成装置の周辺装置
JP3347654B2 (ja) 駆動装置
JP5729361B2 (ja) モータ制御装置、駆動装置、搬送装置、画像処理装置、モータ制御方法及びモータ制御プログラム
JP6881634B2 (ja) 制御装置、モータ駆動装置、シート搬送装置および画像形成装置
US9272866B2 (en) Conveyance device, conveyance device control method, and computer program product
US9961221B2 (en) Motor control apparatus that controls motor based on result of detection by position detection sensor that detects rotational position of rotor of motor, and image forming apparatus
JP2019154236A (ja) 制御装置、駆動装置および画像形成装置
JP5867811B2 (ja) シート搬送装置及び画像形成装置
JP2019146308A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2019187069A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2017077157A (ja) モータ制御装置及び画像形成装置
JP6720046B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP2021022979A (ja) シート搬送装置、原稿読取装置及び画像形成装置
JP2018104168A (ja) シート搬送装置
JP2018121400A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP7233995B2 (ja) 画像読取装置
JP6627574B2 (ja) 電圧レベル検出装置、モータ駆動装置、モータ駆動システム、及び画像形成装置
JP2019213336A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2018143078A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2019030038A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2017131076A (ja) モータ駆動装置、モータ駆動システム、搬送装置、及び画像形成装置
JP2016063604A (ja) 位置情報出力装置および位置情報出力方法、ならびに、モータ駆動装置および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180815

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624